JP2010245168A - Bonding device, bonding tool amplitude measurement method, and bonding tool amplitude calibration method - Google Patents

Bonding device, bonding tool amplitude measurement method, and bonding tool amplitude calibration method Download PDF

Info

Publication number
JP2010245168A
JP2010245168A JP2009090127A JP2009090127A JP2010245168A JP 2010245168 A JP2010245168 A JP 2010245168A JP 2009090127 A JP2009090127 A JP 2009090127A JP 2009090127 A JP2009090127 A JP 2009090127A JP 2010245168 A JP2010245168 A JP 2010245168A
Authority
JP
Japan
Prior art keywords
block
ultrasonic horn
bonding
bonding tool
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009090127A
Other languages
Japanese (ja)
Other versions
JP4595020B2 (en
Inventor
Nobuyuki Aoyanagi
伸幸 青柳
Yusuke Maruya
裕介 丸矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinkawa Ltd
Original Assignee
Shinkawa Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinkawa Ltd filed Critical Shinkawa Ltd
Priority to JP2009090127A priority Critical patent/JP4595020B2/en
Priority to PCT/JP2010/054995 priority patent/WO2010113703A1/en
Priority to SG2012014247A priority patent/SG183784A1/en
Priority to CN2010800138308A priority patent/CN102365725B/en
Publication of JP2010245168A publication Critical patent/JP2010245168A/en
Application granted granted Critical
Publication of JP4595020B2 publication Critical patent/JP4595020B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/002Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating specially adapted for particular articles or work
    • B23K20/004Wire welding
    • B23K20/005Capillary welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/788Means for moving parts
    • H01L2224/78821Upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/78822Rotational mechanism
    • H01L2224/78823Pivoting mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/789Means for monitoring the connection process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure the amplitude of a bonding tool by a simple method in a bonding device. <P>SOLUTION: The bonding device includes: an ultrasonic horn 12; a capillary 17; a flange 14 which causes minute vibrations along the extending direction by a load in the longitudinal direction applied to a joint of the ultrasonic horn 12 when the ultrasonic horn 12 is vibrating; a bonding arm 21 which is integrally formed from metal and includes a front-end block 21a, a back-end block 21b and a connection plate 24, wherein the space between the front-end block 21a and the back-end block 21b fluctuates in the longitudinal direction of the ultrasonic horn 12 by the vibration of the ultrasonic horn; a load sensor 31 which detects the load in the longitudinal direction of the ultrasonic horn; and an amplitude measurement unit 50 which converts a load signal detected by the load sensor 31 and measures the amplitude of the capillary 17. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ボンディング装置の構造及びボンディング装置に取り付けられているボンディングツールの振巾測定方法ならびに振巾較正方法に関する。   The present invention relates to a structure of a bonding apparatus, a method for measuring the amplitude of a bonding tool attached to the bonding apparatus, and a method for calibrating the amplitude.

電子部品の製造においては、基板に取り付けられた半導体の電極と基板の電極との間を金ワイヤで接続するワイヤボンディング装置が用いられている。このワイヤボンディング装置は、超音波ホーンの先端に取り付けられたボンディングツールであるキャピラリを超音波振動させながら半導体チップと基板の電極とに押し付けて、キャピラリに挿通したワイヤを各電極に接合していくものである。   In the manufacture of electronic components, a wire bonding apparatus that connects a semiconductor electrode attached to a substrate and an electrode of the substrate with a gold wire is used. In this wire bonding apparatus, a capillary, which is a bonding tool attached to the tip of an ultrasonic horn, is pressed against the semiconductor chip and the electrode of the substrate while ultrasonically vibrating, and the wires inserted through the capillary are bonded to each electrode. Is.

しかし、各ワイヤボンディング装置のキャピラリ先端の振巾は、キャピラリが取りけられている超音波ホーンの固有振動数の違いや超音波振動子の個体差によって異なるものであるため、各ワイヤボンディング装置の接合特性がバラツキ、品質管理上の問題が生じることがあった。   However, the amplitude of the capillary tip of each wire bonding apparatus varies depending on the natural frequency of the ultrasonic horn from which the capillary is removed and the individual difference of the ultrasonic transducer. There were cases where the joining characteristics varied and quality control problems occurred.

このため、レーザドップラ計によってキャピラリの振動を計測し、キャピラリの振動が所定の条件に合わない場合には、ボンディング動作を停止する方法が提案されている(例えば、特許文献1参照)。   For this reason, a method has been proposed in which the vibration of the capillary is measured with a laser Doppler meter and the bonding operation is stopped when the vibration of the capillary does not meet a predetermined condition (see, for example, Patent Document 1).

また、超音波振動をしていない場合のキャピラリの画像と超音波振動をしている場合のキャピラリの画像とをカメラによって取得し、その取得した各画像のキャピラリの幅の増加を計測することによってキャピラリの振巾を測定し、その振巾を制御装置にフィードバックする方法が提案されている(例えば、特許文献2参照)。   In addition, by acquiring images of the capillary without ultrasonic vibration and images of the capillary with ultrasonic vibration with a camera, and measuring the increase in the width of the capillary of each acquired image A method has been proposed in which the amplitude of a capillary is measured and the amplitude is fed back to a control device (see, for example, Patent Document 2).

特開2007−142049号公報JP 2007-142049 A 特許第3802403号明細書Japanese Patent No. 3802403

特許文献1に記載されたレーザドップラ計を用いる方法は、精度よくキャピラリの振巾を測ることができるものの、各ワイヤボンディング装置にキャピラリの振巾測定用のレーザドップラ計を取り付ける必要があることから、装置が大型となってしまうという問題があった。また、特許文献2に記載された、カメラによって取得した画像を処理する方法は、ワイヤボンディング装置に搭載しているカメラを兼用できることから装置は簡便になるものの、取得した画像の輪郭をはっきりと確定することが困難で、測定精度が低いという問題があった。   Although the method using the laser Doppler meter described in Patent Document 1 can accurately measure the capillary amplitude, it is necessary to attach a laser Doppler meter for measuring the capillary amplitude to each wire bonding apparatus. There was a problem that the device would become large. Moreover, although the method of processing the image acquired by the camera described in Patent Document 2 can be used as the camera mounted on the wire bonding apparatus, the apparatus becomes simple, but the outline of the acquired image is clearly determined. There was a problem that the measurement accuracy was low.

本発明は、ボンディング装置において、簡便な方法で精度よくボンディングツールの振巾測定を行うことを目的とする。   An object of the present invention is to accurately measure the amplitude of a bonding tool by a simple method in a bonding apparatus.

