JP5973826B2 - Foam mortar - Google Patents

Foam mortar Download PDF

Info

Publication number
JP5973826B2
JP5973826B2 JP2012166407A JP2012166407A JP5973826B2 JP 5973826 B2 JP5973826 B2 JP 5973826B2 JP 2012166407 A JP2012166407 A JP 2012166407A JP 2012166407 A JP2012166407 A JP 2012166407A JP 5973826 B2 JP5973826 B2 JP 5973826B2
Authority
JP
Japan
Prior art keywords
mortar
parts
cement
mass
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012166407A
Other languages
Japanese (ja)
Other versions
JP2014024714A (en
Inventor
田中 秀弘
秀弘 田中
巧 串橋
巧 串橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2012166407A priority Critical patent/JP5973826B2/en
Publication of JP2014024714A publication Critical patent/JP2014024714A/en
Application granted granted Critical
Publication of JP5973826B2 publication Critical patent/JP5973826B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、土木、建築分野で使用される気泡モルタルに関するものである。特に既設の道路、鉄道、水路等、常に振動が加わっている場所に使用される軽量空隙充填材に関するものである。 The present invention relates to a foam mortar used in the civil engineering and construction fields. In particular, the present invention relates to a lightweight gap filler used in places where vibrations are constantly applied, such as existing roads, railways, and waterways.

軽量空隙充填材料は、軽量で、その硬化物が低強度である点から、地下やトンネル背面の空洞や空隙、盛土、及び暗渠等の空洞や空隙(以下、空洞と空隙を含めて単に空隙という)の埋め戻し材等に使用されている。 Lightweight void filling material is lightweight and its cured product has low strength. From the point of view of underground and tunnel backside cavities and voids, embankments, cavities and voids such as underdrains (hereinafter simply referred to as voids including cavities and voids). ) Backfill material.

この軽量空隙充填材料を製造する方法としては、モルタルミキサ中でセメント、水、及び起泡剤を激しく攪拌し、空気をモルタル中に巻き込んで分散させる方法等が挙げられる(特許文献1〜3)。この方法は、施工現場で発泡させるため、輸送コストがかからず、作業性も良好であることから多く使用されている。 Examples of a method for producing this lightweight gap filling material include a method in which cement, water, and a foaming agent are vigorously stirred in a mortar mixer, and air is entrained and dispersed in the mortar (Patent Documents 1 to 3). . This method is often used because it is foamed at the construction site, so it does not require transportation costs and has good workability.

しかしながら、既設の道路、鉄道、水路等で、常に振動が加わっている空洞や空隙へ充填する場合、軽量空隙充填材料に巻き込ませる空気量を50%以上にすると、気泡が不安定になり、硬化する前に気泡が潰れたり、脱泡したりして、軽量にならない等の課題があった。 However, when filling cavities and voids that are constantly vibrated on existing roads, railways, waterways, etc., if the amount of air entrained in the lightweight void filling material is 50% or more, the bubbles become unstable and harden. There was a problem that bubbles were not crushed or defoamed before being reduced to become lightweight.

一方、乾燥収縮が少なく、しかも急硬性である発泡コンクリートが提案されている(特許文献4〜6)。しかしながら、微粉末セメントについて、記載はない。   On the other hand, foamed concrete which has little drying shrinkage and is rapidly hardened has been proposed (Patent Documents 4 to 6). However, there is no description about fine powder cement.

特開平9−77546号公報JP-A-9-77546 特開昭57−143098号公報JP-A-57-143098 特開平5−112911号公報JP-A-5-112911 特開平11−100250号公報Japanese Patent Laid-Open No. 11-100250 特開2003−55024号公報JP 2003-55024 A 特開平11−116350号公報Japanese Patent Laid-Open No. 11-116350

本発明者は、前記課題を解決すべく種々検討を重ねた結果、気泡モルタルにおいて、ブレーン値が6000cm/g以上の微粉末セメントと凝結促進材を用いる超軽量気泡モルタルを用いることによって、例えば、沈下が少ない気泡モルタルが得られる等の知見を得て本発明を完成するに至った。 As a result of repeating various studies to solve the above-mentioned problems, the present inventor uses, for example, an ultralight foam mortar using a fine powder cement having a brane value of 6000 cm 2 / g or more and a setting accelerator in a foam mortar. The present invention was completed by obtaining knowledge that a bubble mortar with less settlement was obtained.

即ち、本発明は、ブレーン値が6000cm/g以上の微粉末セメントと凝結促進材を含有してなり、かつ、50%以上の気泡を含有してなる気泡モルタルであり凝結促進材が、微粉末セメント100質量部に対して、10〜30質量部である該気泡モルタルであり、凝結促進材が、カルシウムアルミネートを含有する該気泡モルタルであり、凝結促進材が、硫酸塩を含有する該気泡モルタルであり、更に、凝結遅延材を含有する該気泡モルタルであり、微粉末セメントがスラグを含有する該気泡モルタルであり、JHSA313のフロー試験において、フロー値200mm以上の状態を5分以上保持した後、30分以内にフロー値が200mm以下になる該気泡モルタルである。 That is, the present invention, Ri Blaine the name contained 6000 cm 2 / g or more of a fine powder cement and set-accelerating material, and a Ru bubble mortar greens contain bubbles above 50%, procoagulant material However, the foam mortar is 10 to 30 parts by mass with respect to 100 parts by mass of the fine powder cement, the setting accelerator is the bubble mortar containing calcium aluminate, and the setting accelerator is sulfate. The foam mortar containing the foam mortar further containing a setting retarder, and the fine powder cement is the foam mortar containing slag. In the flow test of JHSA 313, the flow value is 200 mm or more. This is a foam mortar that has a flow value of 200 mm or less within 30 minutes after being held for at least minutes.

本発明により、沈下が少ない気泡モルタルが得られる。 According to the present invention, a bubble mortar with less settlement is obtained.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明で使用する気泡を含有してなる気泡モルタル(以下単に気泡モルタルという) とは、モルタルミキサ中でモルタルと起泡剤とを激しく攪拌して気泡をモルタル中に含有させたものや、起泡剤を水溶液とし、空気と共に発泡器に供給して連続的に製造した、例えば、シェービングクリーム等のような発泡状のものをモルタルに混合したもの等をいう。本発明で使用する気泡モルタル中の気泡の量(空気量)は、50%以上が好ましく、60%以上がより好ましく、70%以上が最も好ましい。50%以上だと、気泡モルタルが軽量となり、断熱性が向上する。気泡の量は、例えば、日本道路公団規格JHSA313 エアモルタル及びエアミルクの試験方法により測定される。 The bubble mortar containing bubbles used in the present invention (hereinafter simply referred to as bubble mortar) is a mixture of bubbles in the mortar by vigorously stirring the mortar and the foaming agent in a mortar mixer. The foaming agent is made into an aqueous solution and supplied continuously to a foaming device together with air, for example, a foamed product such as a shaving cream mixed with mortar. The amount of air bubbles (air amount) in the foam mortar used in the present invention is preferably 50% or more, more preferably 60% or more, and most preferably 70% or more. If it is 50% or more, the bubble mortar becomes light and the heat insulation is improved. The amount of bubbles is measured by, for example, the Japan Highway Public Corporation Standard JHSA313 air mortar and air milk test method.

本発明で使用するモルタルとは、セメントペースト、セメントモルタルを総称するものである。 The mortar used in the present invention is a general term for cement paste and cement mortar.

本発明で使用するセメントとは、ブレーン値(ブレーン比表面積)が6000cm/g以上の微粉末セメントをいう。セメントのブレーン値は7000cm/g以上が好ましく、8000cm/g以上がより好ましい。 The cement used in the present invention refers to a fine powder cement having a brain value (brane specific surface area) of 6000 cm 2 / g or more. Blaine value of cement is preferably not less than 7000cm 2 / g, 8000cm 2 / g or more is more preferable.

セメントとしては、具体的には普通、早強、及び超早強等の各種ポルトランドセメントを、ブレーン値が6000cm/g以上になる様に粉砕や分級をしたものが使用できる。又、それぞれの材料を別々に粉砕や分級をした後に混合しても良い。 As the cement, specifically, various Portland cements such as normal strength, early strength, and ultra-early strength, which have been pulverized and classified so as to have a brain value of 6000 cm 2 / g or more can be used. Further, the respective materials may be mixed after being pulverized or classified separately.

本発明で使用するセメントは、スラグを含有することが好ましい。本発明で使用するスラグとしては、高炉から副生される高炉スラグや、転炉、電炉等から副生される製鋼スラグ等が挙げられる。これらの中では、強度発現性の点から、高炉スラグが好ましく、非晶質の高炉スラグがより好ましい。 The cement used in the present invention preferably contains slag. Examples of the slag used in the present invention include blast furnace slag by-produced from a blast furnace, steelmaking slag by-produced from a converter, an electric furnace, and the like. Among these, blast furnace slag is preferable and amorphous blast furnace slag is more preferable in terms of strength development.

スラグの使用量は、セメントとスラグの合計100質量部中、10〜95質量部が好ましく、40〜90質量部がより好ましく、50〜80質量部が最も好ましい。10質量部未満ではセメントから溶出するアルカリ量が多くなり、pH値が高くなる場合があり、95質量部を超えると強度発現性が悪くなる場合がある。 The amount of slag used is preferably 10 to 95 parts by weight, more preferably 40 to 90 parts by weight, and most preferably 50 to 80 parts by weight in a total of 100 parts by weight of cement and slag. If the amount is less than 10 parts by mass, the amount of alkali eluted from the cement may increase, and the pH value may increase. If the amount exceeds 95 parts by mass, strength development may deteriorate.

本発明で使用するセメントは、これらのポルトランドセメントに、シリカ、フライアッシュを混合してもよい。 The cement used in the present invention may be mixed with silica and fly ash in these Portland cements.

本発明で使用する気泡モルタルは、起泡剤を含有する。起泡剤は特に限定されるものではなく、例えば、界面活性剤や動物性蛋白質等が使用可能である。 The foam mortar used in the present invention contains a foaming agent. A foaming agent is not specifically limited, For example, surfactant, animal protein, etc. can be used.

起泡剤の使用量は特に限定されるものではなく、通常、気泡モルタル中のセメント100重量部に対して、0.1〜1質量部が好ましい。0.1質量部未満では気泡が不安定な場合があり、1質量部を超えて使用しても添加効果が期待できない。 The usage-amount of a foaming agent is not specifically limited, Usually, 0.1-1 mass part is preferable with respect to 100 weight part of cement in foam mortar. If the amount is less than 0.1 parts by mass, the bubbles may be unstable, and even if the amount exceeds 1 part by mass, the effect of addition cannot be expected.

起泡剤としては、粉末と溶液が挙げられる。粉末の場合にはセメント中に混合して用いることが出来る。溶液を使用する場合には、起泡剤水溶液の濃度は起泡剤の種類によって異なり、特に限定されるものではないが、通常、固形分濃度1〜10質量%の水溶液を使用することが好ましい。 Examples of foaming agents include powders and solutions. In the case of powder, it can be used by mixing in cement. When using a solution, the concentration of the foaming agent aqueous solution varies depending on the type of foaming agent and is not particularly limited, but it is usually preferable to use an aqueous solution having a solid content concentration of 1 to 10% by mass. .

起泡剤の使用方法としては、起泡剤を他の材料と同時に攪拌混合して泡立て、気泡モルタルにするミックスフォーム方式と、起泡剤を水と混合して水溶液とし、空気と共に発泡器に供給して連続的に製造した気泡をモルタルと混合して気泡モルタルにするプレフォーム方式が挙げられる。ミックスフォーム方式は施工設備が簡便であるが、含有させる気泡の割合が50%以上になると導入した気泡が不安定になる場合がある。本発明は特にミックスフォーム方式で有効な技術である。 As a method of using the foaming agent, the foaming agent is mixed and foamed simultaneously with other materials to be foamed and foamed into a foam mortar, and the foaming agent is mixed with water to make an aqueous solution. There is a preform method in which bubbles that are supplied and continuously produced are mixed with mortar to form bubble mortar. Although the construction equipment is simple in the mixed foam method, when the ratio of bubbles to be contained is 50% or more, the introduced bubbles may become unstable. The present invention is a technique particularly effective in a mixed foam system.

セメントと混合する水は特に限定されるものではなく、通常、清水の使用が可能である。水の使用量は特に限定されるものではなく、セメント100質量部に対して、70〜120質量部が好ましい。70質量部未満では流動性が悪くなる場合があり、120質量部を超えると強度発現が遅れる場合がある。 The water mixed with the cement is not particularly limited, and it is usually possible to use fresh water. The usage-amount of water is not specifically limited, 70-120 mass parts is preferable with respect to 100 mass parts of cement. If it is less than 70 mass parts, fluidity | liquidity may worsen, and when 120 mass parts is exceeded, intensity | strength expression may be overdue.

本発明では凝結促進材を用い、流動性を5分以上保時した後、30分以内に流動性を無くすことが好ましい。例えば、充填する作業時間を確保し、気泡が安定化している状態で充填する点から、JHS A313のフロー試験において、フロー値200mm以上の状態を5分以上保時した後、30分以内にフロー値を200mm以下にすることが好ましい。 In the present invention, it is preferable to use a setting accelerator and eliminate the fluidity within 30 minutes after maintaining the fluidity for 5 minutes or more. For example, from the point of securing working time for filling and filling in a state where air bubbles are stabilized, in the flow test of JHS A313, the flow value of 200 mm or more is kept for 5 minutes or more and then flows within 30 minutes. The value is preferably 200 mm or less.

本発明で使用する凝結促進材としては、水ガラスに代表される珪酸塩、硫酸アルミニウムやミョウバンに代表されるアルミニウム塩、カルシウムアルミネート(アルミン酸カルシウム)やアルミン酸ナトリウムに代表されるアルミン酸塩等が挙げられる。これらの中では、強度発現性の点から、アルミン酸塩が好ましく、カルシウムアルミネートがより好ましい。   As the setting accelerator used in the present invention, silicate represented by water glass, aluminum salt represented by aluminum sulfate and alum, aluminate represented by calcium aluminate (calcium aluminate) and sodium aluminate Etc. Among these, from the viewpoint of strength development, aluminate is preferable, and calcium aluminate is more preferable.

カルシウムアルミネートとは、CaO原料やAl原料等を焼成や溶融等の熱処理をして生成するものであり、化学成分としてCaOとAlを有効成分とするものである。そして、CaOをC、AlをAとすると、C12、CA、CA、及びCA等と示される鉱物組成を主成分とするもので、結晶質、非晶質いずれも使用可能である。これらの中では、非晶質カルシウムアルミネートが好ましい。 Calcium aluminate is produced by subjecting a CaO raw material, an Al 2 O 3 raw material, or the like to a heat treatment such as firing or melting, and has CaO and Al 2 O 3 as effective components as chemical components. And when CaO is C and Al 2 O 3 is A, the main component is a mineral composition represented by C 12 A 7 , CA, CA 2 , C 3 A, etc. Can also be used. Of these, amorphous calcium aluminate is preferred.

本発明では、CaO原料、Al原料、及びCaSO原料等を使用して生成するカルシウムサルホアルミネートもカルシウムアルミネートと同様に使用可能である。又、SiOをSとすると、CASで示される鉱物組成を有するものも、本発明ではカルシウムアルミネートと同様に使用可能である。 In the present invention, calcium sulfoaluminate produced using a CaO raw material, an Al 2 O 3 raw material, a CaSO 4 raw material, or the like can be used in the same manner as calcium aluminate. Further, when SiO 2 is S, those having a mineral composition represented by C 2 AS can be used in the present invention in the same manner as calcium aluminate.

カルシウムアルミネートのブレーン値は6,000cm/g以上が好ましい。6,000cm/g未満では気泡の安定性が損なわれる場合がある。 The brane value of calcium aluminate is preferably 6,000 cm 2 / g or more. If it is less than 6,000 cm 2 / g, the stability of the bubbles may be impaired.

カルシウムアルミネートを使用した場合、流動性の保持性と強度発現性の点から、カルシウムアルミネートと硫酸塩を混合することが好ましい(以下、カルシウムアルミネートや、カルシウムアルミネートと硫酸塩の混合物を急硬材ということもある)。硫酸塩としては、硫酸ナトリウムや硫酸カリウム等のアルカリ金属硫酸塩や、硫酸カルシウム等のアルカリ土類金属硫酸塩等が挙げられる。これらの中では、硫酸カルシウム(セッコウ)が好ましく、無水セッコウがより好ましく、II型無水セッコウが最も好ましい。 When calcium aluminate is used, it is preferable to mix calcium aluminate and sulfate from the viewpoint of fluidity retention and strength development (hereinafter referred to as calcium aluminate or a mixture of calcium aluminate and sulfate. It may be called a hard material). Examples of the sulfate include alkali metal sulfates such as sodium sulfate and potassium sulfate, alkaline earth metal sulfates such as calcium sulfate, and the like. Among these, calcium sulfate (gypsum) is preferable, anhydrous gypsum is more preferable, and type II anhydrous gypsum is most preferable.

硫酸塩のブレーン値は、6,000cm/g以上が好ましい。6,000cm/g未満では気泡の安定性が損なわれる場合がある。 The brane value of the sulfate is preferably 6,000 cm 2 / g or more. If it is less than 6,000 cm 2 / g, the stability of the bubbles may be impaired.

硫酸塩の使用量は、カルシウムアルミネート100質量部に対して、50〜200質重量部が好ましく、100〜150質量部がより好ましい。50質量部未満では強度の伸びが低下する場合があり、200質量部を超えると強度発現が悪くなる場合がある。 The amount of sulfate used is preferably 50 to 200 parts by weight, more preferably 100 to 150 parts by weight, per 100 parts by weight of calcium aluminate. If the amount is less than 50 parts by mass, the elongation of the strength may be reduced. If the amount exceeds 200 parts by mass, the strength expression may be deteriorated.

気泡モルタルの練り置きや圧送性を良くするために、適時、凝結遅延剤を併用することが好ましい。 In order to improve the kneading of the foam mortar and the pumpability, it is preferable to use a setting retarder in a timely manner.

凝結遅延剤は特に限定されるものではなく、有機酸類やアルカリ金属炭酸塩類等が挙げられる。これらの中では、オキシカルボン酸類とアルカリ金属炭酸塩類を併用することが好ましい。オキシカルボン酸類としては、クエン酸、酒石酸、及びグルコン酸等のオキシカルボン酸や、これらの塩等が挙げられる。オキシカルボン酸類の中では、クエン酸が好ましい。アルカリ金属炭酸塩類としては、炭酸ナトリウムや炭酸カリウム等のアルカリ金属炭酸塩や、炭酸水素ナトリウムや炭酸水素カリウム等のアルカリ金属重炭酸塩が挙げられる。これらの中では、炭酸カリウムが好ましい。そのうちの一種又は二種以上が使用可能である。 The setting retarder is not particularly limited, and examples thereof include organic acids and alkali metal carbonates. Of these, oxycarboxylic acids and alkali metal carbonates are preferably used in combination. Examples of oxycarboxylic acids include oxycarboxylic acids such as citric acid, tartaric acid, and gluconic acid, and salts thereof. Of the oxycarboxylic acids, citric acid is preferred. Examples of the alkali metal carbonates include alkali metal carbonates such as sodium carbonate and potassium carbonate, and alkali metal bicarbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate. Of these, potassium carbonate is preferred. One or more of them can be used.

オキシカルボン酸類とアルカリ金属炭酸塩類を併用した場合の両者の混合割合は、アルカリ金属炭酸塩類100質量部に対して、オキシカルボン酸類5〜200質量部が好ましく、10〜100質量部がより好ましい。 When the oxycarboxylic acid and the alkali metal carbonate are used in combination, the mixing ratio of the oxycarboxylic acid and the alkali metal carbonate is preferably 5 to 200 parts by mass, more preferably 10 to 100 parts by mass with respect to 100 parts by mass of the alkali metal carbonate.

凝結遅延剤の使用量は特に限定されるものではなく、通常、セメントと凝結促進材の合計100質量部に対して、0.1〜2質量部が好ましい。0.1質量部未満では凝結が早すぎて作業が出来ない場合があり、2質量部を越えると凝結不良になり、気泡が不安定になる場合がある。 The usage-amount of a setting retarder is not specifically limited, Usually, 0.1-2 mass parts is preferable with respect to a total of 100 mass parts of a cement and a setting accelerator. If the amount is less than 0.1 parts by mass, the setting may be too early and the work may not be performed. If the amount exceeds 2 parts by mass, the setting may be poor and the bubbles may become unstable.

凝結促進材の使用量は、セメント100質量部に対して、10〜30質量部が好ましく、10〜20質量部がより好ましい。10重量部未満では気泡の安定性を良くする効果が悪くなる場合があり、30重量部を超えると熱膨張する場合がある。 10-30 mass parts is preferable with respect to 100 mass parts of cement, and, as for the usage-amount of a setting accelerator, 10-20 mass parts is more preferable. If it is less than 10 parts by weight, the effect of improving the stability of the bubbles may deteriorate, and if it exceeds 30 parts by weight, thermal expansion may occur.

これらの凝結促進材は微粉末セメントに混合して用いることが出来る。特に気泡の安定化の点から30分以内に流動性を無くなる様に配合することが好ましい。30分を越えると気泡が不安定になり、消泡して泡が大きくなったり、脱泡して密度が大きくなったりする場合がある。しかしながら、あまり早く流動性を小さくすると、充填する作業時間がなくなるので、フロー値200mm以上の状態を5分以上保時することが好ましい。 These setting accelerators can be used by mixing with fine powder cement. In particular, it is preferable to blend so as to eliminate fluidity within 30 minutes from the viewpoint of stabilization of bubbles. If it exceeds 30 minutes, the bubbles may become unstable, and the bubbles may disappear to increase the bubbles, or the bubbles may be removed to increase the density. However, if the fluidity is reduced too quickly, the work time for filling does not exist. Therefore, it is preferable to keep the flow value of 200 mm or more for 5 minutes or more.

本発明では、セメント、起泡剤、凝結促進材及び水以外に、骨材や、減水剤、防水剤、及び収縮低減剤等の各種セメント混和材やセメント混和剤の使用が可能である。骨材等の粉体を用いる場合はブレーン値が6000cm/g以上のものを使用することが好ましい。 In the present invention, various cement admixtures and cement admixtures such as aggregates, water reducing agents, waterproofing agents, and shrinkage reducing agents can be used in addition to cement, foaming agents, setting accelerators and water. When using a powder such as an aggregate, it is preferable to use a powder having a brain value of 6000 cm 2 / g or more.

以下、本発明の実験例に基づいてさらに説明する。 Hereinafter, further description will be given based on experimental examples of the present invention.

実験例1
表1に示すセメント100質量部、起泡剤0.5質量部、表1に示す量の凝結促進材、表1に示す量の水、セメントと凝結促進材の合計100質量部に対して凝結遅延剤0.5質量部をミキサーで混練して気泡モルタルを製造した。その後、気泡モルタルの物性を測定した。その結果を表1に併記した。
Experimental example 1
Condensation with respect to 100 parts by mass of cement shown in Table 1, 0.5 part by mass of foaming agent, amount of setting accelerator shown in Table 1, amount of water shown in Table 1, total of 100 parts by mass of cement and setting accelerator 0.5 parts by mass of the retarder was kneaded with a mixer to produce a bubble mortar. Thereafter, physical properties of the bubble mortar were measured. The results are also shown in Table 1.

<使用材料>
セメントa:ブレーン値3970cm/gの微粉末セメント(普通ポルトランドセメント50質量部と高炉スラグ50質量部を混合し、ブレーン値を調製したもの)
セメントb:ブレーン値6100cm/gの微粉末セメント(普通ポルトランドセメント40質量部と高炉スラグ60質量部を混合し、ブレーン値を調製したもの)
セメントc:ブレーン値8020cm/gの微粉末セメント(普通ポルトランドセメント30質量部と高炉スラグ70質量部を混合し、ブレーン値を調製したもの)
起泡剤:市販品、界面活性剤系、有効成分97質量%の粉末
凝結促進材:カルシウムアルミネート/ 無水セッコウを質量比1/1.5の割合で混合した混合品
凝結遅延剤:クエン酸/炭酸カリウムを質量比3/7の割合で混合した混合品
水: 水道水
普通ポルトランドセメント:市販品
高炉スラグ:市販品
カルシウムアルミネート:C12組成に対応する熱処理物を急冷したカルシウムアルミネート、非晶質、ブレーン値6000cm/g
無水セッコウ:II型無水セッコウ、ブレーン値6000cm/g
クエン酸:市販品
炭酸カリウム:市販品
<Materials used>
Cement a: Fine powder cement having a brane value of 3970 cm 2 / g (mixed 50 parts by weight of ordinary Portland cement and 50 parts by weight of blast furnace slag to prepare a brane value)
Cement b: Fine powder cement having a brane value of 6100 cm 2 / g (mixed 40 parts by weight of ordinary Portland cement and 60 parts by weight of blast furnace slag to prepare a brane value)
Cement c: Fine powder cement having a brane value of 8020 cm 2 / g (mixed 30 parts by weight of ordinary Portland cement and 70 parts by weight of blast furnace slag to prepare a brane value)
Foaming agent: Commercial product, surfactant system, 97% by mass of active ingredient powder coagulation promoter: calcium aluminate / anhydrous gypsum mixed at a ratio of 1 / 1.5 mass setting retarder: citric acid / mixed product water of potassium carbonate were mixed at a mass ratio of 3/7: tap water ordinary Portland cement: commercially blast furnace slag: commercially calcium aluminate: C 12 a 7 calcium aluminate was quenched corresponding heat-treated product of the composition Nate, amorphous, brain value 6000cm 2 / g
Anhydrous gypsum: type II anhydrous gypsum, brain value 6000 cm 2 / g
Citric acid: Commercial product Potassium carbonate: Commercial product

<測定方法>
安定性試験(沈下量):直径10cm、高さ20cmの型枠に気泡モルタルを充填した後、型枠に2回/分の振動を60分間加え、沈下量を測定。沈下量の算出式は以下の通り。
沈下量(%)=(フロー値が200mm以下になった時点の高さ)/(型枠に充填した直後の高さ)×100。
密度:1リットルの容器に気泡モルタルを充填し測定。
フロー試験:気泡モルタルを製造してから、日本道路公団規格JHS A313 フロー試験により、フロー値が200mm以下になるまでの時間を測定。
空気量:日本道路公団規格JHS A313 エアモルタル及びエアミルクの試験方法により測定。
ブレーン値:JIS R 5201に準じて測定。
圧縮強度:JIS R 5201に準じて、所定材齢の圧縮強度を測定。
<Measurement method>
Stability test (subsidence amount): After filling a foam mortar into a mold having a diameter of 10 cm and a height of 20 cm, a vibration of 2 times / min was applied to the mold for 60 minutes, and the amount of settlement was measured. The calculation formula for the amount of settlement is as follows.
Subsidence amount (%) = (height when the flow value becomes 200 mm or less) / (height immediately after filling the mold) × 100.
Density: Measured by filling bubble mortar into a 1 liter container.
Flow test: Measure the time from the production of the bubble mortar until the flow value becomes 200 mm or less by the Japan Highway Public Corporation Standard JHS A313 flow test.
Air volume: Measured by Japan Highway Public Corporation Standard JHS A313 air mortar and air milk test method.
Brain value: Measured according to JIS R 5201.
Compressive strength: Measure the compressive strength of a given age according to JIS R 5201.

Figure 0005973826
Figure 0005973826

本発明により、気泡が安定であり、速やかな施工が可能であり、沈下が少ない、超軽量なモルタルが得られる。本発明の気泡モルタルは、長時間振動が加わる箇所、例えば、トンネル、道路、鉄道、水路といった箇所への空隙充填が可能であり、土の代替としても使用可能である。気泡モルタル中の気泡の量を50%以上にした場合、超軽量となり、断熱性を向上できる。 According to the present invention, it is possible to obtain an ultralight mortar in which bubbles are stable, rapid construction is possible, and settlement is small. The bubble mortar of the present invention can fill a space where a vibration is applied for a long time, for example, a tunnel, a road, a railroad, a waterway, and can be used as a substitute for soil. When the amount of bubbles in the bubble mortar is 50% or more, the weight becomes ultra-light and heat insulation can be improved.

単に気泡の量を大きくした場合、気泡モルタルが沈下し、断熱性や施工性が得られない可能性があった。本発明は、流動性と強度発現性のいずれをも犠牲にせず、かつ、断熱性や施工性が得られる軽量な気泡モルタルを提供できる。微粉末セメントを使用することにより、硬化前に気泡モルタルの沈下を防ぐことができる。 If the amount of bubbles is simply increased, the bubble mortar will sink, and heat insulation and workability may not be obtained. INDUSTRIAL APPLICABILITY The present invention can provide a lightweight cellular mortar that does not sacrifice both fluidity and strength development and that can obtain heat insulation and workability. By using finely divided cement, it is possible to prevent the mortar from sinking before hardening.

Claims (7)

ブレーン値が6000cm/g以上の微粉末セメントと凝結促進材を含有してなり、かつ、50%以上の気泡を含有してなる気泡モルタル。 Ri Blaine value the name contained 6000 cm 2 / g or more of a fine powder cement and set-accelerating material, and Ru bubble mortar greens contain bubbles 50% or more. 凝結促進材が、微粉末セメント100質量部に対して、10〜30質量部である請求項記載の気泡モルタル。 Set accelerating material, per 100 parts by weight of fine powder cement, foam mortar according to claim 1, wherein 10 to 30 parts by weight. 凝結促進材が、カルシウムアルミネートを含有する請求項1又は2記載の気泡モルタル。 The foam mortar according to claim 1 or 2 , wherein the setting accelerator contains calcium aluminate. 凝結促進材が、硫酸塩を含有する請求項記載の気泡モルタル。 The foam mortar according to claim 3 , wherein the setting accelerator contains a sulfate. 更に、凝結遅延材を含有する請求項1〜のうちの1項記載の気泡モルタル。 Furthermore, one of claims bubble mortar of claims 1-4 containing retarding material. 微粉末セメントがスラグを含有する請求項1〜5のうちの1項記載の気泡モルタル。 1 wherein the foam mortar of claims 1 to 5 in which the fine powder cement containing slag. JHS A313のフロー試験において、フロー値200mm以上の状態を5分以上保持した後、30分以内にフロー値が200mm以下になる請求項1〜のうちの1項記載の気泡モルタル。 In the flow test of JHS A313, after holding the state of the above flow values 200mm 5 minutes or more, the flow value is below 200mm within 30 minutes claim 1-1 Claims bubble mortar out of six.
JP2012166407A 2012-07-26 2012-07-26 Foam mortar Expired - Fee Related JP5973826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012166407A JP5973826B2 (en) 2012-07-26 2012-07-26 Foam mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012166407A JP5973826B2 (en) 2012-07-26 2012-07-26 Foam mortar

Publications (2)

Publication Number Publication Date
JP2014024714A JP2014024714A (en) 2014-02-06
JP5973826B2 true JP5973826B2 (en) 2016-08-23

Family

ID=50198716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012166407A Expired - Fee Related JP5973826B2 (en) 2012-07-26 2012-07-26 Foam mortar

Country Status (1)

Country Link
JP (1) JP5973826B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6722556B2 (en) * 2016-09-13 2020-07-15 デンカ株式会社 Filling material and filling method using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818503B2 (en) * 2000-09-20 2011-11-16 電気化学工業株式会社 Low hexavalent chromium injection material
JP2003055024A (en) * 2001-08-09 2003-02-26 Denki Kagaku Kogyo Kk Cement composition
JP2007137745A (en) * 2005-11-22 2007-06-07 Taiheiyo Material Kk Quick hardening material and high-penetrating grout
JP4489707B2 (en) * 2006-01-30 2010-06-23 電気化学工業株式会社 Grout composition, mortar or concrete using the composition, and grout material

Also Published As

Publication number Publication date
JP2014024714A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP4948430B2 (en) Quick hardening cement for seawater resistant cement asphalt mortar and seawater resistant cement asphalt mortar using the same
US8080104B2 (en) Filling material for reinforcing joint and construction method of filling reinforcing joint
JP6475488B2 (en) Quick-hardening lightweight grout composition
JP6392553B2 (en) Method for producing hardened cement and hardened cement
JP2022133746A (en) Two agent-type quick setting agent, spraying material, and spraying method
JP6030438B2 (en) Spraying material and spraying method using the same
JP6147194B2 (en) Rapid hardening cement
JP2009062444A (en) Grouting material and grouting method
JP5620170B2 (en) Foaming quick setting agent, spraying material and spraying method using the same
JP3936933B2 (en) Grout cement composition, grout mortar composition, and grout material
JP5973826B2 (en) Foam mortar
JP2010241618A (en) Super-quick hardening, underwater non-separable cement composition; super-quick hardening, underwater non-separable premixed mortar composition; and underwater non-separable grout mortar
JP4340200B2 (en) Grout cement composition and grout material
JP6300678B2 (en) Method for promoting curing and production of geopolymer composition
JP4404369B2 (en) Method for producing cement hardened composition
WO2019021740A1 (en) Cement composition, construction method using same, and method for producing same
JP3806420B2 (en) Low strength mortar filler using shirasu
JP6258033B2 (en) Method for producing fast-curing expanded cement kneaded material
JP6809761B2 (en) Cement composition and its manufacturing method
JP3729619B2 (en) Lightweight void filler and rapid void filling method using the same
JP2005187257A (en) Cement admixture and quick hardening cement composition
KR100635902B1 (en) Rapidly curable composition for cement and process for producing the same
JP2012240874A (en) Cement composition
JP2006182617A (en) Quick setting agent and spray material using the same
JP2024017120A (en) Spraying material and spraying method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160715

R150 Certificate of patent or registration of utility model

Ref document number: 5973826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees