JP2010248604A - Catalyst cvd system - Google Patents

Catalyst cvd system Download PDF

Info

Publication number
JP2010248604A
JP2010248604A JP2009102423A JP2009102423A JP2010248604A JP 2010248604 A JP2010248604 A JP 2010248604A JP 2009102423 A JP2009102423 A JP 2009102423A JP 2009102423 A JP2009102423 A JP 2009102423A JP 2010248604 A JP2010248604 A JP 2010248604A
Authority
JP
Japan
Prior art keywords
processing chamber
cvd apparatus
electrode member
catalytic cvd
catalyst body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009102423A
Other languages
Japanese (ja)
Other versions
JP5439018B2 (en
Inventor
Masaru Watanabe
優 渡邉
Akira Watanabe
章 渡辺
Genji Sakata
現示 酒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2009102423A priority Critical patent/JP5439018B2/en
Publication of JP2010248604A publication Critical patent/JP2010248604A/en
Application granted granted Critical
Publication of JP5439018B2 publication Critical patent/JP5439018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst CVD system for efficiently dissipating heat in a connecting part of a catalyst body heated by performing electric supply with an electrode member. <P>SOLUTION: A top end of a filament 15 is connected to a bottom end of an electrode 5 via a retaining member 12. The filament 15 is coupled to a slotted part 16 of the electrode 5, a diameter of the slotted part 16 is reduced by thread-engaging a nut member 14 on the electrode 5, the filament 15 is connected with surface contact to the electrode 5, and a contact part is controlled from becoming too high temperature by reducing electric contact resistance. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、触媒体に原料ガスを接触させて成膜を行う触媒CVD装置に関する。   The present invention relates to a catalytic CVD apparatus for forming a film by bringing a source gas into contact with a catalyst body.

半導体装置を製造する工程において、原料物質の化学反応を利用して化学気相成長(CVD:Chemical vapor deposition)法により薄膜を形成するCVD装置が知られている。CVD装置としては、例えば、反応系にプラズマ空間を用いるプラズマCVD装置や、加熱反応を利用する熱CVD装置がある。また、加熱した加熱体(触媒体)に原料ガスを接触させて原料ガスを反応種に分解する触媒CVD装置がある(例えば、特許文献1参照)。   2. Description of the Related Art A CVD apparatus that forms a thin film by a chemical vapor deposition (CVD) method using a chemical reaction of a source material in a process of manufacturing a semiconductor device is known. Examples of the CVD apparatus include a plasma CVD apparatus that uses a plasma space in a reaction system and a thermal CVD apparatus that uses a heating reaction. In addition, there is a catalytic CVD apparatus in which a source gas is brought into contact with a heated heating body (catalyst body) to decompose the source gas into reactive species (see, for example, Patent Document 1).

触媒CVD装置は、例えば、加熱されたタングステン等の触媒体の表面が化学反応の進行を担うため、基板や薄膜に対して電気的、熱的なダメージを抑制することができる。また、触媒体の数量を増加させることで成膜領域を広げることができ、基板の大面積化に対して容易に対応することができる。   In the catalytic CVD apparatus, for example, since the surface of a heated catalyst body such as tungsten is responsible for the progress of the chemical reaction, electrical and thermal damage to the substrate and the thin film can be suppressed. Further, by increasing the number of catalyst bodies, it is possible to widen the film formation region, and it is possible to easily cope with an increase in the area of the substrate.

触媒CVD装置では、電力の導入端子を備えた電極棒に触媒体であるタングステン製のフィラメントを接続し、電極棒に電力を供給することによりフィラメントを高温に加熱している。電極棒に対するフィラメントの取り付けは、一般に、押え板材等と電極棒との間にフィラメントを挟み込み、ねじにより押え板材等を電極棒に固定することによりフィラメントを電極棒に保持させている。   In a catalytic CVD apparatus, a filament made of tungsten, which is a catalyst body, is connected to an electrode rod having a power introduction terminal, and the filament is heated to a high temperature by supplying power to the electrode rod. In general, the filament is attached to the electrode rod by holding the filament between the press plate and the electrode rod and fixing the press plate and the like to the electrode rod with screws to hold the filament on the electrode rod.

フィラメントは棒状であるため、電極棒側(押え板材等)とフィラメントの接触面積には限界があり、接触面積を充分に確保できない状況であった。このため、電気接触抵抗がフィラメントの電気抵抗よりも大きくなり、フィラメントの温度を電極棒(SUS304)の融点以下の温度で加熱した場合でも接触部の温度が高温になってしまう虞があった。接触部の温度が高温になると、接触部の電極棒が融解して電極棒の成分(Ni、Cr、Fe)が基板に対して拡散輸送され、金属汚染が生じる虞があった。   Since the filament is rod-shaped, there is a limit to the contact area between the electrode bar (press plate material and the like) and the filament, and the contact area cannot be secured sufficiently. For this reason, electrical contact resistance becomes larger than the electrical resistance of the filament, and even when the filament temperature is heated at a temperature lower than the melting point of the electrode rod (SUS304), the temperature of the contact portion may become high. When the temperature of the contact portion becomes high, the electrode rod at the contact portion melts, and the components (Ni, Cr, Fe) of the electrode rod are diffused and transported to the substrate, which may cause metal contamination.

電極棒側(押え板材等)とフィラメントの接触部の温度が高温になり過ぎることを抑制するため、電力の導入端子を冷却して電極棒の放熱を実施することも考えられているが、導電性の冷却媒体を使用することが困難であり、空冷に頼らざるを得ず冷却効率には限界があるのが現状である。   In order to suppress the temperature of the contact portion between the electrode rod side (press plate material, etc.) and the filament from becoming too high, it is also considered to cool the power introduction terminal and radiate the electrode rod. In reality, it is difficult to use a cooling medium that has a high cooling efficiency, and air cooling must be relied upon to limit cooling efficiency.

特許第3780364号公報Japanese Patent No. 3780364

本発明は上記状況に鑑みてなされたもので、電極部材により給電が行われることにより加熱される触媒体の接続部の放熱を効率よく行うことができる触媒CVD装置を提供することを目的とする。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a catalytic CVD apparatus that can efficiently dissipate heat at a connecting portion of a catalyst body that is heated when power is supplied by an electrode member. .

上記目的を達成するための請求項1に係る本発明の触媒CVD装置は、内部が所定の真空状態にされて基板が配置されると共に、原料物質を含む原料ガスが供給される処理室と、電力の導入端子を有し前記導入端子が前記処理室の外部に配された状態で前記処理室の内部に配される電極部材と、前記処理室の内部に位置する前記電極部材に接続され、加熱されることで前記原料ガスを反応種に分解・活性化して前記基板に薄膜を形成させる触媒体とを備え、前記電極部材に対する前記触媒体の接続は、面接触により前記触媒体を保持する保持部材を介して前記電極部材に前記触媒体が取り付けられていることを特徴とする。   In order to achieve the above object, the catalytic CVD apparatus of the present invention according to claim 1 is provided with a processing chamber in which a substrate is placed with a predetermined vacuum state and a source gas containing a source material is supplied, It has an introduction terminal for electric power and is connected to the electrode member disposed inside the processing chamber in a state where the introduction terminal is arranged outside the processing chamber, and the electrode member located inside the processing chamber, And a catalyst body that decomposes and activates the source gas into reactive species to form a thin film on the substrate by being heated, and the connection of the catalyst body to the electrode member holds the catalyst body by surface contact The catalyst body is attached to the electrode member via a holding member.

請求項1に係る本発明では、保持部材を介して電極部材に触媒体を取り付けることにより、電極部材に対して触媒体が面接触により取り付けられる状態になり、電気接触抵抗を小さくして接触部の温度が高温になり過ぎることを抑制することができる。この結果、電極部材により給電が行われることにより加熱される触媒体の接続部の放熱を効率よく行うことが可能になり、電極部材の融解による拡散輸送がなくなり、処理室内の金属汚染を防止することが可能になる。   In the present invention according to claim 1, by attaching the catalyst body to the electrode member via the holding member, the catalyst body is attached to the electrode member by surface contact, and the contact portion is reduced by reducing the electrical contact resistance. It can suppress that the temperature of becomes too high. As a result, it is possible to efficiently dissipate the connecting portion of the catalyst body that is heated when power is supplied by the electrode member, and there is no diffusion transport due to melting of the electrode member, thereby preventing metal contamination in the processing chamber. It becomes possible.

そして、請求項2に係る本発明の触媒CVD装置は、請求項1に記載の触媒CVD装置において、前記保持部材は、前記電極部材の先端部に形成され前記触媒体の外周に嵌合する状態に縮径自在な保持部と、前記電極部材に螺合することによりテーパ面を介して前記保持部を縮径させて前記触媒体に前記保持部の内面を面接触させ、前記触媒体を前記電極部材に保持させるナット部材とからなることを特徴とする。   The catalytic CVD apparatus of the present invention according to claim 2 is the catalytic CVD apparatus according to claim 1, wherein the holding member is formed at the tip of the electrode member and is fitted to the outer periphery of the catalyst body. A holding portion that can be reduced in diameter, and a diameter of the holding portion through a taper surface by screwing to the electrode member to bring the catalyst body into surface contact with the inner surface of the holding portion, It consists of a nut member held by an electrode member.

請求項2に係る本発明では、ナット部材を電極部材に螺合することによりテーパ面を介して保持部が縮径して内面が触媒体に面接触し、接続部の接触面積を広くして電気接触抵抗をより小さくすることができる。   In the present invention according to claim 2, by screwing the nut member to the electrode member, the holding portion is reduced in diameter via the tapered surface, the inner surface is in surface contact with the catalyst body, and the contact area of the connecting portion is increased. The electric contact resistance can be further reduced.

また、請求項3に係る本発明の真空処理装置は、請求項2に記載の触媒CVD装置において、前記保持部は、周方向に複数に分割されていることを特徴とする。   The vacuum processing apparatus according to a third aspect of the present invention is the catalytic CVD apparatus according to the second aspect, wherein the holding portion is divided into a plurality in the circumferential direction.

請求項3に係る本発明では、周方向に分割されたすり割り状の保持部を触媒体に接触させることで、面接触を確実なものにすることができる。   In the present invention according to claim 3, the surface contact can be ensured by bringing the slit-shaped holding portion divided in the circumferential direction into contact with the catalyst body.

上記目的を達成するための請求項4に係る本発明の触媒CVD装置は、内部が所定の真空状態にされて基板が配置されると共に、原料物質を含む原料ガスが供給される処理室と、電力の導入端子を有し前記導入端子が前記処理室の外部に配された状態で前記処理室の内部に配される電極部材と、前記処理室の内部に位置する前記電極部材に接続され、加熱されることで前記原料ガスを反応種に分解・活性化して前記基板に薄膜を形成させる触媒体と、前記導入端子が前記処理室の外部に配される状態に前記電極部材を保持する絶縁体と、前記絶縁体に冷却水を供給して前記導入端子を冷却する水冷手段とを備えたことを特徴とする。   In order to achieve the above object, the catalytic CVD apparatus of the present invention according to claim 4 is provided with a processing chamber in which a substrate is placed with a predetermined vacuum state and a source gas containing a source substance is supplied, It has an introduction terminal for electric power and is connected to the electrode member disposed inside the processing chamber in a state where the introduction terminal is arranged outside the processing chamber, and the electrode member located inside the processing chamber, A catalyst body that decomposes and activates the source gas into reactive species by heating to form a thin film on the substrate, and an insulation that holds the electrode member in a state where the introduction terminal is arranged outside the processing chamber And water cooling means for cooling the introduction terminal by supplying cooling water to the insulator.

請求項4に係る本発明では、絶縁体を介して冷却媒体である冷却水を供給するので、絶縁流体を用いることなく水冷により導入端子が冷却され、冷却効率を向上させることができる。この結果、電極部材により給電が行われることにより加熱される触媒体の接続部の放熱を効率よく行うことが可能になり、電極部材の融解による拡散輸送がなくなり、処理室内の金属汚染を防止することが可能になる。   In the present invention according to claim 4, since the cooling water as the cooling medium is supplied through the insulator, the introduction terminal is cooled by water cooling without using an insulating fluid, and the cooling efficiency can be improved. As a result, it is possible to efficiently dissipate the connecting portion of the catalyst body that is heated when power is supplied by the electrode member, and there is no diffusion transport due to melting of the electrode member, thereby preventing metal contamination in the processing chamber. It becomes possible.

そして、請求項5に係る本発明の触媒CVD装置は、請求項4に記載の触媒CVD装置において、前記水冷手段は、前記処理室の内部を臨み前記絶縁体が嵌合保持される取付け部を備えたブロックと、前記取付け部に設けられ冷却水の前記処理室内への浸入を阻止する第1シール部材と、前記第1シール部材の前記処理室側における前記取付け部に設けられ前記第1シール部材を通過した冷却水の前記処理室内への浸入を阻止する第2シール部材と、前記第1シール部材と前記第2シール部材の間における前記取付け部に形成され、前記第1シール部材を通過した冷却水を排出する排出手段とを備えたことを特徴とする。   The catalytic CVD apparatus of the present invention according to claim 5 is the catalytic CVD apparatus according to claim 4, wherein the water-cooling means has an attachment portion that faces the inside of the processing chamber and fits and holds the insulator. A block provided, a first seal member provided in the attachment portion for preventing cooling water from entering the processing chamber, and the first seal provided in the attachment portion on the processing chamber side of the first seal member. A second seal member that prevents intrusion of the cooling water that has passed through the member into the processing chamber, and is formed at the attachment portion between the first seal member and the second seal member, and passes through the first seal member. And a discharge means for discharging the cooled water.

請求項5に係る本発明では、第1シール部材及び第2シール部材により取付け部からの冷却水の処理室内への浸入が阻止され、万一、第1シール部材から冷却水が浸入した場合、排出手段により浸入した冷却水を排出することができ、処理室内への冷却水の浸入を確実に防止することができる。   In the present invention according to claim 5, when the first seal member and the second seal member prevent the cooling water from entering the processing chamber from the mounting portion, in the unlikely event that the cooling water enters from the first seal member, The cooling water that has entered through the discharge means can be discharged, and the entry of the cooling water into the processing chamber can be reliably prevented.

上記目的を達成するための請求項6に係る本発明の触媒CVD装置は、内部が所定の真空状態にされて基板が配置されると共に、原料物質を含む原料ガスが供給される処理室と、電力の導入端子を有し前記導入端子が前記処理室の外部に配された状態で前記処理室の内部に配される電極部材と、前記処理室の内部に位置する前記電極部材に接続され、加熱されることで前記原料ガスを反応種に分解・活性化して前記基板に薄膜を形成させる触媒体と、前記導入端子が前記処理室の外部に配される状態に前記電極部材を保持する絶縁体と、前記絶縁体に冷却水を供給して前記導入端子を冷却する水冷手段とを備え、前記電極部材に対する前記触媒体の接続は、面接触により前記加熱体を保持する保持部材を介して前記電極部材に前記触媒体が取り付けられていることを特徴とする。   In order to achieve the above object, the catalytic CVD apparatus of the present invention according to claim 6 is provided with a processing chamber in which a substrate is placed while the inside is in a predetermined vacuum state and a source gas containing a source material is supplied, It has an introduction terminal for electric power and is connected to the electrode member disposed inside the processing chamber in a state where the introduction terminal is arranged outside the processing chamber, and the electrode member located inside the processing chamber, A catalyst body that decomposes and activates the source gas into reactive species by heating to form a thin film on the substrate, and an insulation that holds the electrode member in a state where the introduction terminal is arranged outside the processing chamber And a water cooling means for supplying cooling water to the insulator to cool the introduction terminal, and the connection of the catalyst body to the electrode member is via a holding member that holds the heating body by surface contact. The catalyst body is attached to the electrode member. Characterized in that attached.

請求項6に係る本発明では、保持部材を介して電極部材に触媒体を取り付けることにより、電極部材に対して触媒体が面接触により取り付けられる状態になり、電気接触抵抗を小さくして接触部が高温になり過ぎることを抑制することができ、更に、絶縁体を介して冷却媒体である冷却水を供給するので、絶縁流体を用いることなく水冷により導入端子が冷却され、冷却効率を向上させることができる。この結果、電極部材に給電が行われることにより加熱される触媒体の接続部の放熱を効率よく行うことが可能になり、電極部材の融解による拡散輸送をなくして、処理室内の金属汚染を確実に防止することが可能になる。   In the present invention according to claim 6, by attaching the catalyst body to the electrode member via the holding member, the catalyst body is attached to the electrode member by surface contact, and the contact portion is reduced by reducing the electrical contact resistance. Since the cooling water as a cooling medium is supplied through the insulator, the introduction terminal is cooled by water cooling without using an insulating fluid, and the cooling efficiency is improved. be able to. As a result, it is possible to efficiently dissipate heat at the connecting portion of the catalyst body that is heated by supplying power to the electrode member, eliminating diffusion transport due to melting of the electrode member, and ensuring metal contamination in the processing chamber It becomes possible to prevent.

そして、請求項7に係る本発明の触媒CVD装置は、請求項6に記載の触媒CVD装置において、前記保持部材は、前記電極部材の先端部に形成され前記触媒体の外周に嵌合する状態に縮径自在な保持部と、前記電極部材に螺合することによりテーパ面を介して前記保持部を縮径させて前記触媒体に前記保持部の内面を面接触させ、前記触媒体を前記電極部材に保持させるナット部材とからなることを特徴とする。   The catalytic CVD apparatus of the present invention according to claim 7 is the catalytic CVD apparatus according to claim 6, wherein the holding member is formed at the tip of the electrode member and is fitted to the outer periphery of the catalyst body. A holding portion that can be reduced in diameter, and a diameter of the holding portion through a taper surface by screwing to the electrode member to bring the catalyst body into surface contact with the inner surface of the holding portion, It consists of a nut member held by an electrode member.

請求項7に係る本発明では、ナット部材を電極部材に螺合することによりテーパ面を介して保持部が縮径して内面が触媒体に面接触し、接続部の接触面積を広くして電気接触抵抗をより小さくすることができる。   In the present invention according to claim 7, by screwing the nut member to the electrode member, the holding portion is reduced in diameter via the tapered surface, the inner surface is in surface contact with the catalyst body, and the contact area of the connecting portion is increased. The electric contact resistance can be further reduced.

また、請求項8に係る本発明の触媒CVD装置は、請求項7に記載の触媒CVD装置において、前記保持部は、周方向に複数に分割されていることを特徴とする。   According to an eighth aspect of the present invention, there is provided the catalytic CVD apparatus according to the seventh aspect, wherein the holding section is divided into a plurality in the circumferential direction.

請求項8に係る本発明では、周方向に分割されたすり割り状の保持部を触媒体に接触させることで、面接触を確実なものにすることができる。   In the present invention according to claim 8, surface contact can be ensured by bringing the slit-shaped holding portion divided in the circumferential direction into contact with the catalyst body.

また、請求項9に係る本発明の触媒CVD装置は、請求項6から請求項8のいずれか一項に記載の触媒CVD装置において、前記水冷手段は、前記処理室の内部を臨み前記絶縁体が嵌合保持される取付け部を備えたブロックと、前記取付け部に設けられ冷却水の前記処理室内への浸入を阻止する第1シール部材と、前記第1シール部材の前記処理室側における前記取付け部に設けられ前記第1シール部材を通過した冷却水の前記処理室内への浸入を阻止する第2シール部材と、前記第1シール部材と前記第2シール部材の間における前記取付け部に形成され、前記第1シール部材を通過した冷却水を排出する排出手段とを備えたことを特徴とする。   The catalytic CVD apparatus of the present invention according to claim 9 is the catalytic CVD apparatus according to any one of claims 6 to 8, wherein the water cooling means faces the inside of the processing chamber and the insulator. A block provided with a mounting portion that is fitted and held; a first seal member that is provided in the mounting portion and prevents cooling water from entering the processing chamber; and the first sealing member on the processing chamber side. A second seal member provided in the attachment portion for preventing the coolant that has passed through the first seal member from entering the processing chamber, and formed in the attachment portion between the first seal member and the second seal member. And a discharge means for discharging the cooling water that has passed through the first seal member.

請求項9に係る本発明では、第1シール部材及び第2シール部材により取付け部からの冷却水の処理室内への浸入が阻止され、万一、第1シール部材から冷却水が浸入した場合、排出手段により浸入した冷却水を排出することができ、処理室内への冷却水の浸入を確実に防止することができる。   In the present invention according to claim 9, the first seal member and the second seal member prevent entry of the cooling water from the mounting portion into the processing chamber, and in the unlikely event that the cooling water enters from the first seal member, The cooling water that has entered through the discharge means can be discharged, and the entry of the cooling water into the processing chamber can be reliably prevented.

本発明の触媒CVD装置は、電極部材と電極部材により給電が行われることにより加熱される触媒体との接続部の放熱を効率よく行うことが可能になる。   The catalytic CVD apparatus of the present invention can efficiently dissipate heat at the connection portion between the electrode member and the catalyst body that is heated when power is supplied by the electrode member.

本発明の一実施例に係る触媒CVD装置の全体構成図である。1 is an overall configuration diagram of a catalytic CVD apparatus according to an embodiment of the present invention. 触媒体の支持部の外観図である。It is an external view of the support part of a catalyst body. 図2中の要部断面図である。It is principal part sectional drawing in FIG. 図3中のIV−IV矢視図である。It is the IV-IV arrow line view in FIG. 図4中矢印V部の詳細図である。FIG. 5 is a detailed view of an arrow V portion in FIG. 4. 図5中のVI−VI線矢視図である。FIG. 6 is a view taken along line VI-VI in FIG. 5. 本発明の他の実施例に係る触媒CVD装置の全体構成図である。It is a whole block diagram of the catalytic CVD apparatus which concerns on the other Example of this invention.

図1、図2に基づいて触媒CVD装置の全体を説明する。図1には触媒CVD装置の全体の構成を概略的に示してあり、図2には触媒体としてのフィラメントが支持されている部材の全体の構成を示してある。   The entire catalytic CVD apparatus will be described with reference to FIGS. FIG. 1 schematically shows the overall configuration of a catalytic CVD apparatus, and FIG. 2 shows the overall configuration of a member on which a filament as a catalyst body is supported.

図1に示すように、箱状の真空チャンバ1(処理室)は、内部が所定の真空状態に排気され、真空チャンバ1の内部には基板2が略垂直状態に配置されるようになっている。真空チャンバ1の内部にはガスライン11から流量が制御された原料ガスが供給される。真空チャンバ1の内部には触媒体としてのタングステン製のフィラメント15が配され、電極棒5(電極部材)の導入端子6への給電によりフィラメント15が高温に加熱される。   As shown in FIG. 1, a box-shaped vacuum chamber 1 (processing chamber) is evacuated to a predetermined vacuum state, and a substrate 2 is arranged in a substantially vertical state inside the vacuum chamber 1. Yes. A raw material gas whose flow rate is controlled is supplied from the gas line 11 into the vacuum chamber 1. Inside the vacuum chamber 1, a tungsten filament 15 as a catalyst body is disposed, and the filament 15 is heated to a high temperature by supplying power to the introduction terminal 6 of the electrode rod 5 (electrode member).

上述した触媒CVD装置では、真空チャンバ1の内部に原料物質を含む原料ガスが供給され、フィラメント15が高温(例えば、1000℃程度)に加熱される。フィラメント15が加熱されることで、発熱により触媒作用を発現して原料ガスが反応種に分解・活性化され基板2の表面に薄膜が形成される。   In the catalytic CVD apparatus described above, a source gas containing a source material is supplied into the vacuum chamber 1 and the filament 15 is heated to a high temperature (for example, about 1000 ° C.). When the filament 15 is heated, a catalytic action is generated by heat generation, so that the source gas is decomposed and activated into reactive species, and a thin film is formed on the surface of the substrate 2.

図1、図2に示すように、真空チャンバ1の上部には水冷ブロック3が取り付けられ、水冷ブロック3には絶縁体リング4(絶縁体)を介して電極棒5が複数個(図示例では6個)取り付けられている。水冷ブロック3により真空チャンバ1の内部の真空槽側と外部の大気側とが仕切られ、電極棒5には大気側に臨む導入端子6が備えられている。尚、図示は省略してあるが、大気側の導入端子6の部位はカバー等で覆われている。   As shown in FIGS. 1 and 2, a water cooling block 3 is attached to the upper portion of the vacuum chamber 1, and a plurality of electrode rods 5 (in the illustrated example) are interposed in the water cooling block 3 through insulator rings 4 (insulators). 6) are attached. The water cooling block 3 partitions the vacuum chamber side inside the vacuum chamber 1 from the outside atmosphere side, and the electrode bar 5 is provided with an introduction terminal 6 facing the atmosphere side. In addition, although illustration is abbreviate | omitted, the site | part of the introduction | transduction terminal 6 by the side of the atmosphere is covered with the cover etc.

水冷ブロック3には冷却水路7により冷却水が供給され、絶縁体リング4が冷却水により冷却されて電極棒5が除熱される。絶縁体リング4は熱伝導率の高いセラミック(例えば、窒化アルミニウム)が用いられ、電極棒5の除熱が効率よく実施される。また、導入端子6には配線8が接続され、導入端子6から電極棒5に電力が供給される。   Cooling water is supplied to the water cooling block 3 through the cooling water passage 7, the insulator ring 4 is cooled by the cooling water, and the electrode rod 5 is removed from the heat. The insulator ring 4 is made of a ceramic having a high thermal conductivity (for example, aluminum nitride), and the heat removal of the electrode rod 5 is efficiently performed. A wiring 8 is connected to the introduction terminal 6, and power is supplied from the introduction terminal 6 to the electrode bar 5.

真空槽側に配される電極棒5の下端には保持部材12を介してフィラメント15がそれぞれ保持され、電極棒5への電力の供給によりフィラメント15が加熱される。詳細は後述するが、保持部材12は棒状のフィラメント15を面接触で保持している。   Filaments 15 are respectively held at the lower ends of the electrode rods 5 arranged on the vacuum chamber side via the holding members 12, and the filaments 15 are heated by supplying electric power to the electrode rods 5. Although details will be described later, the holding member 12 holds the rod-like filament 15 in surface contact.

このため、電極棒5に対して棒状のフィラメント15が面接触により取り付けられる状態になり、電気接触抵抗を小さくして接触部の温度が高温になり過ぎることを抑制することができる。また、絶縁体リング4を介して冷却水を供給するので、水冷により導入端子6を冷却して電極棒5の除熱効率を向上させることができる。このため、加熱されるフィラメント15の電極棒5との接続部の放熱を効率よく行うことが可能になり、電極棒5の融解を防止することができる。   For this reason, the rod-like filament 15 is attached to the electrode rod 5 by surface contact, and the electrical contact resistance can be reduced to prevent the temperature of the contact portion from becoming too high. Moreover, since cooling water is supplied through the insulator ring 4, the introduction terminal 6 can be cooled by water cooling, and the heat removal efficiency of the electrode rod 5 can be improved. For this reason, it becomes possible to efficiently radiate heat at the connection portion of the filament 15 to be heated with the electrode rod 5, and the melting of the electrode rod 5 can be prevented.

図3、図4に基づいて電極棒5の取り付き状況を説明する。図3には絶縁体リング4が固定されている部位の水冷ブロック3の断面状況、図4には電極棒5を中心にして図3に直行する方向の断面状況を示してある。   Based on FIG. 3, FIG. 4, the attachment state of the electrode bar 5 is demonstrated. FIG. 3 shows a cross-sectional state of the water-cooled block 3 at a portion where the insulator ring 4 is fixed, and FIG. 4 shows a cross-sectional state in a direction perpendicular to FIG.

大気側と真空槽の内部は水冷ブロック3により仕切られ、水冷ブロック3には長手方向(図3中左右方向)に延びる冷却水路7が設けられている。冷却水路7を貫通して水冷ブロック3には複数の嵌合穴(取付け部)22が形成され、嵌合穴22は大気側と真空槽(処理室)の内部に亘って形成されている。嵌合穴22には絶縁体リング4が嵌合して設けられ、絶縁体リング4の内周に電極棒5が支持されている。   The atmosphere side and the inside of the vacuum chamber are partitioned by a water cooling block 3, and the water cooling block 3 is provided with a cooling water passage 7 extending in the longitudinal direction (left and right direction in FIG. 3). A plurality of fitting holes (attachment portions) 22 are formed in the water cooling block 3 through the cooling water passage 7, and the fitting holes 22 are formed over the atmosphere side and the inside of the vacuum chamber (processing chamber). The insulator ring 4 is fitted in the fitting hole 22, and the electrode rod 5 is supported on the inner periphery of the insulator ring 4.

絶縁体リング4は、冷却水路7を挟んで大気側(図中上側)の嵌合穴22に嵌合する第1嵌合部23と、冷却水路7を挟んで真空槽の内部側(図中下側)の嵌合穴22に嵌合する第2嵌合部24とを備えている。そして、第1嵌合部23と第2嵌合部24の間に、冷却水路7の部位に位置するフィン部25が設けられている。   The insulator ring 4 includes a first fitting portion 23 that fits into a fitting hole 22 on the atmosphere side (upper side in the figure) across the cooling water passage 7, and an inner side of the vacuum chamber (in the figure) across the cooling water passage 7. And a second fitting portion 24 that fits into the lower fitting hole 22. And the fin part 25 located in the site | part of the cooling water channel 7 is provided between the 1st fitting part 23 and the 2nd fitting part 24. As shown in FIG.

絶縁体リング4の第1嵌合部23の外周はOリング26を介して嵌合穴22に嵌合し、Oリング26により大気側と冷却水路7とがシールされている。絶縁体リング4の第2嵌合部24の外周は、冷却水路7側の第1Oリング27(第1シール部材)と真空槽の内部側の第2Oリング28(第2シール部材)を介して嵌合穴22に嵌合し、第1Oリング27及び第2Oリング28により真空槽の内部側と冷却水路7とがシールされている。   The outer periphery of the first fitting portion 23 of the insulator ring 4 is fitted into the fitting hole 22 via the O-ring 26, and the atmosphere side and the cooling water passage 7 are sealed by the O-ring 26. The outer periphery of the second fitting portion 24 of the insulator ring 4 is passed through a first O ring 27 (first seal member) on the cooling water channel 7 side and a second O ring 28 (second seal member) on the inner side of the vacuum chamber. The fitting hole 22 is fitted, and the first O-ring 27 and the second O-ring 28 seal the inner side of the vacuum chamber and the cooling water passage 7.

第1Oリング27及び第2Oリング28の間における水冷ブロック3には排出穴31(排出手段)が形成され、排出穴31は排出路32(排出手段)により大気側に開口している。何らかの原因により冷却水が第1Oリング27を通過して第1Oリング27と第2Oリング28の間に浸入した場合、浸入した冷却水は排出穴31から排出路32を通って大気側に排出される。これにより、真空槽側(処理室内)への冷却水の浸入を確実に防止することができる。この時、漏水センサ等を用いることにより、冷却水の浸入を自動で検出することができる。   A discharge hole 31 (discharge means) is formed in the water cooling block 3 between the first O ring 27 and the second O ring 28, and the discharge hole 31 opens to the atmosphere side by a discharge path 32 (discharge means). When the cooling water passes through the first O-ring 27 and enters between the first O-ring 27 and the second O-ring 28 for some reason, the intruding cooling water is discharged from the discharge hole 31 to the atmosphere side through the discharge path 32. The Thereby, it is possible to reliably prevent the cooling water from entering the vacuum chamber side (processing chamber). At this time, the intrusion of the cooling water can be automatically detected by using a water leakage sensor or the like.

電極棒5は絶縁体リング4を貫通して配され、大気側に位置する上端部が導入端子6とされている。絶縁体リング4の第1嵌合部23及びフィン部25の内周は雌ねじ部が形成され、電極棒5のねじ部が雌ねじ部に螺合することで電極棒5が絶縁体リング4に結合される冷却水路7に位置する絶縁体リング4はフィン部25となっているので、冷却水との接触面積が広く確保され、また、流路の断面積が狭くなって流速を速くすることができる。   The electrode rod 5 is disposed through the insulator ring 4, and the upper end portion located on the atmosphere side is an introduction terminal 6. The inner periphery of the first fitting portion 23 and the fin portion 25 of the insulator ring 4 is formed with a female screw portion, and the electrode rod 5 is coupled to the insulator ring 4 by screwing the screw portion of the electrode rod 5 into the female screw portion. Since the insulator ring 4 located in the cooling water channel 7 is the fin portion 25, a large contact area with the cooling water is ensured, and the cross-sectional area of the channel is narrowed to increase the flow velocity. it can.

このため、絶縁体リング4(フィン部25)と電極棒5の結合部の接触面積が広くなり面圧が確保されて、フィン部25の熱伝達が良好に確保されていることと相俟って、高い冷却性能を発揮することができる。   For this reason, the contact area between the insulator ring 4 (fin portion 25) and the electrode rod 5 is widened, the surface pressure is secured, and the heat transfer of the fin portion 25 is ensured well. And exhibit high cooling performance.

図5、図6に基づいてフィラメント15の保持状況を説明する。図5にはフィラメント15と電極棒5の接続部位の詳細(図4中の矢印V部の詳細)、図6にはフィラメント15の保持部を下側から見た状況(図5中のVI−VI線矢視)を示してある。   The holding state of the filament 15 will be described with reference to FIGS. FIG. 5 shows the details of the connection portion between the filament 15 and the electrode rod 5 (details of the arrow V portion in FIG. 4), and FIG. 6 shows the situation where the holding portion of the filament 15 is viewed from below (VI- in FIG. 5). VI arrow) is shown.

電極棒5の下端には保持部材12を介してフィラメント15の上端部が接続されている。つまり、電極棒5の下端にはフィラメント15の外周に嵌合する状態に十字状のすり割が設けられ、四分割されたすり割部16(保持部)が形成されている。すり割部16及びすり割部16の上方の電極棒5の内周にはフィラメント15の径に対して嵌め合いに近似した公差の軸穴が形成され、広い接触面積が確保される状態で軸穴にフィラメント15が嵌合される。   The upper end of the filament 15 is connected to the lower end of the electrode rod 5 via the holding member 12. That is, a cross-shaped slit is provided at the lower end of the electrode bar 5 so as to be fitted to the outer periphery of the filament 15, and a four-divided slit portion 16 (holding portion) is formed. A shaft hole with a tolerance approximating a fitting with respect to the diameter of the filament 15 is formed on the inner periphery of the slit 16 and the electrode rod 5 above the slit 16 so that a wide contact area can be secured. The filament 15 is fitted into the hole.

すり割部16はナット部材14により周方向の四方から挟み込まれて縮径され、すり割部16の内周面がフィラメント15の外周面に面接触してフィラメント15が電極棒5に接続される。   The slit portion 16 is sandwiched from the four circumferential directions by the nut member 14 and is reduced in diameter, and the inner peripheral surface of the slit portion 16 is in surface contact with the outer peripheral surface of the filament 15 so that the filament 15 is connected to the electrode rod 5. .

尚、すり割部16としては、四分割されたものに限らず、縮径される構成であれば、二分割、三分割、五分割以上の多分割にすることも可能である。また、弾性変形により縮径される構成の保持部材を用いることも可能である。   The slit portion 16 is not limited to being divided into four parts, and can be divided into multiple parts such as two parts, three parts, and five parts or more as long as the diameter is reduced. It is also possible to use a holding member having a configuration that is reduced in diameter by elastic deformation.

つまり、電極棒5にはナット部材14が螺合するねじ部13が形成され、ナット部材14をねじ部13に螺合することにより、ナット部材14が電極棒5に対して上方に移動する。また、すり割部16下端の外周にはテーパ面16aが形成され、ナット部材14の下端の内周にはテーパ面16aに嵌合するテーパ面14aが形成されている。そして、ナット部材14の上部がねじ部13に螺合することにより、ナット部材14が上方に移動してテーパ面14a、テーパ面16aを介してすり割部16が縮径する。   That is, the electrode rod 5 is formed with a screw portion 13 into which the nut member 14 is screwed, and the nut member 14 moves upward with respect to the electrode rod 5 by screwing the nut member 14 into the screw portion 13. A tapered surface 16 a is formed on the outer periphery of the lower end of the slit portion 16, and a tapered surface 14 a that fits the tapered surface 16 a is formed on the inner periphery of the lower end of the nut member 14. Then, when the upper portion of the nut member 14 is screwed into the screw portion 13, the nut member 14 moves upward, and the slit portion 16 is reduced in diameter through the tapered surface 14a and the tapered surface 16a.

このため、フィラメント15と電極棒5(すり割部16)の接続部の接触面積を広くして電気接触抵抗を小さくすることができる。すり割部16を縮径させてフィラメント15を接続しているので、すり割部16の内周面とフィラメント15の外周面の面接触を確実にすることができる。   For this reason, the contact area of the connection part of the filament 15 and the electrode stick | rod 5 (slipping part 16) can be enlarged, and electrical contact resistance can be made small. Since the filament 15 is connected by reducing the diameter of the slit portion 16, surface contact between the inner peripheral surface of the slit portion 16 and the outer peripheral surface of the filament 15 can be ensured.

上述した触媒CVD装置では、ガスライン11から真空チャンバ1の内部に原料物質を含む原料ガスが供給され、導入端子6に電力が供給されて電極棒5を介してフィラメント15が高温(例えば、1000℃程度)に加熱される。フィラメント15が加熱されることで、発熱により触媒作用を発現して原料ガスが反応種に分解・活性化され基板2の表面に薄膜が形成される。   In the catalytic CVD apparatus described above, a source gas containing a source material is supplied from the gas line 11 to the inside of the vacuum chamber 1, power is supplied to the introduction terminal 6, and the filament 15 is heated to a high temperature (for example, 1000) via the electrode rod 5. To about 0 ° C.). When the filament 15 is heated, a catalytic action is generated by heat generation, so that the source gas is decomposed and activated into reactive species, and a thin film is formed on the surface of the substrate 2.

フィラメント15は電極棒5のすり割部16に面接触により接続されているので、接続部の電気接触抵抗を小さくして接触部が高温になり過ぎることを抑制することができる。そして、電極棒5が絶縁体リング4を介して水冷ブロック3に支持され、冷却水路7を流通する冷却水により支持部位が冷却されている。水冷により導入端子6が冷却され、冷却効率を向上させることができるので、電極棒5に給電が行われることで加熱されるフィラメント15の接続部の放熱を効率よく行うことが可能になる。   Since the filament 15 is connected to the slit portion 16 of the electrode rod 5 by surface contact, the electrical contact resistance of the connecting portion can be reduced to prevent the contact portion from becoming too hot. The electrode bar 5 is supported by the water cooling block 3 via the insulator ring 4, and the supporting portion is cooled by the cooling water flowing through the cooling water channel 7. Since the introduction terminal 6 is cooled by water cooling and the cooling efficiency can be improved, it is possible to efficiently dissipate heat at the connection portion of the filament 15 that is heated by supplying power to the electrode bar 5.

フィラメント15と電極棒5の接続部の電気接触抵抗を小さくして接触部が高温になり過ぎることがなく、フィラメント15の接続部の放熱が水冷により効率よく行われるため、電極棒5が融解して電極棒の成分(例えば、Ni、Cr、Fe)が基板に対して拡散輸送されることがない。このため、真空チャンバ1内の金属汚染を確実に防止することが可能になる。   The electrical contact resistance of the connecting portion between the filament 15 and the electrode rod 5 is reduced so that the contact portion does not become too hot, and the connecting portion of the filament 15 is efficiently radiated by water cooling, so that the electrode rod 5 is melted. Thus, the components of the electrode rod (for example, Ni, Cr, Fe) are not diffusely transported to the substrate. For this reason, it is possible to reliably prevent metal contamination in the vacuum chamber 1.

図7に基づいて本発明の触媒CVD装置の他の実施例を説明する。図7には本発明の他の実施例に係る触媒CVD装置の全体の構成を概略的に示してある。尚、図1に示した部材と同一部材には同一符号を付して重複する説明は省略してある。   Another embodiment of the catalytic CVD apparatus of the present invention will be described with reference to FIG. FIG. 7 schematically shows the overall configuration of a catalytic CVD apparatus according to another embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same member as the member shown in FIG. 1, and the overlapping description is abbreviate | omitted.

図に示すように、例えば筒状の真空チャンバ41は、内部が所定の真空状態に排気され、真空チャンバ41には支持台44が設けられている。支持台44の上面には基板2が載置・保持されている。真空チャンバ41の天井板42には電極棒5が設けられ、導入端子6が外部に臨んでいる。導入端子6の部位は空冷室46で覆われ、空冷室46には冷却ファン45が設けられている。   As shown in the figure, for example, a cylindrical vacuum chamber 41 is evacuated to a predetermined vacuum state, and a support base 44 is provided in the vacuum chamber 41. The substrate 2 is placed and held on the upper surface of the support table 44. The electrode plate 5 is provided on the ceiling plate 42 of the vacuum chamber 41, and the introduction terminal 6 faces the outside. A portion of the introduction terminal 6 is covered with an air cooling chamber 46, and a cooling fan 45 is provided in the air cooling chamber 46.

真空チャンバ41内の電極棒5には保持部材12を介してフィラメント15が支持台44に対向して配されている。支持台44とフィラメント15の間の真空チャンバ41にはシャワープレート43が設けられ、フィラメント15が配されている側の真空チャンバ41の内部にはガスライン11から流量が制御された原料ガスが供給される。   A filament 15 is disposed on the electrode bar 5 in the vacuum chamber 41 via the holding member 12 so as to face the support base 44. A shower plate 43 is provided in the vacuum chamber 41 between the support base 44 and the filament 15, and a raw material gas whose flow rate is controlled is supplied from the gas line 11 into the vacuum chamber 41 on the side where the filament 15 is arranged. Is done.

上述した触媒CVD装置では、シャワープレート43の上側の真空チャンバ41の内部に原料物質を含む原料ガスが供給され、フィラメント15が高温(例えば、1000℃程度)に加熱される。フィラメント15が加熱されることで、発熱により触媒作用を発現して原料ガスが反応種に分解・活性化され、反応種がシャワープレート43から基板2側に送られ、基板2の表面に薄膜が形成される。   In the above-described catalytic CVD apparatus, a source gas containing a source material is supplied into the vacuum chamber 41 above the shower plate 43, and the filament 15 is heated to a high temperature (for example, about 1000 ° C.). When the filament 15 is heated, a catalytic action is generated by heat generation, so that the source gas is decomposed and activated into reactive species, the reactive species are sent from the shower plate 43 to the substrate 2 side, and a thin film is formed on the surface of the substrate 2. It is formed.

上述した触媒CVD装置のフィラメント15は、図1に示した実施例と同様に、電極棒5に面接触により接続されているので、接続部の電気接触抵抗を小さくして接触部が高温になり過ぎることを抑制することができる。このため、フィラメント15と電極棒5の接続部の電気接触抵抗を小さくして接触部が高温になり過ぎることを抑制することができる。そして、導入端子6が冷却ファン45により冷却されているので、フィラメント15の接続部の放熱が空冷により行なわれる。   Since the filament 15 of the catalytic CVD apparatus described above is connected to the electrode bar 5 by surface contact as in the embodiment shown in FIG. 1, the electrical contact resistance of the connection portion is reduced and the contact portion becomes hot. It can be suppressed. For this reason, the electrical contact resistance of the connection part of the filament 15 and the electrode rod 5 can be made small, and it can suppress that a contact part becomes high temperature too much. Since the introduction terminal 6 is cooled by the cooling fan 45, the heat radiation of the connecting portion of the filament 15 is performed by air cooling.

このため、電極棒5が融解して電極棒の成分(例えば、Ni、Cr、Fe)が基板に対して拡散輸送されることがなく、簡単な冷却機構により真空チャンバ41内の金属汚染を防止することが可能になる。   For this reason, the electrode rod 5 does not melt and the electrode rod components (for example, Ni, Cr, Fe) are not diffused and transported to the substrate, and metal contamination in the vacuum chamber 41 is prevented by a simple cooling mechanism It becomes possible to do.

図7に示した実施例において、冷却ファン45に代えて図1に示した水冷の冷却機構を適用することも可能である。   In the embodiment shown in FIG. 7, the water cooling cooling mechanism shown in FIG. 1 can be applied instead of the cooling fan 45.

本発明は、触媒体に原料ガスを接触させて成膜を行う触媒CVD装置の産業分野で利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in the industrial field of a catalytic CVD apparatus that performs film formation by bringing a source gas into contact with a catalyst body.

1 真空チャンバ
2 基板
3 水冷ブロック
4 絶縁体リング
5 電極棒
6 導入端子
7 冷却水路
8 配線
11 ガスライン
12 保持部材
13 ねじ部
14 ナット部材
15 フィラメント
16 すり割部
22 嵌合穴
23 第1嵌合部
24 第2嵌合部
25 フィン部
26 Oリング
27 第1Oリング
28 第2Oリング
31 排出穴
32 排出路
41 真空チャンバ
42 天井板
43 シャワープレート
44 支持台
45 冷却ファン
46 空冷室
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Board | substrate 3 Water cooling block 4 Insulator ring 5 Electrode rod 6 Introduction terminal 7 Cooling water path 8 Wiring 11 Gas line 12 Holding member 13 Screw part 14 Nut member 15 Filament 16 Slot part 22 Fitting hole 23 First fitting Part 24 second fitting part 25 fin part 26 O-ring 27 first O-ring 28 second O-ring 31 discharge hole 32 discharge path 41 vacuum chamber 42 ceiling plate 43 shower plate 44 support base 45 cooling fan 46 air cooling chamber

Claims (9)

内部が所定の真空状態にされて基板が配置されると共に、原料物質を含む原料ガスが供給される処理室と、
電力の導入端子を有し前記導入端子が前記処理室の外部に配された状態で前記処理室の内部に配される電極部材と、
前記処理室の内部に位置する前記電極部材に接続され、加熱されることで前記原料ガスを反応種に分解・活性化して前記基板に薄膜を形成させる触媒体とを備え、
前記電極部材に対する前記触媒体の接続は、
面接触により前記触媒体を保持する保持部材を介して前記電極部材に前記触媒体が取り付けられている
ことを特徴とする触媒CVD装置。
A processing chamber to which a raw material gas containing a raw material is supplied while a substrate is arranged with the inside being in a predetermined vacuum state,
An electrode member disposed inside the processing chamber in a state having an introduction terminal for electric power and the introduction terminal being disposed outside the processing chamber;
A catalyst body connected to the electrode member positioned inside the processing chamber and heated to decompose and activate the source gas into reactive species to form a thin film on the substrate;
The connection of the catalyst body to the electrode member is
The catalytic CVD apparatus, wherein the catalytic body is attached to the electrode member via a holding member that holds the catalytic body by surface contact.
請求項1に記載の触媒CVD装置において、
前記保持部材は、
前記電極部材の先端部に形成され前記触媒体の外周に嵌合する状態に縮径自在な保持部と、
前記電極部材に螺合することによりテーパ面を介して前記保持部を縮径させて前記触媒体に前記保持部の内面を面接触させ、前記触媒体を前記電極部材に保持させるナット部材とからなる
ことを特徴とする触媒CVD装置。
The catalytic CVD apparatus according to claim 1,
The holding member is
A holding part that is formed at the tip of the electrode member and can be reduced in diameter so as to be fitted to the outer periphery of the catalyst body;
From the nut member that causes the holding portion to be reduced in diameter via a tapered surface by screwing to the electrode member to bring the inner surface of the holding portion into surface contact with the catalyst body and hold the catalyst body on the electrode member A catalytic CVD apparatus characterized by:
請求項2に記載の触媒CVD装置において、
前記保持部は、周方向に複数に分割されている
ことを特徴とする触媒CVD装置。
The catalytic CVD apparatus according to claim 2,
The said holding | maintenance part is divided | segmented into multiple in the circumferential direction. The catalytic CVD apparatus characterized by the above-mentioned.
内部が所定の真空状態にされて基板が配置されると共に、原料物質を含む原料ガスが供給される処理室と、
電力の導入端子を有し前記導入端子が前記処理室の外部に配された状態で前記処理室の内部に配される電極部材と、
前記処理室の内部に位置する前記電極部材に接続され、加熱されることで前記原料ガスを反応種に分解・活性化して前記基板に薄膜を形成させる触媒体と、
前記導入端子が前記処理室の外部に配される状態に前記電極部材を保持する絶縁体と、
前記絶縁体に冷却水を供給して前記導入端子を冷却する水冷手段とを備えた
ことを特徴とする触媒CVD装置。
A processing chamber to which a raw material gas containing a raw material is supplied while a substrate is arranged with the inside being in a predetermined vacuum state,
An electrode member disposed inside the processing chamber in a state having an introduction terminal for electric power and the introduction terminal being disposed outside the processing chamber;
A catalyst body connected to the electrode member located inside the processing chamber and heated to decompose and activate the source gas into reactive species to form a thin film on the substrate;
An insulator for holding the electrode member in a state where the introduction terminal is arranged outside the processing chamber;
A catalytic CVD apparatus, comprising: water cooling means for supplying cooling water to the insulator to cool the introduction terminal.
請求項4に記載の触媒CVD装置において、
前記水冷手段は、
前記処理室の内部を臨み前記絶縁体が嵌合保持される取付け部を備えたブロックと、
前記取付け部に設けられ冷却水の前記処理室内への浸入を阻止する第1シール部材と、
前記第1シール部材の前記処理室側における前記取付け部に設けられ前記第1シール部材を通過した冷却水の前記処理室内への浸入を阻止する第2シール部材と、
前記第1シール部材と前記第2シール部材の間における前記取付け部に形成され、前記第1シール部材を通過した冷却水を排出する排出手段とを備えた
ことを特徴とする触媒CVD装置。
In the catalytic CVD apparatus according to claim 4,
The water cooling means is
A block provided with a mounting portion facing the inside of the processing chamber and fitted and held by the insulator;
A first seal member provided at the attachment portion for preventing cooling water from entering the processing chamber;
A second seal member that is provided at the attachment portion of the first seal member on the processing chamber side and that prevents cooling water that has passed through the first seal member from entering the processing chamber;
A catalytic CVD apparatus comprising: a discharge unit that discharges the cooling water that is formed in the attachment portion between the first seal member and the second seal member and that has passed through the first seal member.
内部が所定の真空状態にされて基板が配置されると共に、原料物質を含む原料ガスが供給される処理室と、
電力の導入端子を有し前記導入端子が前記処理室の外部に配された状態で前記処理室の内部に配される電極部材と、
前記処理室の内部に位置する前記電極部材に接続され、加熱されることで前記原料ガスを反応種に分解・活性化して前記基板に薄膜を形成させる触媒体と、
前記導入端子が前記処理室の外部に配される状態に前記電極部材を保持する絶縁体と、
前記絶縁体に冷却水を供給して前記導入端子を冷却する水冷手段とを備え、
前記電極部材に対する前記触媒体の接続は、
面接触により前記加熱体を保持する保持部材を介して前記電極部材に前記触媒体が取り付けられている
ことを特徴とする触媒CVD装置。
A processing chamber to which a raw material gas containing a raw material is supplied while a substrate is arranged with the inside being in a predetermined vacuum state,
An electrode member disposed inside the processing chamber in a state having an introduction terminal for electric power and the introduction terminal being disposed outside the processing chamber;
A catalyst body connected to the electrode member located inside the processing chamber and heated to decompose and activate the source gas into reactive species to form a thin film on the substrate;
An insulator for holding the electrode member in a state where the introduction terminal is arranged outside the processing chamber;
Water cooling means for cooling the introduction terminal by supplying cooling water to the insulator,
The connection of the catalyst body to the electrode member is
The catalytic CVD apparatus, wherein the catalyst body is attached to the electrode member via a holding member that holds the heating body by surface contact.
請求項6に記載の触媒CVD装置において、
前記保持部材は、
前記電極部材の先端部に形成され前記触媒体の外周に嵌合する状態に縮径自在な保持部と、
前記電極部材に螺合することによりテーパ面を介して前記保持部を縮径させて前記触媒体に前記保持部の内面を面接触させ、前記触媒体を前記電極部材に保持させるナット部材とからなる
ことを特徴とする触媒CVD装置。
The catalytic CVD apparatus according to claim 6,
The holding member is
A holding part that is formed at the tip of the electrode member and can be reduced in diameter so as to be fitted to the outer periphery of the catalyst body;
From the nut member that causes the holding portion to be reduced in diameter via a tapered surface by screwing to the electrode member to bring the inner surface of the holding portion into surface contact with the catalyst body and hold the catalyst body on the electrode member A catalytic CVD apparatus characterized by:
請求項7に記載の触媒CVD装置において、
前記保持部は、周方向に複数に分割されている
ことを特徴とする触媒CVD装置。
The catalytic CVD apparatus according to claim 7,
The said holding | maintenance part is divided | segmented into multiple in the circumferential direction. The catalytic CVD apparatus characterized by the above-mentioned.
請求項6から請求項8のいずれか一項に記載の触媒CVD装置において、
前記水冷手段は、
前記処理室の内部を臨み前記絶縁体が嵌合保持される取付け部を備えたブロックと、
前記取付け部に設けられ冷却水の前記処理室内への浸入を阻止する第1シール部材と、
前記第1シール部材の前記処理室側における前記取付け部に設けられ前記第1シール部材を通過した冷却水の前記処理室内への浸入を阻止する第2シール部材と、
前記第1シール部材と前記第2シール部材の間における前記取付け部に形成され、前記第1シール部材を通過した冷却水を排出する排出手段とを備えた
ことを特徴とする触媒CVD装置。
In the catalytic CVD apparatus according to any one of claims 6 to 8,
The water cooling means is
A block provided with a mounting portion facing the inside of the processing chamber and fitted and held by the insulator;
A first seal member provided at the attachment portion for preventing cooling water from entering the processing chamber;
A second seal member that is provided at the attachment portion of the first seal member on the processing chamber side and that prevents cooling water that has passed through the first seal member from entering the processing chamber;
A catalytic CVD apparatus comprising: a discharge unit that discharges the cooling water that is formed in the attachment portion between the first seal member and the second seal member and that has passed through the first seal member.
JP2009102423A 2009-04-20 2009-04-20 Catalytic CVD equipment Active JP5439018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009102423A JP5439018B2 (en) 2009-04-20 2009-04-20 Catalytic CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009102423A JP5439018B2 (en) 2009-04-20 2009-04-20 Catalytic CVD equipment

Publications (2)

Publication Number Publication Date
JP2010248604A true JP2010248604A (en) 2010-11-04
JP5439018B2 JP5439018B2 (en) 2014-03-12

Family

ID=43311254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009102423A Active JP5439018B2 (en) 2009-04-20 2009-04-20 Catalytic CVD equipment

Country Status (1)

Country Link
JP (1) JP5439018B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149286A (en) * 2011-01-17 2012-08-09 Ihi Corp Array antenna type plasma cvd apparatus and array antenna unit
JP2012149287A (en) * 2011-01-17 2012-08-09 Ihi Corp Support tool and array antenna type plasma cvd apparatus
JP2012158802A (en) * 2011-01-31 2012-08-23 Ihi Corp Antenna carrier, array antenna type plasma cvd device, and method for carrying antenna for array antenna type plasma cvd device and substrate
CN112534081A (en) * 2018-09-10 2021-03-19 株式会社神户制钢所 Hot filament chemical vapor deposition device
JP2021155826A (en) * 2020-03-30 2021-10-07 三菱重工機械システム株式会社 Catalyst wire support member, jig for withdrawal, unit for heat catalyst cvd and film deposition device for heat catalyst cvd

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128322A (en) * 2002-10-04 2004-04-22 Anelva Corp Heating element cvd device and connecting structure between heating element and power feeding mechanism therein
JP2004303687A (en) * 2003-04-01 2004-10-28 Mitsubishi Heavy Ind Ltd Electrode connection fixture and vacuum treatment apparatus having the same
JP2008283146A (en) * 2007-05-14 2008-11-20 Ulvac Japan Ltd Cvd apparatus, semiconductor device, and photoelectric converter
JP2010103292A (en) * 2008-10-23 2010-05-06 Kyocera Corp Cat-PECVD DEVICE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128322A (en) * 2002-10-04 2004-04-22 Anelva Corp Heating element cvd device and connecting structure between heating element and power feeding mechanism therein
JP2004303687A (en) * 2003-04-01 2004-10-28 Mitsubishi Heavy Ind Ltd Electrode connection fixture and vacuum treatment apparatus having the same
JP2008283146A (en) * 2007-05-14 2008-11-20 Ulvac Japan Ltd Cvd apparatus, semiconductor device, and photoelectric converter
JP2010103292A (en) * 2008-10-23 2010-05-06 Kyocera Corp Cat-PECVD DEVICE

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149286A (en) * 2011-01-17 2012-08-09 Ihi Corp Array antenna type plasma cvd apparatus and array antenna unit
JP2012149287A (en) * 2011-01-17 2012-08-09 Ihi Corp Support tool and array antenna type plasma cvd apparatus
JP2012158802A (en) * 2011-01-31 2012-08-23 Ihi Corp Antenna carrier, array antenna type plasma cvd device, and method for carrying antenna for array antenna type plasma cvd device and substrate
CN112534081A (en) * 2018-09-10 2021-03-19 株式会社神户制钢所 Hot filament chemical vapor deposition device
JP2021155826A (en) * 2020-03-30 2021-10-07 三菱重工機械システム株式会社 Catalyst wire support member, jig for withdrawal, unit for heat catalyst cvd and film deposition device for heat catalyst cvd
JP7369656B2 (en) 2020-03-30 2023-10-26 三菱重工機械システム株式会社 Catalyst wire support member for thermal catalytic CVD, insertion/extraction jig, unit for thermal catalytic CVD, and film forming equipment

Also Published As

Publication number Publication date
JP5439018B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
KR0155601B1 (en) Vacuum processing apparatus
JP5439018B2 (en) Catalytic CVD equipment
US8071920B2 (en) Planar heater
JP5444860B2 (en) Polycrystalline silicon production equipment
JP5266817B2 (en) Polycrystalline silicon production equipment
US20070284085A1 (en) Plasma processing apparatus, electrode unit, feeder member and radio frequency feeder rod
JP5996519B2 (en) Ceramic heater
JP2005277442A (en) Plasma etching apparatus
JP6215104B2 (en) Temperature control device
KR20110027621A (en) Mounting table structure and processing apparatus
KR100944299B1 (en) Cascade source and a method for controlling the cascade source
JP2007294812A (en) Cooler and plasma treatment apparatus
JP6140539B2 (en) Vacuum processing equipment
US3286685A (en) Process and apparatus for pyrolytic production of pure semiconductor material, preferably silicon
US6508062B2 (en) Thermal exchanger for a wafer chuck
JP5895603B2 (en) Electrode plate for plasma processing equipment
JP5382602B2 (en) Wafer holder and semiconductor manufacturing apparatus
JP6043968B2 (en) Plasma processing method and electronic device manufacturing method
JPH06244143A (en) Treating device
TW201530649A (en) Supporting member and substrate processing device
JP5352156B2 (en) Heat treatment equipment
JP2007157552A (en) Heating device made of quartz
JP2009064952A (en) Surface treatment apparatus
JP2010090000A (en) Apparatus for producing polycrystalline silicon
WO2014116434A1 (en) Substrate processing chamber components incorporating anisotropic materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5439018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250