本発明のボンディング装置は、基体部と、超音波振動子の振動と共振して長手方向に縦振動する超音波ホーンと、超音波ホーンの振動の腹に取り付けられ、ボンディング対象に接離するボンディングツールと、超音波ホーンの振動の節の位置で、超音波ホーンの長手方向及びボンディングツールの動作方向と直交する方向に伸びるように取り付けられ、超音波ホーンが振動した際に超音波ホーンの節に加わる長手方向の荷重によってその伸びる方向に沿って微小振動するフランジと、金属製で一体に成形され、超音波ホーンのフランジが固定されるフランジ取り付け面を含む第一のブロックと、ボンディングツール先端をボンディング対象に対して接離方向に動作させるように基体部に回転自在に取り付けられた第二のブロックと、第一のブロックと第二のブロックとの間を接続する接続板と、を含み、フランジの微小振動によって変形して第一のブロックと第二のブロックとの間の間隔が超音波ホーンの長手方向に沿って変動するボンディングアームと、ボンディングツールの動作方向に沿って超音波ホーンの長手方向中心軸からオフセットされ、第一のブロックと第二のブロックとの間に挟み込まれて第一のブロックと第二のブロックとの間の超音波ホーン長手方向の荷重を検出する荷重センサと、ボンディングツールが無負荷の状態で超音波振動子により超音波ホーンを振動させた際に荷重センサによって検出する荷重信号を変換してボンディングツールの超音波ホーン長手方向に沿った振動の振巾を測定する振巾測定部と、を備えることを特徴とする。   The bonding apparatus according to the present invention includes a base unit, an ultrasonic horn that resonates with the vibration of the ultrasonic vibrator and longitudinally vibrates in the longitudinal direction, and a bonding that is attached to the antinode of the vibration of the ultrasonic horn and contacts and separates from the bonding target. At the position of the vibration node of the tool and the ultrasonic horn, it is attached so as to extend in the longitudinal direction of the ultrasonic horn and the direction orthogonal to the operation direction of the bonding tool, and when the ultrasonic horn vibrates, the ultrasonic horn node A flange that minutely vibrates along the extending direction by a longitudinal load applied to the metal, a first block including a flange mounting surface that is integrally formed of metal and to which the flange of the ultrasonic horn is fixed, and the tip of the bonding tool A second block that is rotatably attached to the base body so as to move in the direction of contact with the object to be bonded. And a connection plate connecting between the first block and the second block, and the distance between the first block and the second block is changed in the longitudinal direction of the ultrasonic horn by being deformed by the minute vibration of the flange. A bonding arm that fluctuates along the direction of the bonding tool, and is offset from the longitudinal central axis of the ultrasonic horn along the operation direction of the bonding tool, and is sandwiched between the first block and the second block. A load sensor that detects the load in the longitudinal direction of the ultrasonic horn between the two blocks, and a load signal that is detected by the load sensor when the ultrasonic horn is vibrated by the ultrasonic vibrator while the bonding tool is unloaded And a amplitude measuring unit that measures the amplitude of vibration along the longitudinal direction of the ultrasonic horn of the bonding tool.

本発明のボンディング装置のボンディングツール振巾測定方法は、基体部と、超音波振動子の振動と共振して長手方向に縦振動する超音波ホーンと、超音波ホーンの振動の腹に取り付けられ、ボンディング対象に接離するボンディングツールと、超音波ホーンの振動の節の位置で、超音波ホーンの長手方向及びボンディングツールの動作方向と直交する方向に伸びるように取り付けられ、超音波ホーンが振動した際に超音波ホーンの節に加わる長手方向の荷重によってその伸びる方向に沿って微小振動するフランジと、金属製で一体に成形され、超音波ホーンのフランジが固定されるフランジ取り付け面を含む第一のブロックと、ボンディングツール先端をボンディング対象に対して接離方向に動作させるように基体部に回転自在に取り付けられた第二のブロックと、第一のブロックと第二のブロックとの間を接続する接続板と、を含み、フランジの微小振動によって変形して第一のブロックと第二のブロックとの間の間隔が超音波ホーンの長手方向に沿って変動するボンディングアームと、ボンディングツールの動作方向に沿って超音波ホーンの長手方向中心軸からオフセットされ、第一のブロックと第二のブロックとの間に挟み込まれて第一のブロックと第二のブロックとの間の超音波ホーン長手方向の荷重を検出する荷重センサと、を備えるボンディング装置を準備し、ボンディングツールを無負荷状態として超音波振動子により超音波ホーンを振動させ、荷重センサによって検出する荷重信号を変換してボンディングツールの超音波ホーン長手方向に沿った振動の振巾を測定することを特徴とする。   The bonding tool amplitude measurement method of the bonding apparatus of the present invention is attached to the base, the ultrasonic horn that resonates with the vibration of the ultrasonic transducer and longitudinally vibrates in the longitudinal direction, and the antinode of the vibration of the ultrasonic horn, The ultrasonic horn vibrates at the position of the vibration node of the bonding tool that touches and separates the bonding target and the ultrasonic horn, extending in the direction perpendicular to the longitudinal direction of the ultrasonic horn and the operation direction of the bonding tool. A flange including a flange that microvibrates along the extending direction due to a longitudinal load applied to the node of the ultrasonic horn, and a flange mounting surface that is integrally formed of metal and to which the flange of the ultrasonic horn is fixed. The block and the tip of the bonding tool are rotatably mounted on the base so that they can be moved toward and away from the bonding target. And a connecting plate connecting between the first block and the second block, and deformed by minute vibration of the flange between the first block and the second block Between the first block and the second block, with the bonding arm whose distance is varied along the longitudinal direction of the ultrasonic horn and is offset from the longitudinal central axis of the ultrasonic horn along the operating direction of the bonding tool And a load sensor that detects a load in the longitudinal direction of the ultrasonic horn between the first block and the second block sandwiched between the first block and the ultrasonic vibrator with the bonding tool in an unloaded state. The vibration horn along the longitudinal direction of the ultrasonic horn of the bonding tool is measured by vibrating the ultrasonic horn and converting the load signal detected by the load sensor. Characterized in that it.

本発明のボンディング装置のボンディングツール振巾較正方法は、基体部と、超音波振動子の振動と共振して長手方向に縦振動する超音波ホーンと、超音波ホーンの振動の腹に取り付けられ、ボンディング対象に接離するボンディングツールと、超音波ホーンの振動の節の位置で、超音波ホーンの長手方向及びボンディングツールの動作方向と直交する方向に伸びるように取り付けられ、超音波ホーンが振動した際に超音波ホーンの節に加わる長手方向の荷重によってその伸びる方向に沿って微小振動するフランジと、金属製で一体に成形され、超音波ホーンのフランジが固定されるフランジ取り付け面を含む第一のブロックと、ボンディングツール先端をボンディング対象に対して接離方向に動作させるように基体部に回転自在に取り付けられた第二のブロックと、第一のブロックと第二のブロックとの間を接続する接続板と、を含み、フランジの微小振動によって変形して第一のブロックと第二のブロックとの間の間隔が超音波ホーンの長手方向に沿って変動するボンディングアームと、ボンディングツールの動作方向に沿って超音波ホーンの長手方向中心軸からオフセットされ、第一のブロックと第二のブロックとの間に挟み込まれて第一のブロックと第二のブロックとの間の超音波ホーン長手方向の荷重を検出する荷重センサと、を備えるボンディング装置を準備し、ボンディングツールを無負荷状態として基準印加電圧で超音波振動子により超音波ホーンを振動させ、荷重センサによって検出する荷重信号を変換してボンディングツールの超音波ホーン長手方向に沿った振動の振巾を測定し、測定した振巾と目標振巾とを比較し、比較結果に基づいて超音波振動子の振巾が目標振巾となる様に超音波振動子への印加電圧を変更することを特徴とする。   The bonding tool amplitude calibration method of the bonding apparatus of the present invention is attached to the base, the ultrasonic horn that resonates with the vibration of the ultrasonic vibrator and longitudinally vibrates in the longitudinal direction, and the antinode of the vibration of the ultrasonic horn, The ultrasonic horn vibrates at the position of the vibration node of the bonding tool that touches and separates the bonding target and the ultrasonic horn, extending in the direction perpendicular to the longitudinal direction of the ultrasonic horn and the operation direction of the bonding tool. A flange including a flange that microvibrates along the extending direction due to a longitudinal load applied to the node of the ultrasonic horn, and a flange mounting surface that is integrally formed of metal and to which the flange of the ultrasonic horn is fixed. The block and the tip of the bonding tool are rotatably mounted on the base so that they can be moved toward and away from the bonding target. And a connecting plate connecting between the first block and the second block, and deformed by minute vibration of the flange between the first block and the second block Between the first block and the second block, with the bonding arm whose distance is varied along the longitudinal direction of the ultrasonic horn and is offset from the longitudinal central axis of the ultrasonic horn along the operating direction of the bonding tool And a load sensor that detects a load in the longitudinal direction of the ultrasonic horn between the first block and the second block, and prepares a bonding tool in a no-load state with a reference applied voltage. The ultrasonic horn is vibrated by the ultrasonic transducer, and the load signal detected by the load sensor is converted to follow the longitudinal direction of the ultrasonic horn of the bonding tool. Measure the amplitude of the vibration, compare the measured amplitude with the target amplitude, and based on the comparison result, apply the applied voltage to the ultrasonic transducer so that the amplitude of the ultrasonic transducer becomes the target amplitude. It is characterized by changing.

本発明は、ボンディング装置において、簡便な方法で精度よくボンディングツールの振巾測定を行うことができるという効果を奏する。   The present invention has an effect that the amplitude of the bonding tool can be accurately measured by a simple method in the bonding apparatus.

本発明の実施形態におけるワイヤボンディング装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the wire bonding apparatus in embodiment of this invention. 本発明の実施形態のワイヤボンディング装置におけるボンディングアームの下面を示す平面図である。It is a top view which shows the lower surface of the bonding arm in the wire bonding apparatus of embodiment of this invention. 本発明の実施形態のワイヤボンディング装置におけるボンディングアームの上面を示す平面図である。It is a top view which shows the upper surface of the bonding arm in the wire bonding apparatus of embodiment of this invention. 本発明の実施形態のワイヤボンディング装置における超音波ホーンが振動した際の各部の変形を示す説明図である。It is explanatory drawing which shows a deformation | transformation of each part when the ultrasonic horn in the wire bonding apparatus of embodiment of this invention vibrates. 本発明の実施形態のワイヤボンディング装置におけるキャピラリの振巾測定とキャピラリの振巾の較正とを示す説明図である。It is explanatory drawing which shows the amplitude measurement of a capillary in the wire bonding apparatus of embodiment of this invention, and calibration of the amplitude of a capillary. 本発明の実施形態のワイヤボンディング装置における振巾測定部の信号処理系統と信号の変化を示す説明図である。It is explanatory drawing which shows the signal processing system | strain and signal change of the amplitude measurement part in the wire bonding apparatus of embodiment of this invention.

以下、本発明の好適な実施形態について図面を参照しながら説明する。図1に示すように、本実施形態のワイヤボンディング装置10は、基体部であるボンディングヘッド11と、超音波振動子13と、超音波ホーン12と、ボンディングツールであるキャピラリ17と、超音波ホーン12に設けられたフランジ14と、ボンディングアーム21と、荷重センサ31と、駆動モータ45と、振巾測定部50と、制御部60と、ボンディング対象である半導体チップ34や基板35を吸着固定するボンディングステージ33と、を備えている。図1において、超音波ホーン12の長手方向はY方向で、キャピラリ17が基板35または半導体チップ34の表面に接離する方向は高さ方向のZ方向であり、フランジ14の延びる水平面内で超音波ホーン12の長手方向と直角方向がX方向である。   Preferred embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, a wire bonding apparatus 10 of this embodiment includes a bonding head 11 that is a base portion, an ultrasonic vibrator 13, an ultrasonic horn 12, a capillary 17 that is a bonding tool, and an ultrasonic horn. 12, the flange 14, the bonding arm 21, the load sensor 31, the drive motor 45, the amplitude measurement unit 50, the control unit 60, and the semiconductor chip 34 or the substrate 35 to be bonded are fixed by suction. A bonding stage 33. In FIG. 1, the longitudinal direction of the ultrasonic horn 12 is the Y direction, and the direction in which the capillary 17 contacts and separates from the surface of the substrate 35 or the semiconductor chip 34 is the Z direction in the height direction. The direction perpendicular to the longitudinal direction of the sonic horn 12 is the X direction.

ボンディングヘッド11にはボンディングアーム21を回転駆動する駆動モータ45が設けられている。超音波振動子13は複数枚の圧電素子を重ね合わせたもので、超音波ホーン12の後端側に取り付けられている。また、超音波ホーン12の先端にはキャピラリ17が取り付けられている。後で説明する超音波ホーン12の振動の節となる位置にはフランジ14が設けられ、フランジ14はボンディングアーム21先端のフランジ取り付け面22に固定ボルト16によって固定されている。   The bonding head 11 is provided with a drive motor 45 that rotationally drives the bonding arm 21. The ultrasonic transducer 13 is a superposition of a plurality of piezoelectric elements, and is attached to the rear end side of the ultrasonic horn 12. A capillary 17 is attached to the tip of the ultrasonic horn 12. A flange 14 is provided at a position that becomes a vibration node of the ultrasonic horn 12 described later, and the flange 14 is fixed to a flange mounting surface 22 at the tip of the bonding arm 21 by a fixing bolt 16.

ボンディングアーム21は、ボンディングヘッド11に設けられた回転軸30の周りに回転自在に取り付けられている。ボンディングアーム21の回転中心43はボンディングステージ33の上に吸着された基板35の表面、或いは基板35に取り付けられている半導体チップ34の表面と同一面上にある。   The bonding arm 21 is rotatably attached around a rotation shaft 30 provided on the bonding head 11. The rotation center 43 of the bonding arm 21 is on the same plane as the surface of the substrate 35 adsorbed on the bonding stage 33 or the surface of the semiconductor chip 34 attached to the substrate 35.

ボンディングアーム21は超音波ホーン12の中心軸15の方向に延びる略直方体で、フランジ取り付け面22のある第一のブロックである先端側ブロック21aと回転中心43を含む第二のブロックである後端側ブロック21bとを有しており、先端側ブロック21aと後端側ブロック21bとは超音波ホーン12の中心軸15を含む高さ方向位置(Z方向位置)に設けられた接続板24によって接続されている。先端側ブロック21aと後端側ブロック21bと接続板24とはマグネシウムなどの金属によって一体に構成され、ボンディングアーム21のボンディング面41側とボンディング面41と反対側にはボンディングアーム21の先端側ブロック21aと後端側ブロック21bとを仕切る細い溝23,25が設けられ、ボンディングアーム21のボンディング面41と反対側であるZ方向上側には荷重センサ31を取り付けるための溝26がボンディングアーム21の先端側ブロック21aと後端側ブロック21bとの間に設けられている。接続板24は溝25と溝23の間にある薄板状の部分である。   The bonding arm 21 is a substantially rectangular parallelepiped extending in the direction of the central axis 15 of the ultrasonic horn 12, and a rear end that is a second block including a front end side block 21 a that is a first block having a flange mounting surface 22 and a rotation center 43. The front end side block 21a and the rear end side block 21b are connected by a connection plate 24 provided at a height direction position (Z direction position) including the central axis 15 of the ultrasonic horn 12. Has been. The front end side block 21a, the rear end side block 21b, and the connection plate 24 are integrally formed of a metal such as magnesium, and the front end side block of the bonding arm 21 is formed on the bonding surface 41 side of the bonding arm 21 and on the opposite side of the bonding surface 41. Narrow grooves 23 and 25 for partitioning 21 a and the rear end side block 21 b are provided, and a groove 26 for attaching the load sensor 31 is formed on the bonding arm 21 on the upper side in the Z direction opposite to the bonding surface 41 of the bonding arm 21. It is provided between the front end side block 21a and the rear end side block 21b. The connection plate 24 is a thin plate-like portion between the groove 25 and the groove 23.

図1、図2に示すように、ボンディングアーム21のボンディング面41側には、超音波ホーン12と超音波振動子13とを収容できる深さの窪み29が設けられている。先端側ブロック21aの窪み29aは、フランジ取り付け面22から後端側ブロック21bに向って広がる台形形状となっており、フランジ取り付け面22側の溝の幅は超音波ホーン12が接触しないようにその幅よりも若干広く、後端側ブロック21b側の幅は超音波振動子13をその内側に格納できる幅となっている。窪み29aのない先端側ブロック21aの上半は、略直方体のブロックとなっている。後端側ブロック21bの窪み29bは先端側ブロック21aの後端側の幅と同一の幅の長方形の窪みとなっている。窪み29bのない後端側ブロック21bの上半は略直方体のブロックとなっている。   As shown in FIGS. 1 and 2, a recess 29 having a depth capable of accommodating the ultrasonic horn 12 and the ultrasonic transducer 13 is provided on the bonding surface 41 side of the bonding arm 21. The recess 29a of the front end side block 21a has a trapezoidal shape extending from the flange mounting surface 22 toward the rear end side block 21b, and the width of the groove on the flange mounting surface 22 side is set so that the ultrasonic horn 12 does not come into contact therewith. It is slightly wider than the width, and the width on the rear end side block 21b side is a width that allows the ultrasonic transducer 13 to be stored inside thereof. The upper half of the tip side block 21a without the depression 29a is a substantially rectangular parallelepiped block. The recess 29b of the rear end side block 21b is a rectangular recess having the same width as the rear end side of the front end side block 21a. The upper half of the rear end side block 21b without the depression 29b is a substantially rectangular parallelepiped block.

図1及び図3に示すように、溝26に取り付けられた荷重センサ31はボンディングアーム21の先端側ブロック21aから後端側ブロック21bに向かってねじ込まれているねじ27によって先端側ブロック21aと後端側ブロック21bとの間で挟みこまれて与圧されるよう構成されている。荷重センサ31はその中心軸28が超音波ホーン12の中心軸15からボンディング面41とキャピラリ17の先端17aとの接離方向であるZ方向に距離Lだけオフセットして取り付けられている。また、図3に示すように、荷重センサ31はボンディングアーム21の幅方向の中央部に取り付けられ、ねじ27は荷重センサ31の両側に設けられている。   As shown in FIGS. 1 and 3, the load sensor 31 attached to the groove 26 is connected to the front block 21 a and the rear by a screw 27 screwed from the front block 21 a to the rear block 21 b of the bonding arm 21. It is comprised so that it may be inserted and pressurized between the end side blocks 21b. The load sensor 31 is attached such that its center axis 28 is offset from the center axis 15 of the ultrasonic horn 12 by a distance L in the Z direction, which is the contact / separation direction between the bonding surface 41 and the tip 17a of the capillary 17. As shown in FIG. 3, the load sensor 31 is attached to the center portion in the width direction of the bonding arm 21, and the screws 27 are provided on both sides of the load sensor 31.

図1に示すように、荷重センサ31は振巾測定部50と制御部60とに接続され、超音波振動子13と駆動モータ45と振巾測定部50とは制御部60に接続され、制御部60の指令によって超音波振動子13の出力と駆動モータ45の回転方向と出力が制御され、振巾測定部50によって検出した振巾は制御部60に入力されるよう構成されている。振巾測定部50、制御部60は内部にCPUやメモリなどを含むコンピュータとして構成されていてもよいし、検出、制御のシステムを電気回路によって構成したものであってもよい。   As shown in FIG. 1, the load sensor 31 is connected to the amplitude measurement unit 50 and the control unit 60, and the ultrasonic transducer 13, the drive motor 45, and the amplitude measurement unit 50 are connected to the control unit 60 and controlled. The output of the ultrasonic transducer 13 and the rotation direction and output of the drive motor 45 are controlled by the command of the unit 60, and the amplitude detected by the amplitude measuring unit 50 is input to the control unit 60. The amplitude measurement unit 50 and the control unit 60 may be configured as a computer including a CPU, a memory, and the like, or may be configured such that a detection and control system is configured by an electric circuit.

そして、制御部60によって駆動モータ45が駆動されるとボンディングアーム21が回転し、キャピラリ17の先端17aがボンディング対象である半導体チップ34の表面あるいは基板35の表面に押し付けられると、荷重センサ31は圧縮されてキャピラリ17の軸方向(Z方向)にかかる力を検出し、制御部60に出力する。制御部60は荷重センサ31によって取得したキャピラリ17のZ方向の荷重を所定の範囲にするよう駆動モータ45を制御する。   When the drive motor 45 is driven by the controller 60, the bonding arm 21 rotates, and when the tip 17a of the capillary 17 is pressed against the surface of the semiconductor chip 34 or the substrate 35 to be bonded, the load sensor 31 is A force applied in the axial direction (Z direction) of the capillary 17 is detected and output to the control unit 60. The control unit 60 controls the drive motor 45 so that the load in the Z direction of the capillary 17 acquired by the load sensor 31 is within a predetermined range.

上記のように構成されたワイヤボンディング装置10のキャピラリ17の先端17aが図1に示す基板35あるいは半導体チップ34から離れ、キャピラリ17に軸方向の力がかかっていない無負荷状態において、超音波振動子13に電圧を印加して振動させ、超音波ホーン12を振動させた際の各部の振動の状態について図4(a)、図4(b)を参照しながら説明する。   In the no-load state in which the tip 17a of the capillary 17 of the wire bonding apparatus 10 configured as described above is separated from the substrate 35 or the semiconductor chip 34 shown in FIG. A state of vibration of each part when a voltage is applied to the child 13 and the ultrasonic horn 12 is vibrated will be described with reference to FIGS. 4 (a) and 4 (b).

図4(a)に示すように、超音波振動子13に電圧が印加されて超音波振動子13が振動すると、超音波ホーン12は超音波振動子13によって中心軸15に沿った方向である長手方向に共振して縦振動をする。ここで縦振動とは振動の伝わる方向と振巾の方向が同一方向の振動をいう。図4(b)に模式的に示すように、超音波ホーン12は、後端に取り付けられた超音波振動子13の振動によって超音波振動子13の取り付けられている後端とキャピラリ17の取り付けられている先端との間で、後端と先端とが振動の腹となる共振モードで振動する。そして、後端と先端との間にできる振動の節、つまり共振状態にあっても超音波ホーン12の長手方向に振動しない部位に超音波ホーン12をボンディングアーム21に固定するフランジ14が設けられている。フランジ14はボンディングアーム21のフランジ取り付け面22に固定ボルト16によって固定されている。なお、図4(b)に示す振巾は超音波ホーンの長手方向の振巾であるが、わかりやすいように長手方向の振巾を直角方向に表記したものである。   As shown in FIG. 4A, when a voltage is applied to the ultrasonic vibrator 13 and the ultrasonic vibrator 13 vibrates, the ultrasonic horn 12 is in a direction along the central axis 15 by the ultrasonic vibrator 13. Resonates in the longitudinal direction and causes longitudinal vibration. Here, longitudinal vibration refers to vibration in which the direction in which vibration is transmitted and the direction of amplitude are in the same direction. As schematically shown in FIG. 4B, the ultrasonic horn 12 is attached to the capillary 17 and the rear end to which the ultrasonic transducer 13 is attached by the vibration of the ultrasonic transducer 13 attached to the rear end. The rear end and the front end vibrate in a resonance mode that becomes an antinode of vibration between the front end and the front end. A flange 14 for fixing the ultrasonic horn 12 to the bonding arm 21 is provided at a vibration node between the rear end and the front end, that is, a portion that does not vibrate in the longitudinal direction of the ultrasonic horn 12 even in a resonance state. ing. The flange 14 is fixed to the flange mounting surface 22 of the bonding arm 21 with fixing bolts 16. Note that the amplitude shown in FIG. 4B is the amplitude in the longitudinal direction of the ultrasonic horn, but the amplitude in the longitudinal direction is shown in a perpendicular direction for easy understanding.

振動の腹では振巾は大きいが縦振動による長手方向の力はほとんどかからず、逆に節では振巾はほとんどないが縦振動による長手方向の力が大きくなる。従って、フランジ14が取り付けられている超音波ホーン12の節は、超音波ホーン12の長手方向(Y方向)には振動しないが、超音波ホーン12が長手方向に縦振動する際に大きな圧縮力と引っ張り力とを受ける。また、超音波ホーン12は金属製で所定の弾性係数とポアソン比を備えているものであることから、一方向に圧縮荷重がかかるとその方向に圧縮されるとともに、ポアソン比で規定されている量だけ圧縮方向と直角方向に向かって膨張する。このため、例えば、図4(a)に示すように、フランジ14の取り付けられている超音波ホーン12の節の部分にY方向に矢印で示すように圧縮荷重がかかると、節の部分はY方向に圧縮されると共にX方向に向かって膨張し、フランジ14の固定ボルト16の位置をX方向に押し広げる。このため、フランジ14を固定している固定ボルト16の位置もX方向に押し広げられ、これによってボンディングアーム21の先端側ブロック21aは矢印で示すようにX方向両側に向かう力を受け、X方向両側に向かって矢印で示すように伸びる。先端側ブロック21aも金属製であり、所定の弾性係数とポアソン比とを持っているので、X方向両側に向かう荷重によりX方向に伸びると、矢印で示すように先端側ブロック21aは、ポアソン比で規定される量だけX方向と直角方向のY方向に縮むこととなる。先端側ブロック21aがY方向に縮むと先端側ブロック21aと後端側ブロック21bとの間の荷重センサ31が挟みこまれている溝26のY方向の間隔が微小量だけ大きくなり、荷重センサに加わるY方向の荷重が減少する。逆に超音波ホーン12の節に引っ張り荷重がかかると、超音波ホーン12の節の部分はX方向に縮み、固定ボルト16のX方向の間隔が短くなり、先端側ブロック21aはX方向に縮むと共にY方向に膨張し、溝26のY方向の間隔が微小量だけ小さくなり、荷重センサに加わるY方向の荷重が増加する。   The vibration amplitude is large at the antinode of the vibration, but the longitudinal force due to the longitudinal vibration is hardly applied. Conversely, the node has almost no amplitude but the longitudinal force due to the longitudinal vibration is large. Therefore, the node of the ultrasonic horn 12 to which the flange 14 is attached does not vibrate in the longitudinal direction (Y direction) of the ultrasonic horn 12, but has a large compressive force when the ultrasonic horn 12 vibrates longitudinally in the longitudinal direction. And receive a pulling force. Further, since the ultrasonic horn 12 is made of metal and has a predetermined elastic coefficient and Poisson's ratio, when a compressive load is applied in one direction, the ultrasonic horn 12 is compressed in that direction and is defined by the Poisson's ratio. It expands in the direction perpendicular to the compression direction by an amount. Therefore, for example, as shown in FIG. 4A, when a compressive load is applied to the node portion of the ultrasonic horn 12 to which the flange 14 is attached as indicated by an arrow in the Y direction, the node portion becomes Y. Compressed in the direction and expanded in the X direction, the position of the fixing bolt 16 of the flange 14 is expanded in the X direction. For this reason, the position of the fixing bolt 16 fixing the flange 14 is also expanded in the X direction, whereby the tip side block 21a of the bonding arm 21 receives a force toward both sides of the X direction as indicated by arrows, and the X direction Extends to both sides as shown by arrows. Since the tip side block 21a is also made of metal and has a predetermined elastic modulus and Poisson's ratio, the tip side block 21a has a Poisson's ratio as shown by an arrow when it extends in the X direction by a load toward both sides of the X direction. Will shrink in the Y direction perpendicular to the X direction by the amount specified by. When the front end side block 21a shrinks in the Y direction, the interval in the Y direction of the groove 26 in which the load sensor 31 between the front end side block 21a and the rear end side block 21b is sandwiched increases by a minute amount. The applied load in the Y direction is reduced. Conversely, when a tensile load is applied to the node of the ultrasonic horn 12, the portion of the node of the ultrasonic horn 12 contracts in the X direction, the interval between the fixing bolts 16 in the X direction decreases, and the tip side block 21a contracts in the X direction. At the same time, it expands in the Y direction, the interval between the grooves 26 in the Y direction is reduced by a minute amount, and the load in the Y direction applied to the load sensor increases.

以上、説明したように、超音波ホーン12が取り付けられている先端側ブロック21aは、超音波振動子13によって超音波ホーン12が振動すると、その振動によって荷重センサ31にかかるY方向の力が微小に変動し、それによって荷重センサ31から荷重の変動が出力される。   As described above, when the ultrasonic horn 12 is vibrated by the ultrasonic vibrator 13, the tip side block 21a to which the ultrasonic horn 12 is attached has a very small Y-direction force applied to the load sensor 31 due to the vibration. As a result, a load change is output from the load sensor 31.

発明者が試験によって確認したところ、キャピラリ17を無負荷状態として超音波振動子13に電圧を印加して超音波ホーン12を振動させた場合の荷重センサ31の出力とキャピラリ17のY方向の振巾との間には、図5(a)に示すような一定の関係がある。従って、荷重センサ31の出力を取得し、図5(a)に記載したカーブにあてはめればキャピラリ17のY方向の振巾を測定することができる。   The inventor confirmed by the test that the output of the load sensor 31 and the vibration of the capillary 17 in the Y direction when the ultrasonic horn 12 is vibrated by applying a voltage to the ultrasonic vibrator 13 with the capillary 17 in an unloaded state. There is a certain relationship between the width and the width as shown in FIG. Therefore, if the output of the load sensor 31 is acquired and applied to the curve described in FIG. 5A, the amplitude of the capillary 17 in the Y direction can be measured.

図6を参照しながら、本実施形態の振巾測定部50の詳細を説明する。図6に示すように、振巾測定部50は、フィルタ51、全波整流回路52、平滑化回路53、AD変換器54、信号変換部55を含んでいる。フィルタ51は、ローパスフィルタと駆動モータ45の動作周波数をカットできるバンドパスフィルタを組み合わせたものでも良いし、2つのファイルタを連続して接続したようなものでも良いし、ノイズを除去できるものであればいずれか一方のみでもよい。全波整流回路52は、複数の整流素子を組み合わせて交流電力を直流電力に変換するものである。平滑化回路53は抵抗とコンデンサとを組み合わせたもので、信号の変動を少なくして平滑にするものである。信号変換部55は内部に図5(a)に示した荷重センサ31からの出力信号をキャピラリ17のY方向の振巾に変換する関数が内蔵されているものである。   Details of the amplitude measurement unit 50 of the present embodiment will be described with reference to FIG. As shown in FIG. 6, the amplitude measurement unit 50 includes a filter 51, a full-wave rectification circuit 52, a smoothing circuit 53, an AD converter 54, and a signal conversion unit 55. The filter 51 may be a combination of a low-pass filter and a band-pass filter capable of cutting the operating frequency of the drive motor 45, or may be one in which two filters are connected in series, and can remove noise. If any, only one of them may be used. The full-wave rectifier circuit 52 combines a plurality of rectifier elements to convert AC power into DC power. The smoothing circuit 53 is a combination of a resistor and a capacitor, and smoothes by reducing signal fluctuations. The signal converter 55 has a built-in function for converting the output signal from the load sensor 31 shown in FIG. 5A into the amplitude of the capillary 17 in the Y direction.

以下、振巾測定部50の信号処理について説明する。荷重センサ31によって検出された荷重変動の信号は、図6(a)に示すようなプラス、マイナス両方向に振動する波形となっている。フィルタ51を通ると信号の高周波成分のノイズと駆動モータ45の動作周波数のノイズが除去される。ノイズが除去された信号は、全波整流回路52に入力される。全波整流回路52によって信号は、図6(b)に示すように、プラス方向の電圧変動のある直流信号に変換される。そして、全波整流回路52を通った信号は、図6(c)に示すように平滑化回路53によって変動している直流成分が平滑化される。この際、信号の強度は図6(b)に示す全波整流後の振巾の略√2の大きさの実効値となる。図6(a)に示すように、超音波振動子13の振動開始直後の荷重センサ31からの出力信号の振巾は小さく、振動が定常状態に向うにつれてその振巾は次第に大きくなった後、略一定の振巾に落ち着いてくる。この振巾の変動は全波整流回路52、平滑化回路53を通ると、図6(c)に示すように、超音波振動子13の振動開始の際には大きさがゼロで、時間と共に次第に大きくなって、その後、略一定の大きさの信号となる。平滑化回路53を通った後の信号は、図6(c)に示すように、単位時間当たりの大きさの変動が少なくなっているので、アナログ信号をより効率的にデジタル信号に変換することができる。AD変換器54によってデジタル信号に変換された振巾信号は信号変換部55によってキャピラリ17のY方向の振巾に変換され、所定の時間ごとに制御部60に送られる。また、振巾を表示器に表示するようにしてもよい。   Hereinafter, the signal processing of the amplitude measurement unit 50 will be described. The load fluctuation signal detected by the load sensor 31 has a waveform that vibrates in both positive and negative directions as shown in FIG. When the signal passes through the filter 51, the noise of the high frequency component of the signal and the noise of the operating frequency of the drive motor 45 are removed. The signal from which noise has been removed is input to the full-wave rectifier circuit 52. As shown in FIG. 6B, the full-wave rectifier circuit 52 converts the signal into a DC signal having a voltage fluctuation in the positive direction. The signal passing through the full-wave rectifier circuit 52 is smoothed by the DC component that is fluctuated by the smoothing circuit 53 as shown in FIG. At this time, the signal intensity has an effective value of approximately √2 of the amplitude after full-wave rectification shown in FIG. As shown in FIG. 6A, the amplitude of the output signal from the load sensor 31 immediately after the start of vibration of the ultrasonic transducer 13 is small, and the amplitude gradually increases as the vibration goes to the steady state. It settles down to a substantially constant amplitude. The fluctuation of the amplitude passes through the full-wave rectifier circuit 52 and the smoothing circuit 53. As shown in FIG. 6C, when the vibration of the ultrasonic vibrator 13 starts, the magnitude is zero, and with time The signal gradually increases and then becomes a substantially constant signal. As shown in FIG. 6C, the signal after passing through the smoothing circuit 53 has less variation in magnitude per unit time, so that an analog signal can be converted into a digital signal more efficiently. Can do. The amplitude signal converted into the digital signal by the AD converter 54 is converted into the amplitude in the Y direction of the capillary 17 by the signal conversion unit 55 and sent to the control unit 60 at predetermined time intervals. Further, the amplitude may be displayed on the display.

このように、本実施形態では、キャピラリ17のZ方向の荷重検出用の荷重センサ31を利用して無負荷状態でのキャピラリ17の振巾を測定することができるので、他の装置を追加することなく簡便に構成によってキャピラリ17のY方向の振巾を測定することができる。また、本実施形態では、荷重センサ31からの信号を平滑にしてからAD変換しているので、少ないメモリでもより効率的にデジタル信号への変換とキャピラリ17のY方向の振巾の取得を行うことができる。   As described above, in this embodiment, the amplitude of the capillary 17 in an unloaded state can be measured using the load sensor 31 for detecting the load in the Z direction of the capillary 17, so another device is added. The amplitude in the Y direction of the capillary 17 can be measured with a simple and simple configuration. In the present embodiment, since the signal from the load sensor 31 is smoothed before AD conversion, conversion to a digital signal and acquisition of the amplitude in the Y direction of the capillary 17 are performed more efficiently with a small amount of memory. be able to.

一方、図5(b)に示すように、超音波振動子13への印加電圧とキャピラリ17のY方向の振巾との間にも一定の関係がある。そこで、制御部60は振巾測定部50からキャピラリ17を無負荷状態として超音波振動子13に基準電圧を印加して超音波ホーン12を振動させた場合のキャピラリ17のY方向の振巾データを取得し、その振巾と目標振巾とを比較し、その比較結果に応じて超音波振動子13に印加する電圧を増減して、無負荷状態でのキャピラリ17の振巾が目標振巾となるよう較正することができる。これによって、超音波ホーン12の特性の誤差などによるキャピラリ17のY方向の振巾のバラツキを抑制することができ、ボンディング品質を安定させることができる。   On the other hand, as shown in FIG. 5B, there is also a certain relationship between the voltage applied to the ultrasonic transducer 13 and the amplitude of the capillary 17 in the Y direction. Therefore, the control unit 60 supplies amplitude data in the Y direction of the capillary 17 when the ultrasonic horn 12 is vibrated by applying a reference voltage to the ultrasonic transducer 13 from the amplitude measurement unit 50 with the capillary 17 in an unloaded state. , The amplitude is compared with the target amplitude, the voltage applied to the ultrasonic transducer 13 is increased or decreased according to the comparison result, and the amplitude of the capillary 17 in the no-load state becomes the target amplitude. Can be calibrated to As a result, variations in the amplitude of the capillary 17 in the Y direction due to an error in the characteristics of the ultrasonic horn 12 can be suppressed, and the bonding quality can be stabilized.

以上説明した実施形態では、振巾測定部50と制御部60とを別個に備えるものとして説明したが、制御部60の内部に図5(a)に示したカーブを内蔵し、振巾測定部50の動作を制御部60に組み込まれているCPUによって処理することとしてもよい。   In the embodiment described above, the amplitude measuring unit 50 and the control unit 60 are separately provided. However, the control unit 60 incorporates the curve shown in FIG. 50 operations may be processed by a CPU incorporated in the control unit 60.

また、以上の説明ではワイヤボンディング装置10を実施形態として説明したが、本発明はワイヤボンディング装置に限らず、超音波振動子によって振動される超音波ホーンにボンディングツールが取り付けられているボンディング装置であれば、例えば、ダイボンディング装置など他のボンディング装置のボンディングツールの振巾の測定、較正にも適用することができる。   In the above description, the wire bonding apparatus 10 has been described as an embodiment. However, the present invention is not limited to a wire bonding apparatus, and is a bonding apparatus in which a bonding tool is attached to an ultrasonic horn that is vibrated by an ultrasonic vibrator. For example, the present invention can be applied to measurement and calibration of the amplitude of a bonding tool of another bonding apparatus such as a die bonding apparatus.

10 ワイヤボンディング装置、11 ボンディングヘッド、12 超音波ホーン、13 超音波振動子、14 フランジ、15 中心軸、16 固定ボルト、17 キャピラリ、17a 先端、21 ボンディングアーム、21a 先端側ブロック、21b 後端側ブロック、22 フランジ取り付け面、23,25,26 溝、24 接続板、27 ねじ、28 中心軸、29,29a,29b 窪み、30 回転軸、31 荷重センサ、33 ボンディングステージ、34 半導体チップ、35 基板、41 ボンディング面、43 回転中心、45 駆動モータ、50 振巾測定部、51 フィルタ、52 全波整流回路、53 平滑化回路、54 AD変換器、55 信号変換部、60 制御部。   DESCRIPTION OF SYMBOLS 10 Wire bonding apparatus, 11 Bonding head, 12 Ultrasonic horn, 13 Ultrasonic vibrator, 14 Flange, 15 Center axis, 16 Fixing bolt, 17 Capillary, 17a Front end, 21 Bonding arm, 21a Front end side block, 21b Rear end side Block, 22 Flange mounting surface, 23, 25, 26 Groove, 24 Connection plate, 27 Screw, 28 Center axis, 29, 29a, 29b Recess, 30 Rotating shaft, 31 Load sensor, 33 Bonding stage, 34 Semiconductor chip, 35 Substrate , 41 Bonding surface, 43 Center of rotation, 45 Drive motor, 50 Amplitude measuring unit, 51 Filter, 52 Full wave rectifier circuit, 53 Smoothing circuit, 54 AD converter, 55 Signal converter, 60 Control unit.

Claims (3)

基体部と、
超音波振動子の振動と共振して長手方向に縦振動する超音波ホーンと、
超音波ホーンの振動の腹に取り付けられ、ボンディング対象に接離するボンディングツールと、
超音波ホーンの振動の節の位置で、超音波ホーンの長手方向及びボンディングツールの動作方向と直交する方向に伸びるように取り付けられ、超音波ホーンが振動した際に超音波ホーンの節に加わる長手方向の荷重によってその伸びる方向に沿って微小振動するフランジと、
金属製で一体に成形され、超音波ホーンのフランジが固定されるフランジ取り付け面を含む第一のブロックと、ボンディングツール先端をボンディング対象に対して接離方向に動作させるように基体部に回転自在に取り付けられた第二のブロックと、第一のブロックと第二のブロックとの間を接続する接続板と、を含み、フランジの微小振動によって変形して第一のブロックと第二のブロックとの間の間隔が超音波ホーンの長手方向に沿って変動するボンディングアームと、
ボンディングツールの動作方向に沿って超音波ホーンの長手方向中心軸からオフセットされ、第一のブロックと第二のブロックとの間に挟み込まれて第一のブロックと第二のブロックとの間の超音波ホーン長手方向の荷重を検出する荷重センサと、
ボンディングツールが無負荷の状態で超音波振動子により超音波ホーンを振動させた際に荷重センサによって検出する荷重信号を変換してボンディングツールの超音波ホーン長手方向に沿った振動の振巾を測定する振巾測定部と、
を備えることを特徴とするボンディング装置。
A base part;
An ultrasonic horn that resonates with the vibration of the ultrasonic vibrator and vibrates longitudinally in the longitudinal direction;
A bonding tool that is attached to the vibration belly of an ultrasonic horn and touches and separates from the bonding target;
At the position of the ultrasonic horn vibration node, it is attached so as to extend in the longitudinal direction of the ultrasonic horn and the direction orthogonal to the operation direction of the bonding tool, and is applied to the ultrasonic horn node when the ultrasonic horn vibrates. A flange that vibrates minutely along its extending direction by a load in the direction,
The first block including a flange mounting surface that is integrally formed of metal and to which the flange of the ultrasonic horn is fixed, and the base portion can be rotated so that the tip of the bonding tool moves in the direction of contact with the object to be bonded. A second block attached to the first block, and a connecting plate connecting the first block and the second block, and deformed by micro vibrations of the flange, and the first block and the second block A bonding arm in which the distance between them varies along the longitudinal direction of the ultrasonic horn,
The ultrasonic wave is offset from the longitudinal central axis of the ultrasonic horn along the operation direction of the bonding tool, and is sandwiched between the first block and the second block, and is superposed between the first block and the second block. A load sensor for detecting the load in the longitudinal direction of the sonic horn;
The vibration signal along the longitudinal direction of the ultrasonic horn of the bonding tool is measured by converting the load signal detected by the load sensor when the ultrasonic horn is vibrated by the ultrasonic vibrator when the bonding tool is unloaded. An amplitude measuring section to perform,
A bonding apparatus comprising:
ボンディング装置のボンディングツール振巾測定方法であって、
基体部と、
超音波振動子の振動と共振して長手方向に縦振動する超音波ホーンと、
超音波ホーンの振動の腹に取り付けられ、ボンディング対象に接離するボンディングツールと、
超音波ホーンの振動の節の位置で、超音波ホーンの長手方向及びボンディングツールの動作方向と直交する方向に伸びるように取り付けられ、超音波ホーンが振動した際に超音波ホーンの節に加わる長手方向の荷重によってその伸びる方向に沿って微小振動するフランジと、
金属製で一体に成形され、超音波ホーンのフランジが固定されるフランジ取り付け面を含む第一のブロックと、ボンディングツール先端をボンディング対象に対して接離方向に動作させるように基体部に回転自在に取り付けられた第二のブロックと、第一のブロックと第二のブロックとの間を接続する接続板と、を含み、フランジの微小振動によって変形して第一のブロックと第二のブロックとの間の間隔が超音波ホーンの長手方向に沿って変動するボンディングアームと、
ボンディングツールの動作方向に沿って超音波ホーンの長手方向中心軸からオフセットされ、第一のブロックと第二のブロックとの間に挟み込まれて第一のブロックと第二のブロックとの間の超音波ホーン長手方向の荷重を検出する荷重センサと、を備えるボンディング装置を準備し、
ボンディングツールを無負荷状態として超音波振動子により超音波ホーンを振動させ、荷重センサによって検出する荷重信号を変換してボンディングツールの超音波ホーン長手方向に沿った振動の振巾を測定すること、
を特徴とするボンディングツール振巾測定方法。
A bonding tool amplitude measuring method for a bonding apparatus,
A base part;
An ultrasonic horn that resonates with the vibration of the ultrasonic vibrator and vibrates longitudinally in the longitudinal direction;
A bonding tool that is attached to the vibration belly of an ultrasonic horn and touches and separates from the bonding target;
At the position of the ultrasonic horn vibration node, it is attached so as to extend in the longitudinal direction of the ultrasonic horn and the direction orthogonal to the operation direction of the bonding tool, and is applied to the ultrasonic horn node when the ultrasonic horn vibrates. A flange that vibrates minutely along its extending direction by a load in the direction,
The first block including a flange mounting surface that is integrally formed of metal and to which the flange of the ultrasonic horn is fixed, and the base portion can be rotated so that the tip of the bonding tool moves in the direction of contact with the object to be bonded. A second block attached to the first block, and a connecting plate connecting the first block and the second block, and deformed by micro vibrations of the flange, and the first block and the second block A bonding arm in which the distance between them varies along the longitudinal direction of the ultrasonic horn,
The ultrasonic wave is offset from the longitudinal central axis of the ultrasonic horn along the operation direction of the bonding tool, and is sandwiched between the first block and the second block, and is superposed between the first block and the second block. Preparing a bonding apparatus comprising a load sensor for detecting a load in the longitudinal direction of the sonic horn,
Oscillating the ultrasonic horn with an ultrasonic transducer with the bonding tool unloaded, converting the load signal detected by the load sensor, and measuring the amplitude of vibration along the longitudinal direction of the ultrasonic horn of the bonding tool;
A bonding tool amplitude measurement method characterized by
ボンディング装置のボンディングツール振巾較正方法であって、
基体部と、
超音波振動子の振動と共振して長手方向に縦振動する超音波ホーンと、
超音波ホーンの振動の腹に取り付けられ、ボンディング対象に接離するボンディングツールと、
超音波ホーンの振動の節の位置で、超音波ホーンの長手方向及びボンディングツールの動作方向と直交する方向に伸びるように取り付けられ、超音波ホーンが振動した際に超音波ホーンの節に加わる長手方向の荷重によってその伸びる方向に沿って微小振動するフランジと、
金属製で一体に成形され、超音波ホーンのフランジが固定されるフランジ取り付け面を含む第一のブロックと、ボンディングツール先端をボンディング対象に対して接離方向に動作させるように基体部に回転自在に取り付けられた第二のブロックと、第一のブロックと第二のブロックとの間を接続する接続板と、を含み、フランジの微小振動によって変形して第一のブロックと第二のブロックとの間の間隔が超音波ホーンの長手方向に沿って変動するボンディングアームと、
ボンディングツールの動作方向に沿って超音波ホーンの長手方向中心軸からオフセットされ、第一のブロックと第二のブロックとの間に挟み込まれて第一のブロックと第二のブロックとの間の超音波ホーン長手方向の荷重を検出する荷重センサと、を備えるボンディング装置を準備し、
ボンディングツールを無負荷状態として基準印加電圧で超音波振動子により超音波ホーンを振動させ、荷重センサによって検出する荷重信号を変換してボンディングツールの超音波ホーン長手方向に沿った振動の振巾を測定し、測定した振巾と目標振巾とを比較し、比較結果に基づいて超音波振動子の振巾が目標振巾となる様に超音波振動子への印加電圧を変更すること、
を特徴とするボンディングツールの振巾較正方法。
A bonding tool amplitude calibration method for a bonding apparatus,
A base part;
An ultrasonic horn that resonates with the vibration of the ultrasonic vibrator and vibrates longitudinally in the longitudinal direction;
A bonding tool that is attached to the vibration belly of an ultrasonic horn and touches and separates from the bonding target;
At the position of the ultrasonic horn vibration node, it is attached so as to extend in the longitudinal direction of the ultrasonic horn and the direction orthogonal to the operation direction of the bonding tool, and is applied to the ultrasonic horn node when the ultrasonic horn vibrates. A flange that vibrates minutely along its extending direction by a load in the direction,
The first block including a flange mounting surface that is integrally formed of metal and to which the flange of the ultrasonic horn is fixed, and the base portion can be rotated so that the tip of the bonding tool moves in the direction of contact with the object to be bonded. A second block attached to the first block, and a connecting plate connecting the first block and the second block, and deformed by micro vibrations of the flange, and the first block and the second block A bonding arm in which the distance between them varies along the longitudinal direction of the ultrasonic horn,
The ultrasonic wave is offset from the longitudinal central axis of the ultrasonic horn along the operation direction of the bonding tool, and is sandwiched between the first block and the second block, and is superposed between the first block and the second block. Preparing a bonding apparatus comprising a load sensor for detecting a load in the longitudinal direction of the sonic horn,
With the bonding tool in the no-load state, the ultrasonic horn is vibrated by the ultrasonic vibrator with the reference applied voltage, the load signal detected by the load sensor is converted, and the amplitude of vibration along the longitudinal direction of the ultrasonic horn of the bonding tool is changed. Measuring, comparing the measured amplitude with the target amplitude, and changing the applied voltage to the ultrasonic transducer based on the comparison result so that the amplitude of the ultrasonic transducer becomes the target amplitude,
A method for calibrating the amplitude of a bonding tool.
JP2009090127A 2009-04-02 2009-04-02 Bonding apparatus, bonding tool amplitude measurement method, and bonding tool amplitude calibration method Expired - Fee Related JP4595020B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009090127A JP4595020B2 (en) 2009-04-02 2009-04-02 Bonding apparatus, bonding tool amplitude measurement method, and bonding tool amplitude calibration method
PCT/JP2010/054995 WO2010113703A1 (en) 2009-04-02 2010-03-23 Bonding device, bonding sealer amplitude measurement method, and bonding sealer amplitude calibration method
SG2012014247A SG183784A1 (en) 2009-04-02 2010-03-23 Bonding apparatus, method of measuring amplitude of bonding tool, and method of calibrating amplitude of bonding tool
CN2010800138308A CN102365725B (en) 2009-04-02 2010-03-23 Bonding device, bonding sealer amplitude measurement method, and bonding sealer amplitude calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009090127A JP4595020B2 (en) 2009-04-02 2009-04-02 Bonding apparatus, bonding tool amplitude measurement method, and bonding tool amplitude calibration method

Publications (2)

Publication Number Publication Date
JP2010245168A true JP2010245168A (en) 2010-10-28
JP4595020B2 JP4595020B2 (en) 2010-12-08

Family

ID=42827998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090127A Expired - Fee Related JP4595020B2 (en) 2009-04-02 2009-04-02 Bonding apparatus, bonding tool amplitude measurement method, and bonding tool amplitude calibration method

Country Status (4)

Country Link
JP (1) JP4595020B2 (en)
CN (1) CN102365725B (en)
SG (1) SG183784A1 (en)
WO (1) WO2010113703A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820205B (en) * 2011-06-09 2015-02-11 北京中电科电子装备有限公司 Installation structure of force sensor on bonder and bonder
DE102014204205A1 (en) * 2014-03-07 2015-09-10 Dr. Johannes Heidenhain Gmbh Device for measuring the oscillation amplitude of a capillary of a wire bonder
WO2020189642A1 (en) * 2019-03-18 2020-09-24 株式会社新川 Capillary guide device and wire bonding device
US11691214B2 (en) * 2021-10-17 2023-07-04 Shinkawa Ltd. Ultrasound horn

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340780A (en) * 2004-04-27 2005-12-08 Matsushita Electric Ind Co Ltd Electronic component mounting device and electronic component mounting method
JP2008021839A (en) * 2006-07-13 2008-01-31 Shinkawa Ltd Wire bonding apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889262A (en) * 1997-05-15 1999-03-30 Seah Steel Corporation System for and method of automatically controlling amount of input heat in high-frequency electric resistance welding machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340780A (en) * 2004-04-27 2005-12-08 Matsushita Electric Ind Co Ltd Electronic component mounting device and electronic component mounting method
JP2008021839A (en) * 2006-07-13 2008-01-31 Shinkawa Ltd Wire bonding apparatus

Also Published As

Publication number Publication date
CN102365725B (en) 2013-11-20
JP4595020B2 (en) 2010-12-08
WO2010113703A1 (en) 2010-10-07
SG183784A1 (en) 2012-10-30
CN102365725A (en) 2012-02-29

Similar Documents

Publication Publication Date Title
US8800843B2 (en) Bonding apparatus
JP3961258B2 (en) Touch sensor and probe for fine shape measuring device
US8181527B2 (en) Method and apparatus for pass/fail determination of bonding and bonding apparatus
JP4595020B2 (en) Bonding apparatus, bonding tool amplitude measurement method, and bonding tool amplitude calibration method
KR101210006B1 (en) Semiconductor device bonding apparatus and method for bonding semiconductor device using the same
US11004822B2 (en) Wire clamp apparatus calibration method and wire bonding apparatus
JP2021092787A (en) Vibration type driving device and imaging apparatus
JP4292277B2 (en) Ultrasonic bonding equipment
JP2006255506A (en) Oscillator
JP2013250150A (en) Rigidity measurement method and device
KR102493623B1 (en) wire bonding device
JP3848637B2 (en) Ultrasonic bonding equipment
JP5275917B2 (en) Pressure ultrasonic vibration bonding method and pressure ultrasonic vibration bonding apparatus
JP5225284B2 (en) Electromechanical property inspection method for electromechanical transducer
Friend et al. A torsional transducer through in-plane shearing of paired planar piezoelectric elements
JP6637623B2 (en) Wire bonding equipment
RU2425356C1 (en) Device for measuring physical and mechanical properties of materials
JP2023012628A (en) Non-contact sensor device and non-contact sensing method
Zhang et al. Characterization of AlN thin film piezoelectric coefficient d31 using Piezoelectric Micromachined Ultrasonic Transducers (PMUTs)
JPH0933424A (en) Device for measuring adhesion of very small object
Hu et al. Vibration characteristics of the capillary in ultrasonic wire bonders
JP2018088621A (en) Ultrasonic device, ultrasonic probe, ultrasonic apparatus, and manufacturing method for ultrasonic device
Friend et al. A novel torsional microtransducer using bulk PZT
JP4155199B2 (en) Wire bonding method
JPH1074787A (en) Method and device for wire bonding

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100812

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100812

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4595020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees