JP2010248574A - 蒸着装置及び蒸着方法。 - Google Patents

蒸着装置及び蒸着方法。 Download PDF

Info

Publication number
JP2010248574A
JP2010248574A JP2009099624A JP2009099624A JP2010248574A JP 2010248574 A JP2010248574 A JP 2010248574A JP 2009099624 A JP2009099624 A JP 2009099624A JP 2009099624 A JP2009099624 A JP 2009099624A JP 2010248574 A JP2010248574 A JP 2010248574A
Authority
JP
Japan
Prior art keywords
electron beam
vapor deposition
cathode
evaporation surface
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009099624A
Other languages
English (en)
Inventor
Masamichi Matsuura
正道 松浦
Kokuka Chin
沈  国華
Isei Ushiroda
以誠 後田
Yoshiaki Agawa
阿川  義昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2009099624A priority Critical patent/JP2010248574A/ja
Publication of JP2010248574A publication Critical patent/JP2010248574A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

【課題】成膜の制御性が高く、ターゲットの有効利用が可能な蒸着方法及び蒸着装置を提供すること。
【解決手段】本発明に係る蒸着装置は、コンデンサユニット5に蓄積された電荷を蒸発面21aを有するカソード3とアノード4との間で放電させることが可能な蒸発源と、蒸発面21aに照射されることで上記放電を発生させる電子ビームをパルス状に生成する電子ビーム生成源と、電子ビームを偏向させる偏向器15とを有する電子銃2と、偏向器15を制御することによって蒸発面21aに対する電子ビームの照射位置を上記放電毎に変更する制御手段7とを具備する。
電子ビームは蒸発面21aに照射されることにより、アノード4とカソード3との間でアーク放電を誘起し、蒸着材料のプルームを発生させる。電子ビームをパルス状に照射し、照射位置をアーク放電毎に変更することにより、高い成膜の制御性を得ることができ、ターゲットの有効利用が可能となる。
【選択図】図1

Description

本発明は、蒸着装置及び蒸着方法に関し、更に詳しくは、電子ビームによりパルス状のアーク放電を発生させるパルス真空アーク蒸着装置及びその方法に関する。
真空アーク蒸着法は、PVD(Physical Vapor Deposition)法の一種であり、真空環境下において蒸着材料をアーク放電によりイオン化して成膜対象物上に堆積させる方法である。アーク蒸着法では、蒸着材料からなるターゲットをカソードとし、アノードとの間に電圧を印加する。何らかの手法でカソード−アノード間の絶縁耐圧を低下させると、アノード−カソード間においてアーク放電が発生する。アーク放電により蒸着材料は蒸発してイオン化され、成膜対象物に成膜される。
アノード−カソード間にコンデンサを用いて電圧が印加されている場合、コンデンサに蓄積された電荷が放電されるまでの時間、アーク放電が持続する。コンデンサが再充電された後、再び絶縁耐圧を低下させることにより、次発のアーク放電が発生する。これを繰り返すことによりアーク放電がパルス状に発生する(パルスアーク蒸着)。一方、アノード−カソード間に電源を用いて電圧が印加されている場合、アノード−カソード間の電圧が維持されるので、条件が許す限りアーク放電は途切れることなく持続する(連続アーク蒸着)。従来、アーク蒸着は連続アーク蒸着が主流であったが、近年、パルスアーク蒸着により触媒金属粒子等として用いられるナノ粒子を形成することが可能であることが判明し注目されている。
例えば、特許文献1には、トリガ電極とカソードとの間で発生させるトリガ放電によりカソード−アノード間の絶縁耐圧を低下させるアーク蒸着装置が開示されている。当該アーク蒸着装置は、円筒形状を有するアノードと、当該アノードの中心軸と同軸となるように配置された蒸着材料からなるカソードと、カソードとワッシャ硝子(絶縁体)を介して取り付けられたトリガ電極とを有する。コンデンサによりアノード−カソード間に電圧が印加されている状態で、トリガ電極にパルス状の電圧(トリガ電圧)を印加すると、ワッシャ硝子を介してトリガ電極とカソードとの間にトリガ放電(沿面放電)が発生する。このトリガ放電によりアノード−カソード間の耐電圧が低下してパルス状のアーク放電が発生し、蒸着材料のプラズマがローレンツ力により成膜対象物に向けて放出される。プラズマ中の荷電粒子のうち、サイズ、電荷質量比等が基準から外れるものは周囲に配置されているアノードに衝突するため、適正な蒸着粒子のみを成膜対象物に堆積させることが可能とされている。
特許文献2には、カソードに照射される電子線(電子ビーム)によりカソード−アノード間の絶縁耐圧を低下させるアーク蒸着装置が開示されている。当該アーク蒸着装置は、ターゲットからなるカソードと、カソードと離間して配置されたアノードと、電子銃及び電磁石とを有する。アノード−カソード間に電源により電圧が印加されている状態で、電子銃によって形成された電子線が電磁石により誘導され、ターゲット(カソード)表面に照射される。電子線によってターゲット表面が溶融して蒸発、イオン化し、アノード−カソード間の絶縁耐圧が低下してアーク放電が発生し、成膜対象物に印加されている電圧により蒸着材料が成膜対象物に誘引される。電子線を走査することによりターゲット上での照射位置を移動させ、アーク放電が発生する位置を誘導することが可能とされている。
特開2007−254762号公報(段落[0021]、図1) 特開平6−41727号公報(段落[0042]、図1)
しかしながら、特許文献1に記載のアーク蒸着装置は、蒸着材料からなるカソード上においてアーク放電が発生する位置を制御することができない。アーク放電は、カソード上においてトリガ放電が発生した位置を中心として発生するが、トリガ放電はワッシャ硝子
を介してトリガ電極とカソードとの間で発生する沿面放電であるため、積極的にその発生位置を制御することができない。このため、蒸着材料(カソード)を大面積とすることができず、また、アーク放電が同一箇所に集中して発生することによりカソードの損耗が偏在する可能性があり、蒸着材料の交換頻度が高いという問題がある。
また、特許文献2に記載のアーク蒸着装置は、電子線を走査することにより大面積のターゲットにおいてアーク放電が発生する位置を制御することが可能であるものの、連続アーク蒸着に用いられる装置としての構成である。パルスアーク蒸着により発生する蒸着粒子のサイズや分散、成膜対象物への密着性等は、アノード−カソード間の電圧、アーク放電の周期、アーク放電が発生する位置におけるターゲットの温度等に依存する。特許文献2は連続アーク蒸着に関するものであるため、これらのことについて言及されていない。
以上のような事情に鑑み、本発明の目的は、成膜の制御性が高く、ターゲットの有効利用が可能な蒸着方法及び蒸着装置を提供することにある。
上記目的を達成するため、本発明の一形態に係る蒸着装置は、蒸発源と、電子銃と、制御手段とを具備する。
上記蒸発源は、蒸発面を有する蒸着材料を含むカソードと、アノードと、上記カソードと上記アノードとを接続するコンデンサユニットとを有し、上記コンデンサユニットに蓄積された電荷を上記カソードと上記アノードとの間で放電させることが可能である。
上記電子銃は、上記蒸発面に照射されることで上記アノードと上記カソードとの間で放電を発生させる電子ビームをパルス状に生成する電子ビーム生成源と、上記電子ビームを偏向させる偏向器とを有する。
上記制御手段は、上記偏向器を制御することによって上記蒸発面に対する上記電子ビームの照射位置を上記放電毎に変更する。
上記目的を達成するため、本発明の一形態に係る蒸着方法は、蒸着材料を含むカソードと上記カソードに対向するアノードとの間に接続したコンデンサユニットを充放電させ、上記カソードと上記アノードとの間にアーク放電を繰り返し発生させることで生成された上記蒸着材料の蒸発粒子を基板上に蒸着させることを含む。
上記電子ビームの照射位置における上記アーク放電の発生は、パルス状の電子ビームを生成し、上記電子ビームを上記蒸着材料に照射することで誘起される。
生成した上記電子ビームは、上記アーク放電の発生毎に上記アーク放電の発生位置が異なるように偏向制御される。
本発明の各実施形態に係る蒸着装置の概略構成を示す図である。 本発明の各実施形態に係る蒸着方法を説明する図である。 本発明の各実施形態に係る蒸着方法における各値の時刻に対するプロットである。 本発明の各実施形態に係る蒸着方法における実測されたカソード電流の時刻に対するプロットである。 本発明の第1の実施形態に係る蒸着方法における蒸発面における電子ビームの照射位置の制御方法を説明する図である。 本発明の第2の実施形態に係る蒸着方法における蒸発面における電子ビームの照射位置の制御方法を説明する図である。 本発明の第3の実施形態に係る蒸着方法における蒸発面における電子ビームの照射位置の制御方法を説明する図である。 本発明の第4の実施形態に係る蒸着方法における蒸発面における電子ビームの照射位置の制御方法を説明する図である。
本発明の一実施形態に係る蒸着装置は、蒸発源と、電子銃と、制御手段とを具備する。
上記蒸発源は、蒸発面を有する蒸着材料を含むカソードと、アノードと、上記カソードと上記アノードとを接続するコンデンサユニットとを有し、上記コンデンサユニットに蓄積された電荷を上記カソードと上記アノードとの間で放電させることが可能である。
上記電子銃は、上記蒸発面に照射されることで上記アノードと上記カソードとの間で放電を発生させる電子ビームをパルス状に生成する電子ビーム生成源と、上記電子ビームを偏向させる偏向器とを有する。
上記制御手段は、上記偏向器を制御することによって上記蒸発面に対する上記電子ビームの照射位置を上記放電毎に変更する。
電子ビーム生成源から蒸発面にパルス状電子ビームが照射されることにより、アノードとカソードの間の絶縁耐圧が低下し、アーク放電が発生する。アーク放電により蒸着材料のプラズマが形成され、ローレンツ力により成膜対象物に誘引され、堆積する。制御手段がパルス状に生成される電子ビームを偏向器によって偏向させ、蒸発面上の照射位置をアーク放電毎に変更させることにより、蒸発面の温度に拠らず生成されるプラズマの状態(量、荷電粒子の粒子径あるいは密度)を一定に保ち、即ち高い成膜の制御性を得るとともに、大面積の蒸着材料を有効に利用することが可能である。
上記制御手段は、上記蒸発面上で上記電子ビームを走査するように上記偏向器を制御してもよい。
電子ビームを走査することにより、アーク放電毎に電子ビームの照射位置を変更することが可能である。

上記制御手段は、上記照射位置が連続するように上記偏向器を制御してもよい。
照射位置が連続することにより、前回のアーク放電により発生した熱が残存する領域にアーク放電を発生させることが可能であり、エネルギー損失を低減することが可能である。
上記カソードは、上記蒸発面を冷却する冷却源をさらに有し、上記制御手段は、上記蒸発面の外周側を内周側よりも狭い間隔で上記電子ビームの照射位置を変更してもよい。
冷却源によって、蒸発面の外周側が内周側よりも低い温度となる場合であっても、電子ビームの照射位置の感覚を調節することにより、照射位置の蒸着材料の温度を一定とすることが可能である。これにより、蒸発面において冷却の程度に関わらずプラズマの生成状態を一定に保つことが可能である。
上記制御手段は、上記電子ビームの照射回数が増大するに従って、前記電子ビームの照射位置の間隔を広くしてもよい。
電子ビームの照射回数が増大することにより蒸発面全体の温度が上昇する場合であっても、電子ビームの照射位置の間隔を広くすることにより照射位置における蒸発面の温度を一定に保ち、プラズマの生成状態を一定に保つことが可能である。
本発明の一実施形態に係る蒸着方法は、蒸着材料を含むカソードと上記カソードに対向するアノードとの間に接続したコンデンサユニットを充放電させ、上記カソードと上記アノードとの間にアーク放電を繰り返し発生させることで生成された上記蒸着材料の蒸発粒子を基板上に蒸着させることを含む。
上記電子ビームの照射位置における上記アーク放電の発生は、パルス状の電子ビームを生成し、上記電子ビームを上記蒸着材料に照射することで誘起される。
生成した上記電子ビームは、上記アーク放電の発生毎に上記アーク放電の発生位置が異なるように偏向制御される。
パルス状に生成される電子ビームを偏向制御し、蒸発面上の照射位置をアーク放電毎に変更することにより、蒸発面の温度に拠らず生成されるプラズマの状態(量、荷電粒子の粒子径あるいは密度)を一定に保ち、即ち高い成膜の制御性を得るとともに、大面積の蒸着材料を有効に利用することが可能である。
上記電子ビームを偏向制御する工程は、上記蒸発面上で上記電子ビームを走査するように制御してもよい。
電子ビームを走査することにより、アーク放電毎に電子ビームの照射位置を変更することが可能である。
上記電子ビームを偏向制御する工程は、上記照射位置が連続するように制御してもよい。
照射位置が連続することにより、前回のアーク放電により発生した熱が残存する領域にアーク放電を発生させることが可能であり、エネルギー損失を低減することが可能である。
上記電子ビームを偏向制御する工程は、冷却源により冷却されている上記蒸発面の外周側を内周側よりも狭い間隔で上記電子ビームの照射位置を変更する
冷却源によって、蒸発面の外周側が内周側よりも低い温度となる場合であっても、電子ビームの照射位置の感覚を調節することにより、照射位置の蒸着材料の温度を一定とすることが可能である。これにより、蒸発面において冷却の程度に関わらずプラズマの生成状態を一定に保つことが可能である。
上記電子ビームを偏向制御する工程は、上記電子ビームの照射回数が増大するに従って上記電子ビームの照射位置の間隔を広くしてもよい。
電子ビームの照射回数が増大することにより蒸発面全体の温度が上昇する場合であっても、電子ビームの照射位置の間隔を広くすることにより照射位置における蒸発面の温度を一定に保ち、プラズマの生成状態を一定に保つことが可能である。
以下、図面を参照しながら、本発明の実施形態を説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る蒸着装置1を示す図である。
同図に示すように蒸着装置1は、電子銃2と、カソード3と、アノード4と、コンデンサユニット5と、制御部7とを有する。電子銃2、カソード3及びアノード4は真空槽6に収容されている。また、真空槽6内には、基板ステージ9が設けられ、基板ステージ9上には成膜対象物である基板Sが載置されている。カソード3、アノード4、コンデンサユニット5及びアーク電源10により蒸発源が構成されている。制御部7は電子銃2の各部に接続されている。
電子銃2はパルス状電子ビームを出射する。電子銃2は、フィラメント11、ウェーネルト電極12、引出し電極13、収束電極14、偏向電極15を有する。これらは、フィラメント11から電子銃2の開口に向かってこの順に配置されている。フィラメント11、ウェーネルト電極12、引出し電極13並びに収束電極14及びこれらの電源により電子ビーム生成源が構成され、偏向電極15及びその電源により偏向器が構成される。
フィラメント11は電子ビームとなる電子を生成する。フィラメント11はフィラメント電源16と接続され、フィラメント電源16から供給される電力により発熱し、熱電子を生成する。フィラメント11は例えばタングステン、ホウ化ランタン等からなるワイヤを用いることが可能である。
ウェーネルト電極12はフィラメント11から放出される電子の量を制御し、電子を収束させる。ウェーネルト電極12は、フィラメント11と引出し電極13との間に配置され、ウェーネルト電源17に接続されている。ウェーネルト電極12は円環形状を有し、フィラメント11から引出し電極13によって引き出される電子が円環内を通過することが可能に配置されている。ウェーネルト電極12はウェーネルト電源17によってフィラメント11に対して負電位とされ、フィラメント11との電位差が大きい場合はフィラメント11から放出される電子量及び収束径が減少し、電位差が小さい場合は電子量及び収束径が増大する。
引出し電極13はフィラメント11によって生成される電子を加速し電子流を形成させる。引出し電極13は、スイッチ8を介して引出し電源18に接続されている。引出し電極13は円環形状を有し、電子流が円環内を通過することが可能に配置されている。引出し電極13は引出し電源18によってフィラメント11に対して正電位とされ、フィラメント11との電位差が大きい場合は電子流の速度が上昇し、電位差が小さい場合は電子流の速度が減少する。引出し電極13は多段に設けられてもよい。引出し電極13は、制御部7によりスイッチ8が制御されることによって、引出し電極13に印加される電圧がパルス状とされることによりパルス状の電子流を生成することを可能とする。
なお、パルス状の電子流は、引出し電極13が制御部7によって引出し電源18からパルス状に電圧を印加されることによって形成されるものに限られない。引出し電極13に一定の電圧が印加されている状態で、フィラメント11にフィラメント電源16からパルス状に電流が印加されることによりパルス状の電子流が形成されてもよい。
収束電極14は、引出し電極13によって形成された電子流を収束させる。収束電極14は、引出し電極13の後段に配置され、収束電源19に接続されている。収束電極14は円環状に巻回されたコイルとすることができ、収束電源19によって印加された電流により発生する磁界によって電子流を収束させ、電子ビームを形成させる。収束電極14は、制御部7によって収束電源19から収束電極14に印加される電流が増減されることにより電子ビームの収束径を調節する。
以上のように、フィラメント11、ウェーネルト電極12、引出し電極13並びに収束電極14及びこれらの電源によって電子ビームを生成する電子ビーム生成源が構成される。なお、電子ビーム生成源の構造はここに示すものに限られず、電子ビームを生成することが可能な他の構成とすることが可能である。
偏向電極15は、電子ビームを偏向し、ターゲット21上で走査させる。偏向電極15は、収束電極14の後段に配置され、偏向電源20に接続されている。偏向電極15は円環状に巻回されたコイルとすることができ、偏向電源20によって印加された電流により発生する磁界によって電子を偏向させる。偏向電極15は、電子ビームを1次元的に偏向するものであってもよく、2次元的に偏向するものであってもよい。偏向電極15は、制御部7によって偏向電源20から偏向電極15に印加される電流が制御されることにより電子ビームの軌道を変更することができる。
偏向電極15及び偏向電源20は偏向器に相当するが、偏向器の構成は偏向電極15に限られず、電子ビームを偏向させることが可能な他の構成とすることが可能である。
カソード3は、アノード4との間でアーク放電を発生させる。カソード3は、ターゲット21と、金属製の支持部22とを有する。カソード3はコンデンサユニット5及びアーク電源10に接続されている。カソード3は、ターゲット21の蒸発面21aが電子銃2の方向に面するように、かつアノード4と対向するように配置される。
ターゲット21は、電子ビームの照射を受けてアーク放電により蒸着材料のプラズマを生じる。ターゲット21は導電性を有する蒸着材料からなり、支持部22に支持され、かつ導通している。ターゲット21は、電子ビームが照射され、アーク放電が発生する蒸発面21aを有する。ターゲット21は例えば平板状とすることが可能である。ターゲット21はCu、Ti、Co、Pt等の金属あるいは合金、AlN、Al等の金属化合物、DLC(diamond-like carbon)等のアーク放電によるプラズマ化が可能な材料から選択することができる。
支持部22は、ターゲット21を支持する。支持部22はコンデンサユニット5に接続され、ターゲット21とこれらを電気的に接続する。また、支持部22は、例えば冷却水導路等の図示しない冷却源を内蔵し、ターゲット21を冷却することが可能に構成されている。
アノード4は、カソード3との間でアーク放電を発生させる。アノード4は導電性を有するように構成され、コンデンサユニット5及びアーク電源10に接続されている。アノード4は例えば平板状の形状を有し、少なくとも放電領域においてターゲット21と平行に、カソード3と対向するように配置されている。アノード4の形状は平板状に限られず、棒状等であってもよく、後述する電子ビームの照射位置で適正にアークを発生させることができる形状であれば特に限定されない。また、アノード4は、電子ビームが電子銃2からターゲット21に到る経路上において、電子ビームの通過を遮らない構成とされる。
コンデンサユニット5は、アーク放電を発生させるための電荷を蓄積する。コンデンサユニット5は、カソード3及びアノード4と接続され、かつアーク電源10と並列に接続されている。コンデンサユニット5は、電解コンデンサ等の電力回路用コンデンサから選択することが可能であり、例えば容量1600μFのものを用いることができる。また、コンデンサユニット5は、単一のコンデンサからなるものに限られず、並列に接続された複数のコンデンサからなるものであってもよい。
アーク電源10は、コンデンサユニット5を充電する。アーク電源10は、カソード3及びアノード4と接続され、かつコンデンサユニット5と並列に接続されている。アーク電源10は例えば電圧100Vの電源とすることが可能である。
真空槽6は、電子銃2、アノード4及びカソード3を収容し、槽内の圧力を維持する。真空槽6は真空ポンプ23に接続され、槽内を真空排気可能に構成されている。また、真空槽6はグランド電位とされている。
制御部7は、電子銃2を制御する。制御部7は引出し電源18、収束電源19及び偏向電源20に接続され、これらを制御する制御信号を生成する。制御部7は、これらの他にもフィラメント電源16、ウェーネルト電源17を制御するように構成されていてもよい。
基板Sは、蒸着材料によって成膜される。基板Sは基板ステージ9上に配置され、カソード3から、カソード3とアノード4が対向する方向に対して垂直な方向に配置される。基板ステージ9は真空槽6と電気的に導通し、グランド電位とされていてもよい。なお、成膜対象物は基板に限られず、立体的構造を有するものであってもよい。
蒸着装置1は以上のように構成される。
以上のように構成された蒸着装置1の動作について説明する。
図2は、本実施形態に係る蒸着方法を説明する図である。
図3は、本実施形態に係る蒸着方法における各値の時間推移のプロットである。
最初に、アーク蒸着の準備をする。
真空ポンプ23により真空槽6を所定の圧力(例えば1×10−4Pa〜1×10−5Pa)まで排気する。また、この際、プロセスガスを導入してもよい。フィラメント電源16によりフィラメント11に電流(例えば30〜40A)を印加し、フィラメント11を加熱しておく。また、ウェーネルト電源17及び収束電源19によりウェーネルト電極12及び収束電極14に所定の電圧を印加しておく。ターゲット21は支持部22に内蔵されている冷却源により冷却されている。
次に、電子ビームBをターゲット21に照射する。
制御部7によって引出し電源18を制御し、例えば、最大電圧10kV、パルス幅(Δt)300μsのパルス状の電圧(引出し電圧)Vb(図3(A))を引出し電極13に印加する。ここで、パルス周期はコンデンサユニット5の充電に必要な時間以上とすることができる。電圧が印加されると、フィラメント11から放出されている電子が加速され、電子流が形成される。この際、ウェーネルト電極12に印加される電圧により電子流の量が調節される。引出し電圧Vbがパルス状であるため、電子流はそれに追従してパルス状に生成される。この電子流が生成されることにより引出し電極13に流れる電流(エミッション電流)Ib(図3(B))は、例えば最大電流150mAとなる。
収束電極14によって、形成されたパルス状の電子流を収束させることによりパルス状の電子ビームBが形成される。制御部7によって収束電源19に印加される電圧が制御され、電子ビームBのビーム径が調節される。電子ビームBのビーム径は例えば直径2mmとすることができる。後述するように偏向電極15によって電子ビームBが偏向され、ターゲット21の蒸発面21a上に照射される(図2(A))。ここで、後述するが、ターゲット21上の電子ビームBの照射方法をパルス毎に移動させることにより、蒸着材料の粒子径、分布を制御することが可能となる。
電子ビームBが蒸発面21aに照射されると、蒸発面21aから蒸着材料の蒸発粒子を含むプルームPが形成される(図2(B))。プルームPは、カソード3とアノード4との間の絶縁耐圧を低下させ、その結果、アノード4とカソード3との間にアーク放電Aが発生する(図2(C))。アーク放電の発生位置は、プルームPの形成位置で制御される。したがって、電子ビームBの照射位置でアーク放電の発生位置が制御される。
ここで、プルームPは、蒸着材料の蒸気のプラズマを含んでいてもよい。また、電子ビームBの照射によって生成される蒸着材料の二次電子が含まれていてもよい。電子ビームの照射時間(パルス幅Δt)は、ビーム照射位置で上記アーク放電を引き起こすプルームPを形成できる時間であればよい。
アーク放電Aは、カソード3(ターゲット21)とアノード4との間の絶縁破壊によって発生する。図3(C)にアノード4とカソード3の間の電位差Vcの時間変化を示す。放電初期時は、Vcは急激に低下し、図3(D)に示すようにカソードとアノードの間に瞬間的に大電流が発生する(尖頭電流)。ここで、Icはカソード電流である。
アーク放電Aは、コンデンサユニット5の蓄積電荷が放出されることで発生し、蓄積電荷が放出されるまで放電が持続される。蓄積電荷の減少に伴いカソード電流Icが減少する(図3(D))。カソード電流Icの減少率は、コンデンサユニット5の静電容量、アノード4/カソード3とコンデンサユニット5との間の配線長などに起因する時定数によって定まり、したがって、これらのパラメータを適宜設定することによって、アーク放電Aの持続時間(t1)が制御される。
一方、プルームPを構成する蒸発材料の蒸気は、アーク放電Aによりプラズマ化する。プラズマ中の電子は、尖頭電流で形成された磁場によるローレンツ力を受けて、基板S側に向って加速される(図2(D))。この電子に引き付けられるようにして、プラズマ中の正イオン(蒸発粒子)が基板Sに向かって飛来し、基板上に堆積する。これにより、基板Sの表面に、蒸着材料からなる薄膜が形成される。
上記動作は、蒸発源の放電毎に同様に繰り返される。放電周期は、時間t2で決定される。t2は、t1の大きさに基いて設定される。
制御部7は、蒸発源の放電毎に、電子ビームBの偏向制御を行う。電子ビームBの偏向の目的は、アーク放電Aの発生位置を蒸発源の放電毎に異ならせる(変更する)。制御部7は、電子ビームBのパルス発生に同期して偏向電極15を制御する。偏向電極15の制御としては、走査するように制御してもよく、位置が連続するように制御してもよく、重複するように制御してもよい。なお、この詳細について後述する。
電子ビームBの偏向制御は、偏向電極15(コイル)に通電する電流の大きさを制御することで実現できる。コイル電流が大きくなるほど、発生磁界も大きくなるので、ビームの偏向度が大きくなる。ターゲットに対する照射位置に応じて、コイル電流は制御される。照射位置の変更のさせ方は、適宜設定可能であり、例えば、あらかじめ制御部7内のメモリに格納された手順に従って、偏向電極15を制御する。
次に、制御部によるビームの偏向制御の例について説明する。
ターゲット21上の電子ビームBの照射位置の制御について説明する。
図5は、ターゲット21の蒸発面21aにおける電子ビームの照射の様子を説明する図である。同図において、ある時点におけるパルス電子ビームの照射領域を領域A1として示す。このパルス電子ビームの照射により、領域A1において上述のようにアーク放電が発生し、コンデンサユニット5に蓄積されていた電荷が放電されることにより消滅する。
次に、制御部7によって偏向電極15を偏向させ、電子ビームを走査する。ここで、走査とは、ビーム照射位置に方向性を有し、所定の領域に対して予め設定された経路に沿ってビームを照射することを意味する。電子ビームの走査経路は例えば直線状とすることができる。これにより次発のパルス電子ビームが領域A1と異なる領域A2に照射される。アーク放電は領域A2において発生し、消滅する。以降同様に、パルス電子ビームを蒸発面21aに照射し、アーク放電を発生させる毎に、パルス電子ビームの照射領域を移動させる。図5にはさらに次発のパルス電子ビームの照射領域である領域A3を示す。
以上のようにパルス電子ビームの照射位置を制御することにより、大面積の蒸発面21aを有するターゲット21を用いる場合であっても、その表面からのプラズマ生成状態を制御することが可能となり、ターゲット21を有効に利用することが可能となる。これにより、基板S上に成膜される蒸着粒子の粒径、分散あるいは密着性等の制御性に優れ、かつターゲット寿命が長い蒸着装置あるいは蒸着方法が提供される。
(第2の実施形態)
以下、第2の実施形態に係る蒸着装置及び蒸着方法を説明する。
第1の実施形態に係る蒸着装置及び蒸着方法と同様の構成、作用については記載を省略する。
本実施形態に係る蒸着装置は、第1の実施形態に係る蒸着装置1とほぼ同一であり、制御部7の構成が異なる。
本実施形態に係る制御部7によるビームの偏向制御の例について説明する。
ターゲット21上の電子ビームBの照射位置の制御について説明する。
図6は、ターゲット21の蒸発面21aにおける電子ビームの照射の様子を説明する図である。同図において、ある時点におけるパルス電子ビームの照射領域を領域A1として示す。このパルス電子ビームの照射により、領域A1において上述のようにアーク放電が発生し、コンデンサユニット5に蓄積されていた電荷が放電されることにより消滅する。
次に、制御部7によって偏向電極15を偏向させ、電子ビームを走査する。電子ビームの走査経路は例えば直線状とすることができる。本実施形態に係る電子ビームの照射位置の制御方法においては、照射位置が連続するように電子ビームの照射位置を変更する。例えば、次発のパルス電子ビームが領域A1と部分的に重複する領域A2に照射されるように電子ビームを偏向制御する。アーク放電は領域A2において発生し、消滅する。以降同様に、パルス電子ビームを蒸発面21aに照射し、アーク放電を発生させる毎に、パルス電子ビームの照射領域を前発のパルス電子ビームの照射領域と重複するように移動させる。
以上のようにパルス電子ビームの照射位置を制御することにより、大面積の蒸発面21aを有するターゲット21を用いる場合であっても、その表面からのプラズマ生成状態を制御することが可能となり、ターゲット21を有効に利用することが可能となる。これにより、基板S上に成膜される蒸着粒子の粒径、分散あるいは密着性等の制御性に優れ、かつターゲット寿命が長い蒸着装置あるいは蒸着方法が提供される。
また、電子ビームの照射領域を重複させることにより、前発の電子ビームの照射領域(領域A1)に印加された熱が次発の電子ビームの照射領域(領域A2)において残存する。これにより電子ビームの照射位置における蒸発面21aの温度が高くなるため、電子ビームのプルームを発生させるために必要な電子ビームのエネルギーを低減することが可能となる。
(第3実施形態)
以下、第3の実施形態に係る蒸着装置及び蒸着方法を説明する。
第1の実施形態に係る蒸着装置及び蒸着方法と同様の構成、作用については記載を省略する。
本実施形態に係る蒸着装置は、第1の実施形態に係る蒸着装置1とほぼ同一であり、制御部7の構成が異なる。
本実施形態に係る制御部7によるビームの偏向制御の例について説明する。
ターゲット21上の電子ビームBの照射位置の制御について説明する。
図7は、ターゲット21の蒸発面21aにおける電子ビームの照射の様子を説明する図である。図7(A)及び(B)において、ある時点におけるパルス電子ビームの照射領域を領域A1として示す。このパルス電子ビームの照射により、領域A1において上述のようにアーク放電が発生し、コンデンサユニット5に蓄積されていた電荷が放電されることにより消滅する。
次に、制御部7によって偏向電極15を偏向させ、電子ビームを走査する。電子ビームの走査経路は例えば直線状とすることができる。本実施形態に係る電子ビームの照射位置の制御方法においては、蒸発面21aの外周側が内周側よりも狭い間隔となるように電子ビームの照射位置を変更する。例えば、図7(A)に示すように電子ビームの照射位置が蒸発面21aの外周部に存在する場合の照射位置の間隔に比べ、図7(B)に示す照射位置が蒸発面21aの内周部に存在する場合の照射位置の間隔が大きくなるように電子ビームを偏向制御する。
このようにして電子ビームを偏向制御することにより、蒸発面21aの外周側と内周側でアーク放電が発生する位置の温度を一定に保つことが可能となる。蒸発面21aは冷却源により冷却されているが、その冷却の程度は、蒸発面21aの外周側と内周側で異なり、外周側の方が大きい。即ち、蒸発面21a上において、外周側の方が温度が低い。このため、上述のように照射位置の間隔を調節することによって、前発の電子ビームにより誘起されたアーク放電による熱を利用し、アーク放電が発生する位置の温度が一定に保たれる。
以上のようにパルス電子ビームの照射位置を制御することにより、大面積の蒸発面21aを有するターゲット21を用いる場合であっても、その表面からのプラズマ生成状態を制御することが可能となり、ターゲット21を有効に利用することが可能となる。これにより、基板S上に成膜される蒸着粒子の粒径、分散あるいは密着性等の制御性に優れ、かつターゲット寿命が長い蒸着装置あるいは蒸着方法が提供される。
(第4の実施形態)
以下、第4の実施形態に係る蒸着装置及び蒸着方法を説明する。
第1の実施形態に係る蒸着装置及び蒸着方法と同様の構成、作用については記載を省略する。
本実施形態に係る蒸着装置は、第1の実施形態に係る蒸着装置1とほぼ同一であり、制御部7の構成が異なる。
本実施形態に係る制御部7によるビームの偏向制御の例について説明する。
ターゲット21上の電子ビームBの照射位置の制御について説明する。
図8は、ターゲット21の蒸発面21aにおける電子ビームの照射の様子を説明する図である。図8(A)において、ある時点におけるパルス電子ビームの照射領域を領域A1として示す。このパルス電子ビームの照射により、領域A1において上述のようにアーク放電が発生し、コンデンサユニット5に蓄積されていた電荷が放電されることにより消滅する。
次に、制御部7によって偏向電極15を偏向させ、電子ビームを走査する。電子ビームの走査経路は例えば直線状とすることができる。本実施形態に係る電子ビームの照射位置の制御方法においては、蒸発面21aの外周側が内周側よりも狭い間隔となるように電子ビームの照射位置を変更する。例えば、図8(A)に示した時点から、蒸着が進行して蒸発面21aの温度が上昇すると共に、図8(B)に示すように、電子ビームの照射位置の間隔が広くなるように電子ビームを偏向制御する。
このようにして電子ビームを偏向制御することにより、蒸発面21aのアーク放電が発生する位置の温度を一定に保つことが可能となる。蒸着が進行し、蒸発面21a上でアーク放電が誘起される回数が増加すると共に、蒸発面21aの温度が上昇していく。しかし、上述のように電子ビームの照射位置の間隔を調節することによって、前発の電子ビームにより誘起されたアーク放電による熱の残存の程度を調節し、アーク放電が発生する位置の温度が一定に保たれる。
以上のようにパルス電子ビームの照射位置を制御することにより、大面積の蒸発面21aを有するターゲット21を用いる場合であっても、その表面からのプラズマ生成状態を制御することが可能となり、ターゲット21を有効に利用することが可能となる。これにより、基板S上に成膜される蒸着粒子の粒径、分散あるいは密着性等の制御性に優れ、かつターゲット寿命が長い蒸着装置あるいは蒸着方法が提供される。
このようにパルス状電子ビームの照射位置を照射位置の温度条件に応じて調節することによりプラズマ生成状態を制御することが可能である。なお、パルス状電子ビームの制御方法は上述のものに限られず、蒸発面21aの温度に応じて適宜変更することが可能である。例えば、パルス状電子ビームの照射位置の制御に加え、収束電極14による収束の程度、即ち照射領域の大きさを変更してもよく、引出し電極13による電子ビームのパルス幅、パルス周期等を変更してもよい。
本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において変更され得る。
上述の各実施形態においては、蒸着装置1が有する電子銃2は1基としたが、2基以上を有するものとしてもよい。各々の電子銃から例えば交互に電子ビームを照射してもよく、各々の電子銃から同時の電子ビームを照射してもよい。複数の電子銃から同時に電子ビームを照射することにより、同時に、蒸発面21aの2箇所以上でアーク放電を発生させる構成とすることも可能である。
また、上述の各実施形態においては、電子ビームを偏向制御することにより蒸発面21a上の照射位置を変更するものとしたが、これに加え、ターゲット21を移動させることにより照射位置を変更するものとすることも可能である。例えば電子銃2による偏向方向を一方向(X方向)とし、ターゲット21を直交する方向(Y方向)に移動させることにより、電子ビームの照射位置を2次元的に移動させることも可能である。
上述の各実施形態を組み合わせて実施することも可能である。例えば、蒸発面21aの外周側における照射位置の間隔を内周側における照射位置の間隔よりも狭くする場合において、アーク放電の回数が増えるに従ってそれぞれの照射位置の間隔を広くしていくことも可能である。これにより、成膜の開始時点から終了時点までの間に渡って、電子ビームが照射される蒸発面21a上の位置及びアーク放電の回数に拠らずに、アーク放電が発生する蒸発面21a上の位置の温度を一定とすることが可能である。
また、上述の各実施形態においては、電子ビームを偏向制御することにより蒸発面21a上において電子ビームを走査させるものとしたが、これに限られず、蒸発面21a上においてランダムに電子ビームの照射位置を変更するものとしてもよい。
1 蒸着装置
2 電子銃
3 カソード
4 アノード
5 コンデンサユニット
6 真空槽
7 制御部
15 偏向電極
20 偏向電源

Claims (10)

  1. 蒸発面を有する蒸着材料を含むカソードと、アノードと、前記カソードと前記アノードとを接続するコンデンサユニットとを有し、前記コンデンサユニットに蓄積された電荷を前記カソードと前記アノードとの間で放電させることが可能な蒸発源と、
    前記蒸発面に照射されることで前記アノードと前記カソードとの間で放電を発生させる電子ビームをパルス状に生成する電子ビーム生成源と、前記電子ビームを偏向させる偏向器とを有する電子銃と、
    前記偏向器を制御することによって前記蒸発面に対する前記電子ビームの照射位置を前記放電毎に変更する制御手段と
    を具備する蒸着装置。
  2. 請求項1に記載の蒸着装置であって、
    前記制御手段は、前記蒸発面上で前記電子ビームを走査するように前記偏向器を制御する
    蒸着装置。
  3. 請求項2に記載の蒸着装置であって、
    前記制御手段は、前記照射位置が連続するように前記偏向器を制御する
    蒸着装置。
  4. 請求項2に記載の蒸着装置であって、
    前記カソードは、前記蒸発面を冷却する冷却源をさらに有し、
    前記制御手段は、前記蒸発面の外周側を内周側よりも狭い間隔で前記電子ビームの照射位置を変更する
    蒸着装置。
  5. 請求項2に記載の蒸着装置であって、
    前記制御手段は、前記電子ビームの照射回数が増大するに従って、前記電子ビームの照射位置の間隔を広くする
    蒸着装置。
  6. 蒸着材料を含むカソードと前記カソードに対向するアノードとの間に接続したコンデンサユニットを充放電させ、前記カソードと前記アノードとの間にアーク放電を繰り返し発生させることで生成された前記蒸着材料の蒸発粒子を基板上に蒸着させ、
    パルス状の電子ビームを生成し、前記電子ビームを前記蒸着材料に照射することで、前記電子ビームの照射位置における前記アーク放電の発生を誘起し、
    前記アーク放電の発生毎に前記アーク放電の発生位置が異なるように、生成した前記電子ビームを偏向制御する
    蒸着方法。
  7. 請求項6に記載の蒸着方法であって、
    前記電子ビームを偏向制御する工程は、前記蒸発面上で前記電子ビームを走査するように前記電子ビームの偏向を制御する
    蒸着方法。
  8. 請求項7に記載の蒸着方法であって、
    前記電子ビームを偏向制御する工程は、前記照射位置が連続するように前記電子ビームの偏向を制御する
    蒸着方法。
  9. 請求項7に記載の蒸着方法であって、
    冷却源により前記蒸発面を冷却する工程をさらに有し、
    前記電子ビームを偏向制御する工程は、前記冷却源により冷却されている前記蒸発面の外周側を内周側よりも狭い間隔で前記電子ビームの照射位置を変更する
    蒸着方法。
  10. 請求項7に記載の蒸着方法であって、
    前記電子ビームを偏向制御する工程は、前記電子ビームの照射回数が増大するに従って前記電子ビームの照射位置の間隔を広くする
    蒸着方法。
JP2009099624A 2009-04-16 2009-04-16 蒸着装置及び蒸着方法。 Pending JP2010248574A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009099624A JP2010248574A (ja) 2009-04-16 2009-04-16 蒸着装置及び蒸着方法。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009099624A JP2010248574A (ja) 2009-04-16 2009-04-16 蒸着装置及び蒸着方法。

Publications (1)

Publication Number Publication Date
JP2010248574A true JP2010248574A (ja) 2010-11-04

Family

ID=43311225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009099624A Pending JP2010248574A (ja) 2009-04-16 2009-04-16 蒸着装置及び蒸着方法。

Country Status (1)

Country Link
JP (1) JP2010248574A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190074760A (ko) * 2017-12-20 2019-06-28 한국세라믹기술원 복수의 타겟 구조체를 이용한 진공증착장치
CN114277348A (zh) * 2021-12-27 2022-04-05 晋能清洁能源科技股份公司 Hjt电池生产中操控磁控溅射设备的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316454A (ja) * 1988-03-01 1989-12-21 Veb Hochvakuum Dresden 真空放電を制御する方法
JPH0641727A (ja) * 1990-03-01 1994-02-15 Balzers Ag 物質の真空蒸発方法および装置、プラズマアーク点火方法、およびこれらの方法の応用
JPH0790555A (ja) * 1993-09-17 1995-04-04 Matsushita Electric Ind Co Ltd 電子ビーム・アブレーション装置
JP2008308750A (ja) * 2007-06-18 2008-12-25 Ulvac Japan Ltd 同軸型真空アーク蒸着源を用いた微粒子膜の製造方法及び製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316454A (ja) * 1988-03-01 1989-12-21 Veb Hochvakuum Dresden 真空放電を制御する方法
JPH0641727A (ja) * 1990-03-01 1994-02-15 Balzers Ag 物質の真空蒸発方法および装置、プラズマアーク点火方法、およびこれらの方法の応用
JPH0790555A (ja) * 1993-09-17 1995-04-04 Matsushita Electric Ind Co Ltd 電子ビーム・アブレーション装置
JP2008308750A (ja) * 2007-06-18 2008-12-25 Ulvac Japan Ltd 同軸型真空アーク蒸着源を用いた微粒子膜の製造方法及び製造装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190074760A (ko) * 2017-12-20 2019-06-28 한국세라믹기술원 복수의 타겟 구조체를 이용한 진공증착장치
KR102005555B1 (ko) 2017-12-20 2019-07-30 한국세라믹기술원 복수의 타겟 구조체를 이용한 진공증착장치
CN114277348A (zh) * 2021-12-27 2022-04-05 晋能清洁能源科技股份公司 Hjt电池生产中操控磁控溅射设备的方法

Similar Documents

Publication Publication Date Title
KR102046560B1 (ko) 전자 빔을 발생시키기 위한 방법 및 장치
US7872406B2 (en) Apparatus and process for generating, accelerating and propagating beams of electrons and plasma
DE102010049521B3 (de) Vorrichtung zum Erzeugen eines Elektronenstrahls
US7557511B2 (en) Apparatus and method utilizing high power density electron beam for generating pulsed stream of ablation plasma
JP2821789B2 (ja) 遠隔イオン源プラズマ電子銃
KR101064567B1 (ko) 빔폭 제어 가능한 전자빔 제공 장치
KR101854936B1 (ko) 지정된 전기장을 갖는 아크 증착 소스
US10283333B2 (en) Nanocluster production device
KR20130058625A (ko) 이온 봄바드먼트 장치 및 이 장치를 사용한 기재 표면의 클리닝 방법
WO2011034086A1 (ja) 電子銃、真空処理装置
JP2024502752A (ja) 粉末床溶融結合を使用した付加製造
JP2010248574A (ja) 蒸着装置及び蒸着方法。
KR102118604B1 (ko) 라인 형태의 이온빔 방출 장치
KR101911542B1 (ko) 라인 형태의 집중화된 전자빔 방출 장치
WO2019169385A1 (en) Triode electron gun
EP2936538B1 (en) Pulsed plasma deposition device
RU2504860C2 (ru) Способ производства заготовок с травленной ионами поверхностью
KR101989847B1 (ko) 플라즈마를 이용한 라인 형태의 전자빔 방출 장치
US10863612B2 (en) System for generating a plasma jet of metal ions
JP4307304B2 (ja) ピアス式電子銃、これを備えた真空蒸着装置およびピアス式電子銃の異常放電防止方法
JP4065725B2 (ja) ピアス式電子銃およびこれを備える真空蒸着装置
JP5959409B2 (ja) 成膜装置及び成膜装置の動作方法
Burdovitsin et al. Plasma Electron Sources
RU1745080C (ru) Источник ионов паров металлов
JP2010180469A (ja) イオンプレーティング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130716