JP2010243083A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2010243083A
JP2010243083A JP2009093086A JP2009093086A JP2010243083A JP 2010243083 A JP2010243083 A JP 2010243083A JP 2009093086 A JP2009093086 A JP 2009093086A JP 2009093086 A JP2009093086 A JP 2009093086A JP 2010243083 A JP2010243083 A JP 2010243083A
Authority
JP
Japan
Prior art keywords
vapor compression
refrigerant
solution
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009093086A
Other languages
Japanese (ja)
Other versions
JP5434207B2 (en
Inventor
Mitsushi Kawai
満嗣 河合
Keisuke Tanimoto
啓介 谷本
Tadashi Nishimura
忠史 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009093086A priority Critical patent/JP5434207B2/en
Publication of JP2010243083A publication Critical patent/JP2010243083A/en
Application granted granted Critical
Publication of JP5434207B2 publication Critical patent/JP5434207B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an effect of improving performance both in cooling operation and heating operation in a refrigerating device formed of a combination of a vapor compression type refrigerating machine and an absorption type refrigerating machine. <P>SOLUTION: In this refrigerating device with the vapor compression type refrigerating machine X and the absorption type refrigerating machine Y, a solenoid valve 41 is arranged in a pipe line 67 reaching a refrigerant heat recovery heat exchanger 6 from the outlet side of the absorber 12 of the absorption type refrigerating machine Y. During cooling operation, the solenoid valve 41 is opened. On the other hand, during heating operation, a four-way selector valve 2 is switched, thereby making the refrigerant of the vapor compression type refrigerating machine flow in a direction opposite to that in cooling operation, and it is closed when the refrigerant temperature of the vapor compression type refrigerating machine X is at a set refrigerant temperature or more, and opened when it is below the set refrigerant temperature, or closed when the temperature of the solution on the outlet side of the supercooling heat exchanger 15 of the absorption type refrigerating machine Y is at the set refrigerant temperature or more, and opened when it is below the set solution temperature. By this constitution, the effect of improving the performance can be obtained both in the cooling operation and heating operation of the vapor compression type refrigerating machine X. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本願発明は、蒸気圧縮式冷凍機に吸収式冷凍機を組み合わせて構成される冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus configured by combining a vapor compression refrigerator and an absorption refrigerator.

蒸気圧縮式冷凍機においてその性能を改善する手法の一つとして、該蒸気圧縮式冷凍機に吸収式冷凍機を組合せ、該吸収式冷凍機をガスエンジンやその他の排熱を熱源として駆動し、ここで得られる冷熱によって上記蒸気圧縮式冷凍機の冷媒を過冷却する方法や、得られる冷熱によって蒸気圧縮式冷凍機の圧縮後の冷媒を冷却することによって該冷媒の凝縮温度を低下させてその性能を改善するようにした冷凍装置が知られている(例えば、特許文献1参照)。   As one of the methods for improving the performance of the vapor compression refrigerator, an absorption refrigerator is combined with the vapor compression refrigerator, the absorption refrigerator is driven using a gas engine or other exhaust heat as a heat source, A method of supercooling the refrigerant of the vapor compression refrigeration machine using the cold heat obtained here, or a method of reducing the condensation temperature of the refrigerant by cooling the refrigerant after compression of the vapor compression refrigeration machine using the obtained cold heat. A refrigeration apparatus that improves performance is known (see, for example, Patent Document 1).

また、蒸気圧縮式冷凍機に吸収式冷凍機を組合せてなる冷凍装置において、特許文献1に示される冷凍装置よりもさらに性能向上を図る手法として、吸収式冷凍機の駆動熱源として、ガスエンジンやその他の排熱に加えて、蒸気圧縮式冷凍機の排熱を利用する技術も提案されている(特許文献2参照)。   Further, in a refrigeration apparatus in which an absorption refrigeration machine is combined with a vapor compression refrigeration machine, as a method for further improving the performance as compared with the refrigeration apparatus disclosed in Patent Document 1, In addition to other waste heat, a technology that utilizes waste heat of a vapor compression refrigerator has also been proposed (see Patent Document 2).

特開2004−28374号公報JP 2004-28374 A 特開2006−17350号公報JP 2006-17350 A

しかし、特許文献2に示される技術では、蒸気圧縮式冷凍機の排熱量が少なく且つ排熱温度も低いことから、この排熱を吸収式冷凍機の駆動熱源として利用したとしてもその効果が限定され、大きくないこと、上記排熱を利用するための吸収式冷凍機を組み合せる等に多大な費用がかかる等コスト面での課題より、実用性は限定されたものであると言える。   However, in the technique shown in Patent Document 2, since the exhaust heat amount of the vapor compression refrigerator is small and the exhaust heat temperature is also low, even if this exhaust heat is used as a drive heat source for the absorption refrigerator, its effect is limited. However, it can be said that the practicality is limited because it is not large and it takes a lot of cost to combine the absorption refrigerator for using the exhaust heat.

このような特許文献2に示される冷凍装置については、該冷凍装置では冷房運転時における性能向上のみに着目し、暖房運転時における性能向上を考慮していない点にも一因があり、冷房運転時と暖房運転時の双方において性能改善が図れるならば、トータル的にみて、その実用性は高まるものと考えられる。   With regard to the refrigeration apparatus shown in Patent Document 2, the refrigeration apparatus focuses only on the performance improvement during the cooling operation, and is also due to the fact that the performance improvement during the heating operation is not considered. If the performance can be improved both at the time and during the heating operation, it is considered that the practicality will increase as a whole.

そこで、蒸気圧縮式冷凍機と吸収式冷凍機を組み合せるに関しては、基本構成は、特許文献2に記載の冷凍装置に類似するものであるが、特許文献2に記載の吸収式冷凍機は水冷方式であるが、吸収式冷凍機は空冷方式を基本構成とし、これに四路切換弁を設けて冷房運転及び暖房運転が可能となるように構成した冷凍装置を従来方式として想定し、その一例として、図8にその回路図を示している。   Therefore, regarding the combination of the vapor compression refrigerator and the absorption refrigerator, the basic configuration is similar to the refrigeration apparatus described in Patent Document 2, but the absorption refrigerator described in Patent Document 2 is water-cooled. As an example, an absorption refrigeration machine is assumed to be a conventional system that has a basic structure based on an air cooling system and is provided with a four-way switching valve to enable cooling operation and heating operation. FIG. 8 shows a circuit diagram thereof.

図8において、符号Xは蒸気圧縮式冷凍機、Yは吸収式冷凍機である。上記蒸気圧縮式冷凍機Xは、圧縮機1と四路切換弁2と利用側熱交換器3と膨張弁4と熱源側熱交換器7及びアキュームレーター5を備えて構成される。また、上記吸収式冷凍機Yは、発生器11と吸収器12と蒸発器13と凝縮器14と過冷却熱交換器15と溶液熱交換器16及び溶液ポンプ17を備えて構成される。   In FIG. 8, symbol X is a vapor compression refrigerator, and Y is an absorption refrigerator. The vapor compression refrigerator X includes a compressor 1, a four-way switching valve 2, a use side heat exchanger 3, an expansion valve 4, a heat source side heat exchanger 7, and an accumulator 5. The absorption refrigerator Y includes a generator 11, an absorber 12, an evaporator 13, a condenser 14, a supercooling heat exchanger 15, a solution heat exchanger 16, and a solution pump 17.

そして、この冷凍装置では、吸収式冷凍機Yの蒸発器13において上記蒸気圧縮式冷凍機Xの冷媒を過冷却するために、上記利用側熱交換器3と熱源側熱交換器7の間の管路54を上記吸収式冷凍機Yの上記蒸発器13の熱交換器13aに接続するとともに、上記蒸気圧縮式冷凍機X側の冷媒の排熱を上記吸収式冷凍機Yの発生器11においてその駆動熱源として利用するために該蒸気圧縮式冷凍機Xの上記熱源側熱交換器7と上記四路切換弁2の間の管路58を上記発生器11内に配置された熱交換器11bに接続している。   In this refrigeration apparatus, in order to supercool the refrigerant of the vapor compression refrigeration machine X in the evaporator 13 of the absorption refrigeration machine Y, between the use side heat exchanger 3 and the heat source side heat exchanger 7, The pipe 54 is connected to the heat exchanger 13a of the evaporator 13 of the absorption refrigeration machine Y, and the exhaust heat of the refrigerant on the vapor compression refrigeration machine X side is connected to the generator 11 of the absorption refrigeration machine Y. In order to use it as a driving heat source, a heat exchanger 11b in which a pipe line 58 between the heat source side heat exchanger 7 and the four-way switching valve 2 of the vapor compression refrigerator X is disposed in the generator 11 is used. Connected to.

係る構成とすることで、上記蒸気圧縮式冷凍機Xの冷房運転時には、上記圧縮機1で圧縮された後の冷媒が上記発生器11に導入され、ここで該発生器11内の溶液との間での熱交換によって上記蒸気圧縮式冷凍機Xの冷媒熱が該溶液側に回収され、該発生器11の駆動熱源として利用される。また、上記熱源側熱交換器7によって蒸気圧縮式冷凍機Xの冷媒が大気によって冷却されて凝縮し、熱源側熱交換器7を出た冷媒は、上記蒸発器13に流入しここで過冷却され冷媒温度が低下することで、上記利用側熱交換器3における冷媒の入口の比エンタルピーが低下し、上記利用側熱交換器3の冷房能力が向上する。即ち、冷房運転時においては、蒸気圧縮式冷凍機Xに吸収式冷凍機Yを組み合わせた構成による本来的な目的が達せられる。しかしながら、蒸気圧縮式冷凍機Xの冷媒が発生器11内で回収出来る熱量は、吸収式冷凍機Yがサイクルを形成出来る発生器11内の溶液温度によって限定されるため、その回収熱量は非常に少なく、従って、蒸気圧縮式冷凍機Xの冷媒を大気で冷却するための熱源側の熱交換器7を必要とすることである。   With this configuration, during the cooling operation of the vapor compression refrigeration machine X, the refrigerant compressed by the compressor 1 is introduced into the generator 11, where the refrigerant in the generator 11 The refrigerant heat of the vapor compression refrigerator X is recovered to the solution side by heat exchange between them, and is used as a driving heat source for the generator 11. The refrigerant of the vapor compression refrigeration machine X is cooled and condensed by the atmosphere by the heat source side heat exchanger 7, and the refrigerant exiting the heat source side heat exchanger 7 flows into the evaporator 13 where it is supercooled. As the refrigerant temperature decreases, the specific enthalpy of the refrigerant inlet in the usage-side heat exchanger 3 decreases, and the cooling capacity of the usage-side heat exchanger 3 improves. That is, during the cooling operation, the original purpose can be achieved by the configuration in which the vapor compression refrigerator X and the absorption refrigerator Y are combined. However, the amount of heat that can be recovered in the generator 11 by the refrigerant of the vapor compression refrigerator X is limited by the solution temperature in the generator 11 in which the absorption refrigerator Y can form a cycle. Therefore, the heat exchanger 7 on the heat source side for cooling the refrigerant of the vapor compression refrigerator X in the atmosphere is required.

一方、暖房運転時には、上記四路切換弁2を切換え、蒸気圧縮式冷凍機Xの冷媒を冷房運転とは逆方向に流入させるが、上記圧縮機1で圧縮された後の冷媒が上記利用側熱交換器3で熱交換され、上記吸収式冷凍機Yの蒸発器13内の熱交換器13aから管路54を経て、熱源側熱交換器7で大気より吸熱し、発生器11に流入する。例えば、上記吸収式冷凍機Yの凝縮器14及び過冷却熱交換器15の運転を停止し、管路60から供給されるガスエンジンやその他の排熱によって駆動される発生器11内の溶液から、上記発生器11内の蒸気圧縮式冷凍機Xの冷媒が吸熱し、4路切換弁2を経て圧縮機1に戻るが、上記溶液ポンプ17によって循環させたとしても、該発生器11内に上記熱交換器11bが配置されていることから、該熱交換器11bを介して行なわれる該発生器11内の溶液と上記蒸気圧縮式冷凍機X側の冷媒蒸気との間における熱交換効率は非常に悪く、溶液温度によって冷媒を加熱して該冷媒の蒸発温度を高める効果は少なく、結果的に、蒸気圧縮式冷凍機Xの性能向上に寄与するところは少ないものとなる。また、十分にその効果を得ようと、発生器11内の熱交換器11bを大きくした場合は、その効果に見合う熱交換器のコスト高より実用的ではない。   On the other hand, during the heating operation, the four-way switching valve 2 is switched and the refrigerant of the vapor compression refrigeration machine X flows in the opposite direction to the cooling operation, but the refrigerant after being compressed by the compressor 1 is used on the usage side. Heat is exchanged in the heat exchanger 3, passes through the pipe 54 from the heat exchanger 13 a in the evaporator 13 of the absorption refrigeration machine Y, absorbs heat from the atmosphere in the heat source side heat exchanger 7, and flows into the generator 11. . For example, the operation of the condenser 14 and the supercooling heat exchanger 15 of the absorption refrigeration machine Y is stopped, and from the solution in the generator 11 driven by the gas engine or other exhaust heat supplied from the pipe 60. The refrigerant of the vapor compression refrigerator X in the generator 11 absorbs heat and returns to the compressor 1 through the four-way switching valve 2, but even if it is circulated by the solution pump 17, Since the heat exchanger 11b is arranged, the heat exchange efficiency between the solution in the generator 11 and the refrigerant vapor on the vapor compression refrigerator X side performed via the heat exchanger 11b is as follows. The effect of heating the refrigerant by the solution temperature to raise the evaporation temperature of the refrigerant is very poor, and as a result, there are few places that contribute to improving the performance of the vapor compression refrigerator X. Moreover, when the heat exchanger 11b in the generator 11 is enlarged in order to obtain the effect sufficiently, it is not practical because of the high cost of the heat exchanger corresponding to the effect.

従って、暖房運転時においては、熱源側熱交換器7にて大気より吸熱する必要があり、大気の温度によっては、熱源側熱交換器7のフィンの着霜が避けられず、暖房能力の低下や、実用上の課題となっている。   Accordingly, during the heating operation, it is necessary to absorb heat from the atmosphere in the heat source side heat exchanger 7, and depending on the temperature of the atmosphere, frosting of the fins of the heat source side heat exchanger 7 is unavoidable, and the heating capacity decreases. It has become a practical issue.

このように、特許文献2に示されるように蒸気圧縮式冷凍機と吸収式冷凍機を組合せて冷凍装置において、冷房運転及び暖房運転が可能となるように図8の如く構成したとしても、冷房運転時と暖房運転時の双方において大きな性能改善効果を期待することはできず、従って、依然として実用性に乏しいものとなる。   As described above, even if the refrigeration apparatus is configured as shown in FIG. 8 so that the cooling operation and the heating operation can be performed by combining the vapor compression refrigerator and the absorption refrigerator as shown in Patent Document 2, A great performance improvement effect cannot be expected both during operation and during heating operation, and therefore it is still impractical.

ところが、近年のエネルギーコストの上昇とか、自然冷媒を利用した空気調和機の開発の進行等を背景に、蒸気圧縮式冷凍機の性能改善と該蒸気圧縮式冷凍機の排熱利用の促進という課題が再注目され、ガスエンジンやその他の排熱を利用するに止まらず、蒸気圧縮式冷凍機の排熱も利用して冷熱に変換して冷房運転時の性能向上を図ると同時に、暖房運転時においても蒸気圧縮式冷凍機の排熱を有効に利用してさらなる性能改善を図る技術の開発が要請されるに至った。   However, against the background of rising energy costs in recent years and the progress of development of air conditioners using natural refrigerants, there are issues of improving the performance of steam compression refrigerators and promoting the use of waste heat from the steam compression refrigerators However, not only does it take advantage of exhaust heat from gas engines and other wastewater, but it also uses the exhaust heat from the vapor compression refrigeration machine to convert it into cold heat to improve the performance during cooling operation and at the same time during heating operation. In Japan, the development of technology to further improve performance by effectively using the exhaust heat of the vapor compression refrigerator has been requested.

このように暖房運転時に吸収式冷凍機を用いて蒸気圧縮式冷凍機の性能改善を図る場合に問題となるのが、吸収式冷凍機において利用可能な排熱量であって、排熱量が十分ある場合のみならず、排熱量が少ない場合であっても、何らかの手法で蒸気圧縮式冷凍機の性能改善を図ることが要求される。   In this way, when the absorption refrigeration machine is used during heating operation to improve the performance of the vapor compression chiller, the problem is the amount of exhaust heat available in the absorption refrigeration machine, and the amount of exhaust heat is sufficient. Even if the amount of exhaust heat is small, it is required to improve the performance of the vapor compression refrigerator by some method.

そこで本願発明は、蒸気圧縮式冷凍機と吸収式冷凍機を組合せて構成される冷凍装置において、冷房運転時と暖房運転時の双方において性能改善効果を得ることを主たる目的としてなされたものである。   Therefore, the present invention is mainly intended to obtain a performance improvement effect in both the cooling operation and the heating operation in the refrigeration apparatus configured by combining the vapor compression refrigerator and the absorption refrigerator. .

本願発明ではかかる課題を解決するための具体的手段として次のような構成を採用している。   In the present invention, the following configuration is adopted as a specific means for solving such a problem.

本願の第1の発明では、蒸気圧縮式冷凍機Xとエンジン等の排熱で駆動される吸収式冷凍機Yを備えて構成される冷凍装置において、上記吸収式冷凍機Yの吸収器12に流入する溶液を空冷式の過冷却熱交換器15によって過冷却して上記吸収器12へ流入させる一方、上記蒸気圧縮式冷凍機Xの冷媒と、上記吸収式冷凍機Yの上記吸収器12の出口から溶液ポンプ17を経て溶液熱交換器16に至る管路67から分岐した溶液との間で熱交換を行なう熱回収熱交換器6を設け、該熱回収熱交換器6での熱交換後の上記蒸気圧縮式冷凍機Xの冷媒は上記吸収式冷凍機Yの上記蒸発器13へ、上記吸収式冷凍機Yの溶液は上記発生器11にそれぞれ流入させるとともに、上記溶液ポンプ17の出口から熱回収熱交換器6に至る管路67に電磁弁41を設け、該電磁弁41を、上記蒸気圧縮式冷凍機Xの冷房運転時には開弁する一方、上記蒸気圧縮式冷凍機Xの暖房運転時には、上記四路切換弁2を切換え、蒸気圧縮式冷凍機Xの冷媒を冷房運転とは逆方向に流入させ、溶液ポンプ17と過冷却熱交換器用ファン20を運転し、上記蒸発器13における上記蒸気圧縮式冷凍機Xの冷媒温度が設定冷媒温度以上のとき閉弁し、該設定冷媒温度未満のとき開弁し、又は上記吸収式冷凍機Yの上記過冷却器15の出口側の溶液温度が設定冷媒温度以上のとき閉弁し、該設定溶液温度未満のとき開弁するように構成したことを特徴としている。   In the first invention of the present application, in the refrigeration apparatus configured to include the vapor compression refrigeration machine X and the absorption refrigeration machine Y driven by exhaust heat of the engine or the like, the absorber 12 of the absorption refrigeration machine Y includes While the inflowing solution is supercooled by the air-cooled supercooling heat exchanger 15 and flows into the absorber 12, the refrigerant of the vapor compression refrigerator X and the absorber 12 of the absorption refrigerator Y A heat recovery heat exchanger 6 is provided for exchanging heat with the solution branched from the pipe 67 leading from the outlet to the solution heat exchanger 16 through the solution pump 17, and after heat exchange in the heat recovery heat exchanger 6. The refrigerant of the vapor compression refrigerator X flows into the evaporator 13 of the absorption refrigerator Y, and the solution of the absorption refrigerator Y flows into the generator 11 and from the outlet of the solution pump 17. Solenoid valve on pipe 67 leading to heat recovery heat exchanger 6 1 is opened during the cooling operation of the vapor compression refrigeration machine X, while the four-way switching valve 2 is switched during the heating operation of the vapor compression refrigeration machine X. The refrigerant of the refrigerator X is caused to flow in the opposite direction to the cooling operation, the solution pump 17 and the supercooling heat exchanger fan 20 are operated, and the refrigerant temperature of the vapor compression refrigerator X in the evaporator 13 is set to the set refrigerant temperature. When the temperature is lower than the set refrigerant temperature, the valve is closed, or when the solution temperature on the outlet side of the supercooler 15 of the absorption refrigerator Y is equal to or higher than the set refrigerant temperature, the valve is closed. A feature is that the valve is opened when the temperature is lower than the solution temperature.

本願の第2の発明では、上記第1の発明に係る冷凍装置において、上記吸収式冷凍機Yの上記吸収器12の入口側の管路66と上記蒸発器13の冷媒入口側の管路62を、電磁弁43を備えた管路73によって接続し、上記蒸気圧縮式冷凍機Xの冷房運転時には上記電磁弁43を閉弁し、暖房運転時には上記電磁弁43を開弁するように構成したことを特徴としている。   In the second invention of the present application, in the refrigeration apparatus according to the first invention, the inlet-side pipe 66 of the absorber 12 of the absorption refrigerator Y and the refrigerant inlet-side pipe 62 of the evaporator 13 are used. Are connected by a pipe line 73 provided with an electromagnetic valve 43, and the electromagnetic valve 43 is closed during the cooling operation of the vapor compression refrigerator X, and the electromagnetic valve 43 is opened during the heating operation. It is characterized by that.

本願の第3の発明では、上記第1の発明に係る冷凍装置において、上記吸収式冷凍機Yの上記吸収器12の入口側の管路66を、電磁弁43を備えた管路74を介して上記蒸発器13に接続し、上記蒸気圧縮式冷凍機Xの冷房運転時には上記電磁弁43を閉弁し、暖房運転時には上記電磁弁43を開弁するように構成したことを特徴としている。   According to a third invention of the present application, in the refrigeration apparatus according to the first invention, the pipe 66 on the inlet side of the absorber 12 of the absorption chiller Y is connected to the pipe 74 provided with the electromagnetic valve 43. The electromagnetic valve 43 is connected to the evaporator 13, and the electromagnetic valve 43 is closed during the cooling operation of the vapor compression refrigerator X, and the electromagnetic valve 43 is opened during the heating operation.

本願の第4の発明では、上記第1、第2又は第3の発明に係る冷凍装置において、上記吸収式冷凍機Yの上記吸収器12の入口側の管路66に電磁弁44を設け、上記蒸気圧縮式冷凍機Xの冷房運転時には上記電磁弁44を閉弁し、暖房運転時には上記電磁弁44を開弁するように構成したことを特徴としている。   In the fourth invention of the present application, in the refrigeration apparatus according to the first, second, or third invention, the electromagnetic valve 44 is provided in the pipe line 66 on the inlet side of the absorber 12 of the absorption refrigerator Y, The electromagnetic compression valve 44 is closed during the cooling operation of the vapor compression refrigerator X, and the electromagnetic valve 44 is opened during the heating operation.

本願の第5の発明では、上記第1、第2、第3又は第4の発明に係る冷凍装置において、上記発生器11の排熱入口側の管路60に電磁弁45を設け、冷房運転時には上記電磁弁45を開弁する一方、暖房運転時には上記発生器11の溶液温度が設定溶液温度以上のとき上記電磁弁45を閉弁し、該設定溶液温度未満のとき上記電磁弁45を開弁させるように構成したことを特徴としている。   According to a fifth invention of the present application, in the refrigeration apparatus according to the first, second, third or fourth invention, an electromagnetic valve 45 is provided in the pipe line 60 on the exhaust heat inlet side of the generator 11 for cooling operation. The solenoid valve 45 is sometimes opened, while the solenoid valve 45 is closed when the solution temperature of the generator 11 is equal to or higher than the set solution temperature during heating operation, and the solenoid valve 45 is opened when the temperature is lower than the set solution temperature. It is characterized by being configured to be valved.

本願の第6の発明では、上記第3又は第4の発明に係る冷凍装置において、上記蒸発器13における溶液散布用の散布器と冷媒液散布用の散布器を、別体構成又は共用可能な一体構成としたことを特徴としている。   In the sixth invention of the present application, in the refrigeration apparatus according to the third or fourth invention, the sprayer for spraying the solution and the sprayer for spraying the refrigerant liquid in the evaporator 13 can be configured separately or shared. It is characterized by having an integrated structure.

本願の第7の発明では、上記第1、第2、第3、第4、第5又は第6の発明に係る冷凍装置において、上記蒸発器13を、冷媒液が一過性で該蒸発器13の伝熱面を流れ、未蒸発の冷媒液は上記吸収器12側へ移動して該吸収器12側の溶液に吸収されるように構成したことを特徴としている。   According to a seventh invention of the present application, in the refrigeration apparatus according to the first, second, third, fourth, fifth or sixth invention, the evaporator 13 is provided with a transient refrigerant liquid. The refrigerant liquid which flows through the heat transfer surface 13 and has not evaporated yet moves to the absorber 12 side and is absorbed by the solution on the absorber 12 side.

本願の第8の発明では、上記第1、第2、第3、第4、第5、第6又は第7の発明に係る冷凍装置において、上記蒸気圧縮式冷凍機Xを複数台設置するとともに該各蒸気圧縮式冷凍機Xのそれぞれに上記熱回収熱交換器6を設けて該各蒸気圧縮式冷凍機Xの冷媒の排熱をそれぞれ回収し、該各熱回収熱交換器6で回収された排熱を一台の吸収式冷凍機Yの上記発生器11に供給するように構成したことを特徴としている。   In the eighth invention of the present application, in the refrigeration apparatus according to the first, second, third, fourth, fifth, sixth or seventh invention, a plurality of the vapor compression refrigerators X are installed. Each of the vapor compression refrigeration machines X is provided with the heat recovery heat exchanger 6 to recover the exhaust heat of the refrigerant of each of the vapor compression refrigeration machines X, and is recovered by each of the heat recovery heat exchangers 6. The exhaust heat is configured to be supplied to the generator 11 of one absorption refrigerator Y.

本願発明では次のような効果が得られる。   In the present invention, the following effects can be obtained.

(a) 本願の第1の発明
本願の第1の発明では、図1に例示するように、蒸気圧縮式冷凍機Xとエンジン等の排熱で駆動される吸収式冷凍機Yとを備えて構成される冷凍装置において、上記吸収式冷凍機Yの吸収器12に流入する溶液を空冷式の過冷却熱交換器15によって過冷却して上記吸収器12へ流入させる一方、上記蒸気圧縮式冷凍機Xの冷媒と、上記吸収式冷凍機Yの上記吸収器12の出口から溶液ポンプ17を経て溶液熱交換器16に至る管路67から分岐した溶液との間で熱交換を行なう熱回収熱交換器6を設け、該熱回収熱交換器6での熱交換後の上記蒸気圧縮式冷凍機Xの冷媒は上記吸収式冷凍機Yの上記蒸発器13へ、上記吸収式冷凍機Yの溶液は上記発生器11にそれぞれ流入させるとともに、上記管路67に電磁弁41を設け、該電磁弁41を、上記蒸気圧縮式冷凍機Xの冷房運転時には開弁する一方、上記蒸気圧縮式冷凍機Xの暖房運転時には、上記四路切換弁2を切換え、蒸気圧縮式冷凍機Xの冷媒を冷房運転とは逆方向に流入させ、溶液ポンプ17と過冷却熱交換器用ファン20を運転し、上記蒸発器13における上記蒸気圧縮式冷凍機Xの冷媒温度が設定冷媒温度以上のとき閉弁し、該設定冷媒温度未満のとき開弁し、又は上記吸収式冷凍機Yの上記過冷却器15の出口側の溶液温度が設定冷媒温度以上のとき閉弁し、該設定溶液温度未満のとき開弁するように構成している。
(A) 1st invention of this application In 1st invention of this application, as illustrated in FIG. 1, it has the vapor | steam compression refrigerator X and the absorption refrigerator Y driven by exhaust heat, such as an engine. In the constructed refrigeration apparatus, the solution flowing into the absorber 12 of the absorption refrigerator Y is supercooled by the air-cooled supercooling heat exchanger 15 to flow into the absorber 12, while the vapor compression refrigeration is performed. Heat recovery heat for heat exchange between the refrigerant of the machine X and the solution branched from the pipe 67 from the outlet of the absorber 12 of the absorption refrigerator Y to the solution heat exchanger 16 via the solution pump 17 An exchanger 6 is provided, and the refrigerant of the vapor compression refrigerator X after heat exchange in the heat recovery heat exchanger 6 is transferred to the evaporator 13 of the absorption refrigerator Y to the solution of the absorption refrigerator Y. Respectively flows into the generator 11 and electromagnetically enters the pipe 67. 41, and the solenoid valve 41 is opened during the cooling operation of the vapor compression refrigerator X, while the four-way switching valve 2 is switched during the heating operation of the vapor compression refrigerator X, and the vapor compression type The refrigerant of the refrigerator X is caused to flow in the opposite direction to the cooling operation, the solution pump 17 and the supercooling heat exchanger fan 20 are operated, and the refrigerant temperature of the vapor compression refrigerator X in the evaporator 13 is set to the set refrigerant temperature. When the temperature is lower than the set refrigerant temperature, the valve is closed, or when the solution temperature on the outlet side of the supercooler 15 of the absorption refrigerator Y is equal to or higher than the set refrigerant temperature, the valve is closed. The valve is configured to open when the temperature is lower than the solution temperature.

従って、上記蒸気圧縮式冷凍機Xの冷房運転時と暖房運転時においてそれぞれ以下の作用効果が得られる。
(a−1)上記蒸気圧縮式冷凍機Xの冷房運転時には、上記電磁弁41が開弁される。従って、上記熱回収熱交換器6において上記蒸気圧縮式冷凍機Xの圧縮機1で圧縮された後の冷媒と上記吸収式冷凍機Yの吸収器12を出た溶液との間で熱交換を行い、熱交換で温度が上昇した後の溶液が上記吸収式冷凍機Yの発生器11に流入することで、上記蒸気圧縮式冷凍機Xの冷媒排熱が上記発生器11の駆動熱源に利用され、該発生器11をエンジン等の排熱のみで駆動する場合に比して、排熱の有効利用が促進される。
Therefore, the following functions and effects can be obtained during the cooling operation and the heating operation of the vapor compression refrigerator X, respectively.
(A-1) During the cooling operation of the vapor compression refrigerator X, the solenoid valve 41 is opened. Therefore, the heat recovery heat exchanger 6 exchanges heat between the refrigerant compressed by the compressor 1 of the vapor compression refrigeration machine X and the solution exiting the absorber 12 of the absorption refrigeration machine Y. The solution after the temperature is increased by heat exchange flows into the generator 11 of the absorption refrigeration machine Y, so that the refrigerant exhaust heat of the vapor compression refrigeration machine X is used as a driving heat source for the generator 11. In addition, effective use of exhaust heat is promoted as compared with the case where the generator 11 is driven only by exhaust heat from an engine or the like.

また、上記熱回収熱交換器6で熱交換した後の上記蒸気圧縮式冷凍機Xの冷媒を上記吸収式冷凍機Yの蒸発器13において該吸収式冷凍機Yの凝縮器14からの冷媒によって上記蒸気圧縮式冷凍機Xの冷媒を過冷却することで、利用側熱交換器3における蒸気圧縮式冷凍機Xの冷媒の入口の比エンタルピーが低下し、これによって蒸気圧縮式冷凍機Xの冷房性能が改善される。   Further, the refrigerant of the vapor compression refrigeration machine X after the heat exchange by the heat recovery heat exchanger 6 is changed by the refrigerant from the condenser 14 of the absorption refrigeration machine Y in the evaporator 13 of the absorption refrigeration machine Y. By supercooling the refrigerant of the vapor compression refrigeration machine X, the specific enthalpy of the refrigerant inlet of the vapor compression refrigeration machine X in the use-side heat exchanger 3 is lowered, thereby cooling the vapor compression refrigeration machine X. Performance is improved.

さらに、上記蒸気圧縮式冷凍機Xの冷媒の過冷却を上記吸収式冷凍機Yの上記蒸発器13において該吸収式冷凍機Yの冷媒の蒸発熱を利用して行なうことで、換言すれば、上記吸収式冷凍機Y側の冷媒の蒸発を上記蒸気圧縮式冷凍機X側の冷媒によって行なうことで、例えば、該蒸発器13における吸収式冷凍機Y該の冷媒の蒸発を冷水によって行なう従来構造に場合に比して、該蒸発器13での上記冷媒の蒸発温度を高くすることができ、その結果、上記吸収式冷凍機Yが小型化され、該吸収式冷凍機Yにおける冷熱の有効利用が促進される。   Furthermore, the refrigerant of the vapor compression refrigeration machine X is supercooled by using the evaporation heat of the refrigerant of the absorption refrigeration machine Y in the evaporator 13 of the absorption refrigeration machine Y, in other words, By evaporating the refrigerant on the absorption refrigerator Y side with the refrigerant on the vapor compression refrigerator X side, for example, the absorption refrigerator Y in the evaporator 13 evaporates the refrigerant with cold water. In comparison with the case, the evaporation temperature of the refrigerant in the evaporator 13 can be increased, and as a result, the absorption refrigeration machine Y is downsized, and effective use of cold heat in the absorption refrigeration machine Y is achieved. Is promoted.

(a−2)一方、上記蒸気圧縮式冷凍機Xの暖房運転時には、上記四路切換弁2を切換え、蒸気圧縮式冷凍機Xの冷媒を冷房運転とは逆方向に流入させ、上記吸収式冷凍機Yの溶液ポンプ17と過冷却熱交換器用ファン20が運転され、該過冷却熱交換器15と吸収器12の間を循環する溶液との熱交換によって上記蒸気圧縮式冷凍機X側の冷媒が外気より熱を吸熱するが、この場合、上記電磁弁41は、上記蒸発器13における蒸気圧縮式冷凍機Xの冷媒温度に基づいて、又は上記吸収式冷凍機Yの上記過冷却器15の出口側の溶液温度に基づいて、開閉弁される。   (A-2) On the other hand, at the time of heating operation of the vapor compression refrigeration machine X, the four-way switching valve 2 is switched, and the refrigerant of the vapor compression refrigeration machine X is caused to flow in the opposite direction to the cooling operation. The solution pump 17 of the refrigerator Y and the fan 20 for the supercooling heat exchanger are operated, and heat exchange with the solution circulating between the supercooling heat exchanger 15 and the absorber 12 causes the above-mentioned vapor compression refrigerator X side. The refrigerant absorbs heat from the outside air. In this case, the solenoid valve 41 is based on the refrigerant temperature of the vapor compression refrigerator X in the evaporator 13 or the supercooler 15 of the absorption refrigerator Y. The valve is opened and closed based on the solution temperature on the outlet side.

(a−2−1)上記電磁弁41が、吸収式冷凍機Yの蒸発器13における蒸気圧縮式冷凍機Xの冷媒温度に基づいて開閉弁される場合には、上記電磁弁41は、上記蒸気圧縮式冷凍機X側の冷媒温度が設定冷媒温度以上のとき閉弁され、該設定冷媒温度未満のとき開弁される。   (A-2-1) When the solenoid valve 41 is opened and closed based on the refrigerant temperature of the vapor compression refrigerator X in the evaporator 13 of the absorption refrigerator Y, the solenoid valve 41 is The valve is closed when the refrigerant temperature on the vapor compression refrigerator X side is equal to or higher than the set refrigerant temperature, and is opened when the refrigerant temperature is lower than the set refrigerant temperature.

上記蒸気圧縮式冷凍機X側の冷媒温度が設定冷媒温度以上のときは、上記蒸発器13における上記蒸気圧縮式冷凍機X側の冷媒との熱交換に供される上記吸収式冷凍機Y側の上記過冷却熱交換器15と上記吸収器12の間を循環する溶液の温度も高く、上記吸収器12を流れる上記溶液と上記蒸発器13を循環する上記蒸気圧縮式冷凍機X側の冷媒との熱交換性能が良好に維持されるので、上記過冷却熱交換器15側へ上記発生器11側の溶液を循環させてその温度上昇を図る必要はなく、従って、上記電磁弁41は閉弁される。   When the refrigerant temperature on the vapor compression refrigerator X side is equal to or higher than the set refrigerant temperature, the absorption refrigerator Y side used for heat exchange with the refrigerant on the vapor compression refrigerator X side in the evaporator 13 The temperature of the solution circulating between the supercooling heat exchanger 15 and the absorber 12 is also high, and the solution on the vapor compression refrigeration machine X side that circulates the solution flowing through the absorber 12 and the evaporator 13 is used. Therefore, it is not necessary to increase the temperature by circulating the solution on the generator 11 side to the supercooling heat exchanger 15 side. Therefore, the solenoid valve 41 is closed. To be spoken.

しかし、上記蒸気圧縮式冷凍機X側の冷媒温度が設定冷媒温度未満であるときは、上記蒸発器13における上記蒸気圧縮式冷凍機X側の冷媒との熱交換に供される上記吸収式冷凍機Y側の上記過冷却熱交換器15と上記吸収器12の間を循環する溶液の温度が低下し、上記吸収器12を流れる上記溶液と上記蒸発器13を循環する上記蒸気圧縮式冷凍機X側の冷媒との熱交換性能が低下するとともに、上記過冷却熱交換器15に着霜を生じるおそれもある。この場合、上記電磁弁41が開弁されることで、上記過冷却熱交換器15側へ上記発生器11側の温度の高い溶液が循環し、これによって上記溶液温度が上昇し、上記蒸発器13での熱交換性能が回復されるとともに、上記過冷却熱交換器15での着霜の発生が未然に防止される。従って着霜時における暖房能力の低下がないのに加えて、着霜を除去するための不快な運転も発生しない。   However, when the refrigerant temperature on the vapor compression refrigerator X side is lower than the set refrigerant temperature, the absorption refrigeration used for heat exchange with the refrigerant on the vapor compression refrigerator X side in the evaporator 13. The temperature of the solution circulating between the supercooling heat exchanger 15 and the absorber 12 on the machine Y side decreases, and the vapor compression refrigerator that circulates the solution flowing through the absorber 12 and the evaporator 13 While heat exchange performance with the refrigerant on the X side is deteriorated, frost formation may occur in the supercooling heat exchanger 15. In this case, when the electromagnetic valve 41 is opened, a solution having a high temperature on the generator 11 side circulates to the supercooling heat exchanger 15 side, thereby increasing the solution temperature, and the evaporator 13 is recovered, and frost formation in the supercooling heat exchanger 15 is prevented. Therefore, in addition to no reduction in heating capacity during frost formation, uncomfortable operation for removing frost does not occur.

即ち、上記蒸気圧縮式冷凍機Xの冷房運転時及び暖房運転時の双方において、その性能改善効果が得られ、実用性に富む冷凍装置が得られることになる。   That is, the performance improvement effect is obtained in both the cooling operation and the heating operation of the vapor compression refrigerator X, and a practical refrigeration apparatus is obtained.

(a−2−2)上記蒸気圧縮式冷凍機Xが暖房運転される場合において、上記電磁弁41が、吸収式冷凍機Yの過冷却器15の出口側の溶液温度に基づいて開閉弁される場合には、上記電磁弁41は、上記吸収式冷凍機Yの溶液温度が設定冷媒温度以上のとき閉弁され、該設定溶液温度未満のとき開弁される。   (A-2-2) When the vapor compression refrigerator X is operated for heating, the solenoid valve 41 is opened and closed based on the solution temperature on the outlet side of the supercooler 15 of the absorption refrigerator Y. In this case, the solenoid valve 41 is closed when the solution temperature of the absorption refrigeration machine Y is equal to or higher than the set refrigerant temperature, and is opened when the temperature is lower than the set solution temperature.

上記吸収式冷凍機Yの溶液温度が設定冷媒温度以上のときは、上記蒸発器13における上記溶液と上記蒸気圧縮式冷凍機X側の冷媒との熱交換性能が良好に維持されるので、上記過冷却熱交換器15側へ上記発生器11側の溶液を循環させてその温度上昇を図る必要はなく、従って、上記電磁弁41は閉弁される。   When the solution temperature of the absorption refrigeration machine Y is equal to or higher than the set refrigerant temperature, the heat exchange performance between the solution in the evaporator 13 and the refrigerant on the vapor compression refrigeration machine X side is favorably maintained. It is not necessary to circulate the solution on the generator 11 side to the supercooling heat exchanger 15 side to increase its temperature, and therefore the solenoid valve 41 is closed.

しかし、上記吸収式冷凍機Yの溶液温度が設定溶液温度未満であるときは、上記蒸発器13における上記溶液と上記蒸気圧縮式冷凍機X側の冷媒との熱交換性能が低下するとともに、上記過冷却熱交換器15に着霜を生じるおそれもある。この場合、上記電磁弁41が開弁されることで、上記過冷却熱交換器15側へ上記発生器11側の温度の高い溶液が循環し、これによって上記溶液温度が上昇し、上記蒸発器13での熱交換性能が回復されるとともに、上記過冷却熱交換器15での着霜の発生が未然に防止される。従って着霜時における暖房能力の低下がないのに加えて、着霜を除去するための不快な運転もない。   However, when the solution temperature of the absorption refrigerator Y is lower than the set solution temperature, the heat exchange performance between the solution in the evaporator 13 and the refrigerant on the vapor compression refrigerator X side decreases, and the above There is also a possibility that frost formation may occur in the subcooling heat exchanger 15. In this case, when the electromagnetic valve 41 is opened, a solution having a high temperature on the generator 11 side circulates to the supercooling heat exchanger 15 side, thereby increasing the solution temperature, and the evaporator 13 is recovered, and frost formation in the supercooling heat exchanger 15 is prevented. Accordingly, there is no unpleasant operation for removing frost as well as no reduction in heating capacity during frost formation.

即ち、上記蒸気圧縮式冷凍機Xの冷房運転時と暖房運転時の双方において、その性能改善効果が得られ、実用性に富む冷凍装置が得られることになる。   That is, the performance improvement effect is obtained in both the cooling operation and the heating operation of the vapor compression refrigerator X, and a practical refrigeration apparatus is obtained.

(a−3)さらに、蒸気圧縮式冷凍機Xの冷房運転時には、該蒸気圧縮式冷凍機Xの冷媒の凝縮が上記冷媒熱回収熱交換器6での熱回収によって行なわれ、上記暖房運転時には、該蒸気圧縮式冷凍機Xの冷媒の蒸発が上記冷媒熱回収熱交換器6での熱回収によって行なわれることから、従来の蒸気圧縮式冷凍機において必須の構成要素として備えられていた放熱側熱交換器が不要となり、上記蒸気圧縮式冷凍機Xの構造の簡略化が図られる。   (A-3) Furthermore, during the cooling operation of the vapor compression refrigeration machine X, the refrigerant of the vapor compression refrigeration machine X is condensed by heat recovery in the refrigerant heat recovery heat exchanger 6, and during the heating operation. Since the evaporation of the refrigerant of the vapor compression refrigerator X is performed by heat recovery in the refrigerant heat recovery heat exchanger 6, the heat radiation side provided as an essential component in the conventional vapor compression refrigerator A heat exchanger becomes unnecessary, and the structure of the vapor compression refrigerator X can be simplified.

(b) 本願の第2の発明
本願の第2の発明に係る冷凍装置では、図2に例示するように、上記吸収式冷凍機Yの上記吸収器12の入口側の管路66と上記蒸発器13の冷媒入口側の管路62を、電磁弁43を備えた管路73によって接続し、上記蒸気圧縮式冷凍機Xの冷房運転時には上記電磁弁43を閉弁し、暖房運転時には上記四路切換弁2を切換え、蒸気圧縮式冷凍機Xの冷媒を冷房運転とは逆方向に流入させ、上記電磁弁43を開弁するように構成している。
(B) Second Invention of the Present Application In the refrigeration apparatus according to the second invention of the present application, as illustrated in FIG. 2, the pipe line 66 on the inlet side of the absorber 12 of the absorption refrigerator Y and the evaporation described above. The refrigerant inlet side pipe line 62 of the condenser 13 is connected by a pipe line 73 provided with an electromagnetic valve 43, and the electromagnetic valve 43 is closed during the cooling operation of the vapor compression refrigeration machine X, and the above four valves are used during the heating operation. The path switching valve 2 is switched, the refrigerant of the vapor compression refrigerator X is caused to flow in the direction opposite to the cooling operation, and the electromagnetic valve 43 is opened.

従って、この発明に係る冷凍装置Zによれば、上記(a)に記載の効果に加えて以下のような特有の効果が得られる。   Therefore, according to the refrigeration apparatus Z according to the present invention, the following specific effects can be obtained in addition to the effects described in (a) above.

(b−1)上記蒸気圧縮式冷凍機Xの冷房運転時には、上記電磁弁43が閉弁されることで、その回路構成は、上記第1の発明に係る冷凍装置の冷房運転時における回路構成と同様となり、これと同様の作用効果が得られる。   (B-1) During the cooling operation of the vapor compression refrigeration machine X, the solenoid valve 43 is closed so that the circuit configuration is the circuit configuration during the cooling operation of the refrigeration apparatus according to the first invention. The same effects can be obtained.

(b−2)上記蒸気圧縮式冷凍機Xの暖房運転時には、上記吸収式冷凍機Yの溶液ポンプ17と過冷却熱交換器用ファン20が運転される。この状態で、上記電磁弁43が開弁されることで、上記吸収式冷凍機Yの上記過冷却熱交換器15と上記吸収器12の間を循環する溶液の一部が上記蒸発器13側に循環し、該蒸発器13において上記溶液と上記蒸気圧縮式冷凍機X側の冷媒との間で熱交換が行なわれ、上記吸収器12を介して間接的に上記蒸発器13で熱交換が行なわれる場合に比して、熱交換性能がさらに向上することになる。   (B-2) During the heating operation of the vapor compression refrigerator X, the solution pump 17 and the supercooling heat exchanger fan 20 of the absorption refrigerator Y are operated. In this state, when the electromagnetic valve 43 is opened, a part of the solution circulating between the supercooling heat exchanger 15 and the absorber 12 of the absorption refrigeration machine Y is part of the evaporator 13 side. In the evaporator 13, heat exchange is performed between the solution and the refrigerant on the vapor compression refrigerator X side, and heat exchange is indirectly performed in the evaporator 13 via the absorber 12. The heat exchange performance is further improved as compared with the case where it is performed.

(b−3)上記(b−1)及び(b−2)の相乗効果として、上記蒸気圧縮式冷凍機Xの冷房運転時と暖房運転時の双方において、その性能改善効果が得られ、実用性に富む冷凍装置が得られることになる。   (B-3) As a synergistic effect of the above (b-1) and (b-2), the performance improvement effect can be obtained in both the cooling operation and the heating operation of the vapor compression refrigeration machine X. A refrigeration apparatus rich in nature will be obtained.

(b−4)一方、上記吸収式冷凍機Yの上記吸収器12の入口側の管路66と上記蒸発器13の冷媒入口側の管路62を、電磁弁43を備えた管路69によって接続し、暖房運転時には上記管路62を上記過冷却熱交換器15から上記吸収器12へ流れる溶液の管路として兼用しているので、別途に管路を設ける場合に比して、上記蒸発器13の入口側の管路構成が簡略化される。   (B-4) On the other hand, the pipe line 66 on the inlet side of the absorber 12 of the absorption refrigerator Y and the pipe line 62 on the refrigerant inlet side of the evaporator 13 are connected by a pipe line 69 including an electromagnetic valve 43. Since the pipe 62 is also used as a pipe for the solution flowing from the supercooling heat exchanger 15 to the absorber 12 during heating operation, the evaporation is performed as compared with a case where a pipe is separately provided. The pipe line configuration on the inlet side of the vessel 13 is simplified.

(c) 本願の第3の発明
本願の第3の発明に係る冷凍装置では、図3に例示するように、上記吸収式冷凍機Yの上記吸収器12の入口側の管路66を、電磁弁43を備えた管路74を介して上記蒸発器13に接続し、上記蒸気圧縮式冷凍機Xの冷房運転時には上記電磁弁43を閉弁し、暖房運転時には上記四路切換弁2を切換え、蒸気圧縮式冷凍機Xの冷媒を冷房運転とは逆方向に流入させ、上記電磁弁43を開弁するように構成している。
(C) Third invention of the present application In the refrigeration apparatus according to the third invention of the present application, as illustrated in FIG. 3, the conduit 66 on the inlet side of the absorber 12 of the absorption refrigerator Y is electromagnetically coupled. Connected to the evaporator 13 via a pipe line 74 provided with a valve 43, the electromagnetic valve 43 is closed during the cooling operation of the vapor compression refrigerator X, and the four-way switching valve 2 is switched during the heating operation. The refrigerant of the vapor compression refrigerator X is made to flow in the opposite direction to the cooling operation, and the electromagnetic valve 43 is opened.

従って、この発明に係る冷凍装置Zによれば、上記(a)に記載の効果に加えて以下のような特有の効果が得られる。   Therefore, according to the refrigeration apparatus Z according to the present invention, the following specific effects can be obtained in addition to the effects described in (a) above.

(c−1)上記蒸気圧縮式冷凍機Xの冷房運転時には、上記電磁弁43が閉弁されることで、その回路構成は、上記第1の発明に係る冷凍装置の冷房運転時における回路構成と同様となり、これと同様の作用効果が得られる。   (C-1) During the cooling operation of the vapor compression refrigeration machine X, the solenoid valve 43 is closed so that the circuit configuration is the circuit configuration during the cooling operation of the refrigeration apparatus according to the first invention. The same effects can be obtained.

(c−2)上記蒸気圧縮式冷凍機Xの暖房運転時には、上記吸収式冷凍機Yの溶液ポンプ17と過冷却熱交換器用ファン20が運転される。この状態で、上記電磁弁43が開弁されることで、上記吸収式冷凍機Yの上記過冷却熱交換器15と上記吸収器12の間を循環する溶液の一部が上記蒸発器13側に循環し、該蒸発器13において上記溶液と上記蒸気圧縮式冷凍機X側の冷媒との間で熱交換が行なわれ、上記吸収器12を介して間接的に上記蒸発器13で熱交換が行なわれる場合に比して、熱交換性能がさらに向上することになる。   (C-2) During the heating operation of the vapor compression refrigerator X, the solution pump 17 and the supercooling heat exchanger fan 20 of the absorption refrigerator Y are operated. In this state, when the electromagnetic valve 43 is opened, a part of the solution circulating between the supercooling heat exchanger 15 and the absorber 12 of the absorption refrigeration machine Y is part of the evaporator 13 side. In the evaporator 13, heat exchange is performed between the solution and the refrigerant on the vapor compression refrigerator X side, and heat exchange is indirectly performed in the evaporator 13 via the absorber 12. The heat exchange performance is further improved as compared with the case where it is performed.

(c−3)上記(c−1)及び(c−2)の相乗効果として、上記蒸気圧縮式冷凍機Xの冷房運転時と暖房運転時の双方において、その性能改善効果が得られ、実用性に富む冷凍装置が得られることになる。   (C-3) As a synergistic effect of the above (c-1) and (c-2), the performance improvement effect is obtained in both the cooling operation and the heating operation of the vapor compression refrigeration machine X. A refrigeration apparatus rich in nature will be obtained.

(c−4)一方、上記吸収式冷凍機Yの上記吸収器12の入口側の管路66を、電磁弁43を備えた管路70を介して上記蒸発器13に接続し、暖房運転時には上記管路70を通して、上記過冷却熱交換器15からの溶液を直接上記蒸発器13側へ流入させるようにしているので、該管路70の上記蒸発器13側への接続構造を、該蒸発器13での熱交換が効率良く行なわれるように独自に設定することができ、これによって上記蒸発器13での熱交換性能の向上を図ることができる。   (C-4) On the other hand, the pipe line 66 on the inlet side of the absorber 12 of the absorption refrigeration machine Y is connected to the evaporator 13 via the pipe line 70 provided with the electromagnetic valve 43, and during the heating operation. Since the solution from the supercooling heat exchanger 15 is caused to flow directly to the evaporator 13 side through the pipe line 70, the connection structure of the pipe line 70 to the evaporator 13 side is used as the evaporation structure. The heat exchange in the evaporator 13 can be set uniquely so that the heat exchange can be performed efficiently, whereby the heat exchange performance in the evaporator 13 can be improved.

(d) 本願の第4の発明
本願の第4の発明に係る冷凍装置では、図4又は図5に例示するように、上記吸収式冷凍機Yの上記吸収器12の入口側の管路66に電磁弁44を設け、上記蒸気圧縮式冷凍機Xの冷房運転時には上記電磁弁44を閉弁し、暖房運転時には上記四路切換弁2を切換え、蒸気圧縮式冷凍機Xの冷媒を冷房運転とは逆方向に流入させ、上記電磁弁44を開弁するように構成している。
(D) Fourth Invention of the Present Application In the refrigeration apparatus according to the fourth invention of the present application, as illustrated in FIG. 4 or FIG. 5, a pipe line 66 on the inlet side of the absorber 12 of the absorption refrigeration machine Y. Is provided with a solenoid valve 44, the solenoid valve 44 is closed during the cooling operation of the vapor compression refrigerator X, the four-way switching valve 2 is switched during the heating operation, and the refrigerant of the vapor compression refrigerator X is cooled. The solenoid valve 44 is configured to open in the reverse direction.

従って、この発明に係る冷凍装置Zによれば、上記(b)、又は(c)に記載の効果に加えて以下のような特有の効果が得られる。   Therefore, according to the refrigeration apparatus Z according to the present invention, in addition to the effects described in the above (b) or (c), the following specific effects can be obtained.

(d−1)上記蒸気圧縮式冷凍機Xの冷房運転時には、上記電磁弁44が開弁されることで、その回路構成は、上記第2又は第3の発明に係る冷凍装置の冷房運転時における回路構成と同様となり、これと同様の作用効果が得られる。   (D-1) When the vapor compression refrigerator X is in the cooling operation, the solenoid valve 44 is opened so that the circuit configuration is during the cooling operation of the refrigeration apparatus according to the second or third invention. The circuit configuration is similar to that in FIG.

(d−2)上記蒸気圧縮式冷凍機Xの暖房運転時には、上記吸収式冷凍機Yの溶液ポンプと過冷却熱交換器用ファン20が運転される。この状態で、上記電磁弁44が閉弁されることで、上記吸収式冷凍機Yの上記過冷却熱交換器15からの溶液の全量が上記蒸発器13側に循環し、該蒸発器13において上記溶液と上記蒸気圧縮式冷凍機X側の冷媒との間で熱交換が行なわれることから、例えば、上記過冷却熱交換器15からの溶液の一部を上記蒸発器13側に循環させて熱交換を行なわせる場合に比して、該蒸発器13での熱交換性能がより一層向上することになる。   (D-2) During the heating operation of the vapor compression refrigerator X, the solution pump of the absorption refrigerator Y and the supercooling heat exchanger fan 20 are operated. In this state, when the electromagnetic valve 44 is closed, the entire amount of the solution from the supercooling heat exchanger 15 of the absorption refrigeration machine Y circulates to the evaporator 13 side. Since heat exchange is performed between the solution and the refrigerant on the vapor compression refrigerator X side, for example, a part of the solution from the supercooling heat exchanger 15 is circulated to the evaporator 13 side. Compared with the case where heat exchange is performed, the heat exchange performance in the evaporator 13 is further improved.

(d−3)上記(d−1)及び(d−2)の相乗効果として、上記蒸気圧縮式冷凍機Xの冷房運転時と暖房運転時の双方において、その性能改善効果が得られ、実用性に富む冷凍装置が得られることになる。   (D-3) As a synergistic effect of the above (d-1) and (d-2), the performance improvement effect can be obtained in both the cooling operation and the heating operation of the vapor compression refrigeration machine X. A refrigeration apparatus rich in nature will be obtained.

(e) 本願の第5の発明
本願の第5の発明に係る冷凍装置によれば、図6に例示するように、上記発生器11の排熱入口側の管路60に電磁弁45を設け、冷房運転時には上記電磁弁45を開弁する一方、暖房運転時には上記発生器11の溶液温度が設定溶液温度以上のとき上記電磁弁45を閉弁し、該設定溶液温度未満のとき上記電磁弁45を開弁させるように構成している。
(E) Fifth Invention of the Present Application According to the refrigeration apparatus of the fifth invention of the present application, as illustrated in FIG. 6, the solenoid valve 45 is provided in the pipe line 60 on the exhaust heat inlet side of the generator 11. During the cooling operation, the electromagnetic valve 45 is opened, and during the heating operation, the electromagnetic valve 45 is closed when the solution temperature of the generator 11 is equal to or higher than the set solution temperature, and when the temperature is lower than the set solution temperature, the electromagnetic valve is opened. 45 is configured to open.

従って、この発明に係る冷凍装置Zによれば、上記(a)、(b)、(c)又は(d)に記載の効果に加えて以下のような特有の効果が得られる。   Therefore, according to the refrigeration apparatus Z according to the present invention, in addition to the effects described in (a), (b), (c) or (d), the following specific effects can be obtained.

(e−1)上記蒸気圧縮式冷凍機Xの冷房運転時には、上記電磁弁45が開弁されるので、その回路構成は、上記第1、第2、第3又は第4の発明に係る冷凍装置の冷房運転時における回路構成と同様となり、これと同様の作用効果が得られる。   (E-1) Since the electromagnetic valve 45 is opened during the cooling operation of the vapor compression refrigerator X, the circuit configuration thereof is the refrigeration according to the first, second, third or fourth invention. The circuit configuration is the same as that during the cooling operation of the apparatus, and the same operation and effect can be obtained.

(e−2)上記蒸気圧縮式冷凍機Xの暖房運転時には、上記四路切換弁2を切換え、蒸気圧縮式冷凍機Xの冷媒を冷房運転とは逆方向に流入させ、上記吸収式冷凍機Yの溶液ポンプ17と過冷却熱交換器用ファン20が運転され、該過冷却熱交換器15と吸収器12の間を循環する溶液との熱交換によって上記蒸気圧縮式冷凍機X側の冷媒が熱交換して蒸発されるが、その一方で、上記電磁弁45が、上記発生器11の溶液温度が設定溶液温度以上のときには閉弁され、該設定溶液温度未満のときには開弁される。   (E-2) During the heating operation of the vapor compression refrigeration machine X, the four-way switching valve 2 is switched so that the refrigerant of the vapor compression refrigeration machine X flows in the opposite direction to the cooling operation, and the absorption refrigeration machine The Y solution pump 17 and the supercooling heat exchanger fan 20 are operated, and the refrigerant on the vapor compression refrigerator X side is exchanged by heat exchange with the solution circulating between the supercooling heat exchanger 15 and the absorber 12. On the other hand, the electromagnetic valve 45 is closed when the solution temperature of the generator 11 is equal to or higher than the set solution temperature, and is opened when the temperature is lower than the set solution temperature.

従って、上記発生器11の溶液温度が設定溶液温度以上のときには、上記電磁弁45が閉弁され、上記発生器11へのエンジン等の排熱の供給が停止されることで、上記発生器11内の溶液温度が高くなり過ぎるのが防止される。この結果、上記冷媒熱回収熱交換器6での熱交換によって上記蒸気圧縮式冷凍機X側の冷媒温度が高くなり過ぎるのが抑制され、適正な暖房が実現される。   Accordingly, when the solution temperature of the generator 11 is equal to or higher than the set solution temperature, the electromagnetic valve 45 is closed, and supply of exhaust heat from the engine or the like to the generator 11 is stopped, so that the generator 11 is stopped. The solution temperature inside is prevented from becoming too high. As a result, it is suppressed that the refrigerant temperature on the vapor compression refrigeration machine X side becomes too high due to the heat exchange in the refrigerant heat recovery heat exchanger 6, and proper heating is realized.

一方、上記発生器11の溶液温度が設定溶液温度未満のときには、上記電磁弁45が開弁され、上記発生器11にエンジン等の排熱が供給されることで、上記発生器11内の溶液温度が過度に低下するのが防止される。この結果、上記冷媒熱回収熱交換器6での熱交換によって上記蒸気圧縮式冷凍機X側の冷媒温度が低くなり過ぎるのが抑制され、適正な暖房が実現される。   On the other hand, when the solution temperature of the generator 11 is lower than the set solution temperature, the electromagnetic valve 45 is opened, and exhaust heat from the engine or the like is supplied to the generator 11, so that the solution in the generator 11 is supplied. An excessive decrease in temperature is prevented. As a result, the heat exchange in the refrigerant heat recovery heat exchanger 6 prevents the refrigerant temperature on the vapor compression refrigeration machine X side from becoming too low, thereby realizing proper heating.

このように、上記電磁弁45を上記発生器11の溶液温度に基づいて開閉弁することで、上記蒸気圧縮式冷凍機Xでの暖房運転が常時適正に行なわれ、その暖房性能が向上するものである。   Thus, by opening and closing the solenoid valve 45 based on the solution temperature of the generator 11, the heating operation in the vapor compression refrigeration machine X is always properly performed, and the heating performance is improved. It is.

以上のように、この冷凍装置Zは、上記蒸気圧縮式冷凍機Xの冷房運転時と暖房運転時の双方においてその性能改善効果が得られることから、実用性に優れたものとなる。   As described above, the refrigeration apparatus Z is excellent in practicality since the performance improvement effect can be obtained in both the cooling operation and the heating operation of the vapor compression refrigerator X.

(f) 本願の第6の発明
本願の第6の発明に係る冷凍装置では、上記(d)、又は(e)に記載の効果に加えて以下のような特有の効果が得られる。即ち、この発明に係る冷凍装置では、図5又は図6に例示するように、上記蒸発器13における溶液散布用の散布器18と冷媒液散布用の散布器19を、別体構成又は共用可能な一体構成としている。
(F) Sixth invention of the present application In the refrigeration apparatus according to the sixth invention of the present application, in addition to the effects described in (d) or (e) above, the following specific effects are obtained. That is, in the refrigeration apparatus according to the present invention, as illustrated in FIG. 5 or FIG. 6, the sprayer 18 for spraying the solution and the sprayer 19 for spraying the refrigerant liquid in the evaporator 13 can be configured separately or shared. It has a one-piece construction.

従って、上記溶液散布用の散布器18と冷媒液散布用の散布器19を別体構成とした場合には、本来的に設けられている冷媒散布用の上記散布器19における上記蒸発器13のコイルへの冷媒の適正な散布状態を維持したまま、上記蒸発器13の熱交換器への溶液の散布が適正に行なわれるよう上記溶液散布用の散布器18の構造あるいは設置位置を設定することができる。   Therefore, in the case where the solution spraying device 18 and the coolant spraying device 19 are configured separately, the evaporator 13 of the coolant spraying device 19 that is originally provided for the coolant spraying is used. The structure or installation position of the solution spraying device 18 is set so that the solution is properly sprayed to the heat exchanger of the evaporator 13 while maintaining the proper spraying state of the refrigerant on the coil. Can do.

また、上記溶液散布用の散布器18と冷媒液散布用の散布器19を一体構成とした場合には、散布器の配置スペースの狭小化によって、上記蒸発器13のコンパクト化及び低コスト化が図れる。   Further, in the case where the solution spraying device 18 and the refrigerant solution spraying device 19 are integrated, the evaporator 13 can be made compact and low in cost by narrowing the space for the spraying device. I can plan.

(g) 本願の第7の発明
本願の第7の発明に係る冷凍装置によれば、上記(a)、(b)、(c)、(d)、(e)又は(f)に記載の効果に加えて以下のような特有の効果が得られる。即ち、この発明に係る冷凍装置によれば、上記蒸発器13を、冷媒液が一過性で該蒸発器13の伝熱面を流れ、未蒸発の冷媒液が上記吸収器12側へ移動して該吸収器12側の溶液に吸収されるように構成しているので、例えば、上記蒸発器13を循環式とする場合に比して、該蒸発器13及びこれに隣接設置される上記吸収器12のコンパクト化が図れ、延いては蒸気圧縮式冷凍機Xと吸収式冷凍機Yを組み合わせて構成される冷凍装置のコンパクト化が図られる。
(G) 7th invention of this application According to the refrigeration apparatus which concerns on 7th invention of this application, as described in said (a), (b), (c), (d), (e) or (f). In addition to the effects, the following unique effects can be obtained. That is, according to the refrigeration apparatus according to the present invention, the refrigerant liquid is transient in the evaporator 13 and flows through the heat transfer surface of the evaporator 13, and the unevaporated refrigerant liquid moves to the absorber 12 side. For example, as compared with the case where the evaporator 13 is a circulation type, the evaporator 13 and the absorption installed adjacent to the evaporator 13 are absorbed. Thus, the refrigerator 12 can be made compact, and thus the refrigeration apparatus configured by combining the vapor compression refrigerator X and the absorption refrigerator Y can be made compact.

(h) 本願の第8の発明
本願の第8の発明に係る冷凍装置によれば、上記(a)、(b)、(c)、(d)、(e)、(f)又は(g)に記載の効果に加えて以下のような特有の効果が得られる。即ち、この発明に係る冷凍装置によれば、図7に例示するように、上記蒸気圧縮式冷凍機Xを複数台設置するとともに該各蒸気圧縮式冷凍機Xのそれぞれに上記熱回収熱交換器6を設けて該各蒸気圧縮式冷凍機Xの冷媒の排熱をそれぞれ回収し、該各熱回収熱交換器6で回収された排熱を一台の吸収式冷凍機Yの上記発生器11に供給するように構成しているので、上記蒸気圧縮式冷凍機Xの冷媒側から上記吸収式冷凍機Yの発生器11側への回収熱量が大きくなることから、エンジン等の排熱が少ない場合でも上記吸収式冷凍機Yを適正に運転させることができ、その結果、該吸収式冷凍機Yの蒸発器13での熱交換によって蒸気圧縮式冷凍機Xの冷媒を十分に過冷却することが可能となり、延いては上記冷凍装置全体としての性能改善効果を得ることができる。
(H) Eighth Invention of the Present Invention According to the refrigeration apparatus according to the eighth invention of the present application, the above (a), (b), (c), (d), (e), (f) or (g) In addition to the effects described in (1), the following specific effects can be obtained. That is, according to the refrigeration apparatus according to the present invention, as illustrated in FIG. 7, a plurality of the vapor compression chillers X are installed, and the heat recovery heat exchanger is installed in each of the vapor compression chillers X. 6 to recover the exhaust heat of the refrigerant of each of the vapor compression refrigerators X, and the exhaust heat recovered by each of the heat recovery heat exchangers 6 to the generator 11 of one absorption refrigerator Y Since the amount of recovered heat from the refrigerant side of the vapor compression refrigeration machine X to the generator 11 side of the absorption refrigeration machine Y increases, the exhaust heat from the engine or the like is small. Even in this case, the absorption refrigeration machine Y can be properly operated. As a result, the refrigerant of the vapor compression refrigeration machine X can be sufficiently subcooled by heat exchange in the evaporator 13 of the absorption refrigeration machine Y. As a result, the performance improvement effect of the entire refrigeration system can be improved. It is possible to obtain.

本願発明の第1の実施の形態に係る冷凍装置の全体回路図である。1 is an overall circuit diagram of a refrigeration apparatus according to a first embodiment of the present invention. 本願発明の第2の実施の形態に係る冷凍装置の全体回路図である。It is a whole circuit diagram of the freezing apparatus which concerns on 2nd Embodiment of this invention. 本願発明の第3の実施の形態に係る冷凍装置の全体回路図である。It is a whole circuit diagram of the freezing apparatus which concerns on 3rd Embodiment of this invention. 本願発明の第4の実施の形態に係る冷凍装置の全体回路図である。It is a whole circuit diagram of the freezing apparatus which concerns on 4th Embodiment of this invention. 本願発明の第5の実施の形態に係る冷凍装置の全体回路図である。It is a whole circuit diagram of the freezing apparatus which concerns on 5th Embodiment of this invention. 本願発明の第6の実施の形態に係る冷凍装置の全体回路図である。It is a whole circuit diagram of the freezing apparatus which concerns on the 6th Embodiment of this invention. 本願発明の第7の実施の形態に係る冷凍装置の全体回路図である。It is a whole circuit diagram of the freezing apparatus which concerns on the 7th Embodiment of this invention. 従来の冷凍装置の全体回路図である。It is a whole circuit diagram of the conventional freezing apparatus.

以下、本願発明を好適な実施形態に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on preferred embodiments.

I:第1の実施形態
図1には、本願発明の第1の実施形態に係る冷凍装置Zの回路構成を示している。この冷凍装置Zは、次述の蒸気圧縮式冷凍機Xと吸収式冷凍機Yを組み合わせて構成され、室内の冷暖房に供せられる。
I: First Embodiment FIG. 1 shows a circuit configuration of a refrigeration apparatus Z according to a first embodiment of the present invention. This refrigeration apparatus Z is configured by combining a vapor compression refrigeration machine X and an absorption refrigeration machine Y described below, and is used for indoor air conditioning.

I−1:蒸気圧縮式冷凍機Xの構成
上記蒸気圧縮式冷凍機Xは、圧縮機1と四路切換弁2と利用側熱交換器3(即ち、室内機)と膨張弁4及びアキュームレーター5を、管路51〜管路57によって接続して構成され、上記四路切換弁2の切換操作によって冷房運転と暖房運転を選択的に実現するようになっている。即ち、上記圧縮機1の吐出側の管路51には上記四路切換弁2が備えられており、該四路切換弁2の切換えによって上記管路51は上記利用側熱交換器3に至る管路52(暖房運転時)と上記アキュームレーター5に至る管路56(冷房運転時)に選択的に切り換えられ、上記利用側熱交換器3は冷房運転時には冷媒の蒸発作用をなし、暖房運転時には冷媒の凝縮作用を為す。
I-1: Configuration of Vapor Compression Refrigerator X The vapor compression chiller X includes a compressor 1, a four-way switching valve 2, a use-side heat exchanger 3 (that is, an indoor unit), an expansion valve 4, and an accumulator. 5 are connected by a pipe 51 to a pipe 57, and a cooling operation and a heating operation are selectively realized by a switching operation of the four-way switching valve 2. That is, the four-way switching valve 2 is provided in the discharge-side pipe 51 of the compressor 1, and the pipe 51 reaches the use-side heat exchanger 3 by switching the four-way switching valve 2. The pipeline 52 (during heating operation) and the pipeline 56 (during cooling operation) leading to the accumulator 5 are selectively switched, and the use side heat exchanger 3 performs refrigerant evaporation during cooling operation, thereby heating operation. Sometimes the refrigerant condenses.

I−2:吸収式冷凍機Yの構成
上記吸収式冷凍機Yは、例えば、臭化リチュム(LiBr)を吸収液、水を冷媒として該吸収液への冷媒の吸収及び放出(再生)作用を利用して冷凍作用を為すものであって、発生器11と、空冷式の凝縮器14と、隣接配置された吸収器12と蒸発器13と、空冷式の過冷却熱交換器15と冷却ファン20と、溶液熱交換器16と溶液ポンプ17を備え、これら各要素を管路61〜管路67によって接続して構成される。
I-2: Configuration of Absorption Refrigerator Y The absorption chiller Y has, for example, a function of absorbing and releasing (regenerating) refrigerant into the absorbing liquid using lithum bromide (LiBr) as an absorbing liquid and water as a refrigerant. Refrigeration is performed by using a generator 11, an air-cooled condenser 14, an adjacently disposed absorber 12, an evaporator 13, an air-cooled supercooling heat exchanger 15 and a cooling fan. 20, a solution heat exchanger 16 and a solution pump 17, and these elements are connected by a pipeline 61 to a pipeline 67.

上記発生器11は、基本的にはエンジン等の排熱を駆動熱源として駆動されるものであって、排熱と溶液との間で熱交換を行なうために排熱用の熱交換器11aを内蔵している。また、この発生器11には、上記蒸気圧縮式冷凍機Xの排熱を駆動熱源として取り入れるために後述の熱回収熱交換器6の吐出側の管路58が接続されている。   The generator 11 is basically driven by using exhaust heat from an engine or the like as a drive heat source, and a heat exchanger 11a for exhaust heat is provided to exchange heat between the exhaust heat and the solution. Built-in. The generator 11 is connected to a discharge side pipe 58 of a heat recovery heat exchanger 6 to be described later in order to take in the exhaust heat of the vapor compression refrigerator X as a driving heat source.

さらに、上記発生器11の上部と上記凝縮器14は管路61によって接続され、上記発生器11で発生した冷媒蒸気(水蒸気)を上記凝縮器14に流入させるようになっている。   Further, the upper part of the generator 11 and the condenser 14 are connected by a pipe 61 so that the refrigerant vapor (water vapor) generated by the generator 11 flows into the condenser 14.

また、上記発生器11には上記溶液ポンプ17からの管路67と後述の吸収器12の出口側に接続される管路63が備えられており、該発生器11には上記溶液ポンプ17によって上記吸収器12から希溶液が流入されるとともに、該発生器11内で濃縮された濃溶液が上記管路63から上記吸収器12の出口側へ送られるようになっている。   Further, the generator 11 is provided with a pipe line 67 from the solution pump 17 and a pipe line 63 connected to the outlet side of the absorber 12 to be described later. The generator 11 is connected to the generator 11 by the solution pump 17. A dilute solution is introduced from the absorber 12 and a concentrated solution concentrated in the generator 11 is sent from the pipe 63 to the outlet side of the absorber 12.

上記管路67と上記管路63の間には上記溶液熱交換器16が備えられ、該溶液熱交換器16においては上記管路63を流れる濃溶液と上記管路67を流れる希溶液の間で熱交換が行なわれ、該濃溶液側から希溶液側へ熱回収される。   The solution heat exchanger 16 is provided between the pipe line 67 and the pipe line 63, and in the solution heat exchanger 16, between the concentrated solution flowing through the pipe line 63 and the dilute solution flowing through the pipe line 67. Then, heat exchange is performed, and heat is recovered from the concentrated solution side to the diluted solution side.

上記吸収器12は、次述の蒸発器13で発生した冷媒蒸気を吸収させて希溶液とするものであって、該吸収器12には管路66から過冷却熱交換器15によって過冷却された後の溶液が流入される。   The absorber 12 absorbs refrigerant vapor generated in the evaporator 13 described below to form a dilute solution. The absorber 12 is supercooled by a supercooling heat exchanger 15 from a pipe 66. After that, the solution is introduced.

上記蒸発器13は、一過性の蒸発機能をもつもので、上記凝縮器14で凝縮された液冷媒が管路62から流入され、該冷媒を内蔵された熱交換器13aに接触させながら流下させることで、該熱交換器13a内を流れる流体(この実施形態では、後述するように上記蒸気圧縮式冷凍機X側の冷媒)によってこれを加熱蒸発させて冷媒蒸気を発生させる。ここで発生された冷媒蒸気は、上記吸収器12側へ移動し、該吸収器12において溶液に吸収される。一方、上記蒸発器13での未蒸発冷媒は、上記蒸発器13の底部から上記吸収器12の底部の液溜りに流入し、該吸収器12側の溶液に吸収される。   The evaporator 13 has a temporary evaporation function, and the liquid refrigerant condensed by the condenser 14 flows in from the pipe 62 and flows down while contacting the refrigerant with the built-in heat exchanger 13a. By doing so, this is heated and evaporated by the fluid flowing in the heat exchanger 13a (in this embodiment, the refrigerant on the vapor compression refrigerator X side as will be described later) to generate refrigerant vapor. The refrigerant vapor generated here moves toward the absorber 12 and is absorbed by the solution in the absorber 12. On the other hand, the non-evaporated refrigerant in the evaporator 13 flows from the bottom of the evaporator 13 into the liquid pool at the bottom of the absorber 12 and is absorbed by the solution on the absorber 12 side.

I−3:特有の構成
ここで、この冷凍装置Zでは、上記蒸気圧縮式冷凍機Xの冷媒と上記吸収式冷凍機Yの上記発生器11へ還流される溶液の間での熱交換と、上記蒸気圧縮式冷凍機Xの冷媒と上記吸収式冷凍機Yの上記蒸発器13側の溶液の間での熱交換をそれぞれ実現するために、特有の構成を備えている。
I-3: Specific Configuration Here, in the refrigeration apparatus Z, heat exchange between the refrigerant of the vapor compression refrigeration machine X and the solution refluxed to the generator 11 of the absorption refrigeration machine Y, In order to realize heat exchange between the refrigerant of the vapor compression refrigerator X and the solution on the evaporator 13 side of the absorption refrigerator Y, a specific configuration is provided.

即ち、上記蒸気圧縮式冷凍機Xの管路54を上記吸収式冷凍機Yの上記蒸発器13の熱交換器13aに接続し、上記蒸気圧縮式冷凍機X側の冷媒と上記吸収式冷凍機Y側の溶液の間で熱交換を行なわせ、特に蒸気圧縮式冷凍機Xの冷房運転時においては上記蒸発器13での熱交換によって上記蒸気圧縮式冷凍機X側の冷媒を過冷却するようにしている。   That is, the pipeline 54 of the vapor compression refrigerator X is connected to the heat exchanger 13a of the evaporator 13 of the absorption refrigerator Y, and the refrigerant on the vapor compression refrigerator X side and the absorption refrigerator are connected. Heat exchange is performed between the solutions on the Y side, and in particular during cooling operation of the vapor compression refrigerator X, the refrigerant on the vapor compression refrigerator X side is supercooled by heat exchange in the evaporator 13. I have to.

また、上記蒸気圧縮式冷凍機Xと吸収式冷凍機Yの間に熱回収熱交換器6を設け、上記吸収式冷凍機Yの管路67から分岐する管路71を介して溶液を熱回収熱交換器6に流入させた後、上記管路58を介して上記発生器11に還流させるように構成するとともに、上記冷媒熱回収熱交換器6に内蔵の熱交換器6aの一端を上記蒸気圧縮式冷凍機Xの管路56に、他端を上記管路54に接続し、上記冷媒熱回収熱交換器6内において上記吸収式冷凍機Y側の溶液と上記蒸気圧縮式冷凍機X側の冷媒の間で熱交換を行なうようにしている。   Further, a heat recovery heat exchanger 6 is provided between the vapor compression refrigerator X and the absorption refrigerator Y, and the solution is recovered through a pipe 71 branched from the pipe 67 of the absorption refrigerator Y. After flowing into the heat exchanger 6, the refrigerant is refluxed to the generator 11 through the pipe 58, and one end of the heat exchanger 6 a built in the refrigerant heat recovery heat exchanger 6 is connected to the steam. The other end is connected to the pipe 56 of the compression refrigeration machine X, and the solution on the absorption refrigeration machine Y side and the vapor compression refrigeration machine X side in the refrigerant heat recovery heat exchanger 6 are connected. Heat is exchanged between the refrigerants.

さらに、上記溶液ポンプ17の出口側と上記溶液熱交換器16を経て上記発生器11に至る管路67に電磁弁41を設けている。そして、この電磁弁41の開閉特性を以下のように設定している。   Further, an electromagnetic valve 41 is provided on a pipe 67 that reaches the generator 11 through the outlet side of the solution pump 17 and the solution heat exchanger 16. The opening / closing characteristics of the electromagnetic valve 41 are set as follows.

即ち、上記蒸気圧縮式冷凍機Xの冷房運転時には、上記電磁弁41を開弁状態で保持する。   That is, during the cooling operation of the vapor compression refrigerator X, the electromagnetic valve 41 is held open.

一方、上記蒸気圧縮式冷凍機Xの暖房運転時には、上記四路切換弁2を切換え、蒸気圧縮式冷凍機Xの冷媒を冷房運転とは逆方向に流入させ、溶液ポンプ17と過冷却熱交換器用ファン20を運転し、上記電磁弁41を、上記蒸発器13における蒸気圧縮式冷凍機Xの冷媒温度、又は上記吸収式冷凍機Yの上記過冷却器15の出口側の溶液温度に基づいて、開閉するようにしている。即ち、上記冷媒温度を制御基準とする場合には、上記電磁弁41を、上記冷媒温度が設定冷媒温度以上のときには閉弁させ、該設定冷媒温度未満のときには開弁させるようにする。また、上記溶液温度を制御基準とする場合には、上記電磁弁41を、上記溶液温度が設定溶液温度以上のときには閉弁させ、該設定溶液温度未満のときには開弁させるようにする。   On the other hand, during the heating operation of the vapor compression refrigeration machine X, the four-way switching valve 2 is switched to allow the refrigerant of the vapor compression refrigeration machine X to flow in the opposite direction to the cooling operation, and exchange heat with the solution pump 17. The fan 20 is operated, and the solenoid valve 41 is operated based on the refrigerant temperature of the vapor compression refrigerator X in the evaporator 13 or the solution temperature on the outlet side of the supercooler 15 of the absorption refrigerator Y. Open and close. That is, when the refrigerant temperature is used as a control reference, the solenoid valve 41 is closed when the refrigerant temperature is equal to or higher than the set refrigerant temperature, and is opened when the refrigerant temperature is lower than the set refrigerant temperature. When the solution temperature is used as a control reference, the solenoid valve 41 is closed when the solution temperature is equal to or higher than the set solution temperature, and is opened when the temperature is lower than the set solution temperature.

この電磁弁41の制御基準となる「設定冷媒温度」又は「設定溶液温度」は、共に、上記吸収式冷凍機Yの上記吸収器12及び蒸発器13での熱交換が適正に行なわれる場合の最低温度に対応して設定される。また、後述するように、これら何れの制御基準を採用しても、結果として、同様の作用効果が得られるものであり、必要に応じて任意に選択設定できるものである。   The “set refrigerant temperature” or “set solution temperature” that serves as a control reference for the electromagnetic valve 41 is the value when heat exchange is appropriately performed in the absorber 12 and the evaporator 13 of the absorption refrigerator Y. It is set according to the minimum temperature. Further, as will be described later, even if any of these control standards is adopted, the same effect can be obtained as a result, and can be arbitrarily selected and set as necessary.

I−4:冷凍装置Zの作動説明
I−4−a:冷房運転時
上記蒸気圧縮式冷凍機Xの冷房運転時には、上記電磁弁41は開弁保持される。従って、上記蒸気圧縮式冷凍機Xと吸収式冷凍機Yの運転に伴い、上記蒸気圧縮式冷凍機Xの上記圧縮機1において圧縮された後の高温冷媒(ガス冷媒)は、上記冷媒熱回収熱交換器6に流入する一方、上記吸収式冷凍機Yの上記吸収器12の出口側の溶液(希溶液)の一部は、上記電磁弁41から管路67及び管路71を通って上記冷媒熱回収熱交換器6に流入し、該熱回収熱交換器6内の上記熱交換器6aの外側を通ったのち、上記発生器11側へ還流される。
I-4: Explanation of Operation of Refrigeration Apparatus Z I-4-a: During Cooling Operation During the cooling operation of the vapor compression refrigeration machine X, the solenoid valve 41 is held open. Therefore, the high-temperature refrigerant (gas refrigerant) after being compressed in the compressor 1 of the vapor compression refrigeration machine X with the operation of the vapor compression refrigeration machine X and the absorption refrigeration machine Y is the refrigerant heat recovery. While flowing into the heat exchanger 6, a part of the solution (dilute solution) on the outlet side of the absorber 12 of the absorption refrigeration machine Y passes from the electromagnetic valve 41 through the pipe 67 and the pipe 71 to the above. The refrigerant flows into the refrigerant heat recovery heat exchanger 6, passes through the outside of the heat exchanger 6 a in the heat recovery heat exchanger 6, and then returns to the generator 11 side.

この場合、上記冷媒熱回収熱交換器6においては、上記熱交換器6a内を流れる上記蒸気圧縮式冷凍機X側のガス冷媒と該熱交換器6aの外側を流れる溶液の間で熱交換が行なわれ、蒸気圧縮式冷凍機X側の冷媒熱が吸収式冷凍機Yの溶液側へ回収される。従って、上記発生器11に流入する溶液で回収した熱量が、管路60を通して供給されるエンジン等の排熱による熱量に加算され、駆動熱源として上記発生器11が駆動される。   In this case, in the refrigerant heat recovery heat exchanger 6, heat exchange is performed between the gas refrigerant on the vapor compression refrigeration machine X side flowing in the heat exchanger 6a and the solution flowing outside the heat exchanger 6a. The refrigerant heat on the vapor compression refrigerator X side is recovered to the solution side of the absorption refrigerator Y. Accordingly, the amount of heat recovered from the solution flowing into the generator 11 is added to the amount of heat generated by exhaust heat from the engine or the like supplied through the pipe 60, and the generator 11 is driven as a driving heat source.

この結果、上記蒸気圧縮式冷凍機X側の冷媒排熱の利用分だけ、上記発生器11をエンジン等の排熱のみで駆動する場合に比して、排熱の有効利用が促進され、例えば、エンジン等の排熱量が減少した場合でも、何等支障無く上記吸収式冷凍機Yを運転することができる。   As a result, compared with the case where the generator 11 is driven only by exhaust heat from the engine or the like, the effective use of exhaust heat is promoted by the amount of use of refrigerant exhaust heat on the vapor compression refrigerator X side, for example, Even when the amount of exhaust heat from the engine or the like is reduced, the absorption refrigerator Y can be operated without any trouble.

一方、上記冷媒熱回収熱交換器6に流入した蒸気圧縮式冷凍機X側のガス冷媒は、該熱回収熱交換器6での上記吸収式冷凍機Y側の溶液との熱交換による冷却作用によって凝縮されて液冷媒とされる。従って、冷媒の凝縮作用が上記冷媒熱回収熱交換器6において行なわれる結果、上記蒸気圧縮式冷凍機X側には、従来構成では必須の構成要素であった熱源側熱交換器を備える必要がなくなり、それだけ上記蒸気圧縮式冷凍機Xの構造の簡略化、低コスト化が図られることになる。   On the other hand, the gas refrigerant on the vapor compression refrigerator X side flowing into the refrigerant heat recovery heat exchanger 6 is cooled by heat exchange with the solution on the absorption refrigerator Y side in the heat recovery heat exchanger 6. Is condensed into a liquid refrigerant. Therefore, as a result of the refrigerant condensing action being performed in the refrigerant heat recovery heat exchanger 6, it is necessary to provide the heat source side heat exchanger, which is an essential component in the conventional configuration, on the vapor compression refrigerator X side. Accordingly, the structure of the vapor compression refrigerator X can be simplified and the cost can be reduced accordingly.

また、上記冷媒熱回収熱交換器6での熱交換によって凝縮された上記蒸気圧縮式冷凍機Xの液冷媒は、上記吸収式冷凍機Yの上記蒸発器13側に流入し、該蒸発器13の熱交換器13aを流れる際、該熱交換器13aの外側を流れる溶液中の冷媒(水)との熱交換によって上記蒸気圧縮式冷凍機Xの冷媒が過冷却され、過冷却冷媒として、上記利用側熱交換器3に流入する。この場合、上記冷媒は、上記蒸発器13での過冷却によって温度が低下しているため、上記利用側熱交換器3における入口の冷媒の比エンタルピーが低下し、これによって上記蒸気圧縮式冷凍機Xの冷房性能が改善される。   The liquid refrigerant of the vapor compression refrigeration machine X condensed by the heat exchange in the refrigerant heat recovery heat exchanger 6 flows into the evaporator 13 side of the absorption refrigeration machine Y, and the evaporator 13 When flowing through the heat exchanger 13a, the refrigerant of the vapor compression refrigeration machine X is supercooled by heat exchange with the refrigerant (water) in the solution flowing outside the heat exchanger 13a. It flows into the use side heat exchanger 3. In this case, since the temperature of the refrigerant is lowered due to the supercooling in the evaporator 13, the specific enthalpy of the refrigerant at the inlet in the use side heat exchanger 3 is lowered, thereby the vapor compression refrigerator. The cooling performance of X is improved.

I−4−b:暖房運転時
上記蒸気圧縮式冷凍機Xの暖房運転時には、上記四路切換弁2を切換え、蒸気圧縮式冷凍機Xの冷媒を冷房運転とは逆方向に流入させ、上記吸収式冷凍機Yにおいては、上記凝縮器14の運転は停止されるが、上記過冷却熱交換器用ファン20と上記溶液ポンプ17は運転される。また、上記発生器11への排熱供給は継続される。
I-4-b: During heating operation During heating operation of the vapor compression refrigeration machine X, the four-way switching valve 2 is switched, and the refrigerant of the vapor compression refrigeration machine X flows in the opposite direction to the cooling operation, In the absorption refrigerator Y, the operation of the condenser 14 is stopped, but the supercooling heat exchanger fan 20 and the solution pump 17 are operated. Further, the exhaust heat supply to the generator 11 is continued.

一方、上記管路67に設けられた上記電磁弁41は、上記蒸発器における蒸気圧縮式冷凍機Xの冷媒温度、又は上記吸収式冷凍機Yの上記過冷却器の出口側の溶液温度に基づいて、開閉される。即ち、上記電磁弁41は、上記冷媒温度を制御基準とする場合には該冷媒温度が設定冷媒温度以上のときには閉弁され、該設定冷媒温度未満のときには開弁される。また、上記溶液温度を制御基準とする場合には、上記溶液温度が設定溶液温度以上のときには閉弁され、該設定溶液温度未満のときには開弁される。   On the other hand, the solenoid valve 41 provided in the pipe line 67 is based on the refrigerant temperature of the vapor compression refrigerator X in the evaporator or the solution temperature on the outlet side of the supercooler of the absorption refrigerator Y. Open and close. That is, when the refrigerant temperature is used as a control reference, the solenoid valve 41 is closed when the refrigerant temperature is equal to or higher than the set refrigerant temperature, and is opened when the refrigerant temperature is lower than the set refrigerant temperature. When the solution temperature is used as a control reference, the valve is closed when the solution temperature is equal to or higher than the set solution temperature, and is opened when the temperature is lower than the set solution temperature.

ここで、上記電磁弁41を冷媒温度に基づいて開閉制御する場合を一例として、その作動状態を説明する。   Here, the operation state of the electromagnetic valve 41 will be described by taking as an example the case of opening / closing control of the solenoid valve 41 based on the refrigerant temperature.

上記電磁弁41は、上述のように、上記蒸発器13における蒸気圧縮式冷凍機X側の冷媒温度が設定冷媒温度以上のとき閉弁され、該設定冷媒温度未満のとき開弁される。   As described above, the solenoid valve 41 is closed when the refrigerant temperature on the vapor compression refrigerator X side in the evaporator 13 is equal to or higher than the set refrigerant temperature, and is opened when the refrigerant temperature is lower than the set refrigerant temperature.

上記蒸気圧縮式冷凍機X側の冷媒温度が設定冷媒温度以上のときは、上記蒸発器13における上記蒸気圧縮式冷凍機X側の冷媒との熱交換に供される上記吸収式冷凍機Y側の上記過冷却熱交換器15と上記吸収器12の間を循環する溶液の温度も高く、上記吸収器12を流れる上記溶液と上記蒸発器13を循環する上記蒸気圧縮式冷凍機X側の冷媒との熱交換性能が良好に維持され、上記蒸気圧縮式冷凍機Xは適正状態で暖房運転される。   When the refrigerant temperature on the vapor compression refrigerator X side is equal to or higher than the set refrigerant temperature, the absorption refrigerator Y side used for heat exchange with the refrigerant on the vapor compression refrigerator X side in the evaporator 13 The temperature of the solution circulating between the supercooling heat exchanger 15 and the absorber 12 is also high, and the solution on the vapor compression refrigeration machine X side that circulates the solution flowing through the absorber 12 and the evaporator 13 is used. The heat exchange performance with the above is maintained well, and the vapor compression refrigerator X is heated in an appropriate state.

しかし、上記蒸発器13における蒸気圧縮式冷凍機X側の冷媒温度が低下し、これが設定冷媒温度未満となると、上記蒸発器13における上記蒸気圧縮式冷凍機X側の冷媒との熱交換に供される上記吸収式冷凍機Y側の上記過冷却熱交換器15と上記吸収器12の間を循環する溶液の温度も低下し、上記吸収器12を流れる上記溶液と上記蒸発器13を循環する上記蒸気圧縮式冷凍機X側の冷媒との熱交換性能が低下するとともに、上記過冷却熱交換器15に着霜を生じるおそれもある。   However, when the refrigerant temperature on the vapor compression refrigerator X side in the evaporator 13 decreases and becomes lower than the set refrigerant temperature, the evaporator 13 is used for heat exchange with the refrigerant on the vapor compression refrigerator X side. The temperature of the solution circulating between the supercooling heat exchanger 15 and the absorber 12 on the absorption refrigeration machine Y side is also lowered, and the solution flowing through the absorber 12 and the evaporator 13 are circulated. While heat exchange performance with the refrigerant on the vapor compression refrigerator X side is deteriorated, frost formation may occur in the supercooling heat exchanger 15.

この場合に、上記電磁弁41が開弁されると、上記発生器11側の温度の高い溶液が過冷却熱交換器15側へ循環し、その結果、該過冷却熱交換器15から上記吸収器12側へ流れる溶液の温度が上昇し、上記蒸発器13での上記蒸気圧縮式冷凍機X側の冷媒との熱交換性能が回復され、同時に、上記過冷却熱交換器15での着霜の発生も未然に防止されることになる。従って着霜時における暖房能力の低下がないのに加えて着霜を除去するための不快な運転もない。   In this case, when the solenoid valve 41 is opened, a solution having a high temperature on the generator 11 side circulates to the supercooling heat exchanger 15 side. As a result, the absorption from the supercooling heat exchanger 15 is performed. The temperature of the solution flowing to the evaporator 12 side rises, and the heat exchange performance with the refrigerant on the vapor compression refrigerator X side in the evaporator 13 is restored. At the same time, frost formation in the supercooling heat exchanger 15 occurs. Occurrence of this will also be prevented. Accordingly, there is no unpleasant operation for removing frost as well as no reduction in heating capacity during frost formation.

以上のように、この冷凍装置Zにおいては、上記蒸気圧縮式冷凍機Xに上記吸収式冷凍機Yを組み合わせることで、上記蒸気圧縮式冷凍機Xの冷房運転時及び暖房運転時の双方において、その性能改善効果が得られ、実用性に富む冷凍装置が得られることになる。   As described above, in this refrigeration apparatus Z, by combining the absorption refrigeration machine Y with the vapor compression refrigeration machine X, both during the cooling operation and the heating operation of the vapor compression refrigeration machine X, The performance improvement effect is obtained, and a refrigeration apparatus rich in practicality is obtained.

さらに、この冷凍装置Zでは、上記蒸気圧縮式冷凍機Xの冷房運転時には、該蒸気圧縮式冷凍機Xの冷媒の凝縮が上記冷媒熱回収熱交換器6での熱回収によって行なわれ、上記暖房運転時には、該蒸気圧縮式冷凍機Xの冷媒の蒸発が上記冷媒熱回収熱交換器6での熱回収によって行なわれることから、従来の蒸気圧縮式冷凍機において必須の構成要素として備えられていた放熱側熱交換器が不要となり、上記蒸気圧縮式冷凍機Xの構造の簡略化が図られる。   Further, in this refrigeration apparatus Z, during the cooling operation of the vapor compression refrigeration machine X, the refrigerant of the vapor compression refrigeration machine X is condensed by heat recovery in the refrigerant heat recovery heat exchanger 6, and the heating is performed. During operation, the refrigerant of the vapor compression refrigeration machine X is evaporated by heat recovery in the refrigerant heat recovery heat exchanger 6, so that it is provided as an essential component in the conventional vapor compression refrigeration machine. The heat radiation side heat exchanger is not required, and the structure of the vapor compression refrigerator X can be simplified.

II:第2の実施形態
図2には、本願発明の第2の実施形態に係る冷凍装置Zの回路構成を示している。この冷凍装置Zは、上記第1の実施形態に係る冷凍装置Zの回路構成を基本とし、この基本回路において、上記吸収式冷凍機Yの上記吸収器12の入口側の管路66と上記蒸発器13の冷媒入口側の管路62を、電磁弁43を備えた管路73によって接続したものである。そして、この電磁弁43を、上記蒸気圧縮式冷凍機Xの冷房運転時には閉弁し、暖房運転時には開弁するように作動制御するようにしている。これ以外の構成については、上記第1の実施形態の冷凍装置Zと同様であるので、図2の各構成部材に、図1の各構成部材に対応させて符号を付すことで、その説明を省略する。
II: Second Embodiment FIG. 2 shows a circuit configuration of a refrigeration apparatus Z according to a second embodiment of the present invention. This refrigeration apparatus Z is based on the circuit configuration of the refrigeration apparatus Z according to the first embodiment. In this basic circuit, the pipe line 66 on the inlet side of the absorber 12 of the absorption refrigeration machine Y and the evaporation. A pipe 62 on the refrigerant inlet side of the vessel 13 is connected by a pipe 73 provided with an electromagnetic valve 43. The electromagnetic valve 43 is controlled to be closed during the cooling operation of the vapor compression refrigerator X and opened during the heating operation. Since the configuration other than this is the same as that of the refrigeration apparatus Z of the first embodiment, the description is given by attaching the reference numerals to the respective constituent members in FIG. 2 corresponding to the respective constituent members in FIG. Omitted.

冷凍装置Zの作動説明
蒸気圧縮式冷凍機Xの冷房運転時
上記蒸気圧縮式冷凍機Xの冷房運転時には、上記電磁弁43が閉弁されることで、その回路構成は、上記第1の実施形態に係る冷凍装置の冷房運転時における回路構成と同様となり、これと同様の作用効果が得られる。従って、上記第1の実施形態の該当説明を援用し、ここでの説明を省略する。
Explanation of the operation of the refrigeration apparatus Z During the cooling operation of the vapor compression refrigeration machine X During the cooling operation of the vapor compression refrigeration machine X, the solenoid valve 43 is closed so that the circuit configuration is the same as that of the first embodiment. It becomes the same as that of the circuit structure at the time of air_conditionaing | cooling operation of the refrigerating apparatus which concerns on a form, and the same effect is obtained. Therefore, the corresponding description of the first embodiment is used, and the description here is omitted.

蒸気圧縮式冷凍機Xの暖房運転時
上記蒸気圧縮式冷凍機Xの暖房運転時には、上記吸収式冷凍機Yにおいては、上記凝縮器14の運転は停止されるが、上記過冷却熱交換器用ファン20と上記溶液ポンプ17は運転される。また、上記発生器11への排熱供給は継続される。
During the heating operation of the vapor compression refrigerator X During the heating operation of the vapor compression refrigerator X, the operation of the condenser 14 is stopped in the absorption refrigerator Y, but the fan for the supercooling heat exchanger 20 and the solution pump 17 are operated. Further, the exhaust heat supply to the generator 11 is continued.

上記管路67に設けられた上記電磁弁41は、上記第1の実施形態の冷凍装置Zにおける電磁弁41と同様に、上記蒸発器13における蒸気圧縮式冷凍機Xの冷媒温度、又は上記吸収式冷凍機Yの上記過冷却器15の出口側の溶液温度に基づいて、開閉される。即ち、上記電磁弁41は、上記冷媒温度を制御基準とする場合には該冷媒温度が設定冷媒温度以上のときには閉弁され、該設定冷媒温度未満のときには開弁される。また、上記溶液温度を制御基準とする場合には、上記溶液温度が設定溶液温度以上のときには閉弁され、該設定溶液温度未満のときには開弁されるが、ここでは上記電磁弁41を冷媒温度に基づいて開閉制御する場合を例にとって説明する。さらに、この実施形態における特徴的な構成である上記管路69に設けた電磁弁43は、開弁される。   The solenoid valve 41 provided in the pipeline 67 is similar to the solenoid valve 41 in the refrigeration apparatus Z of the first embodiment, and the refrigerant temperature of the vapor compression refrigerator X in the evaporator 13 or the absorption. It is opened and closed based on the solution temperature on the outlet side of the supercooler 15 of the type refrigerator Y. That is, when the refrigerant temperature is used as a control reference, the solenoid valve 41 is closed when the refrigerant temperature is equal to or higher than the set refrigerant temperature, and is opened when the refrigerant temperature is lower than the set refrigerant temperature. Further, when the solution temperature is used as a control reference, the valve is closed when the solution temperature is equal to or higher than the set solution temperature, and is opened when the solution temperature is lower than the set solution temperature. A case where opening / closing control is performed based on the above will be described as an example. Further, the electromagnetic valve 43 provided in the pipe 69 which is a characteristic configuration in this embodiment is opened.

上記蒸気圧縮式冷凍機Xの暖房運転時には、上記電磁弁43が開弁保持されることで、上記過冷却熱交換器15からの溶液は、上記吸収器12と上記蒸発器13に分かれて流入する。   During heating operation of the vapor compression refrigerator X, the electromagnetic valve 43 is held open, so that the solution from the supercooling heat exchanger 15 flows into the absorber 12 and the evaporator 13 separately. To do.

上記蒸気圧縮式冷凍機X側の冷媒温度が設定冷媒温度以上のときは、上記蒸発器13における上記蒸気圧縮式冷凍機X側の冷媒との熱交換に供される上記吸収式冷凍機Y側の上記過冷却熱交換器15と上記吸収器12及び上記蒸発器13の間を循環する溶液の温度も高く、上記吸収器12及び上記蒸発器13を流れる上記溶液と上記蒸発器13を循環する上記蒸気圧縮式冷凍機X側の冷媒との熱交換性能が良好に維持され、上記蒸気圧縮式冷凍機Xは適正状態で暖房運転される。   When the refrigerant temperature on the vapor compression refrigerator X side is equal to or higher than the set refrigerant temperature, the absorption refrigerator Y side used for heat exchange with the refrigerant on the vapor compression refrigerator X side in the evaporator 13 The temperature of the solution circulating between the supercooling heat exchanger 15 and the absorber 12 and the evaporator 13 is also high, and the solution flowing through the absorber 12 and the evaporator 13 and the evaporator 13 are circulated. The heat exchange performance with the refrigerant on the vapor compression refrigerator X side is maintained satisfactorily, and the vapor compression refrigerator X is heated in an appropriate state.

しかし、上記蒸気圧縮式冷凍機X側の冷媒温度が低下し、これが設定冷媒温度未満となると、上記蒸発器13における上記蒸気圧縮式冷凍機X側の冷媒との熱交換に供される上記吸収式冷凍機Y側の上記過冷却熱交換器15と上記吸収器12及び上記蒸発器13の間を循環する溶液の温度も低下し、上記蒸発器13を循環する上記蒸気圧縮式冷凍機X側の冷媒との熱交換性能が低下するとともに、上記過冷却熱交換器15に着霜を生じるおそれもある。   However, when the refrigerant temperature on the vapor compression refrigerator X side decreases and becomes lower than the set refrigerant temperature, the absorption used for heat exchange with the refrigerant on the vapor compression refrigerator X side in the evaporator 13 is performed. The temperature of the solution circulating between the supercooling heat exchanger 15 and the absorber 12 and the evaporator 13 on the side of the refrigerating machine Y side also decreases, and the vapor compression refrigerator X side that circulates the evaporator 13 The heat exchange performance with other refrigerants may be reduced, and frost may be generated in the supercooling heat exchanger 15.

この場合に、上記電磁弁41が開弁されると、上記発生器11側の温度の高い溶液が過冷却熱交換器15側へ循環し、その結果、該過冷却熱交換器15から上記吸収器12及び上記蒸発器13側へ流れる溶液の温度が上昇し、上記蒸発器13での上記蒸気圧縮式冷凍機X側の冷媒との熱交換性能が回復され、同時に、上記過冷却熱交換器15での着霜の発生も未然に防止されることになる。従って着霜時における暖房能力の低下がないのに加えて着霜を除去するための不快な運転もない。   In this case, when the solenoid valve 41 is opened, a solution having a high temperature on the generator 11 side circulates to the supercooling heat exchanger 15 side. As a result, the absorption from the supercooling heat exchanger 15 is performed. The temperature of the solution flowing to the evaporator 12 and the evaporator 13 side rises, and the heat exchange performance with the refrigerant on the vapor compression refrigerator X side in the evaporator 13 is restored, and at the same time, the supercooling heat exchanger The occurrence of frost formation at 15 is also prevented in advance. Accordingly, there is no unpleasant operation for removing frost as well as no reduction in heating capacity during frost formation.

この場合、上記過冷却熱交換器15からの溶液の一部が上記蒸発器13に流入することから、例えば、上記吸収器12側のみに溶液が流入する構成の場合に比して、上記蒸発器13での熱交換性能がさらに向上することになる。   In this case, since a part of the solution from the supercooling heat exchanger 15 flows into the evaporator 13, for example, compared with the case where the solution flows into only the absorber 12 side, the evaporation is performed. The heat exchange performance in the vessel 13 is further improved.

III:第3の実施形態
図3には、本願発明の第3の実施形態に係る冷凍装置Zの回路構成を示している。この冷凍装置Zは、上記第2の実施形態に係る冷凍装置Zの変形例として位置付けられるものであって、上記第2の実施形態では上記吸収式冷凍機Yの上記吸収器12の入口側の管路66と上記蒸発器13の冷媒入口側の管路62を、電磁弁43を備えた管路73によって接続し上記蒸気圧縮式冷凍機Xの冷房運転時には閉弁し、暖房運転時には開弁するようにしていたのに対して、この実施形態では、上記吸収式冷凍機Yの上記吸収器12の入口側の管路66を、電磁弁43を備えた管路71を介して上記蒸発器13に接続し、該電磁弁43を上記蒸気圧縮式冷凍機Xの冷房運転時には上記電磁弁43を閉弁し、暖房運転時には上記電磁弁43を開弁するように構成したものである。
III: Third Embodiment FIG. 3 shows a circuit configuration of a refrigeration apparatus Z according to a third embodiment of the present invention. The refrigeration apparatus Z is positioned as a modified example of the refrigeration apparatus Z according to the second embodiment. In the second embodiment, the absorption chiller Y on the inlet side of the absorber 12 of the absorption chiller Y is used. A pipe 66 and a pipe 62 on the refrigerant inlet side of the evaporator 13 are connected by a pipe 73 provided with an electromagnetic valve 43, which is closed during the cooling operation of the vapor compression refrigerator X and opened during the heating operation. In contrast to this, in this embodiment, the evaporator 66 is connected to the inlet 66 of the absorber 12 of the absorption refrigerator Y via the pipe 71 provided with the electromagnetic valve 43. 13, the electromagnetic valve 43 is configured to close the electromagnetic valve 43 during the cooling operation of the vapor compression refrigerator X and open the electromagnetic valve 43 during the heating operation.

従って、この実施形態の冷凍装置Zでは、上記蒸気圧縮式冷凍機Xの冷房運転時及び暖房運転時の双方において同様の作用効果が得られるものであり、ここでは上記第2の実施形態の該当説明を援用し、その説明を省略する。   Therefore, in the refrigeration apparatus Z of this embodiment, the same action and effect can be obtained both during the cooling operation and during the heating operation of the vapor compression refrigeration machine X. Here, the corresponding case of the second embodiment is applicable. The explanation is used and the explanation is omitted.

また、この実施形態の冷凍装置Zに特有の効果は以下の通りである。即ち、上記電磁弁43が開弁される上記蒸気圧縮式冷凍機Xの暖房運転時においては、上記吸収式冷凍機Yの上記吸収器12の入口側の管路66を、電磁弁43を備えた管路74を介して上記蒸発器13に接続し、上記過冷却熱交換器15からの溶液を直接上記蒸発器13側へ流入させるようにしているので、該管路74の上記蒸発器13側への接続構造を、該蒸発器13での熱交換が効率良く行なわれるように独自に設定することができ、これによって上記蒸発器13での熱交換性能の更なる向上を図ることができる。   Moreover, the effects peculiar to the refrigeration apparatus Z of this embodiment are as follows. That is, in the heating operation of the vapor compression refrigeration machine X in which the electromagnetic valve 43 is opened, the pipe 66 on the inlet side of the absorber 12 of the absorption refrigeration machine Y is provided with the electromagnetic valve 43. Since the solution from the supercooling heat exchanger 15 is directly flowed into the evaporator 13 side, the evaporator 13 in the pipe 74 is connected to the evaporator 13 through the pipe 74. The connection structure to the side can be uniquely set so that heat exchange in the evaporator 13 can be performed efficiently, and thus the heat exchange performance in the evaporator 13 can be further improved. .

尚、なお、この実施形態の冷凍装置Zにおいては、上記溶液散布用の散布器18と冷媒液散布用の散布器19を別体構成としているので、本来的に設けられている冷媒散布用の上記散布器19における上記蒸発器13の熱交換器への冷媒の適正な散布状態を維持したまま、上記蒸発器13の熱交換器への溶液の散布が適正に行なわれるよう上記溶液散布用の散布器18の構造あるいは設置位置を設定することができる。   Note that, in the refrigeration apparatus Z of this embodiment, the solution spraying device 18 and the refrigerant liquid spraying device 19 are configured separately, so that the refrigerant spraying device originally provided for the coolant spraying is provided. While maintaining the proper spraying state of the refrigerant to the heat exchanger of the evaporator 13 in the sprayer 19, the solution spraying is performed so that the solution is sprayed properly to the heat exchanger of the evaporator 13. The structure or installation position of the spreader 18 can be set.

IV:第4の実施形態
図4には、本願発明の第4の実施形態に係る冷凍装置Zの回路構成を示している。この冷凍装置Zは、上記第2の実施形態に係る冷凍装置Zを基本構成とし、この基本構成に加えて、上記吸収式冷凍機Yの上記吸収器12の入口側の管路66に電磁弁44を設け、上記蒸気圧縮式冷凍機Xの冷房運転時には上記電磁弁44を閉弁し、暖房運転時には上記電磁弁44を開弁するように構成したものである。
IV: Fourth Embodiment FIG. 4 shows a circuit configuration of a refrigeration apparatus Z according to a fourth embodiment of the present invention. This refrigeration apparatus Z has the refrigeration apparatus Z according to the second embodiment as a basic configuration, and in addition to this basic configuration, an electromagnetic valve is connected to a pipe line 66 on the inlet side of the absorber 12 of the absorption refrigeration machine Y. 44, and the solenoid valve 44 is closed during the cooling operation of the vapor compression refrigerator X, and the solenoid valve 44 is opened during the heating operation.

従って、上記電磁弁44が開弁される上記蒸気圧縮式冷凍機Xの冷房運転時における作用効果は上記第2の実施形態の場合と同様であるので、その該当説明を援用し、ここでの説明を省略する。   Accordingly, since the operational effect during the cooling operation of the vapor compression refrigerator X in which the electromagnetic valve 44 is opened is the same as in the case of the second embodiment, the corresponding description is used here. Description is omitted.

一方、上記電磁弁44が閉弁される上記蒸気圧縮式冷凍機Xの暖房運転時には、基本的には上記第2の実施形態の場合と同様であるが、この実施形態では上記電磁弁44を設け且つこれを暖房運転時には閉弁させるようにしたことで、上記吸収式冷凍機Yの上記過冷却熱交換器15からの溶液の全量が上記蒸発器13側に循環し、該蒸発器13において上記溶液と上記蒸気圧縮式冷凍機X側の冷媒との間で熱交換が行なわれる。この結果、例えば、上記過冷却熱交換器15からの溶液の一部を上記蒸発器13側に循環させて熱交換を行なわせる場合(第2の実施形態の場合)に比して、該蒸発器13での熱交換性能がより一層向上することになる。   On the other hand, during the heating operation of the vapor compression refrigeration machine X in which the electromagnetic valve 44 is closed, the operation is basically the same as in the case of the second embodiment. By providing and closing the valve during heating operation, the entire amount of the solution from the supercooling heat exchanger 15 of the absorption refrigeration machine Y circulates to the evaporator 13 side. Heat exchange is performed between the solution and the refrigerant on the vapor compression refrigerator X side. As a result, for example, compared with a case where a part of the solution from the supercooling heat exchanger 15 is circulated to the evaporator 13 side to perform heat exchange (in the case of the second embodiment), the evaporation is performed. The heat exchange performance in the vessel 13 is further improved.

上記以外の、暖房運転時における作用効果については、上記第2の実施形態の該当説明を援用する。   For the operational effects other than the above, the corresponding description of the second embodiment is used.

V:第5の実施形態
図5には、本願発明の第5の実施形態に係る冷凍装置Zの回路構成を示している。この冷凍装置Zは、上記第3の実施形態に係る冷凍装置Zを基本構成とし、この基本構成に加えて、上記吸収式冷凍機Yの上記吸収器12の入口側の管路66に電磁弁44を設け、上記蒸気圧縮式冷凍機Xの冷房運転時には上記電磁弁44を閉弁し、暖房運転時には上記電磁弁44を開弁するように構成したものである。
V: Fifth Embodiment FIG. 5 shows a circuit configuration of a refrigeration apparatus Z according to a fifth embodiment of the present invention. This refrigeration apparatus Z has the refrigeration apparatus Z according to the third embodiment as a basic configuration, and in addition to this basic configuration, an electromagnetic valve is connected to a pipe line 66 on the inlet side of the absorber 12 of the absorption refrigeration machine Y. 44, and the solenoid valve 44 is closed during the cooling operation of the vapor compression refrigerator X, and the solenoid valve 44 is opened during the heating operation.

従って、上記電磁弁44が開弁される上記蒸気圧縮式冷凍機Xの冷房運転時における作用効果は上記第3の実施形態の場合と同様であるので、その該当説明を援用し、ここでの説明を省略する。   Therefore, since the operational effect during the cooling operation of the vapor compression refrigerator X in which the electromagnetic valve 44 is opened is the same as that in the case of the third embodiment, the corresponding explanation is used here. Description is omitted.

一方、上記電磁弁44が閉弁される上記蒸気圧縮式冷凍機Xの暖房運転時には、基本的には上記第3の実施形態の場合と同様であるが、この実施形態では上記電磁弁44を設け且つこれを暖房運転時には閉弁させるようにしたことで、上記吸収式冷凍機Yの上記過冷却熱交換器15からの溶液の全量が上記蒸発器13側に直接流入し、該蒸発器13において上記溶液と上記蒸気圧縮式冷凍機X側の冷媒との間で熱交換が行なわれる。   On the other hand, during the heating operation of the vapor compression refrigeration machine X in which the electromagnetic valve 44 is closed, the operation is basically the same as in the case of the third embodiment. By providing and closing the valve during heating operation, the total amount of the solution from the supercooling heat exchanger 15 of the absorption refrigeration machine Y flows directly into the evaporator 13, and the evaporator 13 Then, heat exchange is performed between the solution and the refrigerant on the vapor compression refrigerator X side.

この結果、例えば、上記過冷却熱交換器15からの溶液の一部を上記蒸発器13側に循環させて熱交換を行なわせる場合(第3の実施形態の場合)に比して、該蒸発器13での熱交換性能がより一層向上することになる。   As a result, for example, as compared with a case where a part of the solution from the supercooling heat exchanger 15 is circulated to the evaporator 13 side to perform heat exchange (in the case of the third embodiment), the evaporation is performed. The heat exchange performance in the vessel 13 is further improved.

上記以外の、暖房運転時における作用効果については、上記第3の実施形態の該当説明を援用する。   For the effects other than the above in the heating operation, the corresponding description of the third embodiment is used.

VI:第6の実施形態
図6には、本願発明の第6の実施形態に係る冷凍装置Zの回路構成を示している。この冷凍装置Zは、上記第5の実施形態に係る冷凍装置Zを基本構成とし、この基本構成に加えて、上記発生器11の排熱入口側の管路60に電磁弁45を設け、冷房運転時には上記電磁弁45を開弁する一方、暖房運転時には上記発生器11の溶液温度が設定溶液温度以上のとき上記電磁弁45を閉弁し、該設定溶液温度未満のとき上記電磁弁45を開弁させるように構成したものである。
VI: Sixth Embodiment FIG. 6 shows a circuit configuration of a refrigeration apparatus Z according to a sixth embodiment of the present invention. This refrigeration apparatus Z has the refrigeration apparatus Z according to the fifth embodiment as a basic configuration, and in addition to this basic configuration, an electromagnetic valve 45 is provided in the pipe line 60 on the exhaust heat inlet side of the generator 11 for cooling. While the solenoid valve 45 is opened during operation, the solenoid valve 45 is closed when the solution temperature of the generator 11 is equal to or higher than the set solution temperature during heating operation, and when the temperature is less than the set solution temperature, the solenoid valve 45 is opened. The valve is configured to be opened.

従って、上記電磁弁45が開弁される上記蒸気圧縮式冷凍機Xの冷房運転時における作用効果は上記第5の実施形態の場合と同様であるので、その該当説明を援用し、ここでの説明を省略する。   Therefore, since the operational effect during the cooling operation of the vapor compression refrigeration machine X with the electromagnetic valve 45 opened is the same as in the case of the fifth embodiment, the corresponding explanation is used here. Description is omitted.

一方、上記蒸気圧縮式冷凍機Xの冷房運転時には、上記電磁弁45は上記発生器11の溶液温度に応じて開閉される。即ち、上記発生器11の溶液温度が設定溶液温度以上のとき上記電磁弁45を閉弁し、該設定溶液温度未満のとき上記電磁弁45を開弁する。   On the other hand, during the cooling operation of the vapor compression refrigerator X, the electromagnetic valve 45 is opened and closed according to the solution temperature of the generator 11. That is, when the solution temperature of the generator 11 is equal to or higher than the set solution temperature, the solenoid valve 45 is closed, and when the temperature is lower than the set solution temperature, the solenoid valve 45 is opened.

従って、上記発生器11の溶液温度が設定溶液温度以上のときには、上記電磁弁45が閉弁され、上記発生器11へのエンジン等の排熱の供給が停止されることで、上記発生器11内の溶液温度が高くなり過ぎるのが防止される。この結果、上記冷媒熱回収熱交換器6での熱交換によって上記蒸気圧縮式冷凍機X側の冷媒温度が高くなり過ぎるのが抑制され、適正な暖房が実現される。   Accordingly, when the solution temperature of the generator 11 is equal to or higher than the set solution temperature, the electromagnetic valve 45 is closed, and supply of exhaust heat from the engine or the like to the generator 11 is stopped, so that the generator 11 is stopped. The solution temperature inside is prevented from becoming too high. As a result, it is suppressed that the refrigerant temperature on the vapor compression refrigeration machine X side becomes too high due to the heat exchange in the refrigerant heat recovery heat exchanger 6, and proper heating is realized.

これに対して、上記発生器11の溶液温度が設定溶液温度未満のときには、上記電磁弁45が開弁され、上記発生器11にエンジン等の排熱が供給されることで、上記発生器11内の溶液温度が過度に低下するのが防止される。この結果、上記冷媒熱回収熱交換器6での熱交換によって上記蒸気圧縮式冷凍機X側の冷媒温度が低くなり過ぎるのが抑制され、適正な暖房運転が実現される。   On the other hand, when the solution temperature of the generator 11 is lower than the set solution temperature, the electromagnetic valve 45 is opened, and exhaust heat from the engine or the like is supplied to the generator 11, thereby the generator 11. The temperature of the solution is prevented from excessively decreasing. As a result, the heat exchange in the refrigerant heat recovery heat exchanger 6 prevents the refrigerant temperature on the vapor compression refrigeration machine X side from becoming too low, and an appropriate heating operation is realized.

このように、上記電磁弁45を上記発生器11の溶液温度に基づいて開閉弁することで、上記蒸気圧縮式冷凍機Xでの暖房運転が常時適正に行なわれ、その暖房性能が向上するものである。   Thus, by opening and closing the solenoid valve 45 based on the solution temperature of the generator 11, the heating operation in the vapor compression refrigeration machine X is always properly performed, and the heating performance is improved. It is.

上記以外の、暖房運転時における作用効果については、上記第3の実施形態の該当説明を援用する。   For the effects other than the above in the heating operation, the corresponding description of the third embodiment is used.

なお、この実施形態の冷凍装置Zにおいては、上記吸収式冷凍機Yの上記蒸発器13に備えられた溶液散布用の散布器18を冷媒液散布用の散布器として共用できるように一体構成している。係る構成とすれば、散布器の配置スペースの狭小化によって、上記蒸発器13のコンパクト化及び低コスト化が図れる。   In the refrigeration apparatus Z of this embodiment, the solution spraying device 18 provided in the evaporator 13 of the absorption refrigeration machine Y is integrally configured so that it can be shared as a sprayer for spraying refrigerant liquid. ing. With this configuration, the evaporator 13 can be reduced in size and cost by reducing the arrangement space of the spreader.

VII:第7の実施形態
図7には、本願発明の第7の実施形態に係る冷凍装置Zの回路構成を示している。この冷凍装置Zは、上記第5の実施形態に係る冷凍装置Zの変形例として位置付けられるものである。即ち、上記第5の実施形態に係る冷凍装置Zでは一台の蒸気圧縮式冷凍機Xと一台の吸収式冷凍機Yで上記冷凍装置Zを構成していたのに対して、この第7の実施形態に係る冷凍装置Zでは、これを二台の蒸気圧縮式冷凍機Xと一台の吸収式冷凍機Yで構成するとともに、該蒸気圧縮式冷凍機Xの設置数の増加に対応して、該各蒸気圧縮式冷凍機Xのそれぞれに上記冷媒熱回収熱交換器6を備え、該各蒸気圧縮式冷凍機Xの冷媒の排熱をそれぞれ対応する熱回収熱交換器6において吸収式冷凍機Yの溶液側へ回収し、この回収された排熱を一台の上記吸収式冷凍機Yの上記発生器11に供給するように構成したものである。
VII: Seventh Embodiment FIG. 7 shows a circuit configuration of a refrigeration apparatus Z according to a seventh embodiment of the present invention. This refrigeration apparatus Z is positioned as a modification of the refrigeration apparatus Z according to the fifth embodiment. That is, in the refrigeration apparatus Z according to the fifth embodiment, the refrigeration apparatus Z is constituted by one vapor compression refrigeration machine X and one absorption refrigeration machine Y. In the refrigeration apparatus Z according to the embodiment, this is constituted by two vapor compression refrigeration machines X and one absorption refrigeration machine Y, and the increase in the number of installed vapor compression refrigeration machines X is supported. Each of the vapor compression refrigeration machines X is provided with the refrigerant heat recovery heat exchanger 6, and the exhaust heat of the refrigerant of each of the vapor compression refrigeration machines X is absorbed in the corresponding heat recovery heat exchanger 6. It collect | recovers to the solution side of the refrigerator Y, and is comprised so that this recovered waste heat may be supplied to the said generator 11 of the said absorption-type refrigerator Y.

係る構成によれば、上記蒸気圧縮式冷凍機Xの冷媒側から上記吸収式冷凍機Yの発生器11側への回収熱量が大きくなることから、例えば、エンジン等の排熱が少ない場合でも、回収した冷媒排熱を有効に使って上記吸収式冷凍機Yを適正に運転させることができ、その結果、該吸収式冷凍機Yの蒸発器13での熱交換によって上記各蒸気圧縮式冷凍機Xの冷媒を十分に過冷却することが可能となり、延いては上記冷凍装置Z全体の性能改善効果を得ることができる。   According to such a configuration, since the amount of recovered heat from the refrigerant side of the vapor compression refrigeration machine X to the generator 11 side of the absorption refrigeration machine Y increases, for example, even when there is little exhaust heat from the engine or the like, The absorption refrigeration machine Y can be appropriately operated by effectively using the recovered refrigerant exhaust heat, and as a result, each of the vapor compression refrigeration machines by heat exchange in the evaporator 13 of the absorption refrigeration machine Y. The refrigerant of X can be sufficiently subcooled, and as a result, the performance improvement effect of the entire refrigeration apparatus Z can be obtained.

なお、上記蒸気圧縮式冷凍機Xの並置台数には制約は無く、必要に応じて並置台数を設定すれば良い。   In addition, there is no restriction | limiting in the juxtaposition number of the said vapor compression type refrigerators X, What is necessary is just to set the juxtaposition number as needed.

1 ・・・圧縮機
2 ・・・四路切換弁
3 ・・・利用側熱交換器
4 ・・・膨張弁
5 ・・・アキュームレーター
6 ・・・熱回収熱交換器
7 ・・・熱源側熱交換器
11 ・・・発生器
12 ・・・吸収器
13 ・・・蒸発器
14 ・・・凝縮器
15 ・・・過冷却熱交換器
16 ・・・溶液熱交換器
17 ・・・溶液ポンプ
18、19・・散布器
20 ・・・ファン
41 ・・・電磁弁
43〜45・・電磁弁
51〜57・・管路
61〜67・・管路
71〜74・・管路
X ・・蒸気圧縮式冷凍機
Y ・・吸収式冷凍機
Z ・・冷凍装置
DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Four-way switching valve 3 ... Use side heat exchanger 4 ... Expansion valve 5 ... Accumulator 6 ... Heat recovery heat exchanger 7 ... Heat source side Heat exchanger 11 ... Generator 12 ... Absorber 13 ... Evaporator 14 ... Condenser 15 ... Supercooling heat exchanger 16 ... Solution heat exchanger 17 ... Solution pump 18, 19 ... Sprinkler 20 ... Fan 41 ... Solenoid valve 43-45 ... Solenoid valve 51-57 ... Pipe 61-67 ... Pipe 71-74 ... Pipe X ... Steam Compression refrigerator Y ・ ・ Absorption refrigerator Z ・ ・ Refrigerator

Claims (8)

蒸気圧縮式冷凍機(X)とエンジン等の排熱で駆動される吸収式冷凍機(Y)とを備えて構成される冷凍装置であって、
上記吸収式冷凍機(Y)の吸収器(12)に流入する溶液を空冷式の過冷却熱交換器(15)によって過冷却して上記吸収器(12)へ流入させる一方、
上記蒸気圧縮式冷凍機(X)の冷媒と、上記吸収式冷凍機(Y)の上記吸収器(12)の出口から溶液ポンプ(17)を経て溶液熱交換器(16)に至る管路(67)から分岐した溶液との間で熱交換を行なう熱回収熱交換器(6)を設け、該熱回収熱交換器(6)での熱交換後の上記蒸気圧縮式冷凍機(X)の冷媒は上記吸収式冷凍機(Y)の上記蒸発器(13)へ、上記吸収式冷凍機(Y)の溶液は上記発生器(11)にそれぞれ流入させるとともに、上記溶液ポンプ(17)の出口側から上記熱回収熱交換器(6)に至る上記管路(67)に電磁弁(41)を設け、該電磁弁(41)を、上記蒸気圧縮式冷凍機(X)の冷房運転時には開弁する一方、上記蒸気圧縮式冷凍機(X)の暖房運転時には、上記四路切換弁(2)を切換え、蒸気圧縮式冷凍機の冷媒を冷房運転とは逆方向に流入させ、溶液ポンフ(17)と過冷却熱交換器用ファン(20)を運転し、上記蒸発器(13)における上記蒸気圧縮式冷凍機(X)の冷媒温度が設定冷媒温度以上のとき閉弁し、該設定冷媒温度未満のとき開弁し、又は上記吸収式冷凍機(Y)の上記過冷却熱交換器(15)の出口側の溶液温度が設定冷媒温度以上のとき閉弁し、該設定溶液温度未満のとき開弁するように構成したことを特徴とする冷凍装置。
A refrigerating apparatus comprising a vapor compression refrigerator (X) and an absorption refrigerator (Y) driven by exhaust heat from an engine or the like,
While the solution flowing into the absorber (12) of the absorption refrigerator (Y) is supercooled by the air-cooled supercooling heat exchanger (15) and flows into the absorber (12),
The refrigerant of the vapor compression refrigeration machine (X) and a pipe line (from the outlet of the absorber (12) of the absorption refrigeration machine (Y) to the solution heat exchanger (16) through the solution pump (17) ( 67) is provided with a heat recovery heat exchanger (6) for exchanging heat with the solution branched from the solution, and the vapor compression refrigerator (X) after heat exchange in the heat recovery heat exchanger (6) is provided. The refrigerant flows into the evaporator (13) of the absorption refrigerator (Y), and the solution of the absorption refrigerator (Y) flows into the generator (11), and the outlet of the solution pump (17). A solenoid valve (41) is provided in the pipe line (67) from the side to the heat recovery heat exchanger (6), and the solenoid valve (41) is opened during cooling operation of the vapor compression refrigerator (X). On the other hand, during the heating operation of the vapor compression refrigerator (X), the four-way switching valve (2) is switched to The refrigerant of the compression refrigerator is caused to flow in the opposite direction to the cooling operation, the solution pump (17) and the supercooling heat exchanger fan (20) are operated, and the vapor compression refrigerator (13) in the evaporator (13) is operated. X) is closed when the refrigerant temperature is equal to or higher than the set refrigerant temperature, and is opened when the refrigerant temperature is lower than the set refrigerant temperature, or on the outlet side of the supercooling heat exchanger (15) of the absorption refrigeration machine (Y). A refrigeration apparatus configured to close when a solution temperature is equal to or higher than a set refrigerant temperature and to open when the temperature is lower than the set solution temperature.
請求項1において、
上記吸収式冷凍機(Y)の上記吸収器(12)の入口側の管路(66)と上記蒸発器(13)の冷媒入口側の管路(62)を、電磁弁(43)を備えた管路(73)によって接続し、
上記蒸気圧縮式冷凍機(X)の冷房運転時には上記電磁弁(43)を閉弁し、暖房運転時には上記電磁弁(43)を開弁するように構成したことを特徴とする冷凍装置。
In claim 1,
The absorption refrigeration machine (Y) has an electromagnetic valve (43) including a pipe (66) on the inlet side of the absorber (12) and a pipe (62) on the refrigerant inlet side of the evaporator (13). Connected by a line (73)
A refrigeration apparatus configured to close the solenoid valve (43) during cooling operation of the vapor compression refrigerator (X) and open the solenoid valve (43) during heating operation.
請求項1において、
上記吸収式冷凍機(Y)の上記吸収器(12)の入口側の管路(66)を、電磁弁(43)を備えた管路(74)を介して上記蒸発器(13)に接続し、上記蒸気圧縮式冷凍機(X)の冷房運転時には上記電磁弁(43)を閉弁し、暖房運転時には上記電磁弁(43)を開弁するように構成したことを特徴とする冷凍装置。
In claim 1,
The pipe (66) on the inlet side of the absorber (12) of the absorption refrigerator (Y) is connected to the evaporator (13) through a pipe (74) provided with a solenoid valve (43). The solenoid valve (43) is closed during the cooling operation of the vapor compression refrigerator (X), and the solenoid valve (43) is opened during the heating operation. .
請求項2又は3において、
上記吸収式冷凍機(Y)の上記吸収器(12)の入口側の管路(66)に電磁弁(44)を設け、上記蒸気圧縮式冷凍機(X)の冷房運転時には上記電磁弁(44)を閉弁し、暖房運転時には上記電磁弁(44)を開弁するように構成したことを特徴とする冷凍装置。
In claim 2 or 3,
An electromagnetic valve (44) is provided in a pipe line (66) on the inlet side of the absorber (12) of the absorption refrigeration machine (Y), and the electromagnetic valve (44) is used during the cooling operation of the vapor compression refrigeration machine (X). 44), and the solenoid valve (44) is opened during heating operation.
請求項1,2,3又は4において、
上記発生器(11)の排熱入口側の管路(60)に電磁弁(45)を設け、冷房運転時には上記電磁弁(45)を開弁する一方、暖房運転時には上記発生器(11)の溶液温度が設定溶液温度以上のとき上記電磁弁(45)を閉弁し、該設定溶液温度未満のとき上記電磁弁(45)を開弁させるように構成したことを特徴とする冷凍装置。
In claim 1, 2, 3 or 4,
A solenoid valve (45) is provided in the pipe (60) on the exhaust heat inlet side of the generator (11), and the solenoid valve (45) is opened during cooling operation, while the generator (11) is used during heating operation. A refrigeration apparatus configured to close the electromagnetic valve (45) when the solution temperature of the liquid is higher than a set solution temperature and to open the solenoid valve (45) when the temperature is lower than the set solution temperature.
請求項3又は4において、
上記蒸発器(13)における溶液散布用の散布器と冷媒液散布用の散布器を、別体構成又は共用可能な一体構成としたことを特徴とする冷凍装置。
In claim 3 or 4,
The refrigeration apparatus characterized in that the sprayer for spraying the solution and the sprayer for spraying the refrigerant liquid in the evaporator (13) have a separate structure or an integrated structure that can be shared.
請求項1,2,3,4,5又は6において、
上記蒸発器(13)は、冷媒液が一過性で該蒸発器(13)の伝熱面を流れ、未蒸発の冷媒液は上記吸収器(12)側へ移動して該吸収器(12)側の溶液に吸収されるように構成したことを特徴とする冷凍装置。
In claim 1, 2, 3, 4, 5 or 6,
In the evaporator (13), the refrigerant liquid is transient and flows on the heat transfer surface of the evaporator (13), and the non-evaporated refrigerant liquid moves to the absorber (12) side and moves to the absorber (12). The refrigeration apparatus is configured to be absorbed by the solution on the side.
請求項1,2,3,4,5,6又は7において、
上記蒸気圧縮式冷凍機(X)を複数台設置するとともに該各蒸気圧縮式冷凍機(X)のそれぞれに上記熱回収熱交換器(6)を設けて該各蒸気圧縮式冷凍機(X)の冷媒の排熱をそれぞれ回収し、該各熱回収熱交換器(6)で回収された排熱を一台の吸収式冷凍機(Y)の上記発生器(11)に供給するように構成したことを特徴とする冷凍装置。
In claim 1, 2, 3, 4, 5, 6 or 7,
A plurality of the vapor compression refrigeration units (X) are installed, and the heat recovery heat exchanger (6) is provided in each of the vapor compression refrigeration units (X), and the respective vapor compression refrigeration units (X) The exhaust heat of each refrigerant is recovered, and the exhaust heat recovered by each heat recovery heat exchanger (6) is supplied to the generator (11) of one absorption refrigerator (Y). A refrigeration apparatus characterized by that.
JP2009093086A 2009-04-07 2009-04-07 Refrigeration equipment Expired - Fee Related JP5434207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009093086A JP5434207B2 (en) 2009-04-07 2009-04-07 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009093086A JP5434207B2 (en) 2009-04-07 2009-04-07 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2010243083A true JP2010243083A (en) 2010-10-28
JP5434207B2 JP5434207B2 (en) 2014-03-05

Family

ID=43096265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009093086A Expired - Fee Related JP5434207B2 (en) 2009-04-07 2009-04-07 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5434207B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107314571A (en) * 2017-07-11 2017-11-03 新奥(中国)燃气投资有限公司 Heat pump and its heat recovery method
CN112976987A (en) * 2019-12-17 2021-06-18 中国人民解放军空军勤务学院 High-temperature tail gas waste heat recycling device based on automobile engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281193A (en) * 1998-03-27 1999-10-15 Sanyo Electric Co Ltd Air conditioner
JP2000018762A (en) * 1998-07-06 2000-01-18 Daikin Ind Ltd Absorption refrigerating machine
JP2003004334A (en) * 2001-06-25 2003-01-08 Ebara Corp Waste heat recovery air conditioner
JP2003121025A (en) * 2001-10-10 2003-04-23 Tokyo Gas Co Ltd Heating-cooling combination appliance
JP2006017350A (en) * 2004-06-04 2006-01-19 Sanyo Electric Co Ltd Refrigeration device
JP2009058181A (en) * 2007-08-31 2009-03-19 Daikin Ind Ltd Absorption type refrigerating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281193A (en) * 1998-03-27 1999-10-15 Sanyo Electric Co Ltd Air conditioner
JP2000018762A (en) * 1998-07-06 2000-01-18 Daikin Ind Ltd Absorption refrigerating machine
JP2003004334A (en) * 2001-06-25 2003-01-08 Ebara Corp Waste heat recovery air conditioner
JP2003121025A (en) * 2001-10-10 2003-04-23 Tokyo Gas Co Ltd Heating-cooling combination appliance
JP2006017350A (en) * 2004-06-04 2006-01-19 Sanyo Electric Co Ltd Refrigeration device
JP2009058181A (en) * 2007-08-31 2009-03-19 Daikin Ind Ltd Absorption type refrigerating apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107314571A (en) * 2017-07-11 2017-11-03 新奥(中国)燃气投资有限公司 Heat pump and its heat recovery method
CN107314571B (en) * 2017-07-11 2020-10-27 新奥(中国)燃气投资有限公司 Heat pump system and heat recovery method thereof
CN112976987A (en) * 2019-12-17 2021-06-18 中国人民解放军空军勤务学院 High-temperature tail gas waste heat recycling device based on automobile engine
CN112976987B (en) * 2019-12-17 2023-06-16 中国人民解放军空军勤务学院 High-temperature tail gas waste heat recycling device based on automobile engine

Also Published As

Publication number Publication date
JP5434207B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP3662557B2 (en) Heat pump system
JP2011133123A (en) Refrigerating cycle device
JP5375283B2 (en) Refrigeration equipment
JP2007010288A (en) Cooling and heating capacity enhancement method of existing heat pump type air conditioner, thermal storage unit device and heat pump type air conditioner using the device
JP2007163013A (en) Refrigerating cycle device
JP4241662B2 (en) Heat pump system
JP2011247476A (en) Refrigerating cycle with refrigerant pipe for defrosting operation
JP5240040B2 (en) Refrigeration equipment
JP5434207B2 (en) Refrigeration equipment
JP5402186B2 (en) Refrigeration equipment
JP4608303B2 (en) Vapor compression heat pump
KR100983092B1 (en) Apparatus for saving cooling and heating energy using heat pump
JP5229076B2 (en) Refrigeration equipment
JP2007051788A (en) Refrigerating device
JPH0953864A (en) Engine type cooling device
JP2021508809A (en) Air conditioner system
KR100562836B1 (en) Heat pump cycle
WO2016199671A1 (en) Refrigeration system
JP5434206B2 (en) Refrigeration equipment
JP5375284B2 (en) Refrigeration equipment
JP2009236440A (en) Gas heat pump type air conditioning device or refrigerating device
JP5627559B2 (en) Air conditioner
JP5310224B2 (en) Refrigeration equipment
JP5434208B2 (en) Refrigeration equipment
JP5402187B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

LAPS Cancellation because of no payment of annual fees