JPH03137498A - Heat exchanger with liquid flowing means - Google Patents

Heat exchanger with liquid flowing means

Info

Publication number
JPH03137498A
JPH03137498A JP27493089A JP27493089A JPH03137498A JP H03137498 A JPH03137498 A JP H03137498A JP 27493089 A JP27493089 A JP 27493089A JP 27493089 A JP27493089 A JP 27493089A JP H03137498 A JPH03137498 A JP H03137498A
Authority
JP
Japan
Prior art keywords
heat exchanger
pipes
fluid
pipe
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27493089A
Other languages
Japanese (ja)
Inventor
Toru Osawa
徹 大澤
Naoki Kataoka
直樹 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP27493089A priority Critical patent/JPH03137498A/en
Publication of JPH03137498A publication Critical patent/JPH03137498A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To prevent builtup of water droplets on the flat surface of a flat pipe horizontally disposed, an increase in ventilation resistance and a decrease in heat exchanging efficiency by providing liquid flowing means for connecting between pipes on the side face of the fluid pipes in a laminated tube at the downstream side of an air flow. CONSTITUTION:A plurality of pin fins 2 are disposed in parallel at a predetermined interval between fluid pipes 1 in a tube adjacent to a fluid pipe 2 in the tube, and respectively secured to the flat parts of the pipes 1. The sectional shape of a U-shaped bend 3 is not particularly limited, but in order to reduce the pressure loss of the fluid in the tube, a circular shape is desirable. As liquid flowing means 4, metal, ceramics, resin, etc., which do not vary in shape according to its temperature is employed, and a rodlike or sheetlike material is employed. The sectional shape of the rodlike material is not particularly limited, but in order to reduce its ventilation resistance, a circular shape is desirable. The drainage of condensed water is further improved by providing water droplet guiding means 6 communicating with the means 4 from the vicinity of the pin fins of the frontmost row at the downstream side of an air flow.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱交換器に関する。より詳しくは熱交換効率の
よい熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat exchanger. More specifically, the present invention relates to a heat exchanger with high heat exchange efficiency.

〔従来の技術と発明が解決しようとする課題〕現在おも
に用いられている熱交換器の形状は管内流体と管外流体
との間の熱交換効率を高めるために管内流体用パイプの
外周にプレート上のフィンを取り付けたものであり、フ
ィン形状も使用目的や使用条件によりさまざまな種類の
ものが提案されており、より熱交換効率の高い熱交換器
が望まれている。こうした中で、最近ピンフィン型の熱
交換器が有望なものの一つと考えられている。
[Prior art and problems to be solved by the invention] The shape of the heat exchanger mainly used at present has a plate on the outer periphery of the pipe for the fluid inside the pipe in order to increase the heat exchange efficiency between the fluid inside the pipe and the fluid outside the pipe. The above fins are attached, and various types of fin shapes have been proposed depending on the purpose and conditions of use, and a heat exchanger with higher heat exchange efficiency is desired. Under these circumstances, pin-fin type heat exchangers have recently been considered to be one of the most promising.

ピンフィン型熱交換器の管内流体用パイプの構成はプレ
ートフィン型と同様で段状に平行且つ等間隔でパイプが
配置されている。しかしパイプは偏平パイプであり、こ
の偏平パイプの偏平面と隣合った偏平パイプの偏平面に
垂直にピンフィンが配列されている。ピンフィン熱交換
器はコンデンサ、ラジェータ等の用途ではプレートフィ
ン型に比べて熱交換効率が優れているために熱交換器の
コンパクト化が可能である。しかし、エバポレータ、水
冷式熱交換器等の用途ではピンフィンの表面温度が大気
の露点以下となるためにピンフィンの表面に凝縮による
水滴が発生し、この水滴が水平に配置された偏平パイプ
の偏平面上に溜ることにより、通風抵抗が増大するため
著しく熱交換効率が低下する。この現象は熱交換器の性
能向上とコンパクト化のためにフィンピッチを狭くした
ピンフィン型熱交換器において特に顕著に現れる。本発
明は、このような欠点を克服して、優れた熱交換効率の
熱交換器を提供することを目的とする。
The configuration of the fluid pipes in the pin-fin type heat exchanger is similar to that of the plate-fin type heat exchanger, and the pipes are arranged parallel to each other in a stepped manner and at equal intervals. However, the pipe is a flat pipe, and the pin fins are arranged perpendicularly to the flat plane of the flat pipe adjacent to the flat pipe. Pin-fin heat exchangers have better heat exchange efficiency than plate-fin heat exchangers in applications such as condensers and radiators, so they can be made more compact. However, in applications such as evaporators and water-cooled heat exchangers, the surface temperature of the pin fins is below the dew point of the atmosphere, causing water droplets to condense on the surface of the pin fins. By accumulating on the top, ventilation resistance increases and heat exchange efficiency decreases significantly. This phenomenon is particularly noticeable in pin-fin type heat exchangers in which the fin pitch is narrowed in order to improve the performance and make the heat exchanger more compact. The present invention aims to overcome these drawbacks and provide a heat exchanger with excellent heat exchange efficiency.

〔課題を解決する′ための手段〕[Means for solving problems]

本発明は管内流体用パイプ間にピンフィンが配置されて
いる熱交換器において、積層された管内流体用パイプの
空気流の下流側の側面にパイプ間を接続する流水手段を
設けることを特徴とする。
The present invention is a heat exchanger in which pin fins are arranged between the pipes for fluid in the pipes, and is characterized in that a water flow means for connecting the pipes is provided on the downstream side of the air flow of the stacked pipes for fluid in the pipes. .

以下本発明の一例を示す添付図面を参照して本発明を記
述する。
The invention will now be described with reference to the accompanying drawings, which illustrate an example of the invention.

第1図、第2図は本発明の熱交換器の実施例を示す。1
は等間隔をあけて設けられた複数の管内流体用パイプで
あり、この管内流体用パイプ1と隣接する管内流体用パ
イプ1の間には複数のピンフィン2が互いに所定の間隔
をあけて平行に配置され、それぞれ管内流体用パイプl
の偏平部に固着されている。
1 and 2 show an embodiment of the heat exchanger of the present invention. 1
are a plurality of pipes for fluid in a pipe provided at equal intervals, and a plurality of pin fins 2 are arranged in parallel with each other at a predetermined distance between the pipes for fluid in a pipe 1 and the pipes for fluid in a pipe adjacent to each other. arranged, respectively, pipes for fluid in the pipes l
It is fixed to the flat part of.

ここで管内流体用パイプ1及びピンフィン2に用いる線
状熱伝導体としては、銀、銅、アルミニウム等の純金属
あるいは合金または前金属にハンダメツキ、スズメツキ
等を施した金属等、熱伝導性のよい材料を用いることが
できるが、これらに限定されるものではない。
Here, the linear thermal conductor used for the internal fluid pipe 1 and the pin fin 2 is a pure metal or alloy such as silver, copper, aluminum, or a metal with good thermal conductivity, such as a metal that has been soldered or tin-plated. Non-limiting materials can be used.

管内流体用パイプ1の構成としてはサーペンタイン型と
ヘッダ型及び各々を複合したものがある。
The internal fluid pipe 1 may have a serpentine type, a header type, or a combination of each type.

サーペンタイン型は第1図に示すように、−本の直線状
の偏平パイプをS字状に屈曲させたものまたは直線状パ
イプと隣接する直線状パイプの両端を交互にU形状のベ
ンド3で接続した構造をいう。U型状ベンド3の断面形
状は特に限定しないが管内流体の圧力損失を小さくする
ためには円形のものを用いるとよい。
As shown in Figure 1, the serpentine type is made by bending straight flat pipes into an S-shape, or connecting straight pipes and both ends of adjacent straight pipes alternately with U-shaped bends 3. It refers to the structure that Although the cross-sectional shape of the U-shaped bend 3 is not particularly limited, it is preferable to use a circular shape in order to reduce the pressure loss of the fluid within the pipe.

ヘッダ型は第2図に示すように、複数の直線状パイプの
両端を1対のマニホールド5に開口接続した構造を言う
The header type refers to a structure in which both ends of a plurality of straight pipes are open-connected to a pair of manifolds 5, as shown in FIG.

管内流体用パイプ1とピンフィン2の接合はろう付によ
り行うが、このろう付に使うろう材はパイプ、ピンフィ
ンの材質により異なり、例えば銅を用いた場合、鉛−錫
を主成分とするはんだが好ましく、用いる材質により適
宜選定すればよく、あるいは熱伝導性のよい樹脂を用い
てもよい。
The fluid pipe 1 and pin fin 2 are joined by brazing, but the brazing material used for this brazing differs depending on the material of the pipe and pin fin. For example, if copper is used, solder containing lead-tin as the main component may Preferably, the material may be appropriately selected depending on the material used, or a resin with good thermal conductivity may be used.

流水手段4としては金属、セラミック、樹脂等で温度に
よる形状変化をおこさないものが用いられるが、排水性
をよくするため表面に親水性を持つものまたは親水性を
付与したものが好ましい。
The water flowing means 4 may be made of metal, ceramic, resin, or the like that does not change its shape due to temperature, but preferably has a hydrophilic surface or one whose surface has been imparted with hydrophilic properties in order to improve drainage.

さらに流水手段4にも熱交換をさせるため流水手段4と
してピンフィンと同様の材料を用いてもよい。
Furthermore, in order to allow the water flow means 4 to exchange heat, the water flow means 4 may be made of the same material as the pin fin.

流水手段4としては棒状物、シート状物が用いられる。As the water flowing means 4, a rod-like object or a sheet-like object is used.

棒状物の断面形状は特に限定しないが通風抵抗を小さく
するためには円形のものを用いるとよい。シート状物は
織物、編物、不織布、フィルムに穴の開けたものが用い
られるが通風抵抗を小さくするためにシート状物の空隙
部の面積占有率が70%以上、好ましくは90%以上が
よい。
The cross-sectional shape of the bar is not particularly limited, but it is preferable to use a circular bar in order to reduce ventilation resistance. The sheet-like material used is a woven fabric, knitted fabric, non-woven fabric, or film with holes, but in order to reduce ventilation resistance, the area occupation rate of the voids in the sheet-like material should be 70% or more, preferably 90% or more. .

流水手段は接着剤、はんだ付け、ろう付、熱接着、超音
波接着により管内流体用パイプの空気流の下流側の側面
に第3菌(A)および第3図(B)に示すように固着さ
れる。接着剤、はんだ、ろう材も排水性をよくするため
表面に親水性を持つものまたは親水性を付与したものが
好ましい。
The water flowing means is fixed to the downstream side of the air flow of the pipe for internal fluid by adhesive, soldering, brazing, thermal bonding, or ultrasonic bonding as shown in Figure 3 (A) and Figure 3 (B). be done. Adhesives, solders, and brazing materials preferably have hydrophilic properties or have been imparted with hydrophilic properties in order to improve drainage.

第3図(C)は空気流の下流側の最前列のピンフィンの
近傍から流水手段4に通ずる水滴誘導手段6を設けた構
造を示すもので、これにより凝縮水の排水性がさらに向
上する。
FIG. 3(C) shows a structure in which a water drop guiding means 6 is provided which communicates with the water flowing means 4 from the vicinity of the pin fin in the front row on the downstream side of the air flow, thereby further improving the drainage performance of condensed water.

水滴誘導手段6としては金属、セラミック、樹脂等で温
度による形状変化をおこさないものが用いられるが、排
水性をよくするため表面に親水性を持つものまたは親水
性を付与したものが好ましい。さらに水滴誘導手段6に
も熱交換をさせるため水滴誘導手段6としてピンフィン
と同様の金属を用いてもよい。
The water droplet guiding means 6 may be made of metal, ceramic, resin, or the like that does not change its shape due to temperature, but preferably has a surface that is hydrophilic or has been imparted with hydrophilicity in order to improve drainage. Further, the water droplet guiding means 6 may be made of the same metal as the pin fin in order to cause heat exchange to occur in the water droplet guiding means 6 as well.

また水滴誘導手段6としてピンフィン近傍から流水手段
に向けてパイプに刻みを入れてもよい。
Further, as the water drop guiding means 6, a notch may be made in the pipe from the vicinity of the pin fin toward the water flowing means.

上記のようにして構成した流水手段及び水滴誘導手段を
設けたピンフィン型熱交換器は従来のピンフィン型熱交
換器より凝縮水の排水性が良好なため通風抵抗を低くす
ることができる。
The pin-fin type heat exchanger provided with the water flowing means and the water droplet guiding means configured as described above has better drainage of condensed water than the conventional pin-fin type heat exchanger, so that the ventilation resistance can be lowered.

〔実施例〕〔Example〕

次に本発明による熱交換器の実施例を示し、併せて比較
例の熱交換器を用いた場合の熱交換性能を示す。
Next, examples of the heat exchanger according to the present invention will be shown, and the heat exchange performance when using a heat exchanger of a comparative example will also be shown.

実施例1 下記に示した条件で第1図に示すピンフィン熱交換器を
作る。
Example 1 A pin fin heat exchanger shown in FIG. 1 was made under the conditions shown below.

・熱交換器タイプ    サーペンタイン型・ピンフィ
ンの条件 材   質        銅 断面形状      円形 線   径        200/1mφピン高さ 
      h=15m田 入ロビンピッチ   Pfx= 1.0印奥行ピンピッ
チ   Pfz = 0.5 mm・直線状管内流体用
パイプ、U型状ベンドの条件材   質       
 銅 断面形状      偏平 長   径        18.0mm短   径 
       5.、Om田平坦部の幅     12
.0mm パイプの長さ    200.0mm バイブの段数    15段 ・管内流体の条件    冷水(5℃)・流体手段の条
件 材   質        銅 形  状      円形断面の棒 円   径         1mmφ本   数  
      40本 ピッチ    5mm 取付方法      熱交換器の下流側でビンと平行に
取付 接着方法      エポキシ樹脂系接着剤実施例2 実施例1の熱交換器に下記に示した条件の水滴誘導手段
を設けた構造を実施例2とした。
・Heat exchanger type Serpentine type ・Pin fin conditions Material Copper Cross-sectional shape Circular wire Diameter 200/1mφ Pin height
h = 15m Tairi Robin pitch Pfx = 1.0 mark depth pin pitch Pfz = 0.5 mm / Straight pipe for fluid in pipe, conditions for U-shaped bend Materials
Copper cross-sectional shape Flat length Diameter 18.0mm Minor diameter
5. , Width of Om field flat part 12
.. 0mm Length of pipe 200.0mm Number of stages of vibrator 15 stages / Conditions of fluid in the pipe Cold water (5℃) / Conditions of fluid means Material Copper Shape Rod with circular cross section Diameter 1mmφ Number of pipes
40 pieces pitch 5mm Mounting method Mount parallel to the bottle on the downstream side of the heat exchanger Adhesion method Epoxy resin adhesive Example 2 A structure in which the heat exchanger of Example 1 is provided with a water droplet guiding means under the conditions shown below. This was referred to as Example 2.

水滴誘導手段 材  質        銅 形  状      円形断面の棒 円   径         1mmφピッチ    
5mm 接着方法      エポキシ樹脂系接着剤比較例 第4図(A)〜第4図(D)に示す構造を有する熱交換
器を作る。この比較例の熱交換器は実施例1の熱交換器
から流水手段を除去したものであり、その他の条件は実
施例1と同一である。
Water droplet guide material Material: Copper Shape: Rod with circular cross section Diameter: 1mmφ pitch
5mm Adhesion method Comparative example of epoxy resin adhesive A heat exchanger having the structure shown in FIGS. 4(A) to 4(D) is made. The heat exchanger of this comparative example was obtained by removing the water flow means from the heat exchanger of Example 1, and the other conditions were the same as those of Example 1.

前記実施例及び比較例の熱交換器について熱通過率及び
通風抵抗を測定した。
The heat transfer rate and ventilation resistance of the heat exchangers of the Examples and Comparative Examples were measured.

測定に用いる装置は第5図に示す吸引型風洞装置であり
、測定する熱交換器101の流路断面は3001111
11X 3001+1111ある。矢印106の方向に
流れる空気の風量は熱線風速計104 (@日吉製11
YBRIDANεMOMETERDP70C)を用いて
風速を測定し、流路断面と風速値で求め、熱交換器の通
風抵抗は熱交換器の前後の静圧差をマノメータ105を
用いて圧力損失として測定した。熱交換器の管内流体用
バイブ内には、熱交換器人口102から冷水が流され、
熱交換器内で空気流と熱交換された冷水が熱交換器出口
103から排出され流量計を経て水温コントローラに戻
る。
The device used for the measurement is a suction type wind tunnel device shown in FIG. 5, and the cross section of the flow path of the heat exchanger 101 to be measured is 3001111.
There are 11X 3001+1111. The volume of air flowing in the direction of arrow 106 is measured using hot wire anemometer 104 (@Hiyoshi 11
The wind speed was measured using a YBRIDAN εMOMETER DP70C) and determined from the flow path cross section and the wind speed value, and the ventilation resistance of the heat exchanger was measured by measuring the static pressure difference before and after the heat exchanger as a pressure loss using a manometer 105. Cold water is flowed from the heat exchanger population 102 into the pipe fluid vibe of the heat exchanger,
The cold water that has undergone heat exchange with the air flow in the heat exchanger is discharged from the heat exchanger outlet 103 and returns to the water temperature controller via the flow meter.

前記冷水流量と熱交換器入口の冷水温度、出口の冷水温
度から水側熱交換量Qwを求め熱通過率Kを下式で求め
た。
The water side heat exchange amount Qw was determined from the cold water flow rate, the cold water temperature at the inlet of the heat exchanger, and the cold water temperature at the outlet, and the heat transfer rate K was determined using the following formula.

K=Qw/(A・ΔQ) ここでQwは水側熱交換量、Aは熱交換器全伝熱面積、
ΔQは空気側と冷水側の平均の温度差である。なお空気
流(25℃、60%RH)の風速は1  (m/5ec
)で測定した。
K=Qw/(A・ΔQ) Here, Qw is the water side heat exchange amount, A is the total heat transfer area of the heat exchanger,
ΔQ is the average temperature difference between the air side and the cold water side. The wind speed of the air flow (25℃, 60%RH) is 1 (m/5ec
) was measured.

得られた結果を第1表に示す。The results obtained are shown in Table 1.

第1表より、本発明による熱交換器を用いることにより
、通風抵抗を抑えると共に伝熱性能が向上されることが
証明された。
Table 1 proves that by using the heat exchanger according to the present invention, ventilation resistance can be suppressed and heat transfer performance can be improved.

第1表 〔発明の効果〕 本発明による熱交換器では、従来の熱交換器において凝
縮水滴によって生じていた通風抵抗が大幅に低減し、非
常に高い熱交換効率が得られ、その結果熱交換器のコン
パクト化が可能となる。
Table 1 [Effects of the Invention] In the heat exchanger according to the present invention, the ventilation resistance caused by condensed water droplets in conventional heat exchangers is significantly reduced, and extremely high heat exchange efficiency is obtained, resulting in heat exchange The device can be made more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の熱交換器の一実施例の斜視図であり、
第2図は本発明の熱交換器の他の実施例の斜視図であり
、第3図(A)は第1図の熱交換器の正面図であり、第
3図(B)は第3図(A>の熱交換器の線A−A’によ
る断面図であり、第3図(C)は第3図(A)の熱交換
器に水滴誘導手段を設けた構造の線A−A’による断面
図であり、第4図(A)は従来のピンフィン熱交換器の
一実施例の斜視図であり、第4図(B)は第4図(A)
の熱交換器の正面図であり、第4図(C)は第4図(B
)の熱交換器の線A−A’による断面図であり、第4図
(D)は第4図(B)の熱交換器の線B−B’による断
面図であり、第5図は熱交換器の熱通過率を測定する装
置を示す正面図である。 1・・・管内流体用パイプ、 3・・・U形状ベンド、 5・・・マニホールド、 2・・・ピンフィン、 4・・・流水手段、 6・・・水滴誘導手段。 特許比願人 旭化成工業株式会社 特許出願代理人
FIG. 1 is a perspective view of an embodiment of the heat exchanger of the present invention,
2 is a perspective view of another embodiment of the heat exchanger of the present invention, FIG. 3(A) is a front view of the heat exchanger of FIG. 1, and FIG. 3(B) is a perspective view of the heat exchanger of the present invention. FIG. 3(C) is a cross-sectional view taken along line AA' of the heat exchanger in FIG. Fig. 4(A) is a perspective view of an embodiment of a conventional pin fin heat exchanger, and Fig. 4(B) is a sectional view of Fig. 4(A).
Fig. 4(C) is a front view of the heat exchanger of Fig. 4(B).
4(D) is a sectional view taken along line BB' of the heat exchanger in FIG. 4(B), and FIG. 5 is a sectional view taken along line BB' of the heat exchanger in FIG. FIG. 2 is a front view showing a device for measuring the heat transfer rate of a heat exchanger. DESCRIPTION OF SYMBOLS 1... Pipe for internal fluid, 3... U-shaped bend, 5... Manifold, 2... Pin fin, 4... Water flow means, 6... Water drop guiding means. Patent applicant Asahi Kasei Industries Co., Ltd. Patent application agent

Claims (1)

【特許請求の範囲】[Claims] 管内流体用パイプ間にピンフィンが配置されている熱交
換器において、積層された管内流体用パイプの空気流の
下流側の側面にパイプ間を接続する流水手段を設けるこ
とを特徴とする流水手段付き熱交換器。
A heat exchanger in which pin fins are arranged between the pipes for fluid in the pipes, characterized in that a water flow means for connecting the pipes is provided on the downstream side of the air flow of the stacked pipes for fluid in the pipes. Heat exchanger.
JP27493089A 1989-10-24 1989-10-24 Heat exchanger with liquid flowing means Pending JPH03137498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27493089A JPH03137498A (en) 1989-10-24 1989-10-24 Heat exchanger with liquid flowing means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27493089A JPH03137498A (en) 1989-10-24 1989-10-24 Heat exchanger with liquid flowing means

Publications (1)

Publication Number Publication Date
JPH03137498A true JPH03137498A (en) 1991-06-12

Family

ID=17548525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27493089A Pending JPH03137498A (en) 1989-10-24 1989-10-24 Heat exchanger with liquid flowing means

Country Status (1)

Country Link
JP (1) JPH03137498A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172483A (en) * 1991-12-20 1993-07-09 Toshiba Corp Heat exchanger
JP2007285673A (en) * 2006-04-20 2007-11-01 Yanmar Co Ltd Drain structure for corrugated type heat exchanger
JP2008039322A (en) * 2006-08-08 2008-02-21 Univ Of Tokyo Heat exchanger and heat exchange apparatus having the same
JP2010255916A (en) * 2009-04-24 2010-11-11 Sharp Corp Heat exchanger and air conditioner mounted with the same
JP2015190750A (en) * 2014-03-31 2015-11-02 株式会社日立製作所 Heat exchanger and heat transfer pipe of heat exchanger
WO2017017814A1 (en) * 2015-07-29 2017-02-02 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
WO2019058471A1 (en) * 2017-09-21 2019-03-28 三菱電機株式会社 Heat exchanger, air conditioner outdoor unit, and air conditioner
CN116379807A (en) * 2023-06-02 2023-07-04 广东美的暖通设备有限公司 Heat exchange assembly, micro-channel heat exchanger and air conditioner

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172483A (en) * 1991-12-20 1993-07-09 Toshiba Corp Heat exchanger
JP2007285673A (en) * 2006-04-20 2007-11-01 Yanmar Co Ltd Drain structure for corrugated type heat exchanger
JP2008039322A (en) * 2006-08-08 2008-02-21 Univ Of Tokyo Heat exchanger and heat exchange apparatus having the same
JP2010255916A (en) * 2009-04-24 2010-11-11 Sharp Corp Heat exchanger and air conditioner mounted with the same
JP2015190750A (en) * 2014-03-31 2015-11-02 株式会社日立製作所 Heat exchanger and heat transfer pipe of heat exchanger
US10126075B2 (en) 2014-03-31 2018-11-13 Hitachi, Ltd. Heat exchanger and heat transfer tube of the heat exchanger
WO2017017814A1 (en) * 2015-07-29 2017-02-02 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
JPWO2017017814A1 (en) * 2015-07-29 2018-02-01 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
WO2019058471A1 (en) * 2017-09-21 2019-03-28 三菱電機株式会社 Heat exchanger, air conditioner outdoor unit, and air conditioner
JPWO2019058471A1 (en) * 2017-09-21 2020-04-02 三菱電機株式会社 Heat exchangers, outdoor units of air conditioners and air conditioners
CN116379807A (en) * 2023-06-02 2023-07-04 广东美的暖通设备有限公司 Heat exchange assembly, micro-channel heat exchanger and air conditioner
CN116379807B (en) * 2023-06-02 2024-01-02 广东美的暖通设备有限公司 Heat exchange assembly, micro-channel heat exchanger and air conditioner

Similar Documents

Publication Publication Date Title
US5501270A (en) Plate fin heat exchanger
US4756362A (en) Heat exchanger
KR100222015B1 (en) Heat exchanger for air conditioner and method of fabricating the heat exchanger
US4469168A (en) Fin assembly for heat exchangers
US20120132400A1 (en) Heat Sink
JPH03137498A (en) Heat exchanger with liquid flowing means
US3217798A (en) Heat exchanger
JP2873765B2 (en) A sword-shaped heat sink having a group of pins
HU195316B (en) Heat exchanger with several parallel tubes conducting first medium and ribs being on same
JPH04177091A (en) Heat exchanger
JPH04324093A (en) Pin-fin heat exchanger
CN218645809U (en) Evaporation type condensation heat exchange device
JPH04278197A (en) Pin fin heat exchanger equipped with water conducting means
CN101033921A (en) Combined corrugated tube type heat exchanger
CN113720175A (en) Micro-channel heat exchanger
JPH03137496A (en) Pin fin type heat exchanger
JPH0755380A (en) Heat exchanger
JPS61114094A (en) Heat exchanger
CN108344210B (en) Parallel flow heat exchange system for improving heat exchange efficiency
CN217716082U (en) Pipe fin monomer, heat exchanger and air conditioner
CN2417450Y (en) Integrated, comb like finned tube type heat exchanger body
KR870001425Y1 (en) Heat exchanger
CN210602893U (en) Plate-tube heat exchanger and evaporative condensing system
JPS58214783A (en) Heat exchanger
WO2024011743A1 (en) Tube-fin unit, heat exchanger, and air conditioner