JP2010240661A - Alloy powder for coated arc welding electrode, and low hydrogen coated arc welding electrode - Google Patents

Alloy powder for coated arc welding electrode, and low hydrogen coated arc welding electrode Download PDF

Info

Publication number
JP2010240661A
JP2010240661A JP2009089067A JP2009089067A JP2010240661A JP 2010240661 A JP2010240661 A JP 2010240661A JP 2009089067 A JP2009089067 A JP 2009089067A JP 2009089067 A JP2009089067 A JP 2009089067A JP 2010240661 A JP2010240661 A JP 2010240661A
Authority
JP
Japan
Prior art keywords
alloy powder
mass
arc welding
coated arc
welding electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009089067A
Other languages
Japanese (ja)
Inventor
Masao Umeki
正夫 梅木
Kentaro Iwatate
健太郎 岩立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2009089067A priority Critical patent/JP2010240661A/en
Publication of JP2010240661A publication Critical patent/JP2010240661A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alloy powder for a coated arc welding electrode capable of securing weld metal having high toughness at low temperature with no fluctuation while satisfying satisfactory welding operation and to provide a low hydrogen coated arc welding electrode. <P>SOLUTION: In the alloy powder added to a coating agent when the coated arc welding electrode is produced, an alloy containing 8 to 40 mass% Ni, 0.5 to 8.5 mass% Ti, 1.0 to 11.5 mass% Mo, 8.5 to 24.5 mass% Mn, 13 to 25 mass% Si, and 20 to 42 mass% Fe is made into a powder having 30 to 150 μm average particle diameter. In the low hydrogen coated arc welding electrode wherein a soft steel core line is coated with a coating agent, 17 to 42 mass% alloy powder is incorporated to the total mass of the coating agent. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被覆アーク溶接棒の被覆剤原料として添加される合金粉およびそれを利用した低水素系被覆アーク溶接棒(以下、低水素系棒という。)に関し、特に、溶接金属の靭性が良好でバラツキが少なく、かつ溶接作業性を満足できる被覆アーク溶接棒用合金粉および低水素系棒に関するものである。   The present invention relates to an alloy powder added as a coating material for a coated arc welding rod and a low hydrogen-based coated arc welding rod (hereinafter referred to as a low hydrogen-based rod) using the same, and in particular, the toughness of the weld metal is good. Further, the present invention relates to an alloy powder for a coated arc welding rod and a low hydrogen-based rod that are less varied and satisfy the welding workability.

低水素系棒は、被覆剤に炭酸カルシウムなどの炭酸塩を多量に含有し、溶接金属の耐割れ性や靱性が良好であるため大型構造物の溶接に適用され、さらには低温用鋼あるいは耐熱鋼などの溶接にも使用されている。   Low hydrogen rods contain a large amount of carbonate such as calcium carbonate in the coating, and are suitable for welding large structures due to the good crack resistance and toughness of the weld metal. It is also used for welding steel.

近年、低水素系棒はさらなる溶接金属の高靱性化の要求に対して種々の改善がなされている。例えば特開平4−319092号公報(特許文献1)には、被覆剤中に金属Mgを添加し、その粒度を規定することで溶接金属中の酸素量を減少し、高い靭性を確保する技術が示されている。また特許第3026899号公報(特許文献2)には、鋼心線の成分と被覆剤の主成分および金属Mgの粒度規定などにより、高強度鋼材での低温靱性が優れた技術が示されている。しかしこれら技術は、被覆剤に金属Mgを含有するため溶接スラグの融点を高めスラグの流動性が悪くなり、さらに保護筒の劣化を招くなど溶接作業性が悪くなるのが実情であった。   In recent years, various improvements have been made to low hydrogen rods in response to the demand for higher toughness of weld metal. For example, Japanese Patent Laid-Open No. 4-319092 (Patent Document 1) discloses a technique for ensuring high toughness by reducing the amount of oxygen in a weld metal by adding metal Mg to the coating agent and defining its particle size. It is shown. Japanese Patent No. 3026899 (Patent Document 2) discloses a technique that is excellent in low-temperature toughness in high-strength steel materials by the steel core wire component, the main component of the coating agent, and the particle size regulation of metal Mg. . However, in these techniques, the metal Mg is contained in the coating agent, so that the melting point of the welding slag is increased, the fluidity of the slag is deteriorated, and further, the welding workability is deteriorated such as the deterioration of the protective cylinder.

一方、合金添加による靭性改善として特開平10−272594号公報(特許文献3)では被覆剤中のNi、Moなどを規定し、高強度鋼材用として溶接金属の優れた低温靭性を確保している。また、特開昭58−53393号公報(特許文献4)では溶接金属の組織を微細化する目的でTi、Bを複合添加し、低温での高靭性を確保している。しかしながら、これらの技術では平均値としての靭性は優れるが、被覆剤中の合金が低水素系棒の被覆原料である金属炭酸塩や金属弗化物に比べて比重が大きいことから偏析が生じる場合があり、溶接金属の靭性にバラツキが生じ易いという問題があった。このように、溶接作業性が良好で、溶接金属の低温靭性においてバラツキが少なく高靱性を確保できる低水素系棒を得ることは困難であった。   On the other hand, as an improvement in toughness by adding an alloy, Japanese Patent Application Laid-Open No. 10-272594 (Patent Document 3) defines Ni, Mo, etc. in a coating material, and ensures excellent low temperature toughness of a weld metal for high strength steel materials. . JP-A-58-53393 (Patent Document 4) uses Ti and B in combination for the purpose of refining the structure of the weld metal to ensure high toughness at low temperatures. However, although these techniques have excellent toughness as an average value, segregation may occur because the alloy in the coating agent has a higher specific gravity than the metal carbonate or metal fluoride that is the coating material of the low hydrogen rod. There is a problem that the toughness of the weld metal tends to vary. As described above, it has been difficult to obtain a low hydrogen rod that has good welding workability, has little variation in the low temperature toughness of the weld metal, and can ensure high toughness.

特開平4−319092号公報Japanese Patent Laid-Open No. 4-319092 特許第3026899号公報Japanese Patent No. 3026899 特開平10−272594号公報Japanese Patent Laid-Open No. 10-272594 特開昭58−53393号公報JP 58-53393 A

本発明は良好な溶接作業性を満足しつつ、低温で高靭性の溶接金属をバラツキなく確保できる被覆アーク溶接棒用合金粉および低水素系被覆アーク溶接棒を提供することを目的とする。   An object of the present invention is to provide an alloy powder for a coated arc welding rod and a low hydrogen-based coated arc welding rod which can ensure a weld metal having high toughness at low temperatures without satisfying satisfactory welding workability.

本発明の要旨は、被覆アーク溶接棒を製造する際に被覆剤に添加される合金粉であって、Niを8〜40質量%、Tiを0.5〜8.5質量%、Moを1.0〜11.5質量%、Mnを8.5〜24.5質量%、Siを13〜25質量%、Feを20〜42質量%含有し、他は不可避不純物からなる合金を、平均粒径が30〜150μmの粉末にしたものであることを特徴とする被覆アーク溶接棒用合金粉にある。またさらに、軟鋼心線に被覆剤が塗装されている低水素系被覆アーク溶接棒において、上記の合金粉を、被覆剤全質量に対して17〜42質量%含有することを特徴とする低水素系被覆アーク溶接棒にある。   The gist of the present invention is an alloy powder that is added to a coating agent when a coated arc welding rod is manufactured, and Ni is 8 to 40 mass%, Ti is 0.5 to 8.5 mass%, and Mo is 1 0.0-11.5% by mass, Mn 8.5-54.5% by mass, Si 13-25% by mass, Fe 20-42% by mass, and other alloys composed of inevitable impurities, The alloy powder for coated arc welding rods is characterized in that the powder has a diameter of 30 to 150 μm. Further, in the low hydrogen-based coated arc welding rod in which a coating agent is coated on a mild steel core wire, the alloy powder is contained in an amount of 17 to 42% by mass with respect to the total mass of the coating agent. It is in the system coated arc welding rod.

本発明の被覆アーク溶接棒用合金粉および低水素系被覆アーク溶接棒によれば、良好な溶接作業性を満足しつつ、低温で高靭性の溶接金属をバラツキなく確保できるので溶接部の品質を向上させることができる。   According to the alloy powder for a coated arc welding rod and the low hydrogen-based coated arc welding rod of the present invention, it is possible to secure a weld metal with high toughness at low temperatures without variation, while satisfying good welding workability. Can be improved.

本発明者らは、低温で高靭性の溶接金属が確保できると共に靭性のバラツキも少なく、かつ良好な溶接作業性が得られる低水素系棒の改善手段を鋭意研究した。一般に、溶接金属の低温靭性を確保するにはNi、Mo、Tiなどの成分を活用するが、これら成分は被覆剤原料として、それぞれ金属Ni、Fe−Mo、Fe−Tiなどの金属粉を用いる。そこで靭性バラツキの要因として、これら金属粉の偏析が考えられる。   The present inventors have intensively studied means for improving a low hydrogen rod that can secure a weld metal having high toughness at a low temperature, has little variation in toughness, and provides good welding workability. In general, components such as Ni, Mo, and Ti are used to secure the low temperature toughness of the weld metal. These components use metal powders such as metal Ni, Fe—Mo, and Fe—Ti, respectively, as a coating material. . Therefore, segregation of these metal powders can be considered as a factor of toughness variation.

まず、低温靭性確保に最も欠かせない成分であるNiについて被覆剤原料面から改善することを試みた。偏析防止には溶接金属への分散性を良くすることが肝要であり、Fe−Niを用いて、被覆剤中のNi量が同等となるように調整した配合フラックスで低水素棒を作成して溶接試験を行ったところ、高靭性を維持しつつバラツキも少ない結果であった。しかしながら、Fe分増加により低水素系棒の主原料である炭酸塩鉱物が減少するため大気遮断が不足し、ブローホールなどの溶接欠陥を生じた。また、Fe−Niは原料製造時に粉砕が難しいという問題もあった。   First, it tried to improve Ni which is a component indispensable for ensuring low-temperature toughness from the surface of the coating material. In order to prevent segregation, it is important to improve dispersibility in the weld metal. Fe-Ni is used to create a low hydrogen rod with a blending flux adjusted so that the amount of Ni in the coating is equivalent. As a result of the welding test, the results showed little variation while maintaining high toughness. However, due to the increase in Fe content, carbonate mineral, which is the main raw material for low hydrogen rods, is reduced, resulting in insufficient air shut-off and weld defects such as blow holes. Further, Fe-Ni has a problem that it is difficult to grind at the time of raw material production.

次いで、比較的添加量の少ないFe−MoとFe−TiのMoおよびTi含有量を低減した原料を使用した。つまり、Fe−Ni同様にFeを多くした金属粉を作成し、MoとTiの分散性の向上を狙うことを検討した。その結果、靭性のバラツキは改善の傾向にあったが、アーク状態の劣化を招きスパッタ発生量が多くなり、溶接作業性が悪くなった。   Subsequently, the raw material which reduced the Mo and Ti content of Fe-Mo and Fe-Ti with comparatively little addition amount was used. That is, the metal powder which increased Fe like Fe-Ni was created, and it aimed at improving the dispersibility of Mo and Ti. As a result, the variation in toughness tended to be improved, but the arc state was deteriorated, the amount of spatter was increased, and the welding workability was deteriorated.

さらに、Ni、Mo、Tiの被覆剤への添加をやめて、これらを心線に含有した共金心線を使用した結果、バラツキの少ない優れた靭性を確保することができた。しかし心線の比抵抗値が高くなり、高電流を使用した場合ジュール熱により溶接棒が焼け易くなる問題が生じ、良好な溶接作業性を得ることはできなかった。   Furthermore, the addition of Ni, Mo, and Ti to the coating agent was stopped, and as a result of using a metal core that contained these in the core, excellent toughness with little variation could be secured. However, the specific resistance value of the core becomes high, and when a high current is used, there is a problem that the welding rod is easily burnt due to Joule heat, and good welding workability cannot be obtained.

そこで、Ni、Mo、Tiの成分偏析について詳細に検討した結果、これら成分を含有する金属粉の被覆剤への添加量が少ないために生じるものであり、これら成分と低水素系棒に欠かせないMn、Si、Feも全て含有した単体合金粉として添加すれば、被覆剤へ多量配合することになって成分偏析が低減することを見出した。すなわち、従来使用していた溶接金属成分を確保するための金属粉を一元化する合金粉を使用することによって、溶接金属の低温靭性にバラツキが少なく高靭性を確保でき、溶接作業性も満足できることが判明した。   Therefore, as a result of detailed examination of component segregation of Ni, Mo and Ti, it is caused by the small amount of metal powder containing these components added to the coating, and is indispensable for these components and low hydrogen rods. It has been found that if it is added as a single alloy powder containing all of Mn, Si, and Fe, it is incorporated in a large amount into the coating agent, and component segregation is reduced. That is, by using the alloy powder that unifies the metal powder for securing the weld metal component that has been used in the past, the low-temperature toughness of the weld metal can be kept low and high toughness can be secured, and the welding workability can be satisfied. found.

上記のような合金粉の製造は、合金粉にすべき全成分を配合して炉中で溶解し、板状に凝固させたのち粉砕して所定の粒度の粉末にする。本発明の成分の合金は脆いのでこのように機械的な破砕により粉末にすることができる。また溶融金属を垂直に流下させつつ周囲から高圧の水などを噴射するアトマイズ法により、溶融状態から直接に粉末を製造することもできる。
以下、本発明の被覆アーク溶接棒用合金粉および低水素棒について、合金粉の各成分組成、粒度および被覆剤中における含有量の限定理由について説明する。
In the production of the alloy powder as described above, all the components to be made into the alloy powder are blended, dissolved in a furnace, solidified into a plate shape, and then pulverized to obtain a powder having a predetermined particle size. Since the alloy of the component of the present invention is brittle, it can be powdered by mechanical crushing in this way. Further, the powder can be directly produced from the molten state by an atomizing method in which high-pressure water or the like is jetted from the surrounding while vertically flowing the molten metal.
Hereinafter, with respect to the alloy powder for a coated arc welding rod and the low hydrogen rod of the present invention, the reasons for limiting the composition of each component of the alloy powder, the particle size and the content in the coating will be described.

合金中のNiが8質量%(以下、%という。)未満では、合金粉の被覆剤への添加量の範囲(後述)において溶接金属の十分な靭性が得られない。一方、40%を超えると、溶接金属の溶融点が低下しビード形状が劣化するなど溶接作業性が悪くなる。また、破砕による合金粉の製造時に粉砕性が悪くなる。したがって合金中のNi含有量は8〜40%とする。   If the Ni content in the alloy is less than 8% by mass (hereinafter referred to as “%”), sufficient toughness of the weld metal cannot be obtained in the range of the amount of alloy powder added to the coating (described later). On the other hand, if it exceeds 40%, the welding workability is deteriorated, for example, the melting point of the weld metal is lowered and the bead shape is deteriorated. Moreover, the pulverizability becomes worse during the production of alloy powder by crushing. Therefore, the Ni content in the alloy is 8 to 40%.

合金中のTiが0.5%未満では、合金粉の被覆剤への添加量の範囲においてアークの安定性が悪くスパッタ発生量が多くなり溶接金属の靭性も低下する。一方、8.5%を超えると、溶接金属の強度が過剰に高くなり靭性が低下する。また、スラグ剥離性が悪くなるなど溶接作業性が悪くなる。したがって合金中のTi含有量は0.5〜8.5%とする。   If Ti in the alloy is less than 0.5%, the stability of the arc is poor and the amount of spatter generated increases within the range of the amount of alloy powder added to the coating, and the toughness of the weld metal also decreases. On the other hand, if it exceeds 8.5%, the strength of the weld metal becomes excessively high and the toughness decreases. Moreover, welding workability | operativity worsens, such as slag peelability worsening. Accordingly, the Ti content in the alloy is set to 0.5 to 8.5%.

Moは、溶接作業性に悪影響を与えず強度確保に必要な成分である。合金中のMoが1.0%未満では、合金粉の被覆剤への添加量の範囲において十分な強度と靭性が得られず、11.5%を超えると強度が過剰に高くなり靭性が低下する。したがって合金中のMo含有量は1.0〜11.5%とする。   Mo is a component necessary for ensuring strength without adversely affecting welding workability. If the Mo content in the alloy is less than 1.0%, sufficient strength and toughness cannot be obtained within the range of the amount of alloy powder added to the coating, and if it exceeds 11.5%, the strength becomes excessively high and the toughness decreases. To do. Therefore, the Mo content in the alloy is set to 1.0 to 11.5%.

Mnは、脱酸剤して欠かせないもので、合金粉の被覆剤への添加量の範囲において少なくとも8.5%必要であり、一方、24.5%を超えると靭性が低下し、またスラグの溶融点が過剰に低下し溶接作業性が悪くなる。したがって合金中のMn含有量は8.5〜24.5%とする。   Mn is indispensable as a deoxidizer and needs to be at least 8.5% in the range of the amount of alloy powder added to the coating. On the other hand, if it exceeds 24.5%, the toughness decreases. The melting point of the slag is excessively lowered and welding workability is deteriorated. Therefore, the Mn content in the alloy is set to 8.5 to 24.5%.

Siは、Mn同様脱酸剤であるが、スラグ剥離性やビード形状などの溶接作業性改善にも効果がある。また、破砕による合金粉製造時の粉砕性向上にも効果がある。Siが13%未満では、合金粉製造時に粉砕性が悪くなり、合金粉の被覆剤への添加量の範囲において溶接作業性も劣化する。一方、25%を超えると靭性が低下する。したがって合金中のSi含有量は13〜25%とする。   Si is a deoxidizer like Mn, but is also effective in improving welding workability such as slag removability and bead shape. Moreover, it is effective in improving the pulverizability during the production of alloy powder by crushing. If Si is less than 13%, the grindability deteriorates during the production of the alloy powder, and the welding workability also deteriorates within the range of the amount of alloy powder added to the coating. On the other hand, if it exceeds 25%, the toughness decreases. Therefore, the Si content in the alloy is 13 to 25%.

Feは、合金粉の溶解性と粉砕性の向上を目的に含有させるもので、少なくとも20%必要で、42%を超えるとアークが不安定となりスパッタ発生量が多く溶接作業性が悪くなる。したがって合金中のFe含有量は20〜42%とする。   Fe is added for the purpose of improving the solubility and grindability of the alloy powder, and at least 20% is necessary. If it exceeds 42%, the arc becomes unstable and the amount of spatter is increased, resulting in poor workability. Therefore, the Fe content in the alloy is 20 to 42%.

合金粉の平均粒径も重要で、平均粒径が30μm未満では溶接棒乾燥工程で被覆剤の乾燥割れが生じる。また、溶接時にアークが弱くなり溶け込み不足となる。一方、150μmを超えると、スパッタの発生量が多くなる。したがって合金粉の平均粒径は30〜150μmとする。   The average particle size of the alloy powder is also important. If the average particle size is less than 30 μm, dry cracking of the coating material occurs in the welding rod drying process. Further, the arc becomes weak during welding, resulting in insufficient penetration. On the other hand, if it exceeds 150 μm, the amount of spatter generated increases. Therefore, the average particle diameter of the alloy powder is 30 to 150 μm.

なお、本発明の被覆アーク溶接棒用合金粉は、溶接棒製造時に水ガラスと反応しないように焼成して酸化皮膜を施しているものを使用することが好ましい。アトマイズ法により粉末を製造する場合には、アトマイズ装置内の雰囲気を通常採用されるような非酸化性ガスにしないで酸化性にすることにより、酸化皮膜を形成させることもできる。   In addition, it is preferable to use what is baked and given the oxide film so that it may not react with water glass at the time of manufacture of a welding rod as the alloy powder for coated arc welding rods of this invention. In the case of producing a powder by the atomizing method, an oxide film can be formed by making the atmosphere in the atomizing apparatus oxidizing without using a non-oxidizing gas which is usually employed.

このようにして得られた合金粉を低水素系棒に適用した結果、低温靭性が極めて良好でバラツキがなく、かつ溶接作業性も良好となることが判明した。被覆剤中の前記合金粉の含有量は、低水素系棒における被覆剤の主要成分である金属炭酸塩や金属弗化物とのバランスの点から被覆剤全重量に対して30%を標準とし、25〜35%の範囲内が好ましい。合金の含有量が17%未満では、溶接金属への分散性が悪く成分偏析を生じて靭性のバラツキが大きくなる。また、42%を超えると、アーク状態が乱れ溶接作業性が悪くなる。したがって被覆剤中の合金粉の含有量は被覆剤全重量に対して17〜42%とする。   As a result of applying the alloy powder thus obtained to a low hydrogen rod, it has been found that the low temperature toughness is extremely good, there is no variation, and the welding workability is also good. The content of the alloy powder in the coating material is 30% as a standard with respect to the total weight of the coating material in terms of the balance with the metal carbonate and metal fluoride which are the main components of the coating material in the low hydrogen rod, A range of 25 to 35% is preferable. If the alloy content is less than 17%, the dispersibility in the weld metal is poor and component segregation occurs, resulting in large variations in toughness. On the other hand, if it exceeds 42%, the arc state is disturbed and welding workability is deteriorated. Therefore, the content of the alloy powder in the coating agent is 17 to 42% with respect to the total weight of the coating agent.

また被覆剤に使用する他の原材料のうち、金属炭酸塩は大気を遮断するために添加するが、含有量が少ない場合は溶接金属中の酸素や窒素が多くなり、過剰に添加するとアーク状態やビード形状が劣化するので、金属炭酸塩の含有量は20〜60%が望ましい。さらに、金属弗化物は良好なスラグ流動性を得るのに欠かせないもので、その含有量が少ないと効果がなく、過剰な場合はアーク状態とスラグ剥離性が劣化するので、その添加量は13〜30%が望ましい。その他、低水素系被覆原材料としてアーク安定剤、スラグ生成剤は通常用いられるものである。   Among other raw materials used for coatings, metal carbonate is added to block the atmosphere, but if the content is low, oxygen and nitrogen in the weld metal increase, and if added excessively, arc state and Since the bead shape is deteriorated, the content of the metal carbonate is preferably 20 to 60%. Furthermore, metal fluoride is indispensable for obtaining good slag fluidity, and if its content is low, it will not be effective, and if it is excessive, the arc state and slag peelability will deteriorate. 13 to 30% is desirable. In addition, arc stabilizers and slag generators are usually used as low hydrogen-based coating raw materials.

本発明の効果を実施例により具体的に説明する。
表1に示す成分の各合金をボールミルによる粉砕性を調査した後、700〜900℃で焼成し酸化皮膜形成の処理をして表2に示す各種平均粒径の合金粉とした。
The effects of the present invention will be specifically described with reference to examples.
Each alloy of the components shown in Table 1 was examined for grindability by a ball mill, then fired at 700 to 900 ° C. to form an oxide film, and alloy powders having various average particle diameters shown in Table 2 were obtained.

Figure 2010240661
Figure 2010240661

Figure 2010240661
Figure 2010240661

表3に示す780N/mm級低温用鋼用の低水素系棒の被覆剤中に表1および表2に示す合金粉を添加して直径4.0mm、長さ400mmのJIS G3523 SWY11の鋼心線に被覆塗装後、乾燥して各種低水素系棒を試作し、溶着金属の衝撃靭性および溶接作業性を調査した。 Steel of JIS G3523 SWY11 having a diameter of 4.0 mm and a length of 400 mm obtained by adding the alloy powder shown in Tables 1 and 2 to the coating material of the low hydrogen rod for 780 N / mm grade 2 low temperature steel shown in Table 3 After coating the core wire, it was dried and various low-hydrogen rods were prototyped, and the impact toughness and welding workability of the weld metal were investigated.

Figure 2010240661
Figure 2010240661

合金粉製造時の粉砕性の判定は、容易に粉砕できたものを良好の○印、粉砕に時間を要したものは×印とした。
また、溶着金属の衝撃靭性は、電流170A(AC)、予熱・パス間温度90〜130℃、平均入熱17kJ/cmとし、JIS Z3211の溶着金属試験に準じて溶接を行い、溶着金属中央部よりJIS Z2202の4号衝撃試験片を採取した。試験温度は−40℃で各8本試験を行い、その吸収エネルギーの平均値が80J以上、最低値が60J以上を良好とした。
Judgment of pulverizability at the time of producing the alloy powder was made with good ◯ marks for those that could be easily crushed, and with x marks for those that required time for grinding.
The weld metal has an impact toughness of 170 A (AC) current, 90-130 ° C pre-pass / pass temperature, 17 kJ / cm average heat input, and welded according to the weld metal test of JIS Z3211. From JIS Z2202, No. 4 impact test piece was collected. The test temperature was −40 ° C., and eight tests were performed. The average value of absorbed energy was 80 J or more, and the minimum value was 60 J or more.

溶接作業性の調査は、板厚16mm、幅100mm、長さ450mmの780N/mm級鋼板をT型に組み、交流溶接機を用い、水平すみ肉溶接は電流170A、立向姿勢溶接は150Aの条件で溶接し、アーク状態、スラグ状態、スパッタ発生量の多少などを調査した。その判定は、各姿勢溶接の評価を総合判定し、良好を○印、劣るが×印とした。これらの結果も表2にまとめて示す。 Welding workability was investigated by assembling a 780 N / mm grade 2 steel plate with a plate thickness of 16 mm, a width of 100 mm, and a length of 450 mm into a T shape, using an AC welder, horizontal fillet welding with a current of 170 A, and vertical posture welding with 150 A. Welding was conducted under the conditions described above, and the arc state, slag state, and the amount of spatter generated were investigated. The determination was made by comprehensively evaluating the evaluation of each posture welding, and the good was marked with a circle, and the poor was marked with an x. These results are also summarized in Table 2.

表1および表2中、溶接棒No.1〜No.12は本発明例、溶接棒No.13〜No.28は比較例を示す。
本発明例である溶接棒No.1〜No.12は、合金粉中のNi、Ti、Mo、Mn、Si、Feの含有量が適正で、粉砕性が良好で平均粒度も適正で、被覆剤中の合金粉量も適量であるので溶接作業性が良好で、溶着金属試験においてもバラツキの少ない良好な吸収エネルギーが得られ、極めて満足な結果であった。
In Table 1 and Table 2, welding rod No. 1-No. No. 12 is an example of the present invention, welding rod no. 13-No. 28 shows a comparative example.
The welding rod no. 1-No. No. 12, the content of Ni, Ti, Mo, Mn, Si, Fe in the alloy powder is appropriate, the grindability is good, the average particle size is appropriate, and the amount of alloy powder in the coating is also appropriate. Good absorption energy with little variation was obtained in the weld metal test, which was a very satisfactory result.

比較例中溶接棒No.13は、合金粉中のTiが多いのでアークが弱くスラグ剥離性が不良であるなど溶接作業性が不良であった。また、溶着金属の吸収エネルギーが低値であった。
溶接棒No.14は、合金粉中のNiが多いので合金粉の製造時に粉砕性が悪かった。また、溶融金属の溶融点が低下して立向姿勢でビードが垂れて溶接作業性が不良であった。
In the comparative example, the welding rod No. No. 13 had poor welding workability such as a weak arc and poor slag peelability due to a large amount of Ti in the alloy powder. Further, the absorbed energy of the weld metal was low.
Welding rod no. No. 14 had poor pulverizability during the production of the alloy powder because of the large amount of Ni in the alloy powder. In addition, the melting point of the molten metal was lowered, and the beads were drooped in a standing posture, resulting in poor welding workability.

溶接棒No.15は、合金粉中のMoが少ないので溶着金属の吸収エネルギーが低値であった。
溶接棒No.16は、合金粉中のSiが少ないので合金粉製造時に粉砕性が悪かった。また、ビードの馴染みが悪く溶接作業性が不良であった。
Welding rod no. No. 15 had a low absorption energy of the deposited metal because there was little Mo in the alloy powder.
Welding rod no. No. 16 had poor pulverizability at the time of producing the alloy powder because there was little Si in the alloy powder. Further, the familiarity of the beads was poor and the welding workability was poor.

溶接棒No.17は、合金粉中のTiが少ないのでアークが不安定でスパッタ発生量が多くなり溶接作業性が悪く、溶着金属の吸収エネルギーも低値であった。
溶接棒No.18は、合金粉の平均粒径が大きいのでスパッタ発生量が多く溶接作業性が不良であった。
Welding rod no. In No. 17, since the Ti in the alloy powder was small, the arc was unstable, the amount of spatter was increased, the welding workability was poor, and the absorbed energy of the deposited metal was also low.
Welding rod no. No. 18 had a large average particle size of the alloy powder, so that the amount of spatter was large and welding workability was poor.

溶接棒No.19は、合金粉中のMnが多いのでスラグの溶融点が下がり、立向姿勢で溶接金属が垂れて凸ビードとなり溶接作業性が不良であった。
溶接棒No.20では、合金粉の平均粒径が小さいのでアークが弱くなり溶け込み不足を生じ溶接作業性が不良であった。
Welding rod no. In No. 19, since the Mn in the alloy powder was large, the melting point of the slag was lowered, and the weld metal dropped into a convex bead in a standing posture, resulting in poor welding workability.
Welding rod no. In No. 20, since the average particle size of the alloy powder was small, the arc was weakened, resulting in insufficient penetration and poor welding workability.

溶接棒No.21は、合金粉中のNiが少ないので溶着金属の吸収エネルギーが低値であった。
溶接棒No.22は、被覆剤中の合金粉の添加量が少ないので溶着金属の吸収エネルギーのバラツキが大きかった。
Welding rod no. No. 21 had a low absorption energy of the deposited metal because there was little Ni in the alloy powder.
Welding rod no. No. 22 had a large variation in the absorbed energy of the weld metal because the amount of alloy powder added in the coating was small.

溶接棒No.23は、合金粉中のFeが多いのでアークが不安定となりスパッタの発生量が多く溶接作業性が不良であった。
溶接棒No.24は、合金粉中のMnが少ないので脱酸不足となり溶着金属の吸収エネルギーが低値であった。
Welding rod no. In No. 23, the amount of Fe in the alloy powder was so large that the arc became unstable and the amount of spatter generated was large, resulting in poor welding workability.
Welding rod no. In No. 24, since Mn in the alloy powder was small, deoxidation was insufficient and the absorbed energy of the deposited metal was low.

溶接棒No.25は、被覆剤中の合金粉の添加量が多いのでアーク状態が乱れ溶接作業性が不良であった。
溶接棒No.26は、合金粉中のMoが多いので溶着金属の吸収エネルギーが低値であった。
Welding rod no. In No. 25, since the amount of alloy powder added in the coating material was large, the arc state was disturbed and the welding workability was poor.
Welding rod no. No. 26 had a low absorption energy of the deposited metal because there was a lot of Mo in the alloy powder.

溶接棒No.27は、合金粉中のSiが多いので溶着金属の吸収エネルギーが低値であった。
溶接棒No.28は、合金粉中のFeが少ないので合金粉の製造時に溶解性と粉砕性が不良であった。
Welding rod no. In No. 27, since the amount of Si in the alloy powder was large, the absorbed energy of the deposited metal was low.
Welding rod no. No. 28 had poor solubility and grindability during the production of the alloy powder since Fe in the alloy powder was small.

Claims (2)

被覆アーク溶接棒を製造する際に被覆剤に添加される合金粉であって、Niを8〜40質量%、Tiを0.5〜8.5質量%、Moを1.0〜11.5質量%、Mnを8.5〜24.5質量%、Siを13〜25質量%、Feを20〜42質量%含有し、他は不可避不純物からなる合金を、平均粒径が30〜150μmの粉末にしたものであることを特徴とする被覆アーク溶接棒用合金粉。 An alloy powder added to a coating agent when a coated arc welding rod is manufactured, comprising 8 to 40% by mass of Ni, 0.5 to 8.5% by mass of Ti, and 1.0 to 11.5 of Mo An alloy containing 8% to 24.5% by mass of Mn, 8.5% to 24.5% by mass, 13% to 25% by mass of Si, 20% to 42% by mass of Fe, and other unavoidable impurities, having an average particle size of 30 to 150 μm Alloy powder for coated arc welding rods, characterized in that it is powdered. 軟鋼心線に被覆剤が塗装されている低水素系被覆アーク溶接棒において、請求項1記載の合金粉を、被覆剤全質量に対して17〜42質量%含有することを特徴とする低水素系被覆アーク溶接棒。 A low hydrogen based arc welding rod in which a coating material is coated on a mild steel core wire, wherein the alloy powder according to claim 1 is contained in an amount of 17 to 42% by mass with respect to the total mass of the coating material. Coated arc welding rod.
JP2009089067A 2009-04-01 2009-04-01 Alloy powder for coated arc welding electrode, and low hydrogen coated arc welding electrode Pending JP2010240661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009089067A JP2010240661A (en) 2009-04-01 2009-04-01 Alloy powder for coated arc welding electrode, and low hydrogen coated arc welding electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089067A JP2010240661A (en) 2009-04-01 2009-04-01 Alloy powder for coated arc welding electrode, and low hydrogen coated arc welding electrode

Publications (1)

Publication Number Publication Date
JP2010240661A true JP2010240661A (en) 2010-10-28

Family

ID=43094324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089067A Pending JP2010240661A (en) 2009-04-01 2009-04-01 Alloy powder for coated arc welding electrode, and low hydrogen coated arc welding electrode

Country Status (1)

Country Link
JP (1) JP2010240661A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478341A (en) * 1977-12-06 1979-06-22 Daido Steel Co Ltd Coated arccweldinggrod
JPH03204197A (en) * 1989-12-28 1991-09-05 Nippon Yakin Kogyo Co Ltd High-ni alloy for highly corrosion resistant welding rod
JP2006297470A (en) * 2005-04-25 2006-11-02 Nippon Steel & Sumikin Welding Co Ltd Coated electrode for arc welding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478341A (en) * 1977-12-06 1979-06-22 Daido Steel Co Ltd Coated arccweldinggrod
JPH03204197A (en) * 1989-12-28 1991-09-05 Nippon Yakin Kogyo Co Ltd High-ni alloy for highly corrosion resistant welding rod
JP2006297470A (en) * 2005-04-25 2006-11-02 Nippon Steel & Sumikin Welding Co Ltd Coated electrode for arc welding

Similar Documents

Publication Publication Date Title
JP5416605B2 (en) Flux cored wire
JP6621572B1 (en) Solid wire for gas metal arc welding
JP6437471B2 (en) Low hydrogen coated arc welding rod
JP6177177B2 (en) Low hydrogen coated arc welding rod
WO2018051823A1 (en) Wire for electroslag welding, flux for electroslag welding and welded joint
CN106994570A (en) Stainless flux-cored wire
JP6434387B2 (en) Low hydrogen coated arc welding rod
JPWO2020203336A1 (en) Solid wire for gas metal arc welding and gas metal arc welding method
JP6051086B2 (en) Low hydrogen coated arc welding rod
JP2014198344A (en) Submerged arc welding method for high strength steel
JP6641084B2 (en) Low hydrogen coated arc welding rod with excellent resistance to bar burn during welding
JP6257489B2 (en) Gas shield arc welding method
JP6061712B2 (en) Low hydrogen coated arc welding rod
JP7031271B2 (en) Flux-cored wire for vertical electrogas arc welding and welding joint manufacturing method
JP6046022B2 (en) Low hydrogen coated arc welding rod
JP5157653B2 (en) Low hydrogen type coated arc welding rod for DC power welding machine
JP6726008B2 (en) Flux-cored wire for gas shield arc welding
JP4309172B2 (en) Low hydrogen coated arc welding rod for low alloy heat resistant steel
CN110539105B (en) Flux-cored wire
JP2010240661A (en) Alloy powder for coated arc welding electrode, and low hydrogen coated arc welding electrode
JP5455422B2 (en) Low hydrogen coated arc welding rod
JP5066370B2 (en) Rare earth metal alloy powder for coated arc welding electrode and low hydrogen-based coated arc welding electrode
JP5348937B2 (en) Low hydrogen coated arc welding rod
JP5133089B2 (en) Mg alloy powder for coated arc welding rod and low hydrogen-based coated arc welding rod
JP4560418B2 (en) Flux-cored wire for gas shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604