JPS594994A - Submerged arc welding method of heat resistant low alloy steel - Google Patents

Submerged arc welding method of heat resistant low alloy steel

Info

Publication number
JPS594994A
JPS594994A JP11365982A JP11365982A JPS594994A JP S594994 A JPS594994 A JP S594994A JP 11365982 A JP11365982 A JP 11365982A JP 11365982 A JP11365982 A JP 11365982A JP S594994 A JPS594994 A JP S594994A
Authority
JP
Japan
Prior art keywords
weight
arc welding
less
wire
weld metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11365982A
Other languages
Japanese (ja)
Inventor
Masaaki Tokuhisa
徳久 正昭
Masao Hirai
平井 征夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11365982A priority Critical patent/JPS594994A/en
Publication of JPS594994A publication Critical patent/JPS594994A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To improve the low temp. toughness and embrittling characteristic during use of the weld metal of a heat resistant low alloy steel, by limiting the compsn. of a wire for submerged arc welding and the characteristics of a flux and obtaining the weld metal having a specific compsn. contg. V, etc. CONSTITUTION:A narrow groove of <=20mm. distance between the groove faces is subjected to submerged arc welding in multi-layered build-up welding of single layer and single pass by using a wire consisting of specific compsns. of C, Si, Mn, Cr, Mo, V, and if necessary, Ti and substantially Fe, and a flux having the baking type compsn. compounded with 2.3-4.5 basicity BL expressed by the equation, 2-15wt% metallic carbonate in terms of CO2, and required amts. of V and Ti sources, whereby the weld metal of the compsn. contg. 0.030- 0.080% V and further 0.005-0.014% Ti according to need, and contg. 0.08- 0.15% C, 0.10-0.50% Si, 0.30-0.90% Mn, 0.90-3.50% Cr, 0.40-1.20% Mo in addition to the above is formed.

Description

【発明の詳細な説明】 この発明は、耐熱低合金鋼の潜弧溶接方法に関し、とく
に耐熱低合金鋼に潜弧溶接を施して得られる溶接金属の
低温じん性および使用中ぜい化特性を著しく改善し得る
潜弧溶接方法を提案するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for submerged arc welding of heat-resistant low-alloy steel, and in particular to a method for submerged arc welding of heat-resistant low-alloy steel. A submerged arc welding method that can be significantly improved is proposed.

高温、高圧下で使用される圧力容器を長時間連続操業し
た場合、シャットダウン時、スタートアップ時またとき
には耐圧試験時にもぜい性破壊の危険性が増し、それ故
とくに寒冷地での操業が問題になってぐる。
When pressure vessels used at high temperatures and pressures are operated continuously for long periods of time, there is an increased risk of brittle failure during shutdown, start-up and sometimes during pressure tests, which is therefore particularly problematic when operating in cold regions. Natteguru.

そこで最近低温じん性および使用中耐脆化にすぐれた溶
接材料および溶接方法が強く要望されるに至った。
Therefore, there has recently been a strong demand for welding materials and welding methods that have excellent low-temperature toughness and resistance to embrittlement during use.

従来の耐熱低合金鋼の潜弧溶接方法は第1図に示すごと
く、比較的広い開先i1層多パス方式で積層することが
通例とされていた。この方法によるとnパス目の溶接金
属は順次に引続くn+1およびn+2各バスの溶接熱影
響部Hn+1およびHn+2によって該nバスの溶接金
属の柱状組織の一部であるDnが再粒化されて、大部分
が微細化組織を呈するようになる。この現象が溶接バス
の積層とともに繰り返され、開先幅Wの4等分位置に相
当するC に比べて2等分位置O□のほうが微細化組織
域が増し、一般的にC0位置はじん性にすぐれるが、0
層位置は低いじん性を示す。
As shown in FIG. 1, the conventional submerged arc welding method for heat-resistant low-alloy steel has been to stack the steel in a multi-pass method with a relatively wide groove i1. According to this method, in the n-th pass weld metal, Dn, which is a part of the columnar structure of the weld metal of the n-th bus, is regrained by the weld heat-affected zones Hn+1 and Hn+2 of the successive n+1 and n+2 buses. , most of the particles come to exhibit a fine structure. This phenomenon is repeated as welding baths are stacked, and compared to C, which corresponds to the four-quarter position of the groove width W, the refined structure area increases at the bisecting position O□, and generally the C0 position has a higher toughness. Excellent, but 0
Layer position shows low toughness.

これに対して、耐熱低合金鋼の潜弧溶接方法と゛  し
て、第1図のような1層多パス方式の積層方法で溶接金
属中にTiを0.020〜o、oao重量%(以下単に
%で示す)程度を添加する方法も、かつて提案されはし
たけれどもじん性のバラツキおよび依然としてC2位置
で低じん性になりやすく、十分な改善はなされていない
。すなわち、C□位置で高じん性が得られたとしてもC
2位置でじん性を改善しない限り、本質的なしん性向上
にはならないからである。
On the other hand, as a submerged arc welding method for heat-resistant low-alloy steel, Ti is added to the weld metal by 0.020 to 0.0% by weight (hereinafter referred to as 0.020 to 0.0% by weight) using a single-layer multi-pass lamination method as shown in Figure 1. Although a method of adding a certain amount (expressed simply in %) has been proposed in the past, it still tends to cause variations in toughness and low toughness at the C2 position, and has not been sufficiently improved. In other words, even if high toughness is obtained at the C□ position, the C
This is because unless the toughness is improved at the 2nd position, there will be no substantial improvement in toughness.

一方で圧力容器に使用されるほとんどの鋼材は極厚肉材
であって、溶接コストヲ低減する目的から狭開先溶接法
が指向され、この方法は、第2図に示すように、1層1
パス積層法とされるがnパ   □ス目の溶接金属は次
に引続くn+1バスの溶接熱影響部)in+1によって
溶接金属nの柱状組織の−   □部であるDnが再粒
化され、微細化組織を呈して、第1図に示した場合に比
べて再粒化に寄与する浴接熱影響を受ける回数および面
積ははるかに少なく、そのため1層多パス方式積層の溶
接方法よりも低いじん性を示すこととなる。
On the other hand, most of the steel materials used in pressure vessels are extremely thick-walled materials, and narrow gap welding is preferred for the purpose of reducing welding costs.
Although it is considered to be a pass lamination method, the weld metal of the nth pass □ is regrained by the weld heat affected zone (heat affected zone) in+1 of the next n+1 bus, and Dn, which is the - □ part of the columnar structure of weld metal n, is regrained and becomes fine. Compared to the case shown in Figure 1, the number of times and area affected by bath welding heat, which contributes to regraining, is much smaller, and therefore the dust is lower than that of the single-layer multi-pass lamination welding method. It shows your gender.

すなわち1層1パス積層の溶接方法では低温じん性の改
善は所期され得ないのであり、かくして現時点で使用中
耐脆化にすぐれた潜弧溶接用の材料、溶接方法は未だ開
発されていなかったといえる。
In other words, it is impossible to expect to improve low-temperature toughness with a welding method that involves lamination of one layer and one pass, and thus materials and welding methods for submerged arc welding that are highly resistant to embrittlement during use have not yet been developed. It can be said that

以上のことから、この発明は1層多バス溶接方法はもち
ろんのこと、1層1パス溶接法でも低温じん性および使
用中耐脆化にすぐれた潜弧浴接方法を提案しようとする
ものである。
Based on the above, this invention aims to propose a submerged arc bath welding method that has excellent low-temperature toughness and resistance to embrittlement during use, not only for single-layer multi-pass welding, but also for single-layer, single-pass welding. be.

ところで多層盛りの継手溶接金属は複雑な溶接熱影響を
受けるために正確なしん性比較ができない。そこで発明
者らは溶接金属成分組成を変えた1パス浴接金属に再加
熱温度を種々変化させた再現熱ザイクルを付加して定量
的に比較検討した結果、V系または■十微iTi系溶接
金属がじん性および使用中耐脆化に対して有効であるこ
とを見い出した。
However, multi-layer welded joint weld metals are affected by complex welding heat, making it impossible to accurately compare their toughness. Therefore, the inventors quantitatively compared and investigated one-pass bath welding metals with different weld metal compositions by adding simulated thermal cycles with various reheating temperatures. It has been found that metals are effective in terms of toughness and resistance to embrittlement during use.

この発明は、上記開発研死の結果に従い、潜弧溶接用の
ワイヤおよびフラックスにQIF記(1)〜(8)の要
件の組合わせのもとに、溶接金属中に、■: o、oa
o〜o、oso%、またさらにはTi : 0.005
〜0.014%を含み、その他c : o、os〜0.
15%。
In accordance with the results of the above-mentioned development research, this invention has been developed by applying ■: o, oa to the weld metal based on the combination of the requirements of QIF notes (1) to (8) for the wire and flux for submerged arc welding.
o~o, oso%, or even Ti: 0.005
Contains ~0.014%, and other c: o, os ~0.
15%.

Si : 0.]O〜0.50%、 In : 0.8
〜0.9%、Or:0.9〜8.5%、 MO: 0.
4〜1.20%を含有する組成の溶接金鵬を得ることが
、耐熱低合金鋼の潜弧溶接に関する、止揚した問題点の
有効な解決に寄与し得ることを究明したものであり、こ
\に要件というのは、 (1)  ワイヤにつき、0 : 0.04〜0.18
%、 Si:0.60%以下、In : 0.30〜0
.90%、 Qr : +1.90〜3.5%、 MO
: 0.40〜1.20%を含み、残余必要量のvlま
たはさらにTiと実質的にFeの組成のものとすること
、 (2)  フラックスにつき、次式 られされる塩基度が2.8〜4.5でかつ、CO2に換
算して2〜15%を占める金属炭酸塩を、必要量のVま
たはさらにTi源とともに配合した焼成型の組成物とす
ること、および (8)■源−!たはさらにTi源については、ワイヤ成
分としこれらを含有させるとき、■についてはO,OS
%以下、Tiについては0.06%以下、フラックス成
分として配合するとき何れも】、0%以下を少くとも一
方で選択すること。
Si: 0. ]O~0.50%, In: 0.8
~0.9%, Or: 0.9-8.5%, MO: 0.
It has been found that obtaining a welding metal with a composition containing 4 to 1.20% can contribute to an effective solution to the existing problems regarding submerged arc welding of heat-resistant low alloy steel. The requirements are: (1) 0: 0.04 to 0.18 per wire
%, Si: 0.60% or less, In: 0.30-0
.. 90%, Qr: +1.90~3.5%, MO
: Contains 0.40 to 1.20%, and has the remaining required amount vl or further has a composition of Ti and substantially Fe; (2) For the flux, the basicity calculated by the following formula is 2.8 ~4.5 and accounting for 2 to 15% in terms of CO2, is a sintered composition in which a metal carbonate having a content of 2 to 15% in terms of CO2 is blended with a necessary amount of V or further a Ti source, and (8) ■ Source - ! Furthermore, regarding the Ti source, when these are included as wire components, O, OS
% or less, 0.06% or less for Ti, 0% or less when blended as a flux component], or 0% or less.

である。以上のとおりであり、その実施はとくに、開先
面間距離20朋以下の狭開先での1層パスの積層多層盛
りで適用することがのぞましい。
It is. As described above, it is particularly desirable to apply the method in a single-pass laminated multilayer structure in a narrow groove with a distance between the groove surfaces of 20 mm or less.

すなわちこの発明の潜弧溶接方法によれば、第1図のご
とき1層多パス法での溶接金属のしん性はもちろんのこ
と、第2図のように1層Jバス法の溶接金属についても
極めてすぐれた低温じん性および使用中耐脆化特性が得
られるのであシ、開先幅Wが20朋以′F″i!では1
層1バス溶接してもじん性、使用中耐脆化特性が損われ
ず健全な溶接部が得られる。
That is, according to the submerged arc welding method of the present invention, not only the toughness of the weld metal in the single layer multi-pass method as shown in FIG. Extremely excellent low-temperature toughness and resistance to embrittlement during use can be obtained;
Even when layer 1 bus welding is performed, a sound welded part can be obtained without losing the toughness and resistance to embrittlement during use.

さてこの発明に使用する焼成型フラックスは金属炭酸塩
をCO8に換算した重量%が2.0〜15%の範囲を必
要とする。
Now, the sintered flux used in the present invention requires a metal carbonate content in the range of 2.0 to 15% by weight calculated as CO8.

この値が2%よpも少なくなると溶接金属中の拡散性水
素量が増して、極厚肉鋼材を多層盛溶接するとき、この
水素が集積して水素割れを発生しやすくなるために不適
当である。また15%よりも多くなるとアークが不安定
になって、スラグ巻込み、アンダカット、融合不良など
の溶接欠陥を生じやすくなる。
If this value decreases by more than 2%, the amount of diffusible hydrogen in the weld metal will increase, making it unsuitable for this hydrogen to accumulate and cause hydrogen cracking when performing multi-layer welding of extremely thick steel materials. It is. Moreover, if it exceeds 15%, the arc becomes unstable and welding defects such as slag entrainment, undercut, and poor fusion are likely to occur.

こ\で金属炭酸塩には0aOO8,Ba008. Mg
OO8゜Mn0O,、Li2Co3. Na2GO8な
どがすべて含まれる。
Here, the metal carbonates are 0aOO8, Ba008. Mg
OO8°Mn0O,, Li2Co3. All of these include Na2GO8.

フラックスにV源を配合するときVとして1.0%以下
とし、1.0%よりも多いと溶接金属中のVが0.08
%よりも多くなり、じん性が1氏下することになる。な
お、V源としては金属バナジュームあるいはフエロバナ
ジュームなどのバナジューム合金の粉末が使用でき、■
に換算した重量%が】、0%以下であればよい。
When adding a V source to the flux, the V content should be 1.0% or less, and if it is more than 1.0%, the V in the weld metal will be 0.08%.
%, and the toughness decreases by 1 degree. As the V source, metal vanadium or vanadium alloy powder such as ferrovanadium can be used;
It is sufficient if the weight % calculated as ] is 0% or less.

同じ(Ti源についても1.0%以下とし、1.0%よ
シも多いと溶接スラグが溶接ビード表面に付着しやすく
なってスラグはく離性を害するからである。Ti源とし
てはフエロチタニュームなどのテタニューム合金の粉末
が使用できる。
The same is true for the Ti source (Ti source should be 1.0% or less; if it is higher than 1.0%, welding slag tends to adhere to the weld bead surface and impairs slag removability. Ferrotitanium is used as a Ti source. Tetanium alloy powders such as tetanium alloys can be used.

次に塩基性成分と酸性成分の比で表わされる塩基度 が2.8よpも小さい場合にはガラス質のスラグになり
やすく、スラグはく離性は比較的良好ではあっても溶接
金属中の酸素量が多くなって、溶接金属のしん性が劣化
し、−万4.5よりも大きくなると、スラグの融点が上
昇して、ビード外観を悪化させるとともに、スラグはく
離性が悪くなり、溶接欠陥を発生しゃすく゛なる。
Next, if the basicity expressed as the ratio of basic components to acidic components is less than 2.8p, glassy slag tends to form, and even though the slag removability is relatively good, oxygen in the weld metal If the amount increases, the toughness of the weld metal deteriorates, and if it exceeds -4.5, the melting point of the slag will rise, worsening the bead appearance, and the slag peelability will deteriorate, causing welding defects. It is less likely to occur.

従ってBLは2,8〜4.5の範囲にしなければならな
い。
Therefore, BL must be in the range of 2.8 to 4.5.

次に溶接用ワイヤの化学成分範囲については溶接金属の
化学成分範囲と密接な関係があるので両者併せて詳細に
説明する。
Next, the chemical composition range of the welding wire is closely related to the chemical composition range of the weld metal, so both will be explained in detail.

溶接金属中のCが0.08%よりも少なくなると常温強
度のみならず4 ry o ”O程度の高温強度を確保
することが難しく、さらにじん性も悪い。また0、15
%よシも多くなると、溶接金属に高温割れ、低温割れを
発生しやすく、さらに析出炭化物が多く生成しやすくな
り、旧r粒界に粗大な炭化物が凝集して、じん性および
使用中耐脆化ともに悪くする。
When the C content in the weld metal is less than 0.08%, it is difficult to ensure not only room temperature strength but also high temperature strength of about 4 ry o "O, and the toughness is also poor.
When the percentage is too high, hot cracking and cold cracking are likely to occur in the weld metal, and more precipitated carbides are likely to be generated, and coarse carbides aggregate at the old R grain boundaries, resulting in poor toughness and resistance to embrittlement during use. It makes both of them worse.

ワイヤ中のCが11.18%よりも多くなると、溶接金
属中でO> 0.15%となるので好ましくない。
If C in the wire exceeds 11.18%, O>0.15% in the weld metal, which is not preferable.

いっぽう0.04%よりも少くするにはワイヤ金製トを
向上させるので適当でない。
On the other hand, if it is less than 0.04%, it is not appropriate because it would improve the quality of the wire.

Siは溶接金属中の酸素を低減して、じん住改善を図る
うえから必要である。溶接金属中のSiが0.10%よ
りも少なくなると酸素量が増し、じん性が劣化する。ま
た0、5%よりも多くなってもじん性および延性が低下
し、さらに実操業中に使用中ぜい化を生じやすくなって
旧r粒界に割れが発生し、ぜい性破壊を起す危険性があ
る。
Si is necessary to reduce oxygen in the weld metal and improve the dust density. When the Si content in the weld metal is less than 0.10%, the amount of oxygen increases and the toughness deteriorates. Furthermore, if the amount exceeds 0.5%, the toughness and ductility will decrease, and furthermore, during actual operation, embrittlement will occur more easily, cracks will occur at the old R grain boundaries, and brittle fracture will occur. There is a risk.

このためにワイヤ中のSiは、U、61J%以下にしで
おかないと、溶接金属中の5iilが0.5%よりも多
くなって前記のような問題点が発生する。なお、Siの
上限値がワイヤよりも溶接金属が0.1%少なくなって
いるのは脱酸反応で消費されるからである。
For this reason, unless the Si content in the wire is kept below 61J%, the content of 5iil in the weld metal will exceed 0.5%, causing the above-mentioned problems. Note that the reason why the upper limit of Si is 0.1% less in the weld metal than in the wire is that it is consumed in the deoxidation reaction.

Mnは、常温強度および高温強度を確保することから必
要である。溶接金属中のMnが0.80%よりも少ない
と強度不足となるので適当でない。いっぽう0.90%
よりも多いと使用中の脆化が著しく、ぜい性破壊の危険
性があるので好ましくない。
Mn is necessary to ensure room temperature strength and high temperature strength. If the Mn content in the weld metal is less than 0.80%, it is not suitable because the strength will be insufficient. On the other hand, 0.90%
If the amount is more than 1, the embrittlement during use will be significant and there is a risk of brittle fracture, which is not preferable.

これらの溶接金属中のIn量の範囲にして、良好な特性
を得るためにはワイヤ中のMnが0.30%〜0.90
%の範囲になければならない。
In order to obtain good characteristics within these ranges of In content in the weld metal, Mn in the wire should be 0.30% to 0.90%.
Must be in the range of %.

0rFi耐食性を向上させるために必要である。0rFi is necessary to improve corrosion resistance.

溶接金属中のQrが0.9%よりも少ないと耐食性が十
分に発揮されない。また8、5%よりも多いと使用中ぜ
い化が著しくなる。これらの溶接金属中のCr1b:の
範囲にして良好な特性を得るためにはワイヤ中のOr 
¥ir 0.9(1〜3.50%の範囲にしなければな
らない。
If Qr in the weld metal is less than 0.9%, corrosion resistance will not be sufficiently exhibited. Moreover, if the amount exceeds 8.5%, embrittlement during use becomes significant. In order to obtain good properties by keeping the Cr1b in these weld metals in the range, the Or
¥ir 0.9 (must be in the range of 1-3.50%.

Noは高温強度とじん性、使用中耐脆化の点から制限さ
れる。浴接金属中のMOが0.40%よりも少ないと高
温強度が低下するので好ましくない。
No is limited in terms of high temperature strength, toughness, and resistance to embrittlement during use. If the MO content in the bath-welded metal is less than 0.40%, the high temperature strength will decrease, which is not preferable.

1.20%よりも多くなるとじん性が劣化し、さらに使
用中の脆化が著しくなるので適当でない。
If it exceeds 1.20%, the toughness deteriorates and embrittlement during use becomes significant, so it is not suitable.

なお、上記のQrおよびNo量は圧力容器用鋼の鋼種に
よって制限することが必要なのは、もちろんである。
It goes without saying that the amounts of Qr and No mentioned above need to be limited depending on the type of steel for pressure vessels.

Vはじん性、使用中耐脆化を改善するうえから必要であ
る。溶接金属中のVがu、oao%よりも少ないとじん
性が低下し、さらに使用中耐脆化に対しても良くない。
V is necessary to improve toughness and resistance to embrittlement during use. If the V content in the weld metal is less than u, oao%, the toughness will decrease, and furthermore, it will not be good for embrittlement resistance during use.

o、oso%よりも多くてもじん性低下、使用中の脆化
の促進を招き、かつ延性も不十分となる。これらの溶接
金属中のV量の範囲にして良好な特性を得るためにはワ
イヤ中の■が0.08%以下の範囲にしなければならな
い。なお、■は上記のように7ラツクスに配合してもよ
くまたワイヤ成分として添加してもよく、さらには、双
方に併用することもできる。
If the amount is more than 0.0%, the toughness will decrease, embrittlement will be promoted during use, and the ductility will be insufficient. In order to obtain good characteristics with the amount of V in the weld metal within these ranges, the amount of V in the wire must be within a range of 0.08% or less. Note that (2) may be blended with 7lux as described above, or may be added as a wire component, or may be used in combination with both.

Tiは、じん性のバラツキを少なくし、かつ高じん性を
得ることからとくに必要な場合に有用であるが浴接金属
中のTiが0.005%よりも少ないとこれによって所
期する程に商いしん性が得られないこともありいつばう
、0.014%よりも多くなると、じん性のバラツキが
却って大きくなり、安定したしん性が得られなくなる。
Ti is useful especially when necessary because it reduces variations in toughness and provides high toughness, but if the Ti content in the bath weld metal is less than 0.005%, it will not work as expected. If the amount exceeds 0.014%, the variation in toughness will become larger and stable toughness will not be obtained.

このように、高いしん性を安定して得る9えから、ワイ
ヤ中のT1は0.06%以下にしなければならない。
Thus, in order to stably obtain high toughness, T1 in the wire must be 0.06% or less.

なお、Tiについても■と同様にフラックスもしくはワ
イヤの少なくとも一方あるいは両方に添加することがで
きる。
Note that Ti can also be added to at least one or both of the flux and the wire in the same way as in (2).

Niについては、使用中の脆化を促進するために多量に
添加することができない。すなわち溶接金属中でNiが
0.80%よシも多くなると使用中の脆化が著しくなり
、ぜい性破壊の危険性が増し、従ってこの発明でワイヤ
中にNiが含まれる場合であっても0.30%以下に制
限する必要がある。
Ni cannot be added in large amounts because it promotes embrittlement during use. In other words, if the amount of Ni in the weld metal increases by more than 0.80%, embrittlement during use becomes significant and the risk of brittle fracture increases. It is also necessary to limit the content to 0.30% or less.

以上述べた金属元素以外は溶接金属、ワイヤとも基本的
にFBと不純物元素から構成されるものであるが、一般
的な鋼中成分としてのAtは、フラックスあるいはワイ
ヤに微l:添加されていても、溶接作業性およびじん性
ともにさ11どの影@Iを生じない。とはいえAtは溶
接金属中でlJ、015%以上になるとじん性が劣化す
る。同様にしてBについても溶接金属中で0.0080
%よりも多くなると、−」温われが発生しまずく、さら
にじん性、使用中の脆化に対して好ましくなく、またN
l)は0.(12(1%をこえるとじん性、使用中耐脆
化を悪くするために制限すべきである。
Other than the metal elements mentioned above, both weld metal and wire are basically composed of FB and impurity elements, but At as a general component in steel, a small amount of At is added to flux or wire. However, neither the welding workability nor the toughness is affected. However, when At exceeds 15% of lJ in the weld metal, the toughness deteriorates. Similarly, for B, 0.0080 in the weld metal
%, it is difficult to warm up, and it is also unfavorable for toughness and embrittlement during use.
l) is 0. (12) If it exceeds 1%, the toughness and resistance to embrittlement during use deteriorate, so it should be limited.

次に特許請求の範囲第8番目の発明においては上記した
ところに加えてVとともにTiを、溶接金属中に含有さ
せることにより、低温じん性と、使用中ぜい化防止の効
果を一層向上することができ、こ\にTiも、■と同じ
くワイヤ成分として、またフラッフ中にTi源を配合し
て、溶接金属中に移行させる。こ\に・ワイヤ成分とし
ての[Ti]含有量が0.06%、またフラックス成分
中に1.0%をこえろ過量の添加で、溶接金属中に+1
 、014%をこえると、スラグはく離性を害し、また
アーク安定性、アンダカットなどによる浴接欠陥を生じ
る不利を伴い、また“fiはU、005%未満のとき、
それによる格別な効果の増進を期待し得ない。
Next, in the eighth aspect of the invention, in addition to the above, by containing Ti together with V in the weld metal, the low temperature toughness and the effect of preventing embrittlement during use are further improved. In this case, Ti can also be transferred into the weld metal as a wire component, as in (2), and by adding a Ti source to the fluff. In this case, the [Ti] content as a wire component is 0.06%, and the flux component exceeds 1.0%.
If it exceeds 0.014%, the slag releasability will be impaired, and there will be disadvantages such as arc stability and bath contact defects due to undercut.
We cannot expect any special effects to be enhanced by this.

因にP 、 Sn 、 A、s 、 Sbなどの不純物
は、粒界ぜい化元素として働くために、できるだけ少な
くしたほうが使用中の脆化に対して好ましい。
Incidentally, since impurities such as P, Sn, A, s, and Sb act as grain boundary embrittling elements, it is preferable to reduce them as much as possible to prevent embrittlement during use.

上記から構成されるフラックスおよびワイヤを組合せて
サブマージアーク溶接する場合、1層多パス溶接金属は
もちろんのこと、1層】パス溶接金属でも十分な低温じ
ん性、使用中耐脆化が得られる。なお開先幅Wが20t
rarまではIノー1バス浴接ができるが、それよりも
広い開先幅に1.なるとスラダ巻込み、融合不良などの
溶接欠陥を発生しゃすくなるのでこれを防止するのに溶
接入熱量を大きくすることの必要を伴いしん性低ドを招
く。したがって、開先幅Wが20mmよシも大きくなる
と] )@多パス溶接金」β用したほうが、じん性、溶
接欠陥発生の点から有利である。
When submerged arc welding is performed using a combination of the above-mentioned fluxes and wires, sufficient low-temperature toughness and resistance to embrittlement during use can be obtained not only for single-layer multi-pass welding metals but also for single-pass welding metals. Note that the groove width W is 20t.
I-no-1 bath bath contact is possible up to rar, but 1. In this case, welding defects such as sludder entrainment and poor fusion are likely to occur, and to prevent this, it is necessary to increase the amount of welding heat input, resulting in low toughness. Therefore, when the groove width W becomes larger than 20 mm, it is more advantageous to use multi-pass weld metal in terms of toughness and the occurrence of welding defects.

実施例1 板厚75間の2 ’/4 ar −i MO鋼板(AS
TMA887  Gr、22 、 O4,2: U、1
5%O、U、20%Si。
Example 1 2'/4 ar-i MO steel plate (AS
TMA887 Gr, 22, O4, 2: U, 1
5% O, U, 20% Si.

0.59%Mn 、 (1,1JU5%P 、 0.U
(34%S 、 2.28%Or、]、旧%No )を
第3図に示すような開先形状にして、表1に示したうち
径4朋のワイヤW−4と表2のうちフラックスIt”1
,2.8と10および11を組合わせて次の実験を行っ
た。
0.59%Mn, (1,1JU5%P, 0.U
(34%S, 2.28%Or,], old %No) was made into a groove shape as shown in Fig. 3, and wire W-4 with a diameter of 4 among those shown in Table 1 and wire W-4 with a diameter of 4 among those shown in Table 2 were used. Flux It"1
, 2.8, 10 and 11 were combined to perform the following experiment.

この溶接条件は、溶接電流A、050 U A 、同電
圧28V、溶接速y 25 cm / mj−nに定め
1層1バス積層の多層盛溶接を行った。
The welding conditions were welding current A, 050 U A, same voltage 28 V, welding speed y 25 cm/mj-n, and multi-layer welding was performed with one layer and one bus lamination.

溶接時の作業性および溶接完了後に超音波非破壊検査を
行った結果を表8に示すように、この発明に従うフラッ
クスFl、2.8は溶接作業性も良好でスラグ巻込み、
融合不良などの溶接欠陥は皆無であった。しかし、CO
3量の多すぎるFluと、Ti量が多すぎたFllは、
何れもスラグはく離、アーク安定性、アンダーカットな
どが起因して、溶接欠陥を多数発生した。
As shown in Table 8, the workability during welding and the results of ultrasonic non-destructive testing after completion of welding, the flux Fl, 2.8 according to the present invention has good welding workability, slag entrainment,
There were no welding defects such as poor fusion. However, C.O.
Flu with too much 3 amount and Fll with too much Ti amount are
In both cases, many welding defects occurred due to slag flaking, arc stability, undercutting, etc.

表8 実施例2 板厚100朋の21/4Or −IMONo鋼板AST
MA887  Gr、22. Ot、2 : 0.14
%0 、0.24%Si。
Table 8 Example 2 21/4Or-IMONo steel plate AST with plate thickness of 100mm
MA887 Gr, 22. Ot, 2: 0.14
%0, 0.24%Si.

0.58%Mn 、 (1,UO4%P 、 0.UO
4%S 、 2.26%Or 、 1.02%No 、
 0.14%Ni)からなる第4図のような拘束割れ試
験体について1層1パス積層による多層盛溶接を行った
。図において1.1は母材、2は拘束材、3.8’は拘
束溶接ビートであり、開先はルート半径6M、4°であ
る。
0.58%Mn, (1,UO4%P, 0.UO
4%S, 2.26%Or, 1.02%No,
Multi-layer welding was performed on a restrained crack test specimen made of 0.14% Ni) as shown in FIG. 4 by laminating each layer in one pass. In the figure, 1.1 is the base material, 2 is the restraint material, 3.8' is the restraint welding bead, and the groove has a root radius of 6M and a diameter of 4°.

この場合に用いたワイヤは径4.0/lのW4であり、
フラックスについてはFl 、F2 、F8とF9との
4種類で、何れも室温30℃、湿度80%の雰囲気下に
12時間吸湿させたのちに使用した。
The wire used in this case was W4 with a diameter of 4.0/l,
Four types of flux were used: Fl, F2, F8, and F9, and each was used after being allowed to absorb moisture for 12 hours in an atmosphere at a room temperature of 30° C. and a humidity of 80%.

なお、溶接条件は50 U A 、 27 V 、 2
2(In/、i。
The welding conditions are 50 U A, 27 V, 2
2(In/, i.

で予熱、バス間温度150℃とした。The temperature between the baths was 150°C.

溶接完了後48時間のちに、超音波探傷による非破壊検
査および縦断面マクロ試験で割れの有無を調べた。その
結果全表4に示したようにこの発明のフラックスFl、
F2.F8では、割れは全く認められず、健全な溶接部
であったが、CO1量量が過少な比較例のフラックスF
9では多数の横割れを発生していた。
Forty-eight hours after completion of welding, the presence or absence of cracks was examined by non-destructive testing using ultrasonic flaw detection and longitudinal section macro testing. As a result, as shown in Table 4, the flux Fl of this invention,
F2. In F8, no cracks were observed and the welded part was sound, but with F8, a comparative example with an insufficient amount of CO1.
9, many horizontal cracks had occurred.

表  4 実施例8 板厚75朋の1’/4.cr −F2 No鋼板(AS
TMA1387 Gr、  ] 1 、  Ot、2 
: U、15%0  、 0.52%si、 、 0.
57%)4n 、 U、UO4%P 、 U、OU5%
S。
Table 4 Example 8 Plate thickness 75 mm 1'/4. cr-F2 No steel plate (AS
TMA1387 Gr, ] 1, Ot, 2
: U, 15%0, 0.52%si, 0.
57%) 4n, U, UO4%P, U, OU5%
S.

1.80%Qr 、 0.52%No)k再び第8図に
示すような開先形状にて、ワイヤおよびフラックスをそ
れぞれ変化させて1層lパス積1@法で多層盛溶接した
。この場合予熱、パス間温度は120℃〜175°0の
範囲で行った。
1.80%Qr, 0.52%No)k Again, multi-layer welding was carried out using the 1-layer 1-pass 1@ method with the groove shape as shown in FIG. 8 while varying the wire and flux. In this case, the preheating and interpass temperatures were in the range of 120°C to 175°C.

溶接金属の化学成分を表5に、また衝撃試験結果を表6
に示す。この発明に従う溶接材料の組合せWIXF6な
らびにW2XF5は極めてすぐれた低温じん性が得られ
たが、比較例のW 2 X F 7゜W8XF9は悪い
結果しか得られていない。
The chemical composition of the weld metal is shown in Table 5, and the impact test results are shown in Table 6.
Shown below. The welding material combinations WIXF6 and W2XF5 according to the present invention yielded extremely excellent low-temperature toughness, but the comparative example W 2 X F 7°W8XF9 yielded only poor results.

実施例4 実施例1で用いた板厚75脂の2しOr −I MO鋼
板に第5図に示すような開先角20°のV溝を加工し、
この中を55 CI A 、 25 V 、 17cI
rL/minの条件で1パス溶接し試験ビード4をつく
った。
Example 4 A V-groove with a groove angle of 20° as shown in FIG.
In this, 55 CI A, 25 V, 17 cI
Test bead 4 was made by performing one pass welding under the conditions of rL/min.

これよシ、11關0の再現熱サイクル試験片5を採取し
、第6図のチャートに示す熱サイクセを付加し、衝撃試
験片6を加工した。
After this, a reproduced thermal cycle test piece 5 of 11/0 was taken, and a thermal cycle shown in the chart of FIG. 6 was added to process the impact test piece 6.

このときフラックスは1種類(Fl)でワイヤのみを変
えて溶接し得られた1バス溶接金属の化学成分を表7に
、各再加熱温度でのしん性を表8にそれぞれ示す。
Table 7 shows the chemical composition of the one-bath weld metal obtained by welding using one type of flux (Fl) and changing only the wire, and Table 8 shows the toughness at each reheating temperature.

この発明に従うW4XF1およびW5XF1の組合せで
は全ての温度で高じん性を示し、このうちU、008%
TiであるW5XF1のほうがTiの少ないW 4 X
 F ]’よりも高いしん性を示している。
The combination of W4XF1 and W5XF1 according to the present invention shows high toughness at all temperatures, of which U, 008%
W5XF1, which is Ti, has less Ti than W4X
F]' shows higher tenacity.

これに反してVの少ないW8XF1と■およびTi量と
もに多いW9XF]の組合せでは再加熱温度750℃、
1350°0で低じん性を示し、とくにW9XF1では
著しいバラツキを生じている。
On the other hand, the combination of W8XF1 with low V and W9XF with high amount of Ti and reheating temperature of 750℃,
It shows low toughness at 1350°0, and there is a significant variation especially in W9XF1.

実施例5 実施例4で用いた鋼板および溶接材料を用いて第8図の
開先形状を550A  28V  28〜土。
Example 5 Using the steel plate and welding material used in Example 4, the groove shape shown in Fig. 8 was prepared at 550A 28V 28~ soil.

予熱、パス間温度150”CN30110で11輌1パ
ス積層で多層盛溶接した。その場合の溶接金属のしん性
を表9に示すが、実施例4での結果と同じようにこの発
明に従うW4XF1およびW5XF1の溶接材料の組合
せでは、低温じん性および使用中耐脆化ともに極めてす
ぐれた結果が得られた。
Multi-layer welding was carried out in one pass on 11 cars with preheating and an interpass temperature of 150" CN30110. The tenacity of the weld metal in that case is shown in Table 9, and as with the results in Example 4, W4XF1 and W4XF1 according to the present invention With the combination of W5XF1 welding materials, extremely excellent results were obtained in both low-temperature toughness and resistance to embrittlement during use.

表9 東昇温50″0/hr、   冷却27℃し/hr。Table 9 East temperature rise 50″0/hr, cooling 27°C/hr.

果を表11に示す。この発明に従うW8XF7の組合せ
ではじん性、引張強さ、伸びともに良好な値を示すが、
■および酸素が多すぎるとじん性は勿論のこと伸びも低
下している。
The results are shown in Table 11. The combination of W8XF7 according to this invention shows good values for toughness, tensile strength, and elongation.
(2) If too much oxygen is present, not only the toughness but also the elongation decreases.

表18 実施例7 板厚150朋の3Qr−IMO鋼板(ASTM A38
7Gr、sl  OL、g : o、ua%0 、0.
24%si 、 0.50%1(n 、 0.0118
%p 、 u、uoa%S 、 3.10%gr 。
Table 18 Example 7 3Qr-IMO steel plate with a plate thickness of 150 mm (ASTM A38
7Gr, sl OL, g: o, ua%0, 0.
24%si, 0.50%1(n, 0.0118
%p, u, uoa%S, 3.10%gr.

1.06%MO)を第8図に示すように開先加工し、溶
接条件550A  28V  28cm/min、予熱
1.06% MO) was beveled as shown in Figure 8, welding conditions were 550A, 28V, 28cm/min, and preheated.

バス間温度200℃〜250℃で1層1パス積層の多層
盛溶接を実施した。溶接金属の化学成分を表12に、衝
撃試験結果を表18に示す。この発明に従う溶接材料の
組合せW6xF4.W7xF8はじん性および使用中耐
脆化ともにすぐれているが、V量が多すぎるWIUXF
5はじん性および使用中耐脆化ともに悪い。
Multilayer welding was carried out with one layer and one pass lamination at an inter-bus temperature of 200°C to 250°C. The chemical composition of the weld metal is shown in Table 12, and the impact test results are shown in Table 18. Welding material combination W6xF4 according to the present invention. W7xF8 has excellent toughness and resistance to embrittlement during use, but WIUXF has too much V content.
No. 5 has poor toughness and resistance to embrittlement during use.

以上のべたようにこの発明は、耐熱低合金鋼とくに0.
90〜8.50%Or 、 0.40〜1.!o%MO
のOr −Mo @についての検討結果を代表例として
説明したようにこの成分範囲に限定されることなく、ま
た、単電極の場合のみならず、多電極溶接にも適用して
、耐熱低合金鋼の潜弧溶接による溶接金属の低温じん性
および使用中耐脆化特性を、著しく改善することができ
る。
As mentioned above, the present invention is applicable to heat-resistant low-alloy steel, especially 0.
90-8.50% Or, 0.40-1. ! o% MO
As explained with the study results for Or -Mo@ as a representative example, it is not limited to this composition range, and can be applied not only to single electrode but also to multi-electrode welding, to produce heat-resistant low-alloy steel. The low-temperature toughness and in-use embrittlement resistance of the weld metal obtained by submerged arc welding can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法による一層多パス積層、また第2図は、
1層1パス積層方法を示す各断面図、第8図は実施例で
用いた開先形状の断面図、第4図は拘束割れ試験体の形
状を示す外観図、第5図は実施例4で用いた試験片形状
および採取方法を示す説明図、第6図は実施例4で付加
した熱サイクルを示す線図である。 特許出願人 川崎製鉄株式会社 第1図    第2図 第3図 第4図 ■ト 羨 第5図
Figure 1 shows multi-pass lamination using the conventional method, and Figure 2 shows
Each cross-sectional view shows the one-layer, one-pass lamination method, FIG. 8 is a cross-sectional view of the groove shape used in the example, FIG. 4 is an external view showing the shape of the restrained crack test specimen, and FIG. 5 is Example 4. FIG. 6 is a diagram showing the heat cycle added in Example 4. Patent applicant: Kawasaki Steel Corporation Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 潜弧溶接用のワイヤおよびフラックスにつき下記(
])〜(3)の要件の組合わせのもとに溶接金属中にv
 ; o、oao〜U、08U重葉%を含みその他c 
: u、os〜0.15重量%、 si: o、1o〜
0 、513重量%、 In : 0.ao 〜0.9
o重茄°%。 Or : o、90〜8.50重量%、 No : 0
.40〜1.20重量%を含有する組成の溶接金属金得
ることよυ成る耐熱低合金鋼の潜弧溶接方法。 記 (1)  ワイヤ 0 : 0.04〜0.18重量%、 st : o、
6o重量%以下、 In : (1,10〜0.90重
量%、Or:0.90〜3.5重量%、 No : U
、40〜1.20重販%を含み残余必要量の■と実質的
にFeの組成。 (2)  フラックス あられされる塩基度が、2.8〜4.5でかつ、002
に換算して2〜15重量%を占める金属炭酸塩を必要量
のv源とともに配合し斥焼成型組成。 (3)V源 ワイヤ成分としてこれに含有させるとき、0.08重食
%以下、フラックス成分として配合するとき1.lJ車
量%以下を少くとも1力で1・・選択する。 区 潜弧溶接の適用が、開先面間距離20朋以下の狭開
先への1層バスの積層多層盛りである、特許請求の範囲
り記載の方法。 & 潜弧溶接用のワイヤおよびフラックスにつき下記(
1)〜(8)の要件の組合わせのもとに、溶接金属中に
v : o、uaυ〜o、oso重量%と、Ti : 
0.005〜0.014重量%を含み、その他o : 
o、os〜0.15重量%、 Si : o、10−0
.1i。 重量%、 In : 0.8U 〜0.90重19%、
 cr :0.90〜8.507層量%、 MO:  
0.40〜1.20 重量%を含有する組成の溶接金属
を得ることより成る耐熱低合金鋼の潜弧溶接方法。 口己 (1)  ワイヤ 0 : 0.04〜o、18重量%、 Si : 0.
60重量%以下、 Mn : 0.8+) 〜0.90
重量% 、 ar :U、90〜8.5重箪%、 No
 : 0.40〜1.20重景%を含み残余、必要量の
VとTj、および実質的にFeの組成。 (2)  フラックス あられされる塩基度が、2.8〜4.5でかっ、002
に換質して2〜15重量%を占める金属炭酸塩を必要量
のV源、Tl源とともに配合した焼成型組成。 (8)v源、 Ti源 ワイヤ成分としてこれに含有させるとき、■については
O,OS重量%以下、Tiについては0.06重重景足
下、フラックス成分として配合するとき、何れも1.0
重量%以下を少くとも一方で選択する。 4 潜弧溶接の適用が、開先面間距離20mm以下の狭
開先での、1層パスの積層多層盛りである、特許請求の
範囲&記載の方法。
[Claims] 1. Wire and flux for submerged arc welding include the following (
]) to (3), v in the weld metal.
; Other c including o, oao~U, 08U heavy leaf%
: u, os~0.15% by weight, si: o, 1o~
0, 513% by weight, In: 0. ao ~0.9
o heavy eggplant °%. Or: o, 90-8.50% by weight, No: 0
.. A method for submerged arc welding of heat-resistant low alloy steel, comprising obtaining a weld metal gold having a composition containing 40 to 1.20% by weight. (1) Wire 0: 0.04 to 0.18% by weight, st: o,
6o weight% or less, In: (1,10 to 0.90 weight%, Or: 0.90 to 3.5 weight%, No: U
, 40 to 1.20%, with the remaining required amount of ■ and a substantially Fe composition. (2) The basicity of the flux is 2.8 to 4.5 and 002
The metal carbonate, which accounts for 2 to 15% by weight in terms of weight, is blended with the necessary amount of V source to form a repellent firing type composition. (3) When incorporated as a V source wire component, 0.08% or less; when incorporated as a flux component, 1. Select 1 with at least 1 force below lJ vehicle volume %. The method according to the claims, wherein the application of submerged arc welding is multilayer stacking of single-layer baths in narrow grooves with a distance between groove surfaces of 20 mm or less. & Wire and flux for submerged arc welding (
Based on the combination of requirements 1) to (8), v: o, uaυ~o, oso weight% and Ti:
Contains 0.005 to 0.014% by weight, and other o:
o, os ~ 0.15% by weight, Si: o, 10-0
.. 1i. Weight %, In: 0.8U ~ 0.90 weight 19%,
cr: 0.90-8.507 layer amount%, MO:
A process for latent arc welding of heat-resistant low-alloy steel, comprising obtaining a weld metal having a composition containing 0.40 to 1.20% by weight. Mouth (1) Wire 0: 0.04~0, 18% by weight, Si: 0.
60% by weight or less, Mn: 0.8+) ~0.90
Weight%, ar: U, 90-8.5 weight%, No
: 0.40 to 1.20 %, including residual, required amounts of V and Tj, and substantially Fe composition. (2) The basicity of flux hail is 2.8 to 4.5, 002
A firing mold composition containing a metal carbonate, which accounts for 2 to 15% by weight, together with the necessary amounts of V source and Tl source. (8) V source, Ti source When included as a wire component, ① is O, OS weight % or less, Ti is 0.06% by weight, and when incorporated as a flux component, both are 1.0
% by weight or less on at least one side. 4. The method according to the claims and description, wherein the application of submerged arc welding is single-pass multilayer stacking in a narrow groove with a distance between groove surfaces of 20 mm or less.
JP11365982A 1982-06-30 1982-06-30 Submerged arc welding method of heat resistant low alloy steel Pending JPS594994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11365982A JPS594994A (en) 1982-06-30 1982-06-30 Submerged arc welding method of heat resistant low alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11365982A JPS594994A (en) 1982-06-30 1982-06-30 Submerged arc welding method of heat resistant low alloy steel

Publications (1)

Publication Number Publication Date
JPS594994A true JPS594994A (en) 1984-01-11

Family

ID=14617882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11365982A Pending JPS594994A (en) 1982-06-30 1982-06-30 Submerged arc welding method of heat resistant low alloy steel

Country Status (1)

Country Link
JP (1) JPS594994A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284293A (en) * 1988-06-14 1990-03-26 Kobe Steel Ltd Submerged arc welding method for high-strength cr-mo steel
JP2010110819A (en) * 2008-10-10 2010-05-20 Nippon Steel & Sumikin Welding Co Ltd SUBMERGED ARC WELD METAL FOR 1.25%Cr-0.5%Mo STEEL, COKE DRUM AND BONDED FLUX
CN103862192A (en) * 2014-02-21 2014-06-18 宝山钢铁股份有限公司 Wire rod for welding stick and welding stick
CN105880871A (en) * 2016-05-26 2016-08-24 武汉铁锚焊接材料股份有限公司 Gas-shielded high-toughness solid welding wire and use method and application thereof
CN106399842A (en) * 2016-12-02 2017-02-15 武汉钢铁股份有限公司 Steel for submerged arc welding wire for heat-resistant steel and production method of steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284293A (en) * 1988-06-14 1990-03-26 Kobe Steel Ltd Submerged arc welding method for high-strength cr-mo steel
JPH0479752B2 (en) * 1988-06-14 1992-12-16 Kobe Steel Ltd
JP2010110819A (en) * 2008-10-10 2010-05-20 Nippon Steel & Sumikin Welding Co Ltd SUBMERGED ARC WELD METAL FOR 1.25%Cr-0.5%Mo STEEL, COKE DRUM AND BONDED FLUX
CN103862192A (en) * 2014-02-21 2014-06-18 宝山钢铁股份有限公司 Wire rod for welding stick and welding stick
CN103862192B (en) * 2014-02-21 2016-06-01 宝山钢铁股份有限公司 A kind of welding wire wire rod and welding wire
CN105880871A (en) * 2016-05-26 2016-08-24 武汉铁锚焊接材料股份有限公司 Gas-shielded high-toughness solid welding wire and use method and application thereof
CN106399842A (en) * 2016-12-02 2017-02-15 武汉钢铁股份有限公司 Steel for submerged arc welding wire for heat-resistant steel and production method of steel

Similar Documents

Publication Publication Date Title
JP5572046B2 (en) Dissimilar material joining method
JP4886440B2 (en) High strength weld metal with excellent low temperature toughness
JPWO2017154122A1 (en) Flux-cored wire, welded joint manufacturing method, and welded joint
JP5928726B2 (en) Covered arc welding rod
CN107949455B (en) Welding wire for submerged arc welding
JP3900230B2 (en) Powder material for powder plasma overlay welding and powder plasma overlay weld metal
JPS594994A (en) Submerged arc welding method of heat resistant low alloy steel
JP6448844B1 (en) Welding method
JPH0825041B2 (en) Clad steel pipe manufacturing method
JP6829111B2 (en) Filling material for TIG welding
US4430545A (en) Method for submerged-arc welding a very low carbon steel
US3476909A (en) Method of deposit welding chromium steels
JP2020082105A (en) Joint structure and manufacturing method for joint structure
JP7423395B2 (en) Manufacturing method of austenitic stainless steel welded joints
JP2022157454A (en) Manufacturing method for flux-cored cut wire and weld joint
JPH07276086A (en) Flux cored wire for mag welding small in welding deformation
US3524765A (en) Welding rod for welding steel containing 9% ni
JP5455422B2 (en) Low hydrogen coated arc welding rod
JP7040435B2 (en) Multi-layered arc welding method for thick steel plates
Magadum et al. Study on Effect of Gouge depth on the microstructure and Tensile properties of 18% Ni Maraging Steel Welds made through hot wire GTA welding
JPS6171196A (en) Submerged arc welding method of low cr-mo alloy steel
JPS5832583A (en) Tube welding method for large diameter steel tube
JPS59125294A (en) Submerged arc welding method of heat resisting low alloy steel
JP7103923B2 (en) Joint structure and method for manufacturing the joint structure
JPH08276293A (en) Cored wire for rail welding