JP2010241618A - Super-quick hardening, underwater non-separable cement composition; super-quick hardening, underwater non-separable premixed mortar composition; and underwater non-separable grout mortar - Google Patents

Super-quick hardening, underwater non-separable cement composition; super-quick hardening, underwater non-separable premixed mortar composition; and underwater non-separable grout mortar Download PDF

Info

Publication number
JP2010241618A
JP2010241618A JP2009089835A JP2009089835A JP2010241618A JP 2010241618 A JP2010241618 A JP 2010241618A JP 2009089835 A JP2009089835 A JP 2009089835A JP 2009089835 A JP2009089835 A JP 2009089835A JP 2010241618 A JP2010241618 A JP 2010241618A
Authority
JP
Japan
Prior art keywords
separable
super
underwater non
quick hardening
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009089835A
Other languages
Japanese (ja)
Inventor
Toru Yagi
徹 八木
Minoru Morioka
実 盛岡
Tetsuo Otsuka
哲雄 大塚
Takayuki Kaneko
孝之 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009089835A priority Critical patent/JP2010241618A/en
Publication of JP2010241618A publication Critical patent/JP2010241618A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/06Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients
    • C04B40/0608Dry ready-made mixtures, e.g. mortars at which only water or a water solution has to be added before use
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • C04B2103/0005Organic ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials
    • C04B2111/275Making materials water insoluble
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a super-quick hardening, underwater non-separable cement composition; a super-quick hardening, underwater non-separable premixed mortar composition; and a super-quick hardening, underwater non-separable grout mortar which have excellent underwater non-separability, advance the opening time of a construction site, and furthermore can achieve sufficient strength development for their hardened bodies. <P>SOLUTION: The super-quick hardening, underwater non-separable cement composition includes cement, calcium aluminate, gypsum, a powdery thickener containing an alkyl allyl sulfonate and an alkyl ammonium salt, a setting modifier and a polycarboxylic acid-based water reducer. Furthermore, the super-quick hardening, underwater non-separable cement composition is made by containing a silicone-based defoamant and a gas foaming substance. The super-quick hardening, underwater non-separable premixed mortar composition is produced by containing the super-quick hardening, underwater non-separable cement composition and fine aggregates; and the super-quick hardening, underwater non-separable grout mortar is produced by mixing the super-quick hardening, underwater non-separable premixed mortar composition and water. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、主に、土木・建築業界において、主に水中グラウトに使用される超速硬水中不分離性動セメント組成物、超速硬水中不分離性プレミックスモルタル組成物、及び超速硬水中不分離性グラウトモルタルに関する。   The present invention mainly relates to an ultrafast hard water inseparable dynamic cement composition, an ultrafast hard water inseparable premixed mortar composition, and an ultrafast hard water inseparable mainly used in the underwater grout in the civil engineering and construction industry. Related to sex grout mortar.

河川や海洋の土木工事等で、モルタル・コンクリートを水中で打設する場合、周囲の水との接触をできるだけ断ち、材料分離を最小限に止めることが重要である。
通常配合のコンクリートを、コンクリートポンプ工法やトレミー工法で打設することが行われてきた。しかしながら、いずれの工法も材料分離が大きく、打設現場の水質汚染が課題となっていた。
When placing mortar / concrete underwater in rivers or ocean engineering works, it is important to minimize contact with surrounding water and minimize material separation.
It has been practiced to place concrete blended concrete by a concrete pump method or tremy method. However, each method has a large material separation, and the water pollution at the installation site has been a problem.

そのため、コンクリート自身の性能を改良し、コンクリートの水中での材料分離抵抗性を向上する、セルロース系やアクリル系の水溶性高分子を主成分とした、水中不分離性混和剤、水中グラウト用混和材、及び水中施工用グラウト材を用い、特殊コンクリートを水中で打設する工法が提案された(非特許文献1、特許文献1、特許文献2)。
この水中不分離性混和剤等を用いた配合は、水溶性高分子の増粘効果により、モルタル・コンクリートの粘凋性が増大するために、圧送による管内抵抗が上昇し、管の磨耗や閉塞等が生じる課題があった。
Therefore, it improves the performance of concrete itself and improves the material separation resistance of concrete in water. It is a water-insoluble separable admixture based on cellulose-based and acrylic water-soluble polymers. A construction method has been proposed in which a special concrete is placed in water using a grouting material and underwater construction (Non-patent Document 1, Patent Document 1, Patent Document 2).
This formulation using an inseparable admixture in water increases the viscosity of the mortar / concrete due to the thickening effect of the water-soluble polymer. There was a problem that caused.

また、水中施工においては、締め固めを不要とするため、良好な流動性が必要であり、そのため減水剤の多量添加や単位水量の増大により、凝結時間が遅延したり、圧縮強度発現性が著しく低くなるといった課題もあった。   Also, underwater construction does not require compaction, so good fluidity is required.Therefore, due to the addition of a large amount of water reducing agent and the increase in unit water volume, the setting time is delayed and the compressive strength is remarkably exhibited. There was also a problem of lowering.

一方、セメントなどの結合材、水、細骨材、アニオン性芳香族化合物、及びカルボキシ基含有ポリエーテル系減水剤とを混練した後に、カチオン性界面活性剤を添加して再度練混ぜ、水中不分離性を付与した高流動モルタル組成物も提案されている(特許文献3)。   On the other hand, after kneading a binder such as cement, water, fine aggregate, an anionic aromatic compound, and a carboxy group-containing polyether-based water reducing agent, a cationic surfactant is added and kneaded again. A high fluidity mortar composition imparted with separability has also been proposed (Patent Document 3).

コンクリート・ライブラリー第67号、水中不分離性コンクリート設計施工指針(案)、社団法人 土木学会、1991年Concrete Library No. 67, Underwater inseparable concrete design and construction guidelines (draft), Japan Society of Civil Engineers, 1991

特開平07−138055号公報Japanese Patent Application Laid-Open No. 07-138055 特開2007−261921号公報JP 2007-261721 A 特開2006−176397号公報JP 2006-176597 A

本発明は、良好な水中不分離性を有し、施工場所の開放時間を早め、更にその硬化体が、充分な強度発現性が達成できる、超速硬水中不分離性動セメント組成物、超速硬水中不分離性プレミックスモルタル組成物、及び超速硬水中不分離性グラウトモルタルを提供するものである。   The present invention provides a super-fast hard water non-separable dynamic cement composition, which has good water inseparability, accelerates the opening time of the construction site, and can achieve sufficient strength development of the hardened body. A medium non-separable premix mortar composition and an ultra-fast hard water non-separable grout mortar are provided.

すなわち、本発明は、(1)セメント、カルシウムアルミネート、セッコウ、アルキルアリルスルフォン酸塩とアルキルアンモニウム塩を含有する粉末状増粘剤、凝結調整剤、及びポリカルボン酸系減水剤を含有する超速硬水中不分離性セメント組成物であり、(2)さらに、シリコーン系消泡剤を含有してなる(1)の超速硬水中不分離性セメント組成物であり、(3)カルシウムアルミネートが、非晶質カルシウムアルミネートである(1)又は(2)の超速硬水中不分離性セメント組成物であり、(4)さらに、ガス発泡物質を含有してなる(1)〜(3)のいずれかの超速硬水中不分離性セメント組成物であり、(5)(1)〜(4)のいずれかの超速硬水中不分離性セメント組成物と細骨材とを含有してなる超速硬水中不分離性プレミックスモルタル組成物であり、(6)(5)の超速硬水中不分離性プレミックスモルタル組成物と水とを混練してなる超速硬水中不分離性グラウトモルタルである。   That is, the present invention is (1) super speed containing a powdery thickener containing a cement, calcium aluminate, gypsum, alkylallylsulfonate and alkylammonium salt, a setting regulator, and a polycarboxylic acid water reducing agent. It is a hard water inseparable cement composition, (2) is an ultrafast hard water inseparable cement composition of (1) further comprising a silicone-based antifoaming agent, and (3) calcium aluminate is Any one of (1) to (3), which is an amorphous calcium aluminate (1) or (2) ultrafast hard water inseparable cement composition, and further comprises a gas foaming substance. The ultrafast hard water inseparable cement composition of (5) (1) to (4), the ultrafast hard water comprising the ultrafast hard water inseparable cement composition and fine aggregate Inseparable process A mix mortar composition, (6) (5) of the super fast hard water nondisjunction Premix mortar composition and an ultra fast hard water formed by kneading a water-separating grout mortar.

本発明の水中不分離性セメント組成物は、粉末状であって、ドライブレンドが可能であり、プレミックス品として、現場施工では水を用意し練混ぜるだけで良いため、作業性が向上し、さらに、水中不分離性、流動性が優れ、気中のみならず水中においても、充分な強度発現性と無収縮性を有し、水流のある場所においても、流れ出し防止の措置を講ずる時間を短縮できる、という顕著な効果を奏する。   The underwater inseparable cement composition of the present invention is in a powder form and can be dry blended, and as a premix product, it is only necessary to prepare and mix water in the field construction, so that workability is improved, In addition, it has excellent non-separability and fluidity in water, has sufficient strength and no shrinkage not only in the air but also in water, and shortens the time for taking measures to prevent outflow even in locations with water flow. There is a remarkable effect of being able to.

以下、本発明を詳細に説明する。
なお、本発明における部や%は特に規定しない限り質量基準で示す。
Hereinafter, the present invention will be described in detail.
In the present invention, “parts” and “%” are based on mass unless otherwise specified.

本発明で使用するセメントとしては、普通、早強、超早強、低熱、及び中庸熱などの各種ポルトランドセメント、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、また、石灰石粉末などや高炉徐冷スラグ微粉末を混合したフィラーセメント、各種の産業廃棄物を主原料として製造される環境調和型セメント、いわゆる、エコセメントなどが挙げられ、これらのうちの一種又は二種以上が使用可能である。本発明では、初期強度発現性や材料分離抵抗性の観点から、普通ポルトランドセメントや早強ポルトランドセメントを選定することが好ましい。   As the cement used in the present invention, various portland cements such as normal, early strength, very early strength, low heat, and moderate heat, various mixed cements obtained by mixing these portland cements with blast furnace slag, fly ash, or silica, , Limestone powder, filler cement mixed with blast furnace slow-cooled slag fine powder, environmentally friendly cement manufactured using various industrial wastes as the main raw material, so-called eco-cement, and so on. More than species can be used. In the present invention, it is preferable to select ordinary Portland cement or early-strength Portland cement from the viewpoint of initial strength development and material separation resistance.

本発明で使用するカルシウムアルミネートは、CaOとAlを主成分とする化合物を総称するものであり、その具体例としては、例えば、CaO・2Al、CaO・Al、12CaO・7Al、11CaO・7Al・CaF、及び3CaO・3Al・CaFなどと表される結晶性のカルシウムアルミネートや、CaOとAl成分を主成分とする非晶質の化合物が挙げられる。このうち、CaO/Alモル比が0.75〜3の範囲にあるカルシウムアルミネートが好ましく、CaO/Alモル比が1〜2のものがより好ましい。CaO/Alモル比が0.75未満では充分な初期強度発現性が得られない場合があり、逆に、CaO/Alモル比が3を超えると充分な流動性や可使時間が得られない場合がある。
また、カルシウムアルミネートは、非晶質が好ましく、結晶質では充分な強度発現が得られない場合がある。
The calcium aluminate used in the present invention is a general term for compounds mainly composed of CaO and Al 2 O 3 , and specific examples thereof include, for example, CaO · 2Al 2 O 3 , CaO · Al 2 O 3. 12CaO · 7Al 2 O 3 , 11CaO · 7Al 2 O 3 · CaF 2 , 3CaO · 3Al 2 O 3 · CaF 2 and other crystalline calcium aluminates and CaO and Al 2 O 3 components Examples include amorphous compounds as components. Among, CaO / Al 2 O 3 molar ratio is preferably calcium aluminate in the range of 0.75~3, CaO / Al 2 O 3 molar ratio is more preferably from 1 to 2. If the CaO / Al 2 O 3 molar ratio is less than 0.75, sufficient initial strength development may not be obtained. Conversely, if the CaO / Al 2 O 3 molar ratio exceeds 3, sufficient fluidity or good Usage time may not be obtained.
In addition, the calcium aluminate is preferably amorphous, and if it is crystalline, sufficient strength may not be obtained.

カルシウムアルミネート(以下、CAという)を得る方法としては、CaO原料とAl原料などをロータリーキルンや電気炉等によって熱処理して得る方法が挙げられる。
CAを製造する際のCaO原料としては、例えば、石灰石や貝殻などの炭酸カルシウム、消石灰などの水酸化カルシウム、あるいは生石灰などの酸化カルシウムを挙げることができる。
また、Al原料としては、例えば、ボーキサイトやアルミ残灰と呼ばれる産業副産物などが挙げられる。
Calcium aluminate (hereinafter referred to as CA) as a method of obtaining a include a method obtained by heat-treating the like CaO material and Al 2 O 3 material by a rotary kiln or an electric furnace.
Examples of the CaO raw material for producing CA include calcium carbonate such as limestone and shells, calcium hydroxide such as slaked lime, and calcium oxide such as quick lime.
Examples of the Al 2 O 3 raw material include industrial by-products called bauxite and aluminum residual ash.

CAを工業的に得る場合、不純物が含まれることがある。その具体例としては、例えば、SiO、Fe、MgO、TiO、MnO、NaO、KO、LiO、S、P、及びFなどが挙げられるが、これらの不純物の存在は本発明の目的を実質的に阻害しない範囲では特に問題とはならない。具体的には、これらの不純物の合計が10%以下の範囲では特に問題とはならない。 When CA is obtained industrially, impurities may be contained. Specific examples thereof include, for example, SiO 2 , Fe 2 O 3 , MgO, TiO 2 , MnO, Na 2 O, K 2 O, Li 2 O, S, P 2 O 5 , and F. The presence of these impurities is not particularly problematic as long as the object of the present invention is not substantially impaired. Specifically, there is no particular problem if the total of these impurities is in the range of 10% or less.

また、本発明のCAは、化合物として、4CaO・Al・Fe、6CaO・2Al・Fe、及び6CaO・Al・2Feなどのカルシウムアルミノフェライト、2CaO・FeやCaO・Feなどのカルシウムフェライト、ゲーレナイト2CaO・Al・SiOやアノーサイトCaO・Al・2SiOなどのカルシウムアルミノシリケート、メルビナイト3CaO・MgO・2SiO、アケルマナイト2CaO・MgO・2SiO、及びモンチセライトCaO・MgO・SiOなどのカルシウムマグネシウムシリケート、トライカルシウムシリケート3CaO・SiO、ダイカルシウムシリケート2CaO・SiO、ランキナイト3CaO・2SiO、及びワラストナイトCaO・SiOなどのカルシウムシリケート、カルシウムチタネートCaO・TiO、遊離石灰、並びに、リューサイト(KO、NaO)・Al・SiOなどを含む場合があり、本発明ではこれらの結晶質又は非晶質が混在することも可能である。 Also, CA the present invention, as a compound, calcium such as 4CaO · Al 2 O 3 · Fe 2 O 3, 6CaO · 2Al 2 O 3 · Fe 2 O 3, and 6CaO · Al 2 O 3 · 2Fe 2 O 3 Calcium ferrite such as aluminoferrite, 2CaO · Fe 2 O 3 and CaO · Fe 2 O 3 , calcium aluminosilicate such as gelenite 2CaO · Al 2 O 3 · SiO 2 and anorthite CaO · Al 2 O 3 · 2SiO 2 , melvinite 3CaO · MgO · 2SiO 2, Akerumanaito 2CaO · MgO · 2SiO 2, and Monte calcium magnesium silicate, such as celite CaO · MgO · SiO 2, tri-calcium silicate 3CaO · SiO 2, dicalcium silicate 2CaO · SiO 2, Rankinai DOO 3CaO · 2SiO 2, and wollastonite calcium silicates and night CaO · SiO 2, calcium titanate CaO · TiO 2, free lime, and, leucite (K 2 O, Na 2 O ) · Al 2 O 3 · SiO 2 In the present invention, these crystalline materials or amorphous materials can be mixed.

本発明のCAの粒度は特に限定されるものではないが、通常、ブレーン比表面積値(以下、ブレーン値という)で3,000〜9,000cm/gが好ましく、4,000〜8,000cm/gがより好ましい。3,000cm/g未満では初期強度発現性が充分でない場合があり、9,000cm/gを超えると流動性や可使時間の確保が困難になる場合がある。 Although the particle size of the CA of the present invention is not particularly limited, it is usually preferably 3,000 to 9,000 cm 2 / g, preferably 4,000 to 8,000 cm in terms of the specific surface area of the brain (hereinafter referred to as the “brane value”). 2 / g is more preferable. If it is less than 3,000 cm 2 / g, the initial strength development may not be sufficient, and if it exceeds 9,000 cm 2 / g, it may be difficult to ensure fluidity and pot life.

本発明では、流動性や可使時間の確保などの観点から、CAの強熱減量が1%以上のものを使用することが好ましく、強熱減量が2%以上のCAを使用することがより好ましい。
強熱減量を1%以上とする方法は特に限定されるものではないが、水分や湿分を供給する方法や炭酸ガスを供給する方法等が挙げられる。
In the present invention, from the viewpoint of securing fluidity and pot life, it is preferable to use a CA with a loss on ignition of 1% or more, more preferably a CA with a loss on ignition of 2% or more. preferable.
A method for reducing the ignition loss to 1% or more is not particularly limited, and examples thereof include a method for supplying moisture and moisture, a method for supplying carbon dioxide, and the like.

本発明で使用するセッコウとは、無水、半水、または二水の各セッコウを総称するものであり、特に限定されるものではないが、強度発現性の観点から、無水セッコウ又は半水セッコウの使用が好ましく、無水セッコウの使用がより好ましい。   The gypsum used in the present invention is a generic term for each gypsum of anhydrous, semi-water, or dihydrate, and is not particularly limited, but from the viewpoint of strength development, anhydrous gypsum or semi-water gypsum Use is preferred, and the use of anhydrous gypsum is more preferred.

セッコウの粒度は特に限定されるものではないが、寸法安定性や流動性の確保の観点から、通常、ブレーン値で3,000〜9,000cm/gが好ましく、4,000〜8,000cm/gがより好ましい。 Although the particle size of gypsum is not particularly limited, from the viewpoint of ensuring dimensional stability and fluidity, the brane value is usually preferably from 3,000 to 9,000 cm 2 / g, and from 4,000 to 8,000 cm. 2 / g is more preferable.

本発明の超速硬セメント組成物における、セメント、CA、及びセッコウからなる結合材100部中の配合割合は、流動性に優れ、充分な可使時間を確保しつつ短時間で開放可能な強度を発現するため、セメント50〜90部、CA5〜25部、及びセッコウ5〜25部が好ましい。   The blending ratio in 100 parts of the binder composed of cement, CA, and gypsum in the super fast cement composition of the present invention is excellent in fluidity and has a strength that can be released in a short time while ensuring sufficient pot life. In order to express, 50-90 parts of cement, 5-25 parts of CA, and 5-25 parts of gypsum are preferable.

ここで、CAとセッコウの配合割合は、初期強度の発現性が充分でない場合や寸法安定性の観点から、CAとセッコウからなる急硬成分100部中、CA30〜70部で、セッコウ70〜30部が好ましく、CA40〜60部で、セッコウ60〜40部がより好ましい。   Here, the blending ratio of CA and gypsum is 30 to 70 parts of CA and 100 to 70 parts of quick hardening component consisting of CA and gypsum from the viewpoint of insufficient initial strength and dimensional stability. Part is preferable, CA 40-60 parts, gypsum 60-40 parts is more preferable.

急硬成分の配合割合は、初期強度発現性、材料分離抵抗性、可使時間の確保、寸法安定性の観点から、結合材100部中、10〜50部が好ましく、20〜40部がより好ましい。   The blending ratio of the rapid hardening component is preferably 10 to 50 parts, more preferably 20 to 40 parts in 100 parts of the binder, from the viewpoints of initial strength development, material separation resistance, securing pot life, and dimensional stability. preferable.

本発明では水中不分離性を付与するため増粘剤を使用する。
本発明で使用する増粘剤は、アルキルアリルスルフォン酸塩とアルキルアンモニウム塩とを含有する粉末状増粘剤であり、その両者が水と接触した際に分子間相互作用により会合し、紐状のミセルを形成し、その構造によりレオロジー改質効果を発現するものである。
アルキルアリルスルフォン酸塩とアルキルアンモニウム塩の配合割合は、紐状のミセルを形成できれば特に限定されるものではない。通常、有効成分として、アルキルアリルスルフォン酸塩/アルキルアンモニウム塩の質量比で、1/10〜10/1の範囲が好ましい。
粉末状増粘剤の使用量は、水中不分離性、流動性の観点から、結合材100部に対して、0.10〜0.50部が好ましく、0.15〜0.45部がより好ましい。
In the present invention, a thickener is used in order to impart inseparability in water.
The thickener used in the present invention is a powdery thickener containing an alkylallyl sulfonate and an alkylammonium salt. When both come into contact with water, the thickener is associated by intermolecular interaction to form a string. These micelles are formed, and the rheology modification effect is expressed by their structure.
The blending ratio of the alkyl allyl sulfonate and the alkyl ammonium salt is not particularly limited as long as string-like micelles can be formed. Usually, the active ingredient is preferably in the range of 1/10 to 10/1 in terms of mass ratio of alkylallyl sulfonate / alkyl ammonium salt.
The amount of the powder thickener used is preferably 0.10 to 0.50 part, more preferably 0.15 to 0.45 part with respect to 100 parts of the binder from the viewpoint of inseparability in water and fluidity. preferable.

本発明では、流動性を付与するためにポリカルボン酸系減水剤を使用する。
ポリカルボン酸系減水剤の形態は、液状、粉末状のいずれもあるが、セメント組成物をドライブレンドとして配合するため、粉末状のものを使用する。
ポリカルボン酸系減水剤の使用量は、流動性、泡が発生、水中不分離性、凝結時間の観点から、結合材100部に対して、0.05〜0.30部が好ましい。
In the present invention, a polycarboxylic acid-based water reducing agent is used to impart fluidity.
The form of the polycarboxylic acid-based water reducing agent may be either liquid or powder, but since the cement composition is blended as a dry blend, a powder is used.
The amount of the polycarboxylic acid-based water reducing agent used is preferably 0.05 to 0.30 parts with respect to 100 parts of the binder from the viewpoints of fluidity, generation of bubbles, inseparability in water, and setting time.

本発明では連行した空気を消泡させ、空気連行からくる強度低下を防止する目的で、ジメチルシクロヘキサンを有効成分とするシリコーン系消泡剤を使用することが可能である。その形態は減水剤と同様、液状、粉末状のいずれもあるが、セメント組成物をドライブレンドとして配合するため、粉末状のものを使用する。
シリコーン系消泡剤の使用量は、空気量の低減、圧縮強度、水中不分離性の観点から、結合材100部に対して、0.005〜0.10部が好ましい。
In the present invention, it is possible to use a silicone-based antifoaming agent containing dimethylcyclohexane as an active ingredient for the purpose of defoaming the entrained air and preventing the strength from coming from the air entrainment. Like the water reducing agent, the form is either liquid or powder. However, since the cement composition is blended as a dry blend, a powder is used.
The amount of the silicone-based antifoaming agent used is preferably 0.005 to 0.10 parts with respect to 100 parts of the binder from the viewpoints of reduction in air amount, compressive strength, and inseparability in water.

本発明で使用する凝結調整剤は、特に限定されるものではない。その具体例としては、クエン酸、酒石酸、リンゴ酸、グルコン酸、及びコハク酸などのオキシカルボン酸又はそれらのナトリウム、カリウム、カルシウム、マグネシウム、アンモニウム、及びアルミニウムなどの塩の有機酸、さらに、炭酸ナトリウム、炭酸カリウム、及び炭酸リチウムのアルカリ炭酸塩、炭酸アンモニウム、重炭酸ナトリウム、重炭酸カリウム、重炭酸リチウム、並びに、重炭酸アンモニウムなどが挙げられ、これらの一種又は二種以上が使用可能である。
本発明では、充分な可使時間と初期強度発現性の双方を満足する観点から、有機酸とアルカリ炭酸塩の併用が好ましい。
The setting regulator used in the present invention is not particularly limited. Specific examples thereof include organic acids such as oxycarboxylic acids such as citric acid, tartaric acid, malic acid, gluconic acid, and succinic acid or salts thereof such as sodium, potassium, calcium, magnesium, ammonium, and aluminum, and carbonic acid. Examples thereof include alkali carbonates of sodium, potassium carbonate, and lithium carbonate, ammonium carbonate, sodium bicarbonate, potassium bicarbonate, lithium bicarbonate, and ammonium bicarbonate. One or more of these can be used. .
In the present invention, the combined use of an organic acid and an alkali carbonate is preferable from the viewpoint of satisfying both sufficient pot life and initial strength development.

凝結調整剤の使用量は特に限定されるものではないが、可使時間や強度発現性の観点から、通常、結合材100部に対して、0.1〜2部が好ましく、0.3〜1部がより好ましい。   Although the usage-amount of a setting regulator is not specifically limited, From a viewpoint of pot life or intensity | strength development property, 0.1-2 parts are preferable with respect to 100 parts of binder normally, 0.3- One part is more preferred.

本発明の水中不分離性セメント組成物をグラウト材料として利用する場合、構造物と一体化させるためや、まだ固まらない状態のグラウトモルタルが沈下や収縮するのを抑止するためにガス発泡物質を使用する。
ガス発泡物質としては、ステアリン酸で表面処理した燐片状のアルミニウム粉末やアトマイズ製法で製造したアルミニウム粉末や、アゾ化合物、ニトロソ化合物、及びヒドラジン誘導体等のアルカリ雰囲気下で窒素ガスを発泡する物質や、過炭酸ナトリウム、過炭酸カリウム、及び過炭酸アンモニウムなどの過炭酸塩、過ホウ酸ナトリウムや過ホウ酸カリウムなどの過ホウ酸塩、過マンガン酸ナトリウムや過マンガン酸カリウムなどの過マンガン酸塩、並びに、過酸化水素等の過酸化物質が使用可能である。なお、この窒素ガス発泡物質は窒素ガスの他にアンモニアガス、二酸化炭素ガスを発生してもよい。
ガス発泡物質の使用量は、硬化体の膨張率、硬化体の強度の観点から、結合材100部に対して、アルミニウム粉末は0.0005〜0.003部、窒素ガス発泡物質は0.01〜0.5部、過酸化物質は0.01〜0.1部が好ましい。
When using the underwater inseparable cement composition of the present invention as a grout material, a gas foam material is used to integrate with the structure or to prevent the grout mortar that has not yet solidified from sinking or shrinking. To do.
Examples of gas foaming substances include flaky aluminum powder surface-treated with stearic acid, aluminum powder produced by an atomizing method, substances that foam nitrogen gas in an alkaline atmosphere, such as azo compounds, nitroso compounds, and hydrazine derivatives. Percarbonate such as sodium percarbonate, potassium percarbonate and ammonium percarbonate, perborate such as sodium perborate and potassium perborate, permanganate such as sodium permanganate and potassium permanganate In addition, peroxide substances such as hydrogen peroxide can be used. This nitrogen gas foaming material may generate ammonia gas and carbon dioxide gas in addition to nitrogen gas.
The amount of the gas foaming material used is 0.0005 to 0.003 part for the aluminum powder and 0.01% for the nitrogen gas foaming material with respect to 100 parts of the binder from the viewpoint of the expansion coefficient of the cured body and the strength of the cured body. ~ 0.5 part, and the peroxide is preferably 0.01-0.1 part.

本発明で使用する細骨材は、発熱量や寸法変化の低減や、耐久性の確保の観点で重要な役割を果たすもので、具体例としては、川砂、山砂、及び海砂の他、ケイ砂系細骨材、石灰石系細骨材、高炉水砕スラグ系細骨材、及び再生骨材などが挙げられる。プレミックスの観点から、乾燥した細骨材が好ましい。
細骨材の粒度は、流動性、水中不分離性、強度の観点から、粗粒率(F.M.)で1.2〜3.0が好ましく、1.5〜2.7がより好ましい。
細骨材の使用量は、熱ひび割れや圧縮強度の観点から、結合100部に対して、50〜200部が好ましい。
The fine aggregate used in the present invention plays an important role in terms of reducing the calorific value and dimensional change and ensuring durability, and specific examples include river sand, mountain sand, and sea sand, Examples include quartz sand-based fine aggregate, limestone-based fine aggregate, blast furnace granulated slag-based fine aggregate, and recycled aggregate. From the viewpoint of premixing, dry fine aggregate is preferred.
The particle size of the fine aggregate is preferably 1.2 to 3.0, more preferably 1.5 to 2.7 in terms of coarse particle ratio (FM), from the viewpoint of fluidity, inseparability in water, and strength. .
The amount of the fine aggregate used is preferably 50 to 200 parts with respect to 100 parts of the bond from the viewpoint of thermal cracking and compressive strength.

大量に打設する際の水和熱を抑制するため、粗骨材を配合し、コンクリートとして使用することが可能である。
粗骨材としては、JIS A 5005で規定されるも砕石の他、JIS A 5011−1、JIS A 5011−2、JIS A 5011−3、及びJIS A 5011−4で規定されるスラグ骨材や、一般的に言われている玉砂利や豆砂利も使用可能である。
粗骨材の粒径は、作業性の観点から、Gmaxで25mm以下が好ましく、20mm以下がより好ましい。
コンクリート中の細骨材と粗骨材の配合割合比は、水和熱の抑制、作業性、流動性の観点から、s/a(細骨材率)45〜75%が好ましい。
In order to suppress the heat of hydration when placing in large quantities, it is possible to mix coarse aggregate and use it as concrete.
As coarse aggregates, slag aggregates defined by JIS A 5011-1, JIS A 5011-2, JIS A 5011-3, and JIS A 5011-4, as well as crushed stones defined by JIS A 5005, Ordinarily said boulders and bean gravel can also be used.
From the viewpoint of workability, the particle size of the coarse aggregate is preferably 25 mm or less, more preferably 20 mm or less, in terms of Gmax.
The mixing ratio of the fine aggregate and the coarse aggregate in the concrete is preferably s / a (fine aggregate ratio) of 45 to 75% from the viewpoints of suppression of heat of hydration, workability, and fluidity.

水の使用量は、各材料の配合割合によって変化するため特に限定されるものではないが、流動性や強度発現性の観点から、通常、水結合材比で30〜50%が好ましく、35〜45%がより好ましい。   The amount of water used is not particularly limited because it varies depending on the blending ratio of each material, but from the viewpoint of fluidity and strength development, it is usually preferably 30 to 50% in terms of water binder, 35 to 35%. 45% is more preferable.

本発明では流動性の向上を目的に、フライアッシュを配合することが可能である。
フライアッシュは、JIS A 6201に記載されたフライアッシュI種が好ましい。
フライアッシュの使用量は、結合材中、5〜20部をセメントと置換えて使用可能である。
In the present invention, fly ash can be blended for the purpose of improving fluidity.
The fly ash is preferably the fly ash type I described in JIS A 6201.
The amount of fly ash can be used by replacing 5 to 20 parts with cement in the binder.

本発明において、各材料の混合順序は、粉末状体で混合され、最終的にプレミックスされたものであれば、特に限定されるものではない。   In the present invention, the mixing order of the materials is not particularly limited as long as they are mixed in a powder form and finally premixed.

本発明において、各材料の混合装置としては、既存のいかなる装置、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、及びナウタミキサなどの使用が可能である。   In the present invention, any existing apparatus such as a tilting cylinder mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer can be used as a mixing apparatus for each material.

以下、本発明の実験例に基づいてさらに説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although further demonstrated based on the experiment example of this invention, this invention is not limited to these.

「実験例1」
セメント70部、表1に示すCA15部及びセッコウ15部からなる結合材と、結合材100部に対して、表1に示す増粘剤と減水剤Aと、凝結調整剤0.8部を配合し、セメント組成物を調製した。調製したセメント組成物の結合材100部に対して、80部の細骨材を配合し、V型ミキサにて混合してモルタル組成物を調製した。
20℃環境下において、そのモルタル組成物の結合材100部に対して、水38部で混練してグラウトモルタルを調製した。
調製したグラウトモルタルの流動性、水中不分離性、可使時間、圧縮強度を評価した。結果を表1に併記する。
"Experiment 1"
70 parts of cement, 15 parts of CA and 15 parts of gypsum as shown in Table 1, 100 parts of binder, thickener and water reducing agent A shown in Table 1 and 0.8 part of a setting modifier Then, a cement composition was prepared. 80 parts of fine aggregate was added to 100 parts of the binder of the prepared cement composition and mixed with a V-type mixer to prepare a mortar composition.
Under an environment of 20 ° C., 100 parts of the binder of the mortar composition was kneaded with 38 parts of water to prepare grout mortar.
The prepared grout mortar was evaluated for fluidity, non-separability in water, pot life, and compressive strength. The results are also shown in Table 1.

<使用材料>
セメント:普通ポルトランドセメント、市販品、ブレーン値3,300cm/g
CAイ:CaO/Alモル比1.0、強熱減量1.0%、結晶質、主成分CaO・Al、ブレーン値5,000cm/g
CAロ:CaO/Alモル比1.50、強熱減量1.0%、結晶質、主成分CaO・Alと12CaO・7Al、ブレーン値5,000cm/g
CAハ:CaO/Alモル比1.70、強熱減量1.0%、結晶質、主成分CaO・Alと12CaO・7Al、ブレーン値5,000cm/g
CAニ:CaO/Alモル比2.00、強熱減量1.0%、結晶質、主成分CaO・Alと12CaO・7Al、ブレーン値5,000cm/g
CAホ:CaO/Alモル比1.50、強熱減量1.0%、非晶質、CAロに試薬1級のシリカを3%添加して、1,650℃で溶融後、急冷して合成、ブレーン値5,000cm/g
CAへ:CaO/Alモル比1.70、強熱減量1.0%、非晶質、CAハに試薬1級のシリカを3%添加して、1,650℃で溶融後、急冷して合成、ブレーン値5,000cm/g
CAト:CaO/Alモル比2.00、強熱減量1.0%、非晶質、CAニに試薬1級のシリカを3%添加して、1,650℃で溶融後、急冷して合成、ブレーン値5,000cm/g
CAチ:CAヘに湿分を与え、強熱減量を2.0%としたもの、ブレーン値5,000cm/g
セッコウ:無水セッコウ、市販品、ブレーン値4,000cm/g
増粘剤:アルキルアリルスルフォン酸塩とアルキルアンモニウム塩を含有する粉末状増粘剤、市販品
減水剤A:粉末状ポリカルボン酸系減水剤、市販品
凝結調整剤:試薬1級のクエン酸25部と試薬1級の炭酸カリウム75部の混合物
細骨材:石灰砂、F.M.=2.02
水:上水道水
<Materials used>
Cement: Ordinary Portland cement, commercially available, Blaine value 3,300 cm 2 / g
CA i: CaO / Al 2 O 3 molar ratio 1.0, loss on ignition 1.0%, crystalline, main component CaO · Al 2 O 3 , Blaine value 5,000 cm 2 / g
CA B: CaO / Al 2 O 3 molar ratio 1.50, loss on ignition 1.0%, crystalline, composed mainly CaO · Al 2 O 3 and 12CaO · 7Al 2 O 3, Blaine 5,000 cm 2 / g
CA C: CaO / Al 2 O 3 molar ratio 1.70, loss on ignition 1.0%, crystalline, composed mainly CaO · Al 2 O 3 and 12CaO · 7Al 2 O 3, Blaine 5,000 cm 2 / g
CA D: CaO / Al 2 O 3 molar ratio 2.00, loss on ignition 1.0%, crystalline, composed mainly CaO · Al 2 O 3 and 12CaO · 7Al 2 O 3, Blaine 5,000 cm 2 / g
CA Ho: CaO / Al 2 O 3 molar ratio 1.50, loss on ignition 1.0%, amorphous, 3% of reagent grade 1 silica is added to CA and melted at 1,650 ° C. Quenched and synthesized, brain value 5,000cm 2 / g
To CA: CaO / Al 2 O 3 molar ratio 1.70, loss on ignition 1.0%, amorphous, 3% of reagent grade 1 silica added to CA C, melted at 1,650 ° C., Quenched and synthesized, brain value 5,000cm 2 / g
CA DOO: CaO / Al 2 O 3 molar ratio 2.00, loss on ignition 1.0%, amorphous, the addition of reagent first grade silica 3% CA two, melted at 1,650 ° C., Quenched and synthesized, brain value 5,000cm 2 / g
CAchi: Moisture is applied to CA and the loss on ignition is set to 2.0%, brain value 5,000 cm 2 / g
Gypsum: anhydrous gypsum, commercially available, brain value 4,000 cm 2 / g
Thickener: powdery thickener containing alkyl allyl sulfonate and alkylammonium salt, commercially available water reducing agent A: powdered polycarboxylic acid-based water reducing agent, commercial product coagulation modifier: reagent grade 1 citric acid 25 A mixture of 75 parts of reagent and 75 parts of first grade potassium carbonate fine aggregate: lime sand, F.R. M.M. = 2.02
Water: tap water

<測定方法>
流動性:内径φ50mm×高さ100mmのフローコーンに、練上り直後のモルタルを充填し、コーン引上げ後、3分間経過したときのモルタルの広がりを測定。
水中不分離性:1000mlのビーカーに水を800ml入れ,口径18mmの漏斗から、ビーカー内にモルタルを約200ml落下させて,土木学会規準JSCE−D104 1999「コンクリート用水中不分離性混和材品質規格 附属書2 水中コンクリートの水中不分離度試験方法」に準じて水を採取し、そのpHを測定した。評価は、良<水中不分離性<悪=小<pH<大となる。
可使時間:自記温度記録計を用いて、モルタルの温度が練上りから2℃上昇するまでの時間を可使時間とした。
圧縮強度 :φ50×100mmの型枠を使用し、20℃恒温室内にて試験体を作製し、材齢3時間の圧縮強度を測定した。
<Measurement method>
Flowability: A flow cone having an inner diameter of 50 mm and a height of 100 mm was filled with mortar immediately after kneading, and the spread of the mortar was measured when 3 minutes passed after the cone was pulled up.
Underwater inseparability: 800 ml of water is put into a 1000 ml beaker, and about 200 ml of mortar is dropped into the beaker from a funnel having a diameter of 18 mm, and JSCE-D104 1999 “Underwater inseparable admixture quality standard for concrete is attached. The water was collected in accordance with “Method 2 for testing the degree of inseparability of underwater concrete in water”, and the pH was measured. The evaluation is good <non-separability in water <bad = small <pH <large.
Pot life: Using a self-recording temperature recorder, the time until the temperature of the mortar rose by 2 ° C. from the kneading was defined as the pot life.
Compressive strength: Using a mold of φ50 × 100 mm, a test specimen was produced in a constant temperature room at 20 ° C., and the compressive strength at the age of 3 hours was measured.

Figure 2010241618
Figure 2010241618

「実験例2」
表2に示すセメント、CAチ及びセッコウからなる結合材と、結合材100部に対して、増粘剤0.30部と減水剤A0.15部と、凝結調整剤0.8部を配合し、セメント組成物を調製したこと以外は、実験例1と同様に行い、調製したグラウトモルタルの流動性、水中不分離性、可使時間、圧縮強度、流水洗い出し抵抗性を評価した。結果を表2に併記する。
"Experimental example 2"
A binder consisting of cement, CA and gypsum shown in Table 2 and 100 parts of binder are combined with 0.30 parts of thickener, 0.15 parts of water reducing agent A, and 0.8 parts of a setting adjuster. Except that the cement composition was prepared, the same procedure as in Experimental Example 1 was conducted to evaluate the fluidity, non-separability in water, pot life, compressive strength, and resistance to washing out of running water of the prepared grout mortar. The results are also shown in Table 2.

<測定方法>
流水洗い出し抵抗性:水路の底部に30cm×30cm×厚み5cmに型枠を組み付け、その型枠内にモルタルし、打設1時間後に流速5m/sで水を流し、流れ出た水の濁りを目視で評価した。水の濁りがひどい場合を不可、水の濁りがある場合を可、若干水の濁りがある場合を良、水の濁りがない場合を優とした。
<Measurement method>
Resistance to washing out with running water: Attach a mold 30cm x 30cm x thickness 5cm at the bottom of the water channel, mortar it into the mold, and flow water at a flow rate of 5m / s 1 hour after placing, visually check the turbidity of the flowing water It was evaluated with. The case where the turbidity of water is severe is impossible, the case where there is turbidity of water is acceptable, the case where there is a little turbidity of water is good, and the case where there is no turbidity of water is excellent.

Figure 2010241618
Figure 2010241618

「実験例3」
セメント70部とCAチ15部及びセッコウ15部からなる結合材と、結合材100部に対して、増粘剤0.30部と減水剤A0.15部と、表3に示す消泡剤、及びガス発泡物質、並びに、細骨材80部を使用してグラウトモルタルを調製したこと以外は、実験例1と同様に行い、調製したグラウトモルタルの流動性、水中不分離性、可使時間、圧縮強度、初期膨張率を評価した。結果を表3に併記する。
"Experiment 3"
70 parts of cement, 15 parts of CA and 15 parts of gypsum, and 100 parts of binder, thickener 0.30 parts and water reducing agent A 0.15 parts, antifoaming agents shown in Table 3, And gas foaming material, and except that 80 parts of fine aggregate was used to prepare grout mortar, the same procedure as in Experimental Example 1 was carried out, the fluidity of the prepared grout mortar, inseparability in water, pot life, Compressive strength and initial expansion rate were evaluated. The results are also shown in Table 3.

<使用材料>
消泡剤:シリコーン系消泡剤、市販品
ガス発泡物質A:ステアリン酸処理アルミニウム粉末、市販品
ガス発泡物質B:アゾジカルボンアミド、市販品
<Materials used>
Antifoaming agent: silicone-based antifoaming agent, commercial gas foaming material A: stearic acid-treated aluminum powder, commercial gas foaming material B: azodicarbonamide, commercial product

<測定方法>
初期膨張率:φ5×10cmの型枠に練混ぜたモルタルを型詰し、光センサーにて打設直後から材齢24時間までの鉛直方向の長さ変化率を測定、表中の−は収縮側、+は膨張側
<Measurement method>
Initial expansion rate: mortar kneaded in a mold of φ5 × 10 cm, and measured with a photosensor for the rate of change in length in the vertical direction from just after placement until the age of 24 hours. Side, + is the expansion side

Figure 2010241618
Figure 2010241618

「実験例4」
セメント70部とCAチ15部及びセッコウ15部からなる結合材と、結合材100部に対して、消泡剤0.030部、及びガス発泡物質A0.001部、表4に示す増粘剤と減水剤並びに、細骨材、水を使用してグラウトモルタルを調製したこと以外は、実験例1と同様に行い、調製したグラウトモルタルの流動性、水中不分離性、可使時間、圧縮強度を評価した。結果を表4に併記する。
"Experimental example 4"
70 parts of cement, 15 parts of CA and 15 parts of gypsum, and 100 parts of binder, 0.030 part of defoaming agent, 0.001 part of gas foaming material A, thickener shown in Table 4 Fluidity, water inseparability, pot life, compressive strength of the prepared grout mortar, except that the grout mortar was prepared using water, a water reducing agent, fine aggregate and water. Evaluated. The results are also shown in Table 4.

減水剤B:粉末状ナフタレン系減水剤、市販品
減水剤C:粉末状メラミン系減水剤、市販品
Water reducing agent B: Powdered naphthalene water reducing agent, commercial water reducing agent C: Powdered melamine water reducing agent, commercial product

Figure 2010241618
Figure 2010241618

本発明の水中不分離性セメント組成物を使用したグラウトモルタルは、粉末状であって、ドライブレンドすることが可能であり、プレミックス品として、現場施工での作業性が向上し、さらに、水中不分離性、流動性が優れ、気中のみならず水中においても、充分な強度発現性と無収縮性を有し、水流のある場所においても、流れ出し防止の措置を講ずる時間を短縮できる、という顕著な効果を奏するので、土木、建築分野において幅広く適用できる。   The grout mortar using the underwater inseparable cement composition of the present invention is in a powder form and can be dry blended. As a premix product, the workability in field construction is improved. Excellent inseparability and fluidity, has sufficient strength development and non-shrinkage not only in the air but also in water, and can shorten the time to take measures to prevent outflow even in places with water flow Since it has a remarkable effect, it can be widely applied in the civil engineering and construction fields.

Claims (6)

セメント、カルシウムアルミネート、セッコウ、アルキルアリルスルフォン酸塩とアルキルアンモニウム塩を含有する粉末状増粘剤、凝結調整剤、及びポリカルボン酸系減水剤を含有する超速硬水中不分離性セメント組成物。   An ultra-fast hard water inseparable cement composition containing cement, calcium aluminate, gypsum, a powdery thickener containing an alkylallylsulfonate and an alkylammonium salt, a coagulation modifier, and a polycarboxylic acid water reducing agent. さらに、シリコーン系消泡剤を含有してなる請求項1に記載の超速硬水中不分離性セメント組成物。 Furthermore, the super-fast hard water non-separable cement composition of Claim 1 formed by containing a silicone type antifoamer. カルシウムアルミネートが、非晶質カルシウムアルミネートであることを特徴とする請求項1又は請求項2に記載の超速硬水中不分離性セメント組成物。   The ultra-fast hard water inseparable cement composition according to claim 1 or 2, wherein the calcium aluminate is an amorphous calcium aluminate. さらに、ガス発泡物質を含有してなる請求項1〜請求項3のいずれか1項に記載の超速硬水中不分離性セメント組成物。   The super-fast hard water inseparable cement composition according to any one of claims 1 to 3, further comprising a gas foaming substance. 請求項1〜請求項4のうちのいずれか1項に記載の超速硬水中不分離性セメント組成物と細骨材とを含有してなる超速硬水中不分離性プレミックスモルタル組成物。   An ultrafast hard water inseparable premixed mortar composition comprising the ultrafast hard water inseparable cement composition according to any one of claims 1 to 4 and a fine aggregate. 請求項5に記載の超速硬水中不分離性プレミックスモルタル組成物と水とを混練してなる超速硬水中不分離性グラウトモルタル。   An ultrafast hard water inseparable grout mortar obtained by kneading the ultrafast hard water inseparable premix mortar composition according to claim 5 and water.
JP2009089835A 2009-04-02 2009-04-02 Super-quick hardening, underwater non-separable cement composition; super-quick hardening, underwater non-separable premixed mortar composition; and underwater non-separable grout mortar Pending JP2010241618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009089835A JP2010241618A (en) 2009-04-02 2009-04-02 Super-quick hardening, underwater non-separable cement composition; super-quick hardening, underwater non-separable premixed mortar composition; and underwater non-separable grout mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089835A JP2010241618A (en) 2009-04-02 2009-04-02 Super-quick hardening, underwater non-separable cement composition; super-quick hardening, underwater non-separable premixed mortar composition; and underwater non-separable grout mortar

Publications (1)

Publication Number Publication Date
JP2010241618A true JP2010241618A (en) 2010-10-28

Family

ID=43095086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089835A Pending JP2010241618A (en) 2009-04-02 2009-04-02 Super-quick hardening, underwater non-separable cement composition; super-quick hardening, underwater non-separable premixed mortar composition; and underwater non-separable grout mortar

Country Status (1)

Country Link
JP (1) JP2010241618A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101214979B1 (en) 2011-01-17 2012-12-24 한국건설기술연구원 Materials for concrete materials having high fludity anti-wash concrete and a method for manufacturing high fludity anti-wash concrete using the materials
JP2016033097A (en) * 2014-07-31 2016-03-10 太平洋マテリアル株式会社 In-water non-separable rapid hardening concrete and method for producing the same
JP2016204183A (en) * 2015-04-17 2016-12-08 東京電力ホールディングス株式会社 Water-inseparable concrete or mortar
KR101891565B1 (en) * 2017-12-19 2018-09-28 에스엠산업 주식회사 Wet-curing cement mortar composition and method for protecting surface of concrete structure therewith
JP2020019658A (en) * 2018-07-30 2020-02-06 太平洋マテリアル株式会社 Grout mortar composition, grout mortar, concrete structure, and production method for the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524893A (en) * 1991-07-16 1993-02-02 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2004075476A (en) * 2002-08-21 2004-03-11 Denki Kagaku Kogyo Kk Quick setting cement concrete for pre-lining and pre-lining process using the same
JP2007297250A (en) * 2006-05-02 2007-11-15 Denki Kagaku Kogyo Kk Ultrarapid hardening cement composition, ultrarapid hardening mortar composition and ultrarapid hardening grout mortar
JP2008230914A (en) * 2007-03-20 2008-10-02 Kumagai Gumi Co Ltd Cement-based composition
JP2008247663A (en) * 2007-03-30 2008-10-16 Kumagai Gumi Co Ltd Concrete composition and its production method
JP2008247677A (en) * 2007-03-30 2008-10-16 Denki Kagaku Kogyo Kk Grout composition and grout mortar using the same
JP2008290066A (en) * 2007-04-06 2008-12-04 Kao Corp Method for manufacturing powder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524893A (en) * 1991-07-16 1993-02-02 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2004075476A (en) * 2002-08-21 2004-03-11 Denki Kagaku Kogyo Kk Quick setting cement concrete for pre-lining and pre-lining process using the same
JP2007297250A (en) * 2006-05-02 2007-11-15 Denki Kagaku Kogyo Kk Ultrarapid hardening cement composition, ultrarapid hardening mortar composition and ultrarapid hardening grout mortar
JP2008230914A (en) * 2007-03-20 2008-10-02 Kumagai Gumi Co Ltd Cement-based composition
JP2008247663A (en) * 2007-03-30 2008-10-16 Kumagai Gumi Co Ltd Concrete composition and its production method
JP2008247677A (en) * 2007-03-30 2008-10-16 Denki Kagaku Kogyo Kk Grout composition and grout mortar using the same
JP2008290066A (en) * 2007-04-06 2008-12-04 Kao Corp Method for manufacturing powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101214979B1 (en) 2011-01-17 2012-12-24 한국건설기술연구원 Materials for concrete materials having high fludity anti-wash concrete and a method for manufacturing high fludity anti-wash concrete using the materials
JP2016033097A (en) * 2014-07-31 2016-03-10 太平洋マテリアル株式会社 In-water non-separable rapid hardening concrete and method for producing the same
JP2016204183A (en) * 2015-04-17 2016-12-08 東京電力ホールディングス株式会社 Water-inseparable concrete or mortar
KR101891565B1 (en) * 2017-12-19 2018-09-28 에스엠산업 주식회사 Wet-curing cement mortar composition and method for protecting surface of concrete structure therewith
JP2020019658A (en) * 2018-07-30 2020-02-06 太平洋マテリアル株式会社 Grout mortar composition, grout mortar, concrete structure, and production method for the same
JP7166827B2 (en) 2018-07-30 2022-11-08 太平洋マテリアル株式会社 Grout mortar composition, grout mortar, concrete structure and method for producing the same

Similar Documents

Publication Publication Date Title
KR100928841B1 (en) Cement composition for grout and grout material using the same
WO2019110134A1 (en) Ground granulated blast furnace slag based binder, dry and wet formulations made therefrom and their preparation methods
JP6392553B2 (en) Method for producing hardened cement and hardened cement
TWI409240B (en) Reinforcing Bar for Reinforcement and Construction Method for Reinforcing Bar with Reinforcement
JP4677824B2 (en) Acid resistant grout composition
JP5113496B2 (en) Ultrafast cement composition, superhard mortar or concrete composition, and ultrafast grout mortar
JP6284432B2 (en) High flow lightweight mortar composition and high flow lightweight mortar using the same
JP2010241618A (en) Super-quick hardening, underwater non-separable cement composition; super-quick hardening, underwater non-separable premixed mortar composition; and underwater non-separable grout mortar
JP6030438B2 (en) Spraying material and spraying method using the same
EP2784035B1 (en) Ultra rapid hardening clinker, cement composition using same, and method for producing same
KR20180002288A (en) Grout material composition and high fluidity-grout material using the same
JP5442944B2 (en) Injection material and injection method
JP4462466B2 (en) Non-shrink mortar composition and fast-curing non-shrink mortar composition
JP6234739B2 (en) Method for producing hardened cement and hardened cement
JP5496755B2 (en) Concrete ballast method for ballast roadbed
JP2007197267A (en) Ultra-rapid-hardening/high-flow cement composition and mortar or concrete using the same
JP5620170B2 (en) Foaming quick setting agent, spraying material and spraying method using the same
JP2015124132A (en) Spray concrete and production method thereof
RU2678285C2 (en) Binding material on basis of activated crushed granular domain slag, fitted for formation of concrete type material
JP6207992B2 (en) Cement admixture and cement composition-hardened cement using the same
JP5383045B2 (en) Cement composition for grout and grout material using the same
JP6985547B1 (en) Grout material, grout mortar composition and cured product
JP5701546B2 (en) Spraying material and spraying method using the same
JP5973826B2 (en) Foam mortar
JP5744498B2 (en) Cement rapid hardwood manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507