JP2010255916A - Heat exchanger and air conditioner mounted with the same - Google Patents

Heat exchanger and air conditioner mounted with the same Download PDF

Info

Publication number
JP2010255916A
JP2010255916A JP2009105797A JP2009105797A JP2010255916A JP 2010255916 A JP2010255916 A JP 2010255916A JP 2009105797 A JP2009105797 A JP 2009105797A JP 2009105797 A JP2009105797 A JP 2009105797A JP 2010255916 A JP2010255916 A JP 2010255916A
Authority
JP
Japan
Prior art keywords
heat exchanger
fixing member
exchanger according
gap
water guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009105797A
Other languages
Japanese (ja)
Other versions
JP5172772B2 (en
Inventor
Kazuhisa Mishiro
一寿 三代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009105797A priority Critical patent/JP5172772B2/en
Publication of JP2010255916A publication Critical patent/JP2010255916A/en
Application granted granted Critical
Publication of JP5172772B2 publication Critical patent/JP5172772B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators

Abstract

<P>PROBLEM TO BE SOLVED: To sufficiently exert a function of a linear water conducting member by closely making the water conducting member contact with a corrugate fin throughout its overall length when disposing the linear water conducting member to a face of the side collecting condensed water of a parallel flow type heat exchanger. <P>SOLUTION: The heat exchanger 1 is equipped with two header pipes 2, 3 disposed in parallel with each other at an interval, a plurality of flat tubes 4 disposed between the header pipes 2, 3 and making refrigerant passages 5 formed therein communicate with interiors of the header pipes 2, 3, and the corrugate fins 6 disposed between the flat tubes 4. A plurality of the linear water conducting members 10 are disposed on the face of the side collecting condensed water of the heat exchanger 1 in a state that they contact with ends of the corrugate fins 6 and are laid over a plurality of rows of the corrugate fins 6 in parallel with each other at intervals, and a middle portion of the water conducting member 10 is fixed by a fixing member 11 inserted in a gap of the corrugate fins 6. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はパラレルフロー型熱交換器及びそれを搭載した空気調和機に関する。   The present invention relates to a parallel flow heat exchanger and an air conditioner equipped with the heat exchanger.

複数のヘッダパイプの間に複数の偏平チューブを配置して偏平チューブ内部の複数の冷媒通路をヘッダパイプの内部に連通させるとともに、偏平チューブ間にコルゲートフィン等のフィンを配置したパラレルフロー型の熱交換器はカーエアコンや建物用空気調和機の室外側ユニットなどに広く利用されている。   A parallel flow type heat in which a plurality of flat tubes are arranged between a plurality of header pipes so that a plurality of refrigerant passages in the flat tubes communicate with the inside of the header pipe, and fins such as corrugated fins are arranged between the flat tubes. Exchangers are widely used in outdoor units of car air conditioners and building air conditioners.

従来のパラレルフロー型熱交換器の一例を図13に示す。図13では紙面上側が垂直方向の上側、紙面下側が垂直方向の下側となる。熱交換器1は、2本の水平なヘッダパイプ2、3を水平方向に間隔を置いて平行に配置し、ヘッダパイプ2、3の間に複数の水平な偏平チューブ4を垂直方向に所定ピッチで配置する。偏平チューブ4は金属を押出成型した細長い成型品であり、内部には冷媒を流通させる冷媒通路5が形成されている。偏平チューブ4は長手方向である押出成型方向を水平にする形で配置されるので、冷媒通路5の冷媒流通方向も水平になる。冷媒通路5は断面形状及び断面面積の等しいものが図13の奥行き方向に複数個並び、そのため偏平チューブ4の垂直断面はハーモニカ状を呈している。各冷媒通路5はヘッダパイプ2、3の内部に連通する。隣り合う偏平チューブ4同士の間にはコルゲートフィン6が配置される。   An example of a conventional parallel flow heat exchanger is shown in FIG. In FIG. 13, the upper side of the paper is the upper side in the vertical direction, and the lower side of the paper is the lower side in the vertical direction. The heat exchanger 1 arranges two horizontal header pipes 2 and 3 in parallel with a horizontal interval, and a plurality of horizontal flat tubes 4 between the header pipes 2 and 3 at a predetermined pitch in the vertical direction. Place with. The flat tube 4 is an elongated molded product obtained by extruding a metal, and a refrigerant passage 5 through which a refrigerant flows is formed. Since the flat tube 4 is disposed so that the extrusion direction, which is the longitudinal direction, is horizontal, the refrigerant flow direction of the refrigerant passage 5 is also horizontal. A plurality of refrigerant passages 5 having the same cross-sectional shape and cross-sectional area are arranged in the depth direction of FIG. 13, and therefore, the vertical cross section of the flat tube 4 has a harmonica shape. Each refrigerant passage 5 communicates with the inside of the header pipes 2 and 3. Corrugated fins 6 are arranged between the adjacent flat tubes 4.

ヘッダパイプ2と3、偏平チューブ4、及びコルゲートフィン6はいずれもアルミニウム等熱伝導の良い金属からなり、偏平チューブ4はヘッダパイプ2、3に対し、コルゲートフィン6は偏平チューブ4に対し、それぞれロウ付けまたは溶着で固定される。   The header pipes 2 and 3, the flat tube 4 and the corrugated fin 6 are all made of a metal having good heat conduction such as aluminum, the flat tube 4 is for the header pipes 2 and 3, and the corrugated fin 6 is for the flat tube 4. It is fixed by brazing or welding.

熱交換器1はサイドフローで用いられており、冷媒出入口7、8はヘッダパイプ3の側にのみ設けられている。ヘッダパイプ3の内部には上下方向に間隔を置いて2枚の仕切板9a、9cが設けられており、ヘッダパイプ2の内部には仕切板9a、9cの中間の高さのところに仕切板9bが設けられている。   The heat exchanger 1 is used in a side flow, and the refrigerant outlets 7 and 8 are provided only on the header pipe 3 side. Two partition plates 9a and 9c are provided in the header pipe 3 at intervals in the vertical direction. Inside the header pipe 2, the partition plates are located at a height intermediate between the partition plates 9a and 9c. 9b is provided.

熱交換器1を蒸発器として使用する場合、冷媒は図13に実線矢印で示すように下側の冷媒出入口7から流入する。冷媒出入口7から入った冷媒は、仕切板9aでせき止められて偏平チューブ4経由でヘッダパイプ2に向かう。この冷媒の流れが左向きのブロック矢印で表現されている。ヘッダパイプ2に入った冷媒は仕切板9bでせき止められて別の偏平チューブ4経由でヘッダパイプ3に向かう。この冷媒の流れが右向きのブロック矢印で表現されている。ヘッダパイプ3に入った冷媒は仕切板9cでせき止められてさらに別の偏平チューブ4経由で再びヘッダパイプ2に向かう。この冷媒の流れが左向きのブロック矢印で表現されている。ヘッダパイプ2に入った冷媒は折り返してさらに別の偏平チューブ4経由で再びヘッダパイプ3に向かう。この冷媒の流れが右向きのブロック矢印で表現されている。ヘッダパイプ3に入った冷媒は冷媒出入口8から流出する。このように、冷媒はジグザグの経路を辿って下から上に流れる。ここでは仕切板の数が3の場合を示したが、これは一例であり、仕切板の数と、その結果としてもたらされる冷媒流れの折り返し回数は、必要に応じ任意の数を設定することができる。また、各経路の偏平チューブの本数についても、必要に応じ任意の数を設定することができる。   When the heat exchanger 1 is used as an evaporator, the refrigerant flows in from the lower refrigerant inlet / outlet port 7 as indicated by solid line arrows in FIG. The refrigerant entering from the refrigerant inlet / outlet 7 is blocked by the partition plate 9 a and travels toward the header pipe 2 via the flat tube 4. This refrigerant flow is represented by a left-pointing block arrow. The refrigerant that has entered the header pipe 2 is blocked by the partition plate 9 b and travels to the header pipe 3 via another flat tube 4. This refrigerant flow is represented by a right-pointing block arrow. The refrigerant that has entered the header pipe 3 is blocked by the partition plate 9c, and further travels toward the header pipe 2 via another flat tube 4. This refrigerant flow is represented by a left-pointing block arrow. The refrigerant that has entered the header pipe 2 is folded back and travels again to the header pipe 3 via another flat tube 4. This refrigerant flow is represented by a right-pointing block arrow. The refrigerant that has entered the header pipe 3 flows out from the refrigerant inlet / outlet 8. In this way, the refrigerant follows the zigzag path and flows from the bottom to the top. Although the case where the number of partition plates is 3 is shown here, this is only an example, and the number of partition plates and the number of times the resulting refrigerant flow may be folded may be set as desired. it can. Moreover, also about the number of the flat tubes of each path | route, arbitrary numbers can be set as needed.

熱交換器1を凝縮器として使用する場合は、冷媒の流れが逆になる。すなわち冷媒は図13に点線矢印で示すように冷媒出入口8からヘッダパイプ3に入り、仕切板9cでせき止められて偏平チューブ4経由でヘッダパイプ2に向かい、ヘッダパイプ2では仕切板9bでせき止められて別の偏平チューブ4経由でヘッダパイプ3に向かい、ヘッダパイプ3では仕切板9aでせき止められてさらに別の偏平チューブ4経由で再びヘッダパイプ2に向かい、ヘッダパイプ2で折り返してさらに別の偏平チューブ4経由で再びヘッダパイプ3に向かい、冷媒出入口7から点線矢印のように流出するという、ジグザグの経路を辿って上から下に流れる。   When the heat exchanger 1 is used as a condenser, the refrigerant flow is reversed. That is, the refrigerant enters the header pipe 3 from the refrigerant inlet / outlet 8 as shown by the dotted arrows in FIG. 13 and is dammed by the partition plate 9c and directed to the header pipe 2 via the flat tube 4, and is dammed by the partition plate 9b in the header pipe 2. It heads to the header pipe 3 via another flat tube 4, and the header pipe 3 is dammed by a partition plate 9 a, then goes to the header pipe 2 again via another flat tube 4, and is folded back by the header pipe 2 to make another flat It flows from the top to the bottom following the zigzag path in which it goes to the header pipe 3 again via the tube 4 and flows out from the refrigerant inlet / outlet 7 as indicated by the dotted line arrow.

パラレルフロー型熱交換器は、コルゲートフィンから凝縮水を速やかに排水しないと通風路が塞がって熱交換効率が低下する。この問題は、特にサイドフロー方式のパラレルフロー型熱交換器において顕著である。熱交換器1を蒸発器として使用する場合、凝縮水は、気温が低いと熱交換器の表面で霜と化すことがある。また、その霜を取り除くための除霜運転を繰り返すことにより、氷にまで成長することもある。本明細書では、そのような霜や氷が溶けた水、いわゆる除霜水も含めた意味で「凝縮水」の語を用いるものとする。   In the parallel flow type heat exchanger, if the condensed water is not quickly drained from the corrugated fins, the ventilation path is blocked and the heat exchange efficiency is lowered. This problem is particularly remarkable in a side flow parallel flow heat exchanger. When the heat exchanger 1 is used as an evaporator, the condensed water may turn into frost on the surface of the heat exchanger when the temperature is low. Moreover, it may grow to ice by repeating the defrosting operation for removing the frost. In the present specification, the term “condensed water” is used to include water in which such frost and ice are melted, so-called defrosted water.

特許文献1に、パラレルフロー型熱交換器からの排水を促進する方策が提案されている。特許文献1記載の熱交換器では、凝縮水の結集側にコルゲートフィンと接触する排水ガイドを配置している。排水ガイドは線形部材からなり、偏平管に対して傾斜配置され、両端の少なくとも一つが熱交換器の下端側あるいは側端側に導かれている。   Patent Document 1 proposes a measure for promoting drainage from a parallel flow heat exchanger. In the heat exchanger described in Patent Document 1, a drainage guide that comes into contact with the corrugated fins is disposed on the condensed water condensing side. The drainage guide is made of a linear member, is inclined with respect to the flat tube, and at least one of both ends is led to the lower end side or the side end side of the heat exchanger.

特開2007−285673号公報JP 2007-285673 A

特許文献1記載の排水ガイドは、コルゲートフィンに密着してはじめて効力を発揮する。しかしながら、コルゲートフィンを複数列並べて構成する熱交換器の平面を正確に平らに形成することは至難の業であり、凹凸や起伏の存在が常態となっている。凹凸や起伏が存在するところに線状部材の排水ガイドを張ると、排水ガイドがコルゲートフィンから浮き上がる箇所が必ず発生する。コルゲートフィンからの浮き上がりは、排水ガイドの効力を著しく損なう。   The drainage guide described in Patent Document 1 is effective only when it is in close contact with the corrugated fin. However, it is extremely difficult to accurately form a flat surface of a heat exchanger configured by arranging a plurality of corrugated fins in a row, and the presence of irregularities and undulations is a normal condition. If the drainage guide of the linear member is stretched where there are irregularities and undulations, there will always be places where the drainage guide floats from the corrugated fins. Lifting from the corrugated fins significantly impairs the effectiveness of the drainage guide.

本発明は、上記の問題に鑑みなされたものであり、パラレルフロー型熱交換器の凝縮水が結集する側の面に線状の導水部材を配置するに際し、導水部材がその全長にわたってコルゲートフィンに密着し、機能を十分に果たせるようにすることを目的とする。また、そのパラレルフロー型熱交換器を搭載した、高性能な空気調和機を提供することを目的とする。   The present invention has been made in view of the above problems, and when a linear water guide member is disposed on the surface of the parallel flow type heat exchanger where condensed water is collected, the water guide member is connected to the corrugated fin over its entire length. The purpose is to adhere closely and perform the function sufficiently. Another object of the present invention is to provide a high-performance air conditioner equipped with the parallel flow type heat exchanger.

上記目的を達成するために本発明は、間隔を置いて平行に配置された複数のヘッダパイプと、前記複数のヘッダパイプの間に複数配置され、内部に設けた冷媒通路を前記ヘッダパイプの内部に連通させた偏平チューブと、前記偏平チューブ同士の間に配置されたコルゲートフィンとを備えた熱交換器において、凝縮水が結集する側の面に、線状の導水部材を複数本、各々が前記コルゲートフィンの端部に接触し、且つ複数列のコルゲートフィンにまたがる形で、互いに間隔を置いて平行に配置するとともに、前記導水部材の途中箇所を、前記コルゲートフィンの隙間に挿入される固定部材で固定したことを特徴としている。   In order to achieve the above object, the present invention provides a plurality of header pipes arranged in parallel at intervals, and a plurality of refrigerant pipes arranged between the plurality of header pipes, and having refrigerant passages provided inside the header pipes. In the heat exchanger comprising a flat tube communicated with the corrugated fin and the corrugated fin disposed between the flat tubes, a plurality of linear water guide members are provided on the surface where condensed water is concentrated, Fixing in contact with the end of the corrugated fin and extending parallel to the plurality of rows of corrugated fins, spaced apart from each other, and being inserted in the gap of the corrugated fin at the midpoint of the water guiding member It is characterized by being fixed with a member.

この構成によると、導水部材の途中箇所がコルゲートフィンの隙間に挿入される固定部材で固定されているから、導水部材が途中でコルゲートフィンから浮き上がることがない。このため導水部材は、コルゲートフィンから凝縮水を誘引するという機能をその全長にわたって確実に果たすことができる。   According to this configuration, since the midway portion of the water guide member is fixed by the fixing member inserted into the gap between the corrugated fins, the water guide member does not float from the corrugated fins. For this reason, the water guide member can reliably perform the function of attracting condensed water from the corrugated fins over its entire length.

上記構成の熱交換器において、前記コルゲートフィンの端は前記偏平チューブの端からはみ出しており、そのはみ出し部分同士のなす隙間に前記固定部材が挿入されることが好ましい。   In the heat exchanger configured as described above, it is preferable that an end of the corrugated fin protrudes from an end of the flat tube, and the fixing member is inserted into a gap formed by the protruding portions.

この構成によると、コルゲートフィンの通風性を何ら阻害することなく固定部材を配置することができる。また、コルゲートフィンのはみ出し部分同士のなす隙間に導水部材が押し込まれることにより、導水部材がぴんと張り詰めてコルゲートフィンに密着するから、導水部材の凝縮水誘引性能が一層向上する。   According to this structure, a fixing member can be arrange | positioned, without inhibiting the ventilation property of a corrugated fin at all. Further, when the water guide member is pushed into the gap formed between the protruding portions of the corrugated fins, the water guide member is tightly attached and closely contacts the corrugated fins, so that the condensed water attraction performance of the water guide member is further improved.

上記構成の熱交換器において、前記固定部材は、複数本の前記導水部材にまたがる長さを有することが好ましい。   In the heat exchanger configured as described above, it is preferable that the fixing member has a length extending over a plurality of the water guiding members.

この構成によると、1個の固定部材で複数本の導水部材を固定するから、全体で必要となる固定部材の数を減らすことができる。固定部材の挿入作業回数も少なくて済む。   According to this configuration, since a plurality of water guide members are fixed by one fixing member, the number of fixing members required as a whole can be reduced. The number of fixing member insertion operations can be reduced.

上記構成の熱交換器において、前記固定部材は、前記導水部材1本だけをカバーする長さを有することが好ましい。   In the heat exchanger configured as described above, it is preferable that the fixing member has a length that covers only one of the water guiding members.

この構成によると、設計変更により導水部材の配列ピッチが変わったとしても、固定部材の方は設計変更しないままで使い続けることができる。   According to this configuration, even if the arrangement pitch of the water guiding members is changed due to the design change, the fixing member can be used without changing the design.

上記構成の熱交換器において、前記固定部材は、前記隙間への挿入時に先頭となる側の端が先細り形状であることが好ましい。   In the heat exchanger configured as described above, it is preferable that the fixing member has a tapered end at a leading end when inserted into the gap.

この構成によると、固定部材の隙間への挿入が容易になる。   According to this configuration, the fixing member can be easily inserted into the gap.

上記構成の熱交換器において、前記固定部材は、前記隙間への挿入時に先頭となる側と反対側の端も先細り形状であることが好ましい。   In the heat exchanger configured as described above, it is preferable that the fixing member has a tapered shape at an end opposite to a leading side when inserted into the gap.

この構成によると、固定部材の外側の空気流の乱れを少なくして、送風効率を高めることができる。   According to this configuration, it is possible to reduce the turbulence of the air flow outside the fixing member and increase the blowing efficiency.

上記構成の熱交換器において、前記固定部材は、前記隙間への挿入時に先頭となる側とその反対側の端が対称的な先細り形状であることが好ましい。   In the heat exchanger configured as described above, it is preferable that the fixing member has a tapered shape in which a leading end and an opposite end are symmetrical when inserted into the gap.

この構成によると、固定部材を隙間に挿入する際、固定部材の向きを気にする必要がなく、作業が楽である。   According to this configuration, when the fixing member is inserted into the gap, there is no need to worry about the direction of the fixing member, and the operation is easy.

上記構成の熱交換器において、前記固定部材に、前記導水部材を通す切り欠きが形成されていることが好ましい。   In the heat exchanger configured as described above, it is preferable that a notch through which the water guide member is passed is formed in the fixing member.

この構成によると、固定部材による導水部材の圧迫が緩和され、導水部材の導水性が途中で途切れない。また、導水部材の配列ピッチを所望通りに維持することができる。   According to this configuration, the pressure of the water guide member by the fixing member is alleviated, and the water guide of the water guide member is not interrupted. Further, the arrangement pitch of the water guiding members can be maintained as desired.

上記構成の熱交換器において、前記導水部材の下端が、熱交換器の外に垂下することが好ましい。   The heat exchanger of the said structure WHEREIN: It is preferable that the lower end of the said water conveyance member hangs down outside a heat exchanger.

この構成によると、コルゲートフィンの領域から凝縮水を速やかに排除することができる。   According to this configuration, condensed water can be quickly removed from the corrugated fin region.

また本発明は、上記構成の熱交換器を室外機に搭載した空気調和機であることを特徴としている。   In addition, the present invention is an air conditioner in which the heat exchanger configured as described above is mounted on an outdoor unit.

この構成によると、室外機の熱交換器の通風性が凝縮水によって損なわれにくい、高性能な空気調和機を提供することができる。   According to this configuration, it is possible to provide a high-performance air conditioner in which the ventilation of the heat exchanger of the outdoor unit is not easily impaired by the condensed water.

また本発明は、上記構成の熱交換器を室内機に搭載した空気調和機であることを特徴としている。   Further, the present invention is an air conditioner in which the heat exchanger configured as described above is mounted in an indoor unit.

この構成によると、室内機の熱交換器の通風性が凝縮水によって損なわれにくい、高性能な空気調和機を提供することができる。   According to this configuration, it is possible to provide a high-performance air conditioner in which the air permeability of the heat exchanger of the indoor unit is not easily impaired by the condensed water.

本発明によると、線状の導水部材を全長にわたりコルゲートフィンに密着させ、コルゲートフィンから凝縮水を誘引するという機能を確実に果たさせることができる。   According to the present invention, the linear water guiding member can be brought into close contact with the corrugated fin over the entire length, and the function of attracting condensed water from the corrugated fin can be surely performed.

本発明の実施形態に係る熱交換器の部分正面図である。It is a partial front view of the heat exchanger which concerns on embodiment of this invention. 図1の熱交換器の部分拡大断面図である。It is a partial expanded sectional view of the heat exchanger of FIG. 図1の熱交換器の部分拡大斜視図である。It is a partial expansion perspective view of the heat exchanger of FIG. 固定部材の断面形状の一例を示す図である。It is a figure which shows an example of the cross-sectional shape of a fixing member. 固定部材の断面形状の他例を示す図である。It is a figure which shows the other example of the cross-sectional shape of a fixing member. 固定部材の断面形状のさらに他例を示す図である。It is a figure which shows the further another example of the cross-sectional shape of a fixing member. 固定部材の断面形状のさらに他例を示す図である。It is a figure which shows the further another example of the cross-sectional shape of a fixing member. 固定部材の一例を示す斜視図である。It is a perspective view which shows an example of a fixing member. 固定部材の他例を示す斜視図である。It is a perspective view which shows the other examples of a fixing member. 変形実施形態に係る熱交換器の部分正面図である。It is a partial front view of the heat exchanger which concerns on deformation | transformation embodiment. 本発明に係る熱交換器を搭載した空気調和機の室外機の概略断面図である。It is a schematic sectional drawing of the outdoor unit of the air conditioner carrying the heat exchanger which concerns on this invention. 本発明に係る熱交換器を搭載した空気調和機の室内機の概略断面図である。It is a schematic sectional drawing of the indoor unit of the air conditioner carrying the heat exchanger which concerns on this invention. 従来のパラレルフロー型熱交換器の概略構造を示す垂直断面図である。It is a vertical sectional view showing a schematic structure of a conventional parallel flow type heat exchanger.

以下本発明の実施形態を、図面を参照しつつ説明する。なお、図13の従来構造と機能的に共通する構成要素には図13で用いたのと同じ符号を付し、説明は省略するものとする。   Embodiments of the present invention will be described below with reference to the drawings. Components that are functionally common to the conventional structure of FIG. 13 are denoted by the same reference numerals as those used in FIG. 13 and description thereof is omitted.

図1から図3には、サイドフロー方式のパラレルフロー型熱交換器1の一部の構造が示されている。熱交換器1の、凝縮水の結集側の面には線状の導水部材10が複数本、所定間隔で配置されている。導水部材10は繊維(好ましくは合成繊維)の束や線状の金属を編み込んだものからなり、偏平チューブ4を斜めに横切っている。偏平チューブ4に対する導水部材の角度は、排水の効率と導水部材10による通風抵抗のバランスを考慮すると、おおよそ45°とするのが好ましい。なお、どちら側の面が凝縮水の結集側になるかは、熱交換器1の配置、形状により異なる。   FIGS. 1 to 3 show a partial structure of a side flow type parallel flow heat exchanger 1. A plurality of linear water guide members 10 are arranged at predetermined intervals on the surface of the heat exchanger 1 on the condensate condensing side. The water guide member 10 is made of a bundle of fibers (preferably synthetic fibers) or a braided metal, and crosses the flat tube 4 diagonally. The angle of the water guide member with respect to the flat tube 4 is preferably about 45 ° in consideration of the balance between the drainage efficiency and the ventilation resistance by the water guide member 10. Note that which side is the condensate condensing side depends on the arrangement and shape of the heat exchanger 1.

ここで示した熱交換器1はサイドフロー方式であるが、この方式に限定されるものではない。垂直な偏平チューブを水平方向に所定ピッチで配置した、ダウンフロー方式のパラレルフロー型熱交換器にも本発明は適用可能であり、その場合にも同様の凝縮水排出効果を得ることができる。   Although the heat exchanger 1 shown here is a side flow system, it is not limited to this system. The present invention is also applicable to a downflow parallel flow heat exchanger in which vertical flat tubes are arranged at a predetermined pitch in the horizontal direction, and the same condensate draining effect can be obtained also in that case.

図2及び図3に示すように、コルゲートフィン6の端は偏平チューブ4の端からはみ出している。そのはみ出し部分同士のなす隙間Gに、導水部材10を押さえ込む形で固定部材11が挿入される。   As shown in FIGS. 2 and 3, the end of the corrugated fin 6 protrudes from the end of the flat tube 4. The fixing member 11 is inserted into the gap G formed by the protruding portions so as to press the water guide member 10.

固定部材11は、好ましくは弾性物質、例えば軟質合成樹脂やゴムで成形される。軟質合成樹脂やゴムは発泡していてもよく、発泡していなくてもよい。その幅(図2で言えば、高さ)は、上下のコルゲートフィン6に対し適度の圧迫力を及ぼし、輸送時の振動や冷凍機の振動によって隙間Gから固定部材11が脱落しない寸法に設定する。隙間Gの奥行きも、あまり浅いと固定部材11が容易に脱落してしまうので、適度に深くしておく。   The fixing member 11 is preferably formed of an elastic material such as soft synthetic resin or rubber. The soft synthetic resin or rubber may be foamed or not foamed. The width (height in FIG. 2) is set to a dimension that exerts an appropriate compressive force on the upper and lower corrugated fins 6 so that the fixing member 11 does not fall out of the gap G due to vibration during transportation or vibration of the refrigerator. To do. If the depth of the gap G is too shallow, the fixing member 11 easily falls off.

このように、導水部材10の途中箇所を固定部材11で固定することにより、導水部材10が途中でコルゲートフィン6から浮き上がることが防がれ、導水部材10は、コルゲートフィン6から凝縮水を誘引するという機能をその全長にわたって確実に果たす。   In this way, fixing the intermediate portion of the water guide member 10 with the fixing member 11 prevents the water guide member 10 from floating up from the corrugated fin 6 in the middle, and the water guide member 10 attracts condensed water from the corrugated fin 6. The function to do is performed reliably over its entire length.

本実施形態では、コルゲートフィン6の端を偏平チューブ4の端からはみ出させ、コルゲートフィン6のはみ出し部分同士のなす隙間Gに固定部材11を挿入したから、固定部材11の存在によってコルゲートフィン6の通風性が阻害されることがない。また、隙間Gに導水部材10が押し込まれることにより、導水部材10がぴんと張り詰めてコルゲートフィン6に密着するから、導水部材の凝縮水誘引性能が一層向上する。   In the present embodiment, the end of the corrugated fin 6 protrudes from the end of the flat tube 4, and the fixing member 11 is inserted into the gap G formed by the protruding portions of the corrugated fin 6. Ventilation is not hindered. In addition, when the water guide member 10 is pushed into the gap G, the water guide member 10 is tightly attached and closely contacts the corrugated fins 6, so that the condensed water attraction performance of the water guide member is further improved.

本実施形態では、固定部材11は複数本の導水部材10にまたがる長さを有している。1個の固定部材11で複数本の導水部材10を固定するから、全体で必要となる固定部材11の数を減らすことができる。固定部材11の挿入作業回数も少なくて済む。導水部材10を2本だけまたぐ長さから、偏平チューブ4の全長にほぼ等しい長さまで、事情に合わせて様々な長さを選択することができる。   In the present embodiment, the fixing member 11 has a length that spans the plurality of water guiding members 10. Since a plurality of water guide members 10 are fixed by one fixing member 11, the number of fixing members 11 required as a whole can be reduced. The number of operations for inserting the fixing member 11 can be reduced. Various lengths can be selected in accordance with the circumstances from a length spanning only two water guide members 10 to a length substantially equal to the entire length of the flat tube 4.

また、固定部材11の長さを、導水部材10を1本だけカバーする長さとすることも可能である。このようにすれば、設計変更により導水部材10の配列ピッチが変わったとしても、固定部材11の方は設計変更しないままで使い続けることができる。   Further, the length of the fixing member 11 may be a length that covers only one water guide member 10. If it does in this way, even if the arrangement pitch of the water guide members 10 changes due to the design change, the fixing member 11 can continue to be used without changing the design.

隙間G毎に、すなわち偏平チューブ4毎に固定部材11を挿入するのでなく、1列おきとか2列おきで固定部材11を挿入する構成とすることもできる。ただし、導水部材10の途中がコルゲートフィン6から浮き上がるのを防ぐという目的からすれば、凝縮水の結集側の面に属する全ての隙間Gに固定部材11を挿入するのが好ましい。   Instead of inserting the fixing member 11 for each gap G, that is, for each flat tube 4, the fixing member 11 can be inserted every other row or every other two rows. However, for the purpose of preventing the middle of the water guide member 10 from floating from the corrugated fins 6, it is preferable to insert the fixing members 11 into all the gaps G belonging to the condensed water condensing side surface.

固定部材11の断面は、図4から図7に示すような様々な形状にし得る。なお図4から図7における固定部材11の配置は図2における固定部材11の配置と同じであり、右側が隙間Gへの挿入時に先頭となる側である。   The cross section of the fixing member 11 can have various shapes as shown in FIGS. 4 to 7 is the same as the arrangement of the fixing member 11 in FIG. 2, and the right side is the leading side when inserted into the gap G.

図4の固定部材11は断面矩形となっている。このような単純形状の固定部材11は、例えば板材を切断して形成すればよく、製作が容易である。また、コルゲートフィン6のはみ出し部との接触面積が大きく、隙間Gから脱落し難い。   The fixing member 11 in FIG. 4 has a rectangular cross section. Such a simple-shaped fixing member 11 may be formed by cutting a plate material, for example, and is easy to manufacture. Moreover, the contact area with the protrusion part of the corrugated fin 6 is large, and it is difficult to drop off from the gap G.

図5から図7までは、隙間Gへの挿入時に先頭側になる固定部材11の端を先細りにした例である。図5では先頭側の端が半円形になっている。図6では先頭側の端と後尾側の端が共に半円形になっている。図7では先頭側の端がくさび形で後尾側の端が半円形になっている。このように先頭側の端を先細り形状にすることにより、固定部材11の隙間Gへの挿入が容易になる。   5 to 7 are examples in which the end of the fixing member 11 that becomes the leading side when inserted into the gap G is tapered. In FIG. 5, the leading end is semicircular. In FIG. 6, the leading end and the trailing end are both semicircular. In FIG. 7, the leading end is wedge-shaped and the trailing end is semicircular. By making the leading end tapered in this manner, the fixing member 11 can be easily inserted into the gap G.

また、図6と図7の例のように、隙間Gの挿入時に先頭となる側と反対側の端も先細り形状とすることにより、固定部材11の外側の空気流の乱れを少なくして、送風効率を高めることができる。   Further, as in the example of FIGS. 6 and 7, by making the end opposite to the leading side when the gap G is inserted into a tapered shape, the disturbance of the air flow outside the fixing member 11 is reduced, The ventilation efficiency can be increased.

さらに、図6の例のように、隙間Gへの挿入時に先頭となる側とその反対側の端が対称的な先細り形状であることとすれば、固定部材11を隙間に挿入する際、固定部材11の向きを気にする必要がなく、作業が楽である。   Further, as in the example of FIG. 6, if the leading side and the opposite end when inserting into the gap G are symmetrically tapered, the fixing member 11 is fixed when inserted into the gap. There is no need to worry about the orientation of the member 11, and the work is easy.

図8及び図9に示すように、固定部材11の端に導水部材10を通す切り欠き12を形成することができる。このように切り欠き12を設けておけば、固定部材11による導水部材10の圧迫が緩和され、導水部材10の導水性が途中で途切れない。また、導水部材10の配列ピッチを所望通りに維持することができる。   As shown in FIGS. 8 and 9, a notch 12 through which the water guide member 10 is passed can be formed at the end of the fixing member 11. If the notch 12 is provided in this way, the pressure of the water guide member 10 by the fixing member 11 is relieved, and the water guide of the water guide member 10 is not interrupted. Moreover, the arrangement pitch of the water guide members 10 can be maintained as desired.

図8の例では、切り欠き12は三角形のノッチの形をしていて、幅が狭い。このような切り欠き12にすれば、導水部材10をきっちりと位置決めすることができる。   In the example of FIG. 8, the notch 12 has a triangular notch shape and is narrow. If such a notch 12 is used, the water guide member 10 can be positioned exactly.

図9の例では、切り欠き12は矩形になっていて、図8の切り欠き12よりも幅が広い。このような切り欠き12にすれば、導水部材10の位置決めは多少甘くなるが、反面、導水部材10の動きにゆとりが生じるので、導水部材10が無理に引っ張られて繊維が切れるといった事態を回避できる。   In the example of FIG. 9, the notch 12 has a rectangular shape and is wider than the notch 12 of FIG. If the notch 12 is used, the positioning of the water guide member 10 is somewhat sweetened, but on the other hand, there is room for movement of the water guide member 10, so that the situation where the water guide member 10 is forcibly pulled and the fibers are cut is avoided. it can.

図10は熱交換器1の変形実施態様を示す。図10に描かれているのは熱交換器1の下端部であり、そこでは導水部材10の下端が熱交換器の外に垂下している。このようにすれば、コルゲートフィン6の領域から凝縮水を速やかに排除することができる。   FIG. 10 shows a modified embodiment of the heat exchanger 1. Depicted in FIG. 10 is the lower end of the heat exchanger 1, where the lower end of the water guide member 10 hangs out of the heat exchanger. In this way, condensed water can be quickly removed from the area of the corrugated fin 6.

上記熱交換器1は、セパレート型空気調和機の室外機または室内機に搭載することができる。図11には室外機への搭載例を、図12には室内機への搭載例を示す。   The heat exchanger 1 can be mounted on an outdoor unit or an indoor unit of a separate air conditioner. FIG. 11 shows an example of mounting on an outdoor unit, and FIG. 12 shows an example of mounting on an indoor unit.

図11の室外機20は平面形状略矩形の板金製筐体20aを備え、筐体20aの長辺側を正面20F及び背面20Bとし、短辺側を左側面20L及び右側面20Rとしている。正面20Fには排気口21が形成され、背面20Bには背面吸気口22が形成され、左側面20Lには側面吸気口23が形成される。排気口21は複数の水平なスリット状開口の集合からなり、背面吸気口22と側面吸気口23は格子状の開口からなる。正面20F、背面20B、左側面20L、右側面20Rの4面の板金部材に図示しない天板と底板が加わって六面体形状の筐体20aが形成される。   The outdoor unit 20 in FIG. 11 includes a sheet metal housing 20a having a substantially rectangular planar shape, and the long side of the housing 20a is a front surface 20F and a back surface 20B, and the short side is a left side surface 20L and a right side surface 20R. An exhaust port 21 is formed on the front surface 20F, a rear intake port 22 is formed on the rear surface 20B, and a side intake port 23 is formed on the left side surface 20L. The exhaust port 21 is made up of a set of a plurality of horizontal slit-like openings, and the rear intake port 22 and the side intake ports 23 are made up of lattice-like openings. A top plate and a bottom plate (not shown) are added to the four sheet metal members of the front surface 20F, the back surface 20B, the left side surface 20L, and the right side surface 20R to form a hexahedral-shaped housing 20a.

筐体20aの内部には、背面吸気口22及び側面吸気口23のすぐ内側に熱平面形状L字形の熱交換器1が配置される。熱交換器1と室外空気との間で強制的に熱交換を行わせるため、熱交換器1と排気口21の間に送風機24が配置される。送風機24は電動機24aにプロペラファン24bを組み合わせたものである。送風効率向上のため、筐体20aの正面20Fの内面にはプロペラファン24bを囲むベルマウス25が取り付けられる。筐体20aの右側面20Rの内側の空間は背面吸気口22から排気口21へと流れる空気流から隔壁26で隔離されており、ここに圧縮機27が収容されている。   Inside the housing 20a, a heat-planar L-shaped heat exchanger 1 is disposed just inside the rear intake port 22 and the side intake port 23. In order to force heat exchange between the heat exchanger 1 and the outdoor air, a blower 24 is disposed between the heat exchanger 1 and the exhaust port 21. The blower 24 is a combination of an electric motor 24a and a propeller fan 24b. In order to improve the blowing efficiency, a bell mouth 25 surrounding the propeller fan 24b is attached to the inner surface of the front surface 20F of the housing 20a. A space inside the right side surface 20R of the housing 20a is isolated by a partition wall 26 from an air flow flowing from the rear intake port 22 to the exhaust port 21, and a compressor 27 is accommodated therein.

室外機20の熱交換器1に凝縮水が発生すると、空気流通路の面積が凝縮水で狭められることにより熱交換性能が低下するだけでなく、外気温が氷点下であったりした場合には、凝縮水が凍結して熱交換器1の破損を招くことすらある。そのため室外機20では、熱交換器1からの凝縮水の排水が重要な課題となる。   When condensed water is generated in the heat exchanger 1 of the outdoor unit 20, not only the heat exchange performance is reduced due to the area of the air flow passage being narrowed by the condensed water, but the outside air temperature is below freezing point, The condensed water may freeze and cause damage to the heat exchanger 1. Therefore, in the outdoor unit 20, the drainage of the condensed water from the heat exchanger 1 becomes an important issue.

室外機20では、熱交換器1の風上側が凝縮水の結集側となる。これは次の理由による。室外機20においては、熱交換器1を傾けることなく、ほぼ垂直に立てて設置している。熱交換器1を蒸発器として使用した場合(例えば暖房運転時がこれに該当する)、風下側よりも風上側で熱交換が盛んに行われ、そこに凝縮水が溜まる。そのため、風上側が凝縮水の結集側ということになるのである。   In the outdoor unit 20, the windward side of the heat exchanger 1 is the condensed water condensing side. This is due to the following reason. In the outdoor unit 20, the heat exchanger 1 is installed substantially vertically without being inclined. When the heat exchanger 1 is used as an evaporator (for example, the heating operation corresponds to this), heat exchange is actively performed on the windward side rather than the leeward side, and condensed water accumulates there. Therefore, the windward side is the condensed water condensing side.

風上側で結露した凝縮水は、風下側に流れることはあまりない。外気温が低い場合は、凝縮水は霜として熱交換器1に付着する。霜の量が増えれば除霜運転を余儀なくされるが、除霜運転中、送風機24は停止しているので、霜が溶けた水は風の影響を受けることなく専ら重力で下に流れ落ちる。これらのことから、風上側の面に導水部材10を配置することにより、凝縮水を速やかに排水し、熱交換性能の低下を防ぐことができる。   Condensate condensed on the windward side does not flow to the leeward side. When the outside air temperature is low, the condensed water adheres to the heat exchanger 1 as frost. If the amount of frost increases, the defrosting operation is forced, but during the defrosting operation, the blower 24 is stopped, so that the water in which the frost has melted flows down by gravity without being affected by the wind. From these things, by arrange | positioning the water guide member 10 to the surface of the windward side, condensed water can be drained rapidly and the fall of heat exchange performance can be prevented.

図12の室内機30は、筐体31の内部にVの字を倒立させたような形状の熱交換器1を備えている。筐体31の上面から正面にかけての箇所をフロントパネル32が覆う。フロントパネル32には、複数のスリット状開口の集合からなる吸気口が形成されている。フロントパネル32の内面に沿って、断面形状L字形のエアフィルタ33が配置される。   The indoor unit 30 in FIG. 12 includes the heat exchanger 1 having a shape in which a V-shape is inverted inside a casing 31. The front panel 32 covers a portion from the upper surface to the front surface of the housing 31. The front panel 32 is formed with an intake port composed of a set of a plurality of slit-shaped openings. An air filter 33 having an L-shaped cross section is disposed along the inner surface of the front panel 32.

熱交換器1はエアフィルタ33に対向する形で配置され、熱交換器1がなすV字形状の内側にクロスフローファン34が配置される。筐体31の正面下部には空気吹出口35が設けられている。空気吹出口35には、縦方向のルーバ片を複数個横並びにした縦ルーバ36と、水平なルーバ片を複数個縦並びにした水平ルーバ37が設けられている。また熱交換器1の最下部の下にはドレンパン38が配置されている。   The heat exchanger 1 is disposed so as to face the air filter 33, and the cross flow fan 34 is disposed inside the V shape formed by the heat exchanger 1. An air outlet 35 is provided in the lower front portion of the housing 31. The air outlet 35 is provided with a vertical louver 36 in which a plurality of vertical louver pieces are arranged side by side and a horizontal louver 37 in which a plurality of horizontal louver pieces are arranged vertically. A drain pan 38 is disposed below the lowermost part of the heat exchanger 1.

室内空調時は、クロスフローファン34が図の太い矢印の方向に回転し、熱交換器1には図示しない室外機から送られてきた冷媒が流れる。クロスフローファン34の回転により、室内空気は図の細い矢印の方向に流れる。すなわち室内空気はフロントパネル32の吸気口から吸い込まれ、エアフィルタ33を通って熱交換器1に向かう。空気に含まれる塵埃はエアフィルタ33で捕集され、清浄になった空気が熱交換器1を通り抜ける。その際空気は熱交換器1との間で熱交換を行う。熱交換器1を通ることにより温度調整された空気はクロスフローファン34に吸い込まれ、空気吹出口35から室内に吹き出される。縦ルーバ36と水平ルーバ37の角度を調整することにより、吹出方向を変えることができる。   During indoor air conditioning, the cross flow fan 34 rotates in the direction of the thick arrow in the figure, and the refrigerant sent from the outdoor unit (not shown) flows through the heat exchanger 1. By the rotation of the cross flow fan 34, the room air flows in the direction of the thin arrow in the figure. That is, the room air is sucked from the intake port of the front panel 32 and passes through the air filter 33 toward the heat exchanger 1. Dust contained in the air is collected by the air filter 33, and the purified air passes through the heat exchanger 1. At that time, the air exchanges heat with the heat exchanger 1. The air whose temperature is adjusted by passing through the heat exchanger 1 is sucked into the cross flow fan 34 and blown out into the room from the air outlet 35. By adjusting the angle of the vertical louver 36 and the horizontal louver 37, the blowing direction can be changed.

室内機30では、重力や熱交換器1を通過する風の影響により、熱交換器1の風下側であり、下側でもある面が凝縮水の結集側となる。導水部材10はこちら側の面に配置される。   In the indoor unit 30, due to the influence of gravity or wind passing through the heat exchanger 1, the surface that is on the leeward side and also on the lower side of the heat exchanger 1 is the condensed water collecting side. The water guide member 10 is disposed on the surface on this side.

以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。   Although the embodiments of the present invention have been described above, the scope of the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention.

本発明はパラレルフロー型熱交換器に広く利用可能である。   The present invention is widely applicable to parallel flow heat exchangers.

1 熱交換器
2、3 ヘッダパイプ
4 偏平チューブ
5 冷媒通路
6 コルゲートフィン
G 隙間
7、8 冷媒出入口
10 導水部材
11 固定部材
12 切り欠き
20 室外機
30 室内機
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2, 3 Header pipe 4 Flat tube 5 Refrigerant passage 6 Corrugated fin G Gap 7, 8 Refrigerant inlet / outlet 10 Water guide member 11 Fixing member 12 Notch 20 Outdoor unit 30 Indoor unit

Claims (11)

間隔を置いて平行に配置された複数のヘッダパイプと、前記複数のヘッダパイプの間に複数配置され、内部に設けた冷媒通路を前記ヘッダパイプの内部に連通させた偏平チューブと、前記偏平チューブ同士の間に配置されたコルゲートフィンとを備えた熱交換器において、
凝縮水が結集する側の面に、線状の導水部材を複数本、各々が前記コルゲートフィンの端部に接触し、且つ複数列のコルゲートフィンにまたがる形で、互いに間隔を置いて平行に配置するとともに、前記導水部材の途中箇所を、前記コルゲートフィンの隙間に挿入される固定部材で固定したことを特徴とする熱交換器。
A plurality of header pipes arranged in parallel at intervals, a plurality of flat tubes arranged between the plurality of header pipes and having refrigerant passages provided therein communicated with the inside of the header pipes, and the flat tubes In a heat exchanger with corrugated fins arranged between them,
A plurality of linear water-conducting members are arranged on the surface where condensed water gathers, and are arranged parallel to each other in such a manner as to contact the end portions of the corrugated fins and span a plurality of rows of corrugated fins. In addition, a heat exchanger characterized in that an intermediate portion of the water guide member is fixed by a fixing member inserted into a gap between the corrugated fins.
前記コルゲートフィンの端は前記偏平チューブの端からはみ出しており、そのはみ出し部分同士のなす隙間に前記固定部材が挿入されることを特徴とする請求項1に記載の熱交換器。   2. The heat exchanger according to claim 1, wherein an end of the corrugated fin protrudes from an end of the flat tube, and the fixing member is inserted into a gap formed between the protruding portions. 前記固定部材は、複数本の前記導水部材にまたがる長さを有することを特徴とする請求項2に記載の熱交換器。   The heat exchanger according to claim 2, wherein the fixing member has a length extending over a plurality of the water guiding members. 前記固定部材は、前記導水部材1本だけをカバーする長さを有することを特徴とする請求項2に記載の熱交換器。   The heat exchanger according to claim 2, wherein the fixing member has a length that covers only one of the water guide members. 前記固定部材は、前記隙間への挿入時に先頭となる側の端が先細り形状であることを特徴とする請求項2に記載の熱交換器。   The heat exchanger according to claim 2, wherein the fixing member has a tapered end at a leading end when inserted into the gap. 前記固定部材は、前記隙間への挿入時に先頭となる側と反対側の端も先細り形状であることを特徴とする請求項5に記載の熱交換器。   The heat exchanger according to claim 5, wherein the fixing member has a tapered shape at an end opposite to a leading side when inserted into the gap. 前記固定部材は、前記隙間への挿入時に先頭となる側とその反対側の端が対称的な先細り形状であることを特徴とする請求項6に記載の熱交換器。   The heat exchanger according to claim 6, wherein the fixing member has a tapered shape in which a leading side and an opposite end are symmetrical when inserted into the gap. 前記固定部材に、前記導水部材を通す切り欠きが形成されていることを特徴とする請求項2から7のいずれか1項に記載の熱交換器。   The heat exchanger according to any one of claims 2 to 7, wherein the fixing member is formed with a notch through which the water guide member is passed. 前記導水部材の下端が、熱交換器の外に垂下することを特徴とする請求項1から8のいずれか1項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 8, wherein a lower end of the water guide member hangs outside the heat exchanger. 請求項1から9のいずれか1項に記載の熱交換器を室外機に搭載した空気調和機。   An air conditioner in which the heat exchanger according to any one of claims 1 to 9 is mounted on an outdoor unit. 請求項1から9のいずれか1項に記載の熱交換器を室内機に搭載した空気調和機。   An air conditioner in which the heat exchanger according to any one of claims 1 to 9 is mounted on an indoor unit.
JP2009105797A 2009-04-24 2009-04-24 Heat exchanger and air conditioner equipped with the same Expired - Fee Related JP5172772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009105797A JP5172772B2 (en) 2009-04-24 2009-04-24 Heat exchanger and air conditioner equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009105797A JP5172772B2 (en) 2009-04-24 2009-04-24 Heat exchanger and air conditioner equipped with the same

Publications (2)

Publication Number Publication Date
JP2010255916A true JP2010255916A (en) 2010-11-11
JP5172772B2 JP5172772B2 (en) 2013-03-27

Family

ID=43317038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009105797A Expired - Fee Related JP5172772B2 (en) 2009-04-24 2009-04-24 Heat exchanger and air conditioner equipped with the same

Country Status (1)

Country Link
JP (1) JP5172772B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228134A (en) * 2012-04-25 2013-11-07 Sharp Corp Parallel flow type heat exchanger and air conditioner mounted with the same
JP2013257109A (en) * 2012-06-14 2013-12-26 Fujitsu General Ltd Heat exchanger
JP2014517987A (en) * 2011-05-04 2014-07-24 ユナイテッド テクノロジーズ コーポレイション Freeze-proof condenser for fuel cells
WO2017017814A1 (en) * 2015-07-29 2017-02-02 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
CN109945552A (en) * 2017-12-21 2019-06-28 盾安环境技术有限公司 Micro-channel heat exchanger
US11035623B2 (en) * 2018-03-02 2021-06-15 Hitachi-Johnson Conrols Air Conditioning, Inc. Heat exchanger, outdoor unit, refrigeration cycle device, and heat exchanger manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137498A (en) * 1989-10-24 1991-06-12 Asahi Chem Ind Co Ltd Heat exchanger with liquid flowing means
JPH05332691A (en) * 1992-06-04 1993-12-14 Nippondenso Co Ltd Heat exchanger
JPH08334277A (en) * 1995-06-08 1996-12-17 Calsonic Corp Evaporator for room air conditioner
JP2003279278A (en) * 2002-01-15 2003-10-02 Denso Corp Heat exchanger
JP2007285673A (en) * 2006-04-20 2007-11-01 Yanmar Co Ltd Drain structure for corrugated type heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137498A (en) * 1989-10-24 1991-06-12 Asahi Chem Ind Co Ltd Heat exchanger with liquid flowing means
JPH05332691A (en) * 1992-06-04 1993-12-14 Nippondenso Co Ltd Heat exchanger
JPH08334277A (en) * 1995-06-08 1996-12-17 Calsonic Corp Evaporator for room air conditioner
JP2003279278A (en) * 2002-01-15 2003-10-02 Denso Corp Heat exchanger
JP2007285673A (en) * 2006-04-20 2007-11-01 Yanmar Co Ltd Drain structure for corrugated type heat exchanger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014517987A (en) * 2011-05-04 2014-07-24 ユナイテッド テクノロジーズ コーポレイション Freeze-proof condenser for fuel cells
US9634337B2 (en) 2011-05-04 2017-04-25 Audi Ag Freeze-resistant fuel cell condensers
JP2013228134A (en) * 2012-04-25 2013-11-07 Sharp Corp Parallel flow type heat exchanger and air conditioner mounted with the same
JP2013257109A (en) * 2012-06-14 2013-12-26 Fujitsu General Ltd Heat exchanger
WO2017017814A1 (en) * 2015-07-29 2017-02-02 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
JPWO2017017814A1 (en) * 2015-07-29 2018-02-01 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
CN109945552A (en) * 2017-12-21 2019-06-28 盾安环境技术有限公司 Micro-channel heat exchanger
US11035623B2 (en) * 2018-03-02 2021-06-15 Hitachi-Johnson Conrols Air Conditioning, Inc. Heat exchanger, outdoor unit, refrigeration cycle device, and heat exchanger manufacturing method

Also Published As

Publication number Publication date
JP5172772B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
AU2009344987B2 (en) Heat exchanger and air conditioner having the heat exchanger mounted therein
JP5172772B2 (en) Heat exchanger and air conditioner equipped with the same
JP5417718B2 (en) Heat exchanger
JP5009413B2 (en) Heat exchanger and air conditioner equipped with the same
JP5079857B2 (en) Air conditioner indoor unit
JP5336914B2 (en) Heat exchanger and air conditioner equipped with the same
JP4659863B2 (en) Heat exchanger unit and air conditioner indoor unit using the same
JP5270732B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
JP4988015B2 (en) Heat exchanger and air conditioner equipped with the same
JP4995308B2 (en) Air conditioner indoor unit
JP2014043985A (en) Parallel flow type heat exchanger and air conditioner mounted with the same
JP2012037092A (en) Heat exchanger, and air conditioner with the same
WO2018040037A1 (en) Micro-channel heat exchanger and air-cooled refrigerator
WO2013051418A1 (en) Device equipped with side-flow-type parallel-flow heat exchanger
WO2018040036A1 (en) Micro-channel heat exchanger and air-cooled refrigerator
JP6379352B2 (en) Finned tube heat exchanger
JP5009409B2 (en) Heat exchanger and air conditioner equipped with the same
JP2008224200A (en) Heat exchanger
WO2012056790A1 (en) Heat exchanger and air conditioner having same installed therein
JP2012093010A (en) Heat exchanger and air conditioner mounted with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R150 Certificate of patent or registration of utility model

Ref document number: 5172772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees