JP2010256282A - Two-dimensional measuring machine - Google Patents

Two-dimensional measuring machine Download PDF

Info

Publication number
JP2010256282A
JP2010256282A JP2009109268A JP2009109268A JP2010256282A JP 2010256282 A JP2010256282 A JP 2010256282A JP 2009109268 A JP2009109268 A JP 2009109268A JP 2009109268 A JP2009109268 A JP 2009109268A JP 2010256282 A JP2010256282 A JP 2010256282A
Authority
JP
Japan
Prior art keywords
led
light
measurement
illumination
measurement object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009109268A
Other languages
Japanese (ja)
Inventor
Ryuichi Kawakami
隆一 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sokkia Topcon Co Ltd
Original Assignee
Sokkia Topcon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sokkia Topcon Co Ltd filed Critical Sokkia Topcon Co Ltd
Priority to JP2009109268A priority Critical patent/JP2010256282A/en
Publication of JP2010256282A publication Critical patent/JP2010256282A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-dimensional measuring machine including an illumination device, capable of imaging a measuring object with a high contrast at all times, and acquiring sufficient light quantity at all times. <P>SOLUTION: In the two-dimensional measuring device includes a microscope (5) for enlarging the measuring object (1), and an illumination means (11) for illuminating the measuring object, the illumination means includes a plurality of LED illuminations (12) for emitting each a light (14), having respective different wavelength (λ<SB>1</SB>, λ<SB>2</SB>, λ<SB>3</SB>, λ<SB>4</SB>, λ<SB>5</SB>), and a light (14) emitted from one LED illumination selected from among q plurality of LED illuminations is converted into a parallel beam by a collimator lens (13) and is reflected toward a measuring spot (20) by a translucent prism (16) arranged in the microscope. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、液晶パネルにおけるITO(酸化インジウムスズ)膜等の透明導電膜のパターンが設計図と一致しているかどうか等の検査に用いられるパターン検査装置または前記パターンの寸法等を測定する二次元測定機に関する。   The present invention relates to a pattern inspection apparatus used for inspecting whether or not a pattern of a transparent conductive film such as an ITO (indium tin oxide) film in a liquid crystal panel matches a design drawing, or a two-dimensional measurement for measuring the dimension of the pattern, etc. Related to measuring machine.

従来の液晶パネルのパターン検査装置としては、図3に示したようなものが知られている(下記特許文献1参照)。   As a conventional liquid crystal panel pattern inspection apparatus, the one shown in FIG. 3 is known (see Patent Document 1 below).

前記パターン検査装置は、測定物である液晶パネル1を載置するテーブル9と、測定物1の測定個所を拡大する顕微鏡5と、顕微鏡5に取り付けられたCCDカメラ6と、CCDカメラ6で取得した画像を処理する画像処理装置と、測定テーブル9を水平面内でX軸方向及びY軸方向へ移動させるテーブル駆動装置8とを備える。そして、CCDカメラ6で得られた画像に基づいて、液晶パネル1上に形成されたITO膜(図4参照)のパターンに関する位置決め用マーク2の二次元座標を測定して、液晶パネル1が設計図どおりに製造されているか否か検査していた。   The pattern inspection apparatus is obtained by a table 9 on which a liquid crystal panel 1 as a measurement object is placed, a microscope 5 for enlarging a measurement location of the measurement object 1, a CCD camera 6 attached to the microscope 5, and a CCD camera 6. An image processing apparatus for processing the image, and a table driving device 8 for moving the measurement table 9 in the X-axis direction and the Y-axis direction within a horizontal plane. Then, based on the image obtained by the CCD camera 6, the two-dimensional coordinates of the positioning mark 2 relating to the pattern of the ITO film (see FIG. 4) formed on the liquid crystal panel 1 are measured, and the liquid crystal panel 1 is designed. It was inspected whether it was manufactured as shown in the figure.

ところで、液晶パネル1におけるガラス基板1a上の導電膜であるITO膜のパターンをCCDカメラ6で撮像すると、撮像した画像のコントラストが低く、正確な測定が困難となることがある。これは、ITO膜の表面で反射した光とITO膜の下面で反射した光とが干渉して弱め合い、低コントラストの画像となることがあるからである。   By the way, when the pattern of the ITO film which is the conductive film on the glass substrate 1a in the liquid crystal panel 1 is imaged by the CCD camera 6, the contrast of the captured image is low, and accurate measurement may be difficult. This is because the light reflected on the surface of the ITO film and the light reflected on the lower surface of the ITO film interfere with each other and weaken, resulting in a low-contrast image.

図4に示したように、ITO膜の表面で反射した光とITO膜の下面で反射した光との光路差Dは、ITO膜の厚さをd、ITO膜の屈折率をn、空気の屈折率をn、ガラス基板1aの屈折率をn(ただし、n=1<n<n)、光の波長をλとすると、D=4πnd/λとなる。したがって、光路差Dが光の波長λに対して、D=(2m+1)π(ただし、mは整数)となるときは、ITO膜の表面で反射した光とITO膜の下面で反射した光とが互いに干渉して弱め合い、低コントラストの画像となる。一方、D=2mπとなるときは、ITO膜の表面で反射した光とITO膜の下面で反射した光とが干渉して互いに強め合い、高コントラストの画像となる。 As shown in FIG. 4, the optical path difference D between the light reflected by the surface of the ITO film and the light reflected by the lower surface of the ITO film is d for the thickness of the ITO film, n for the refractive index of the ITO film, and If the refractive index is n 1 , the refractive index of the glass substrate 1 a is n 2 (where n 1 = 1 <n <n 2 ), and the wavelength of light is λ, then D = 4πnd / λ. Therefore, when the optical path difference D is D = (2m + 1) π (where m is an integer) with respect to the light wavelength λ, the light reflected on the surface of the ITO film and the light reflected on the lower surface of the ITO film Interfere with each other and weaken, resulting in a low contrast image. On the other hand, when D = 2mπ, the light reflected on the surface of the ITO film and the light reflected on the lower surface of the ITO film interfere with each other and strengthen each other, resulting in a high-contrast image.

そこで、下記特許文献1に記載のパターン検査装置では、光源3と顕微鏡5の間に複数の干渉フィルタ4を配置し、モータ10を回転させて干渉フィルタ4を切換え、光源3から出射された光のうち最も高コントラストの画像を得ることができる波長の光を干渉フィルタ4で選択して顕微鏡5に送って、液晶パネル1を照明している。こうして、高コントラストの画像を得ていた。   Therefore, in the pattern inspection apparatus described in Patent Document 1 below, a plurality of interference filters 4 are arranged between the light source 3 and the microscope 5, the motor 10 is rotated to switch the interference filter 4, and the light emitted from the light source 3. Among them, light having a wavelength capable of obtaining the highest contrast image is selected by the interference filter 4 and sent to the microscope 5 to illuminate the liquid crystal panel 1. Thus, a high-contrast image was obtained.

特開平6−174448号公報JP-A-6-174448

しかしながら、前記パターン検査装置では、光源3から出射された光のうち、干渉フィルタ4を透過する波長のわずかな光のみが測定物の照明に利用され、光源3から出射された光のそれ以外の波長の光に関しては干渉フィルタ4で遮断され、結果として充分な光量を得ることができないことがあるという問題があった。   However, in the pattern inspection apparatus, only a small amount of light having a wavelength that passes through the interference filter 4 out of the light emitted from the light source 3 is used for illuminating the object to be measured, and other light than the light emitted from the light source 3 is used. There is a problem that light of a wavelength is blocked by the interference filter 4, and as a result, a sufficient amount of light cannot be obtained.

本発明は、前記問題に鑑みてなされたもので、照明手段とを備えた二次元測定機において、測定物を常に高コントラストで撮像できるようにするとともに、常に充分な光量を得ることできるようにすることを課題とする。   The present invention has been made in view of the above problems, and in a two-dimensional measuring machine equipped with illumination means, it is possible to always capture a measurement object with high contrast and always obtain a sufficient amount of light. The task is to do.

上記課題を解決するため、請求項1に係る発明では、測定物を拡大する顕微鏡と、前記測定物を照明する照明手段とを備えた二次元測定装置において、前記照明手段は、それぞれ異なる波長の光を出射する複数のLED照明と、前記複数のLED照明のうちから選択した1つのLED照明からの光で前記測定物を照明するLED選択手段とを備えたことを特徴とする。   In order to solve the above-described problem, in the invention according to claim 1, in the two-dimensional measurement apparatus including a microscope for magnifying a measurement object and an illumination unit for illuminating the measurement object, the illumination unit has different wavelengths. A plurality of LED illuminations for emitting light, and LED selection means for illuminating the measurement object with light from one LED illumination selected from the plurality of LED illuminations.

請求項2に係る発明では、請求項1に係る発明において、前記測定物がガラス基板上の透明導電膜により生成されたパターンであり、前記LED選択手段が前記パターンの膜厚により測定に使用するLED照明を選択することを特徴とする。   In the invention which concerns on Claim 2, in the invention which concerns on Claim 1, the said measurement object is a pattern produced | generated by the transparent conductive film on a glass substrate, The said LED selection means uses for the measurement by the film thickness of the said pattern LED lighting is selected.

請求項3に係る発明では、請求項1に係る発明において、前記LED選択手段が、前記複数のLED照明のうちから順次選択した1つのLED照明からの光で前記測定物を照明していき、測定物上の所定個所のコントラストがしきい値以上になったときに、当該LED照明を測定に使用するために選択することを特徴とする。   In the invention according to claim 3, in the invention according to claim 1, the LED selection means illuminates the measurement object with light from one LED illumination sequentially selected from the plurality of LED illuminations, When the contrast at a predetermined location on the measurement object is equal to or higher than a threshold value, the LED illumination is selected for use in measurement.

請求項4に係る発明では、請求項3に係る発明において、前記複数のLED照明のいずれで前記測定物を照明しても、前記コントラストがしきい値以上にならなかったときは、最もコントラストが大きくなったLED照明を測定に使用するために選択することを特徴とする。   In the invention according to claim 4, in the invention according to claim 3, when the measurement object is illuminated with any of the plurality of LED illuminations and the contrast does not exceed the threshold value, the contrast is the highest. It is characterized in that the enlarged LED illumination is selected for use in the measurement.

請求項1に係る発明によれば、照明手段が、それぞれ異なる波長の光を出射する複数のLED照明と、前記複数のLED照明のうちから選択した1つのLED照明からの光で前記測定物を照明するLED選択手段とを備えたから、測定物を最も高コントラストに撮像できる波長の光を出射するLED照明を点灯させて、該LED照明から出射された光を測定物まで充分な光量を保持したまま導くことができる。これにより、測定物を常に高コントラストで撮像できる。   According to the invention which concerns on Claim 1, an illuminating means makes the said measurement object with the light from one LED illumination selected from among several LED illumination which each radiate | emits the light of a different wavelength, and these LED illumination. Since the LED selection means for illuminating is provided, the LED illumination that emits light of a wavelength that can image the measurement object with the highest contrast is turned on, and the light emitted from the LED illumination is kept at a sufficient amount of light up to the measurement object. It can be guided as it is. Thereby, a measurement object can always be imaged with high contrast.

請求項2に係る発明によれば、さらに、測定物がガラス基板上の透明導電膜により生成されたパターンであり、LED選択手段が前記パターンの膜厚により測定に使用するLED照明を選択するから、迅速に自動的に測定に使用するLED照明を選択できて、測定作業を短時間で楽に行える。   According to the second aspect of the present invention, the measurement object is a pattern generated by the transparent conductive film on the glass substrate, and the LED selection unit selects the LED illumination to be used for measurement according to the film thickness of the pattern. The LED illumination to be used for measurement can be selected quickly and automatically, and the measurement work can be performed easily in a short time.

請求項3に係る発明によれば、LED選択手段が、前記複数のLED照明のうちから順次選択した1つのLED照明からの光で前記測定物を照明していき、測定物上の所定個所のコントラストがしきい値以上になったときに、当該LED照明を測定に使用するために選択するから、自動的に使用するLED照明を選択できて測定作業が楽になる。   According to the invention of claim 3, the LED selection means illuminates the measurement object with light from one LED illumination sequentially selected from among the plurality of LED illuminations, and a predetermined place on the measurement object is illuminated. When the contrast exceeds a threshold value, the LED illumination is selected to be used for measurement. Therefore, the LED illumination to be automatically used can be selected to facilitate measurement work.

請求項4に係る発明によれば、さらに、複数のLED照明のいずれで測定物を照明しても、コントラストがしきい値以上にならなかったときは、最もコントラストが大きくなったLED照明を測定に使用するために選択するから、コントラストがしきい値以上にならなかったときでも測定値が得られ、エラー処理に時間を取られることがなくなり、測定作業をいっそう楽に行える。   According to the fourth aspect of the present invention, when the object to be measured is illuminated with any of the plurality of LED illuminations, if the contrast does not exceed the threshold value, the LED illumination with the highest contrast is measured. Therefore, even when the contrast does not exceed the threshold value, the measured value is obtained, and it is not necessary to take time for error processing, so that the measurement work can be performed more easily.

本発明の二次元測定機の構成を説明する図である。It is a figure explaining the structure of the two-dimensional measuring machine of this invention. 前記二次元測定機で測定物を測定する手順を説明する図である。It is a figure explaining the procedure which measures a measurement object with the said two-dimensional measuring machine. 従来の液晶パネル等のパターン検査装置の構成を説明する図である。It is a figure explaining the structure of pattern inspection apparatuses, such as the conventional liquid crystal panel. 従来のパターン検査装置で、高コントラストの画像が得られない場合を説明する図である。It is a figure explaining the case where the conventional pattern inspection apparatus cannot obtain a high-contrast image.

以下、本発明の実施例について添附図面を参照して詳細に説明する。図1は、本実施例の二次元測定機の構成を説明する図である。図2は、この二次元測定機で測定物を測定するときの手順を説明するフローチャートである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a diagram illustrating the configuration of the two-dimensional measuring machine according to the present embodiment. FIG. 2 is a flowchart for explaining a procedure when measuring a measurement object with the two-dimensional measuring machine.

この二次元測定機は、図1に示したように、液晶パネル1等の測定物上の測定個所20を拡大する顕微鏡5と、液晶パネル1を照明する照明手段11を備えている。もちろん、図3に示した従来のものと同様に、図示しないCCDカメラと、画像処理装置と、テーブル駆動装置及びテーブルも備える。   As shown in FIG. 1, the two-dimensional measuring machine includes a microscope 5 that expands a measurement location 20 on a measurement object such as a liquid crystal panel 1 and an illumination unit 11 that illuminates the liquid crystal panel 1. Of course, similarly to the conventional one shown in FIG. 3, a CCD camera, an image processing device, a table driving device and a table (not shown) are also provided.

ただし、この二次元測定機の照明手段11は、それぞれ異なる波長(λ、λ、λ、λ、λ)の光を出射する複数のLED(発光ダイオード)照明12と、複数のLED照明12のうち、選択した1つのLED照明12から出射された光14で測定物を照明するLED選択手段とから構成される。LED照明12から出射された光14は、コリメータレンズ13で平行光線とされ、顕微鏡5内に配置されたハーフミラー16で顕微鏡5の光軸に沿って測定個所20に向けて反射される。 However, the illumination means 11 of this two-dimensional measuring machine includes a plurality of LED (light emitting diode) illuminations 12 that emit light of different wavelengths (λ 1 , λ 2 , λ 3 , λ 4 , λ 5 ), and a plurality of Among the LED illuminations 12, an LED selection unit that illuminates the measurement object with the light 14 emitted from the selected one LED illumination 12. The light 14 emitted from the LED illumination 12 is converted into a parallel light beam by the collimator lens 13 and reflected by the half mirror 16 disposed in the microscope 5 toward the measurement location 20 along the optical axis of the microscope 5.

LED選択手段の一例としては、LED照明12を円形に配置して固定した回転板18を備えており、回転軸15により回転板18を回転させ、コリメータレンズ13に正対したLED照明12のみを点灯して、このLED照明12からの光14のみが、落射照明光として測定個所20を照明するようになっている。LED選択手段としては、さらに、プログラム(図示省略)と、該プログラムを実行するCPU(図示省略)と、CPUからの指示で回転板18を回転させるモータ(図示省略)と、CPUからの指示で各LED照明12を点灯又は消灯させるスイッチ(図示省略)と、レボルバーによる位置決め手段(図示省略)とを備えている。   As an example of the LED selection means, a rotating plate 18 in which the LED lighting 12 is arranged and fixed in a circle is provided, and the rotating plate 18 is rotated by the rotating shaft 15 so that only the LED lighting 12 facing the collimator lens 13 is provided. It lights up and only the light 14 from this LED illumination 12 illuminates the measurement location 20 as epi-illumination light. The LED selection means further includes a program (not shown), a CPU (not shown) for executing the program, a motor (not shown) for rotating the rotating plate 18 according to an instruction from the CPU, and an instruction from the CPU. A switch (not shown) for turning on or off each LED illumination 12 and positioning means (not shown) using a revolver are provided.

もちろん、LED12の数は、図1に示した5個に限るわけではなく2個以上の適宜数の選択が可能であり、また、各LED12から出射する光の波長は、可視光線域に限る必要はなく、赤外線域から紫外線域にまで広げてもよい。
次に、図2に基づいて、この二次元測定機で測定物である液晶パネル1の上の測定個所20(ITO膜のパターン等)の各部の二次元座標等を測定するとき、CPUが実行するプログラムの手順を説明する。
Of course, the number of LEDs 12 is not limited to five as shown in FIG. 1, and an appropriate number of two or more can be selected, and the wavelength of light emitted from each LED 12 must be limited to the visible light range. No, it may extend from the infrared region to the ultraviolet region.
Next, based on FIG. 2, the CPU executes the two-dimensional coordinate measuring unit 20 to measure the two-dimensional coordinates and the like of each part of the measurement point 20 (ITO film pattern, etc.) on the liquid crystal panel 1 as a measurement object. The procedure of the program to be executed will be described.

測定をスタートさせると、まず、ステップS1に進んで、画像の取り込みを開始するとともに、コリメータレンズ13に正対しているLED照明12を点灯させる。次に、ステップS2に進んで、取り込んだ画像において液晶パネル1上の所定個所のコントラストを検出する。   When measurement is started, first, the process proceeds to step S1 to start capturing an image, and the LED illumination 12 facing the collimator lens 13 is turned on. Next, the process proceeds to step S2, and the contrast at a predetermined location on the liquid crystal panel 1 is detected in the captured image.

次に、ステップS3に進んで、所定個所のコントラストが所定のしきい値以上か否かを調べる。コントラストがしきい値未満の場合は、ステップS4に進んで、全てのLED照明12を点灯したか否かを調べる。全てのLED照明12を点灯していない場合は、ステップS5に進んで、点灯しているLED照明12を消灯して、回転板18を回転させ、次のLED照明12を点灯させて、ステップS2に戻る。以下、コントラストがしきい値以上になるまでステップS2〜S5を繰り返す。ステップS4で全てのLED照明12を点灯し尽くしている場合は、ステップS6に進んで、全てのLED照明12の中で所定個所のコントラストが最も大きくなったLED照明12を選択して点灯させて、ステップS7に進む。   Next, the process proceeds to step S3, and it is checked whether or not the contrast at a predetermined location is equal to or greater than a predetermined threshold value. If the contrast is less than the threshold value, the process proceeds to step S4 to check whether all the LED lights 12 are turned on. If all the LED lights 12 are not turned on, the process proceeds to step S5, the lighted LED lights 12 are turned off, the rotating plate 18 is rotated, the next LED light 12 is turned on, and step S2 is turned on. Return to. Thereafter, steps S2 to S5 are repeated until the contrast becomes equal to or greater than the threshold value. If all the LED lights 12 are turned on in step S4, the process proceeds to step S6, and the LED lights 12 having the highest contrast at a predetermined location are selected and turned on in all the LED lights 12. The process proceeds to step S7.

ステップS3で、コントラストがしきい値以上のときは、ステップS7に進んで測定を行い、続いて、ステップS8に進んで、画像の取り込みを終了し、点灯しているLED照明12を消灯にして、この測定を終了する。   If the contrast is equal to or greater than the threshold value in step S3, the process proceeds to step S7 to perform measurement, and then proceeds to step S8 to complete the image capture and turn off the lit LED illumination 12. This measurement is finished.

本実施例によれば、照明手段11が、それぞれ異なる波長の光を出射する複数のLED照明12と、複数のLED12のうちから選択した1つのLED照明12からの光で液晶パネル1等の測定物を照明するLED選択手段とを備えたから、測定物を最も高コントラストに撮像できる波長の光を出射するLED照明12を選択して、該LED照明12から出射された光を測定物まで極力損失少なく充分に導くことができる。しかも、LED照明12は、特定の波長の光のみを出射する。これで、液晶パネル1上の測定個所20を常に高コントラストで撮像できる。また、自動的に使用するLED照明12を選択できるので、測定作業を楽に行える。さらに、複数のLED照明12のいずれで測定物を照明しても、コントラストがしきい値以上にならなかったときでも、測定値が得られ、エラー処理に時間を取られることがなくなり、測定作業をいっそう楽に行える。   According to the present embodiment, the illuminating means 11 measures the liquid crystal panel 1 or the like with light from a plurality of LED illuminations 12 that emit light of different wavelengths and one LED illumination 12 selected from the plurality of LEDs 12. Since the LED selection means for illuminating the object is provided, the LED illumination 12 that emits light having a wavelength capable of imaging the measurement object with the highest contrast is selected, and the light emitted from the LED illumination 12 is lost to the measurement object as much as possible. It can be guided to a small extent. Moreover, the LED illumination 12 emits only light having a specific wavelength. Thus, the measurement location 20 on the liquid crystal panel 1 can always be imaged with high contrast. Moreover, since the LED illumination 12 to be used automatically can be selected, measurement work can be performed easily. Furthermore, even if the measured object is illuminated with any of the plurality of LED lights 12, even when the contrast does not exceed the threshold value, a measured value is obtained and time is not taken for error processing. Can be done more easily.

ところで、本発明は、前記実施例に限るものではなく、種々の変形が可能である。たとえば、前記実施例では、自動的に測定に使用するLED照明12を選択したが、作業者がモニター画面を見てコントラストが最も大きくなるか又はしきい値以上になるLED照明12を選択するようにしてもよい。また、前記実施例では、照明手段11から出射する光の波長を順次変えていって、コントラストがしきい値以上になったときに、そのときのLED照明を選択したが、膜厚計を備えていて、膜厚dが予め測定できた場合は、2πnd/λ=2mπを満たす波長λに最も近い波長の光を出射するLED照明12を選択して点灯させてもよい。ただし、nは膜の屈折率、mは整数である。さらに、本発明は、液晶パネル1表面に形成されたITO膜パターンの検査以外にも、その他の測定物表面に形成された薄膜パターンの検査に使用できるものである。   By the way, the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, in the above-described embodiment, the LED illumination 12 used for measurement is automatically selected. However, the operator looks at the monitor screen and selects the LED illumination 12 having the highest contrast or the threshold value or more. It may be. Moreover, in the said Example, when the wavelength of the light radiate | emitted from the illumination means 11 was changed sequentially and the contrast became more than a threshold value, the LED illumination at that time was selected, but the film thickness meter is provided. If the film thickness d can be measured in advance, the LED illumination 12 that emits light having a wavelength closest to the wavelength λ satisfying 2πnd / λ = 2mπ may be selected and turned on. Here, n is the refractive index of the film, and m is an integer. Furthermore, the present invention can be used for the inspection of a thin film pattern formed on the surface of another measurement object in addition to the inspection of the ITO film pattern formed on the surface of the liquid crystal panel 1.

1 液晶パネル(測定物)
1a ガラス基板
5 顕微鏡
12 LED照明(照明手段)
14 光
18 回転板(LED選択手段)
ITO 酸化インジウムスズ(透明導電膜)
1 LCD panel (measurement)
1a glass substrate 5 microscope 12 LED illumination (illumination means)
14 Light 18 Rotating plate (LED selection means)
ITO Indium tin oxide (transparent conductive film)

Claims (4)

測定物を拡大する顕微鏡と、前記測定物を照明する照明手段とを備えた二次元測定装置において、
前記照明手段は、それぞれ異なる波長の光を出射する複数のLED照明と、前記複数のLED照明のうちから選択した1つのLED照明からの光で前記測定物を照明するLED選択手段とを備えたことを特徴とする二次元測定装置。
In a two-dimensional measurement apparatus comprising a microscope for magnifying a measurement object and an illumination means for illuminating the measurement object,
The illumination unit includes a plurality of LED illuminations that emit light of different wavelengths, and an LED selection unit that illuminates the measurement object with light from one LED illumination selected from the plurality of LED illuminations. A two-dimensional measuring apparatus characterized by that.
前記測定物がガラス基板上の透明導電膜により生成されたパターンであり、前記LED選択手段が前記パターンの膜厚により測定に使用するLED照明を選択することを特徴とする請求項1に記載の二次元測定装置。   The said measurement object is a pattern produced | generated by the transparent conductive film on a glass substrate, The said LED selection means selects the LED illumination used for a measurement with the film thickness of the said pattern. Two-dimensional measuring device. 前記LED選択手段が、前記複数のLED照明のうちから順次選択した1つのLED照明からの光で前記測定物を照明していき、測定物上の所定個所のコントラストがしきい値以上になったときに、当該LED照明を測定に使用するために選択することを特徴とする請求項1に記載の二次元測定装置。   The LED selection means illuminates the measurement object with light from one LED illumination sequentially selected from the plurality of LED illuminations, and the contrast at a predetermined location on the measurement object exceeds a threshold value. 2. The two-dimensional measuring apparatus according to claim 1, wherein the LED illumination is selected for use in measurement. 前記複数のLED照明のいずれで前記測定物を照明しても、前記コントラストがしきい値以上にならなかったときは、最もコントラストが大きくなったLED照明を測定に使用するために選択することを特徴とする請求項3に記載の二次元測定装置。   If the contrast does not exceed the threshold value when the object to be measured is illuminated with any of the plurality of LED lights, the LED light with the highest contrast is selected for use in measurement. The two-dimensional measuring apparatus according to claim 3.
JP2009109268A 2009-04-28 2009-04-28 Two-dimensional measuring machine Pending JP2010256282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009109268A JP2010256282A (en) 2009-04-28 2009-04-28 Two-dimensional measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009109268A JP2010256282A (en) 2009-04-28 2009-04-28 Two-dimensional measuring machine

Publications (1)

Publication Number Publication Date
JP2010256282A true JP2010256282A (en) 2010-11-11

Family

ID=43317349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009109268A Pending JP2010256282A (en) 2009-04-28 2009-04-28 Two-dimensional measuring machine

Country Status (1)

Country Link
JP (1) JP2010256282A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035524A1 (en) * 2011-09-05 2013-03-14 東レエンジニアリング株式会社 Transparent electrode observation device and transparent electrode observation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174448A (en) * 1992-12-09 1994-06-24 Seiko Epson Corp Positioning device for liquid crystal panel and pattern inspection device
WO2007108060A1 (en) * 2006-03-17 2007-09-27 Fujitsu Limited Interference measurement method and interference measurement instrument employing it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174448A (en) * 1992-12-09 1994-06-24 Seiko Epson Corp Positioning device for liquid crystal panel and pattern inspection device
WO2007108060A1 (en) * 2006-03-17 2007-09-27 Fujitsu Limited Interference measurement method and interference measurement instrument employing it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035524A1 (en) * 2011-09-05 2013-03-14 東レエンジニアリング株式会社 Transparent electrode observation device and transparent electrode observation method

Similar Documents

Publication Publication Date Title
US20210207954A1 (en) Apparatus and method for measuring a three-dimensional shape
US8223326B2 (en) Dark-field examination device
US8823930B2 (en) Apparatus and method for inspecting an object
US10030970B2 (en) Image measuring apparatus and measuring apparatus
JP6378936B2 (en) Optical device
JP2019144203A (en) Image inspection device and image inspection method
JP6085188B2 (en) Pattern inspection device
JP2012189479A (en) Shape measuring device
KR101450120B1 (en) Fluorescence image acquisition apparatus for acquiring images by multiple light sources at once
JP2008058248A (en) Diffracted light detector and inspection system
JP5328025B2 (en) Edge detection apparatus, machine tool using the same, and edge detection method
JP2014240766A (en) Surface inspection method and device
JP2010256282A (en) Two-dimensional measuring machine
JP2007163553A (en) Microscope, objective lens unit for microscope, and adaptor for objective lens
JP2012079677A (en) Lighting system used for automatic optical detection and its combination with image forming system
JP5839167B2 (en) Observation device
JP6086274B2 (en) Dimension measuring device
JP2008046362A (en) Optical device
JP2008051892A (en) Microscope apparatus
JP4487042B2 (en) Optical apparatus, inspection apparatus, and inspection method
KR20130109057A (en) Microscope
JP2005241692A (en) Optical device, imaging apparatus and inspection device
JP2012118194A (en) Optical measuring instrument
KR20110133183A (en) Inspecting machine for flat panel
JP2018189517A (en) Measurement device and method for manufacturing articles

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20101022

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120120

A131 Notification of reasons for refusal

Effective date: 20121225

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Effective date: 20121226

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A521 Written amendment

Effective date: 20130222

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416