JP5066370B2 - Rare earth metal alloy powder for coated arc welding electrode and low hydrogen-based coated arc welding electrode - Google Patents

Rare earth metal alloy powder for coated arc welding electrode and low hydrogen-based coated arc welding electrode Download PDF

Info

Publication number
JP5066370B2
JP5066370B2 JP2007022720A JP2007022720A JP5066370B2 JP 5066370 B2 JP5066370 B2 JP 5066370B2 JP 2007022720 A JP2007022720 A JP 2007022720A JP 2007022720 A JP2007022720 A JP 2007022720A JP 5066370 B2 JP5066370 B2 JP 5066370B2
Authority
JP
Japan
Prior art keywords
rare earth
arc welding
alloy powder
earth metal
metal alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007022720A
Other languages
Japanese (ja)
Other versions
JP2008188600A (en
Inventor
正夫 梅木
健太郎 岩立
Original Assignee
日鐵住金溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵住金溶接工業株式会社 filed Critical 日鐵住金溶接工業株式会社
Priority to JP2007022720A priority Critical patent/JP5066370B2/en
Publication of JP2008188600A publication Critical patent/JP2008188600A/en
Application granted granted Critical
Publication of JP5066370B2 publication Critical patent/JP5066370B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

本発明は、590N/mm級以上の低水素系被覆アーク溶接棒において、製造のさいの生産性および溶接作業性が良好で、高靭性の溶接金属を確保できる被覆アーク溶接棒用希土類合金粉および低水素系被覆アーク溶接棒(以下、低水素系棒という)に関するものである。 The present invention relates to a rare earth alloy powder for a coated arc welding rod that can provide a high-toughness weld metal with good productivity and welding workability in the manufacture of a low hydrogen-based coated arc welding rod of 590 N / mm grade 2 or higher. And a low hydrogen-based coated arc welding rod (hereinafter referred to as a low hydrogen-based rod).

低水素系棒は、溶接部の耐割れ性や靱性が良好であるため、大型構造物用鋼材へ適用され、低温用鋼用あるいは耐熱鋼用などの中板、厚板の溶接に使用されている。近年、石油探索の海洋構造物(ジャッキアップリグ)などの溶接では、低水素系棒に対して良好な溶接作業性を確保しつつ溶接金属に厳しい低温靱性が要求されるようになっている。   Low hydrogen rods have good crack resistance and toughness in welds, so they are applied to steel for large structures, and are used for welding medium and thick plates for low temperature steel and heat resistant steel. Yes. In recent years, welding of offshore structures (jack-up rigs) for petroleum exploration has demanded severe low temperature toughness for weld metal while ensuring good welding workability for low hydrogen rods.

従来から低水素系棒の溶接金属靭性改善としては、種々な提案がなされているが、例えば、特許第3026899号公報(特許文献1)では、鋼心線の成分と被覆剤の主成分の規定および添加剤である金属Mgの粒度規定などにより高強度鋼材での低温靱性を優れたものにしている。しかし、金属Mgの適用は溶接スラグ中にMgOが増加するためスラグの粘性が高まり、スラグ流動性の劣化を招き、溶接作業性が悪くなるという問題があった。さらに、この技術では低水素系棒の製造時に金属Mgが水ガラスと反応し、水素ガスを発生し被覆内部に空洞を生じるため被覆の固着性低下が生じ易いという問題がある。   Conventionally, various proposals have been made for improving the weld metal toughness of low hydrogen rods. For example, in Japanese Patent No. 3026899 (Patent Document 1), the components of the steel core wire and the main component of the coating agent are defined. In addition, the low-temperature toughness of high-strength steel is made excellent by the particle size regulation of metallic Mg as an additive. However, the application of metal Mg has a problem in that MgO increases in the welding slag, so that the viscosity of the slag is increased, the slag fluidity is deteriorated, and the welding workability is deteriorated. Furthermore, this technique has a problem that the metal Mg reacts with the water glass during the production of the low hydrogen rod to generate hydrogen gas and create cavities inside the coating.

一方、特開昭61−273297号公報(特許文献2)においては、Niを含有する厚さ5〜15mmの多層盛した溶接金属を700〜950℃に加熱し、30秒以内保持した後、一定の冷却速度で冷却処理し、先行ビードの上に溶接ビードを累層して、前記処理を繰り返す施工法により優れた低温靭性を得ることを提案している。しかし、この手法は施工管理が困難であり、作業能率が悪く実用性に欠けるという課題があった。   On the other hand, in Japanese Patent Application Laid-Open No. 61-273297 (Patent Document 2), a multilayered weld metal having a thickness of 5 to 15 mm containing Ni is heated to 700 to 950 ° C. and held within 30 seconds, and then constant. It is proposed that a low temperature toughness is obtained by a construction method in which a cooling bead is formed at a cooling rate, a weld bead is formed on a preceding bead, and the above process is repeated. However, this method has a problem that construction management is difficult, work efficiency is poor, and practicability is lacking.

このように、従来の被覆剤原料や施工技術の改善策では現状の低水素系棒においては生産性、溶接作業性、作業能率などで問題を抱えているのが実情であり、諸性能を満足しつつ優れた溶接金属の靭性を確保することは困難であった。
特許第3026899号公報 特開昭61−273297号公報
In this way, the current low hydrogen rods have problems with productivity, welding workability, work efficiency, etc., with the existing coating material and construction technology improvement measures, and satisfy various performances. However, it has been difficult to ensure excellent weld metal toughness.
Japanese Patent No. 3026899 JP-A-61-273297

本発明は、被覆アーク溶接棒の生産性を満足しつつ良好な溶接作業性および低温靭性の優れた溶接金属を確保できる被覆アーク溶接棒用希土類金属合金粉、およびそれを使用した低水素系被覆アーク溶接棒を提供することを目的とする。   The present invention relates to a rare earth metal alloy powder for a coated arc welding rod capable of ensuring a weld metal with satisfactory welding workability and excellent low-temperature toughness while satisfying the productivity of the coated arc welding rod, and a low-hydrogen coating using the same. An object is to provide an arc welding rod.

本発明の要旨は、
(1)被覆アーク溶接棒を製造する際に被覆剤に添加される希土類金属合金粉であって、希土類金属の1種または2種以上を10〜45質量%、Siを25〜65質量%含有し、その他Feおよび不可避不純物からなり、かつ平均粒径が50〜200μmであることを特徴とする被覆アーク溶接棒用希土類金属合金粉にある。
(2)軟鋼または低合金鋼からなる心線に被覆剤が塗装されている低水素系被覆アーク溶接棒において、前記被覆剤は希土類金属の1種または2種以上を10〜45質量%、Siを25〜65質量%含有し、その他Feおよび不可避不純物からなり、かつ平均粒径が50〜200μmである希土類金属合金粉を、被覆剤全質量に対して1.5〜9.0質量%含有することを特徴とする低水素系被覆アーク溶接棒にある。
The gist of the present invention is as follows:
(1) Rare earth metal alloy powder added to a coating agent when producing a coated arc welding rod, containing 10 to 45 mass% of one or more rare earth metals and 25 to 65 mass% of Si In addition, the rare earth metal alloy powder for coated arc welding rods is composed of Fe and unavoidable impurities and has an average particle diameter of 50 to 200 μm.
(2) In a low hydrogen-based arc welding rod in which a coating agent is coated on a core wire made of mild steel or low alloy steel, the coating agent contains 10 to 45 mass% of one or more rare earth metals, Si 25 to 65% by mass of a rare earth metal alloy powder composed of Fe and unavoidable impurities and having an average particle size of 50 to 200 μm is contained in an amount of 1.5 to 9.0% by mass with respect to the total mass of the coating agent. The present invention provides a low hydrogen-based coated arc welding rod.

本発明の被覆アーク溶接棒用希土類金属合金粉および低水素系被覆アーク溶接棒によれば、被覆アーク溶接棒の生産性が良好で大型構造物などの溶接施工において優れた低温靭性が得られるため、寒冷地においても安全な構造物を建造でき、さらに良好な溶接作業性も得られるため溶接作業能率向上にも貢献できる。   According to the rare earth metal alloy powder for a coated arc welding rod and a low hydrogen-based coated arc welding rod of the present invention, the productivity of the coated arc welding rod is good and excellent low temperature toughness is obtained in welding construction of large structures and the like. Also, it is possible to build a safe structure even in a cold region, and even better welding workability can be obtained, which can contribute to improving the welding work efficiency.

本発明者らは、低水素系棒の生産性および溶接作業性を満足しつつ溶接金属の低温靭性を改善する手段を鋭意研究した。その手段として被覆剤原料のうち強脱酸原料を検討して溶接金属中の酸素量を低減し、非金属介在物を少なくすることで靭性改善を試み、溶接作業性や生産性などの諸性能も調査した。   The present inventors have intensively studied means for improving the low temperature toughness of the weld metal while satisfying the productivity of low hydrogen rods and welding workability. As a means for this, we examined strong deoxidation raw materials among coating raw materials, tried to improve toughness by reducing the amount of oxygen in the weld metal and reducing non-metallic inclusions, and various performances such as welding workability and productivity. Also investigated.

まず、強脱酸成分であり、溶接金属組織の微細化効果が期待できるTi源に着眼し、脱酸効果を活発化するためにはTi原料の粒度を細粒化すれば大きな効果を発揮できると考え、Fe−Tiと金属Tiを粉砕し、平均粒径で10μm程度のものを使用して780N/mm級高張力鋼用の低水素系棒に適用した。その結果、溶接金属の酸素量は低減でき靭性改善に効果はあったが、この手段では低水素系棒生産時の乾燥工程で被覆割れが生じ、さらに溶接においてはスラグの粘性が過剰に低下してビードが凸形状を呈するようになるなど溶接作業性の劣化も招いた。 First, focusing on Ti sources that are strong deoxidation components and can be expected to have a refined effect on the weld metal structure, in order to activate the deoxidation effect, a great effect can be achieved by reducing the particle size of the Ti raw material. Therefore, Fe—Ti and metal Ti were pulverized, and those having an average particle diameter of about 10 μm were used and applied to a low hydrogen rod for 780 N / mm grade 2 high strength steel. As a result, the oxygen content of the weld metal could be reduced and the toughness was improved, but with this measure, coating cracks occurred during the drying process when producing low hydrogen rods, and the slag viscosity decreased excessively during welding. As a result, the welding workability deteriorated, for example, the beads became convex.

次に、金属Mgは前述の通り、低水素系棒生産時に水ガラスと反応し被覆にガス膨れが生じて被覆の固着度が低下することから、Mgの品位を変えたNi−Mg合金の検討を行った。その結果、溶接金属の酸素量は低減でき優れた靭性を確保でき生産性も良好であったが、アーク状態が悪くスパッタ飛散が多くなるなど溶接作業性が悪くなった。   Next, as described above, metal Mg reacts with water glass during the production of low hydrogen rods, causing gas blistering in the coating and reducing the degree of adhesion of the coating. Went. As a result, the oxygen content of the weld metal could be reduced and excellent toughness could be secured and the productivity was good, but the welding workability became worse, such as poor arc condition and increased spatter scattering.

そこで、他成分の検討を行うことにし、Ti、Al、Ca、Mgなどに比べて極めて脱酸効果の高い希土類金属に着眼し検討した。希土類金属は粉末状態では低温で発火するため被覆剤としてそのまま適用できず、さらに生産時に水ガラスとの反応が激しく被覆剤に水素によるガス膨れを生じ、被覆の固着性が劣化するため合金化する必要があると考えた。希土類金属のこれら課題と諸性能を満足するために本発明者らは希土類金属合金中の成分選定とその含有量を決定するために鋭意研究を積み重ねた。   Therefore, the other components were examined, and the rare earth metal having a very high deoxidation effect as compared with Ti, Al, Ca, Mg and the like was examined. Rare earth metals ignite at low temperatures in the powder state, so they cannot be applied as they are as coating materials. Furthermore, during production, the reaction with water glass is intense, causing gas blistering due to hydrogen in the coating materials, and the adhesion of the coating deteriorates, so it is alloyed. I thought it was necessary. In order to satisfy these problems and various performances of rare earth metals, the present inventors have conducted extensive research to determine the selection of components and their contents in rare earth metal alloys.

希土類金属の合金化は被覆剤原料として使用するため粉砕性も重要となるが、希土類金属単体では粘りが大きく粉砕が困難である。この対策としてSiの添加が有効であることが判った。しかしながらこの合金はSiも含まれることも相まって、水ガラスとの反応性は金属Mgに比べ極めて強くなり、被覆の固着性が悪くなった。   The alloying of rare earth metals is used as a coating material, so that the grindability is important. However, the rare earth metals alone are too viscous and difficult to grind. It has been found that the addition of Si is effective as a countermeasure. However, coupled with the fact that this alloy contains Si, the reactivity with water glass is extremely stronger than that of metal Mg, and the adhesion of the coating is deteriorated.

そこで、この改善策を種々検討した結果、希土類金属およびSiの含有量が適量であれば、粉砕後、酸化性雰囲気中で700〜900℃で焼成し、粉体表面に酸化皮膜を生成させることにより水ガラスとの反応がなくなることが判明した。酸化性雰囲気としてはたとえば大気中で良く、温度は700℃未満では酸化皮膜の生成が不十分であり、900℃を超えると焼結により固まって粉末状態を維持できなくなる。なお上記温度に保持する時間は特に限定しないが1分以上あれば良い。   Therefore, as a result of various investigations of this improvement measure, if the content of rare earth metal and Si is appropriate, after pulverization, firing at 700 to 900 ° C. in an oxidizing atmosphere to form an oxide film on the powder surface It became clear that there was no reaction with water glass. The oxidizing atmosphere may be, for example, the atmosphere. If the temperature is less than 700 ° C., the formation of an oxide film is insufficient, and if it exceeds 900 ° C., it becomes hardened by sintering and cannot be maintained in a powder state. The time for maintaining the above temperature is not particularly limited, but may be 1 minute or longer.

希土類金属合金粉中の希土類金属の1種または2種以上の合計が10質量%(以下、%という)未満では溶接金属の酸素量が低くならず衝撃靭性が悪い。一方、45%を超えると低水素系棒生産時に水ガラスと反応し、被覆にガス膨れが生じ固着性も悪くなり生産性が悪くなる。また、溶接時にアーク電圧が過剰に低下してアークに広がりが無くなりビード形状が悪くなるなど溶接作業性が劣化する。   If the total of one or more of the rare earth metals in the rare earth metal alloy powder is less than 10% by mass (hereinafter referred to as%), the oxygen content of the weld metal is not lowered and the impact toughness is poor. On the other hand, if it exceeds 45%, it reacts with water glass at the time of production of a low hydrogen rod, gas swells on the coating, and the fixing property is deteriorated, resulting in poor productivity. Further, the welding workability is deteriorated, for example, the arc voltage is excessively lowered during welding, the arc does not spread and the bead shape is deteriorated.

希土類金属合金粉中のSi含有量は、25%未満では合金粉製造時の粉砕性が悪くなる。一方、65%を超えると焼成によって酸化皮膜を生成させてもなお、低水素系棒生産時に水ガラスと反応して被覆にガス膨れが生じ生産性が悪くなる。   If the Si content in the rare earth metal alloy powder is less than 25%, the grindability during the production of the alloy powder will be poor. On the other hand, if it exceeds 65%, even if an oxide film is produced by firing, it reacts with water glass during the production of a low hydrogen rod and gas swells on the coating, resulting in poor productivity.

また、希土類金属合金粉の平均粒径が50μm未満では低水素系棒生産時に水ガラスと反応し易くなり、被覆にガス膨れが生じ固着性も悪くなり生産性が悪くなる。一方、平均粒径が200μmを超えると、低水素系棒生産時の被覆塗装においてフラックスの滑りが悪くなり生産性が劣化し、溶接時にはスパッタの飛散が多く溶接作業性が劣化する。   Further, when the average particle size of the rare earth metal alloy powder is less than 50 μm, it easily reacts with water glass during the production of the low hydrogen rod, gas swells in the coating, and the fixing property is deteriorated, resulting in poor productivity. On the other hand, if the average particle size exceeds 200 μm, flux slippage is deteriorated in the coating process at the time of production of the low hydrogen rod, and the productivity is deteriorated.

このようにして得られた希土類金属合金粉を低水素系棒に適用した結果、低温靭性が極めて良好であり、かつ溶接作業性が満足でき、生産性も良好となることが判った。前記希土類金属合金粉の被覆剤中の含有量は被覆剤全質量に対して1.5〜9.0%とする。被覆剤中の含有量が1.5%未満では脱酸剤として機能せず溶接金属の高靭性確保が困難となる。一方、9.0%を超えるとアーク状態が乱れ溶接作業性が悪くなる。   As a result of applying the rare earth metal alloy powder thus obtained to a low hydrogen rod, it was found that the low temperature toughness is extremely good, the welding workability is satisfactory, and the productivity is also good. The content of the rare earth metal alloy powder in the coating agent is 1.5 to 9.0% with respect to the total mass of the coating agent. When the content in the coating agent is less than 1.5%, it does not function as a deoxidizer and it is difficult to ensure high toughness of the weld metal. On the other hand, if it exceeds 9.0%, the arc state is disturbed and welding workability is deteriorated.

なお、本発明にいう希土類金属とは、Sc、Yおよび原子番号が57(La)乃至71(Lu)の金属をいう。また希土類金属合金粉の成分としては、前記希土類金属の1種または2種以上とSi以外はFeと不可避不純物である。   Note that the rare earth metal referred to in the present invention refers to a metal having Sc, Y, and an atomic number of 57 (La) to 71 (Lu). The rare earth metal alloy powder includes Fe and inevitable impurities other than one or more of the rare earth metals and Si.

本発明の低水素系棒の被覆剤として主要な原料は、炭酸カルシウムなどの金属炭酸塩、弗化カルシウムなどの金属弗化物等である。金属炭酸塩は大気を遮断するために添加するが含有量が少ない場合は溶接金属中の酸素や窒素が多くなり、過剰に多く添加するとアーク状態やビード形状が劣化するので、金属炭酸塩の含有量は20〜60%が望ましい。さらに、金属弗化物は良好なスラグ流動性を得るのに欠かせないものであり、その含有量が少ないと効果が無く、過剰に多い場合はアーク状態とスラグ剥離性が劣化するのでその添加量は13〜30%が望ましい。その他低水素系棒の被覆剤原料としてのアーク安定剤、スラグ生成剤、脱酸剤、合金剤は通常用いられるものである。   The main raw materials for the coating agent for the low hydrogen rod of the present invention are metal carbonates such as calcium carbonate, metal fluorides such as calcium fluoride, and the like. Metal carbonate is added to block the atmosphere, but if the content is small, oxygen and nitrogen in the weld metal will increase, and if added excessively, the arc state and bead shape will deteriorate, so the metal carbonate content The amount is desirably 20 to 60%. In addition, metal fluoride is indispensable for obtaining good slag fluidity, and if its content is small, it is ineffective, and if it is excessively large, the arc state and slag peelability deteriorate, so the amount added. Is desirably 13 to 30%. In addition, arc stabilizers, slag forming agents, deoxidizing agents, and alloying agents are generally used as coating materials for low-hydrogen rods.

本発明の効果を実施例により具体的に説明する。表1に示す成分の各種希土類金属合金についてボールミルによる粉砕性を調査した後、大気中で800℃で焼成し表面に酸化皮膜を形成する処理をして表2に示す各種平均粒径の希土類金属合金粉とした。   The effects of the present invention will be specifically described with reference to examples. After examining the pulverizability of various rare earth metal alloys having the components shown in Table 1 by ball milling, firing was performed at 800 ° C. in the atmosphere to form an oxide film on the surface. Alloy powder was used.

Figure 0005066370
Figure 0005066370

Figure 0005066370
Figure 0005066370

表3に示す780N/mm級低温用鋼用低水素系棒の被覆剤中に表1および表2に示す希土類金属合金粉を添加して直径4.0mm、長さ400mmのJIS G3523 SWY11の鋼心線に被覆塗装し、乾燥して各種低水素系棒を試作することにより低水素系棒の生産性を確認した。さらにこの溶接棒を使用して溶接を行ない溶着金属の衝撃靭性および溶接作業性を調査した。 JIS G3523 SWY11 having a diameter of 4.0 mm and a length of 400 mm obtained by adding the rare earth metal alloy powders shown in Tables 1 and 2 to the coating material of the low hydrogen rod for 780 N / mm grade 2 low temperature steel shown in Table 3. The production of low hydrogen rods was confirmed by coating the steel core wire and drying it to make various low hydrogen rods. Furthermore, welding was performed using this welding rod, and the impact toughness and welding workability of the deposited metal were investigated.

Figure 0005066370
Figure 0005066370

希土類金属合金の粉砕性の判定は容易に粉砕できたものを良好とし○印、粉砕に時間を要したものは×印とした。低水素系棒の生産性の評価は、被覆外観を観察し、水ガラスとの反応ガスによるガス膨れが発生していないものを良好として○印、発生しているものを×印とした。   Judgment of the pulverization property of the rare earth metal alloy was good when it was easily pulverized, and marked when it took time for pulverization. For evaluation of the productivity of the low hydrogen rod, the appearance of the coating was observed, and the case where no gas bulging due to the reaction gas with water glass did not occur was marked as good, and the case where it occurred was marked as x.

また、溶接金属の衝撃靭性調査は、電流170A(AC)、予熱・パス間温度100±10℃、平均入熱17kJ/cmとし、JIS Z 3212の溶着金属試験に準じて溶接を行い、溶着金属中央部よりJIS Z 2202の4号衝撃試験片を採取した。試験は−40℃で各5本試験を行い、その吸収エネルギーの平均値で90J以上を良好とした。   The impact toughness of the weld metal was investigated by conducting welding according to the weld metal test of JIS Z 3212, with a current of 170 A (AC), a preheating / pass temperature of 100 ± 10 ° C., and an average heat input of 17 kJ / cm. A JIS Z 2202 No. 4 impact test piece was collected from the center. The test was conducted at -40 ° C. for 5 tests, and the average value of the absorbed energy was 90 J or more.

さらに、溶接作業性調査は、板厚16mm、幅100mm、長さ450mmの780N/mm級鋼板をT型に組み、交流溶接機を用い、水平すみ肉溶接では電流170A、立向姿勢溶接では150Aの溶接条件で溶接し、アーク状態、スラグ状態、スパッタの多少などを調査した。その判定は各姿勢溶接の評価を総合判定し、良好を○印、劣るを×印とした。それらの結果も表2にまとめて示す。 Furthermore, the welding workability survey was conducted by assembling a 780 N / mm grade 2 steel plate with a plate thickness of 16 mm, a width of 100 mm, and a length of 450 mm into a T-shape, using an AC welding machine, with horizontal fillet welding with a current of 170 A and with vertical posture welding Welding was performed under a welding condition of 150 A, and the arc state, the slag state, the degree of spatter, and the like were investigated. The determination was made by comprehensively evaluating the evaluation of each position welding, and “good” was marked with “good” and inferior was marked with “x”. The results are also summarized in Table 2.

表1および表2中溶接棒No.1〜No.10は本発明例、溶接棒No.11〜No.18は比較例である。
本発明例である溶接棒No.1〜No.10は、希土類金属合金粉中の希土類金属の1種または2種以上の合計量とSiの含有量および平均粒径が適正であるため原料としての粉砕性が良好で、低水素系棒の生産性も良く、被覆剤に添加する希土類金属合金粉の含有量も適量であるため、溶接金属の低温靭性が極めて優れ、溶接作業性も良好な結果であった。
In Tables 1 and 2, the welding rod No. 1-No. 10 is an example of the present invention, welding rod No. 11-No. 18 is a comparative example.
The welding rod no. 1-No. No. 10 is a combination of one or more rare earth metals in the rare earth metal alloy powder, the Si content and the average particle size are appropriate, so the grindability as a raw material is good, and the production of low hydrogen rods Since the content of the rare earth metal alloy powder added to the coating material is also appropriate, the low temperature toughness of the weld metal is extremely excellent and the welding workability is also good.

比較例中溶接棒No.11は、希土類金属合金粉中の希土類金属の合計が多いので、低水素系棒生産時に水ガラスと反応して被覆にガス膨れが生じ固着性も悪くなり生産性が悪くなった。また、溶接時にアーク電圧が過剰に低下してアークに広がりが無くなりビード形状が悪くなり溶接作業性が不良であった。
溶接棒No.12は、希土類金属合金粉中の希土類金属の合計が少ないので、吸収エネルギーが低値であった。
In the comparative example, the welding rod No. No. 11 had a large total of rare earth metals in the rare earth metal alloy powder, and thus it reacted with water glass during the production of low hydrogen rods, resulting in gas expansion in the coating, resulting in poor adhesion and poor productivity. Further, the arc voltage is excessively lowered during welding, the arc does not spread, the bead shape is deteriorated, and welding workability is poor.
Welding rod no. No. 12 had a low absorption energy because the total amount of rare earth metals in the rare earth metal alloy powder was small.

溶接棒No.13は、希土類金属合金粉中のSiが多いので、低水素系棒生産時に水ガラスと反応し被覆にガス膨れが生じ生産性が悪くなった。
溶接棒No.14は、希土類金属合金粉中のSiが少ないので、合金粉製造時の粉砕性が不良であった。
Welding rod no. No. 13 has a large amount of Si in the rare earth metal alloy powder, so that it reacted with water glass during the production of the low hydrogen rod and gas swelled in the coating, resulting in poor productivity.
Welding rod no. No. 14 had poor pulverizability at the time of producing the alloy powder because there was little Si in the rare earth metal alloy powder.

溶接棒No.15は、希土類金属合金粉の平均粒径が大きいので、低水素系棒生産時の被覆塗装においてフラックスの滑りが悪くなり生産性不良であった。また、溶接時にスパッタの飛散が多く溶接作業性も不良であった。
溶接棒No.16は、希土類金属合金粉の平均粒径が小さいので、低水素系棒生産時に水ガラスと反応し被覆にガス膨れが生じ生産性が悪くなった。
Welding rod no. No. 15 had a large average particle size of the rare earth metal alloy powder, so that the slipping of the flux deteriorated in the coating during the production of the low hydrogen rod, resulting in poor productivity. In addition, spatter was scattered during welding and welding workability was also poor.
Welding rod no. No. 16 has a small average particle size of the rare earth metal alloy powder, so that it reacted with water glass at the time of production of the low hydrogen rod and gas swelled in the coating, resulting in poor productivity.

溶接棒No.17は、希土類金属合金粉の被覆剤への含有量が多いので、アーク状態が乱れ溶接作業性が悪くなった。
溶接棒No.18は、希土類金属合金粉の被覆剤への含有量が少ないので、吸収エネルギーが低値であった。
Welding rod no. In No. 17, since the content of the rare earth metal alloy powder in the coating material was large, the arc state was disturbed and the welding workability was deteriorated.
Welding rod no. No. 18 had a low absorption energy because the content of the rare earth metal alloy powder in the coating material was small.

Claims (2)

被覆アーク溶接棒を製造する際に被覆剤に添加される希土類金属合金粉であって、希土類金属の1種または2種以上を10〜45質量%、Siを25〜65質量%含有し、その他Feおよび不可避不純物からなり、かつ平均粒径が50〜200μmであることを特徴とする被覆アーク溶接棒用希土類金属合金粉。 A rare earth metal alloy powder added to a coating agent when producing a coated arc welding rod, containing one or more rare earth metals in an amount of 10 to 45 mass%, Si in an amount of 25 to 65 mass%, and others A rare earth metal alloy powder for a coated arc welding rod, comprising Fe and inevitable impurities and having an average particle diameter of 50 to 200 μm. 軟鋼または低合金鋼からなる心線に被覆剤が塗装されている低水素系被覆アーク溶接棒において、前記被覆剤は希土類金属の1種または2種以上を10〜45質量%、Siを25〜65質量%含有し、その他Feおよび不可避不純物からなり、かつ平均粒径が50〜200μmである希土類金属合金粉を、被覆剤全質量に対して1.5〜9.0質量%含有することを特徴とする低水素系被覆アーク溶接棒。 In a low hydrogen-based arc welding rod in which a coating agent is coated on a core wire made of mild steel or low alloy steel, the coating agent is 10 to 45% by mass of one or more rare earth metals and 25 to Si. A rare earth metal alloy powder containing 65% by mass, composed of other Fe and inevitable impurities, and having an average particle size of 50 to 200 μm is contained in an amount of 1.5 to 9.0% by mass with respect to the total mass of the coating agent. Features a low hydrogen-based coated arc welding rod.
JP2007022720A 2007-02-01 2007-02-01 Rare earth metal alloy powder for coated arc welding electrode and low hydrogen-based coated arc welding electrode Expired - Fee Related JP5066370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022720A JP5066370B2 (en) 2007-02-01 2007-02-01 Rare earth metal alloy powder for coated arc welding electrode and low hydrogen-based coated arc welding electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022720A JP5066370B2 (en) 2007-02-01 2007-02-01 Rare earth metal alloy powder for coated arc welding electrode and low hydrogen-based coated arc welding electrode

Publications (2)

Publication Number Publication Date
JP2008188600A JP2008188600A (en) 2008-08-21
JP5066370B2 true JP5066370B2 (en) 2012-11-07

Family

ID=39749207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022720A Expired - Fee Related JP5066370B2 (en) 2007-02-01 2007-02-01 Rare earth metal alloy powder for coated arc welding electrode and low hydrogen-based coated arc welding electrode

Country Status (1)

Country Link
JP (1) JP5066370B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5133089B2 (en) * 2008-02-21 2013-01-30 日鐵住金溶接工業株式会社 Mg alloy powder for coated arc welding rod and low hydrogen-based coated arc welding rod
CN103921019B (en) * 2014-04-25 2016-04-13 湖北船王特种焊材有限公司 The ultralow-hydrogen low high-tenacity welding electrodes of a kind of power station diversion pressure steel tube welding

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180695A (en) * 1985-02-04 1986-08-13 Nippon Steel Corp Low-hydrogen type coated electrode
JPH069756B2 (en) * 1986-03-20 1994-02-09 新日本製鐵株式会社 Low-hydrogen coated arc welding rod
JP2616928B2 (en) * 1987-07-21 1997-06-04 日立金属株式会社 Iron-rare earth metal master alloy and method for producing the same
JPH0377794A (en) * 1989-08-15 1991-04-03 Nippon Steel Corp Low hydrogen type coated electrode
JPH11216593A (en) * 1998-01-28 1999-08-10 Nippon Steel Corp Low hydrogen system covered arc electrode

Also Published As

Publication number Publication date
JP2008188600A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP5450293B2 (en) Fillet welded joint and gas shielded arc welding method
WO2012086042A1 (en) Welding solid wire and welding metal
JP6040125B2 (en) Flux cored wire
JP5244059B2 (en) Welded solid wire and weld metal
CN104722962B (en) High-strength steel high-strength tenacity gas-shielded flux-cored wire
CN107921590A (en) Flux-cored wire for gas-shielded arc welding
JP2013220431A (en) Welded joint excellent in fatigue strength, mag welding method for hot rolled steel sheet, mig welding method for hot rolled steel sheet, and flux-cored wire
JP6155810B2 (en) High Ni flux cored wire for gas shielded arc welding
JP5744816B2 (en) Bond flux for submerged arc welding
CN110253172A (en) A kind of high-strength steel Ar-CO2Metal powder core solder wire used for gas shield welding
JP2014198344A (en) Submerged arc welding method for high strength steel
JP5066370B2 (en) Rare earth metal alloy powder for coated arc welding electrode and low hydrogen-based coated arc welding electrode
JP2014151338A (en) Low hydrogen type covered electrode
CN105458465B (en) Gas-shielded arc welding method
JP7215911B2 (en) Flux-cored wire for gas-shielded arc welding
JP5244035B2 (en) Weld metal
JP4309172B2 (en) Low hydrogen coated arc welding rod for low alloy heat resistant steel
JP6071797B2 (en) Flux for single-sided submerged arc welding
JP5133089B2 (en) Mg alloy powder for coated arc welding rod and low hydrogen-based coated arc welding rod
JP2011206828A (en) Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding
JP3208556B2 (en) Flux-cored wire for arc welding
JP5455422B2 (en) Low hydrogen coated arc welding rod
JP5348937B2 (en) Low hydrogen coated arc welding rod
JP2008264812A (en) Groove filler for submerged-arc welding
JPS594994A (en) Submerged arc welding method of heat resistant low alloy steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

R150 Certificate of patent or registration of utility model

Ref document number: 5066370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees