JP6061712B2 - Low hydrogen coated arc welding rod - Google Patents

Low hydrogen coated arc welding rod Download PDF

Info

Publication number
JP6061712B2
JP6061712B2 JP2013022589A JP2013022589A JP6061712B2 JP 6061712 B2 JP6061712 B2 JP 6061712B2 JP 2013022589 A JP2013022589 A JP 2013022589A JP 2013022589 A JP2013022589 A JP 2013022589A JP 6061712 B2 JP6061712 B2 JP 6061712B2
Authority
JP
Japan
Prior art keywords
mass
alloy
total
total content
arc welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013022589A
Other languages
Japanese (ja)
Other versions
JP2014151338A (en
Inventor
鵬 韓
鵬 韓
統宣 佐藤
統宣 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013022589A priority Critical patent/JP6061712B2/en
Priority to SG2013089669A priority patent/SG2013089669A/en
Publication of JP2014151338A publication Critical patent/JP2014151338A/en
Application granted granted Critical
Publication of JP6061712B2 publication Critical patent/JP6061712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼心線を低水素系被覆剤で被覆した低水素系被覆アーク溶接棒に関する。より詳しくは、被覆アーク溶接における溶接金属の性能向上技術に関する。   The present invention relates to a low hydrogen-based coated arc welding rod in which a steel core wire is coated with a low hydrogen-based coating agent. More specifically, the present invention relates to a technique for improving the performance of weld metal in coated arc welding.

従来、鋼心線を低水素系被覆剤で被覆した低水素系被覆アーク溶接棒に関して、溶接金属の性能を向上させるために、種々の検討がなされている(例えば、特許文献1〜3参照。)。特許文献1に記載の低水素系被覆アーク溶接棒では、溶接金属の破断靭性を向上させるため、心線のN量及びC量を規制し、被覆剤はCO及びMgを特定量含有すると共に酸性酸化物を規制した組成とし、更に、被覆率が26〜45%の範囲で、かつ、溶接棒全体でMn、Ni、Al及びPの量を調整している。 Conventionally, various studies have been made on a low hydrogen-based coated arc welding rod in which a steel core wire is coated with a low hydrogen-based coating agent in order to improve the performance of the weld metal (see, for example, Patent Documents 1 to 3). ). In the low hydrogen-based coated arc welding rod described in Patent Document 1, in order to improve the fracture toughness of the weld metal, the N amount and C amount of the core wire are regulated, and the coating agent contains specific amounts of CO 2 and Mg. The composition is such that the acidic oxide is regulated, and the coverage is in the range of 26 to 45%, and the amount of Mn, Ni, Al, and P is adjusted throughout the welding rod.

また、特許文献2に記載の低水素系被覆アーク溶接棒は、被覆剤からNiを添加する場合の溶接作業性及び溶接金属の靭性・延性を向上させるために、被覆剤に配合されるNi及びNi合金の粒度並びに成分組成などを特定している。更に、特許文献3に記載の低水素系被覆アーク溶接棒では、590MPa級以上の高張力鋼の溶接において溶接金属の低温破壊靭性を向上させるため、鋼心線及び被覆剤の組成をそれぞれ特定している。   In addition, the low hydrogen-based coated arc welding rod described in Patent Document 2 is a combination of Ni added to the coating material in order to improve the welding workability when adding Ni from the coating material and the toughness and ductility of the weld metal. The particle size and composition of the Ni alloy are specified. Furthermore, in the low hydrogen-based coated arc welding rod described in Patent Document 3, in order to improve the low temperature fracture toughness of the weld metal in the welding of a high-tensile steel of 590 MPa class or higher, the composition of the steel core wire and the coating agent is specified. ing.

特開平3−285793号公報JP-A-3-285793 特開平7−251294号公報Japanese Patent Laid-Open No. 7-251294 特開2010−227968号公報JP 2010-227968 A

石油・ガスの開発や油・ガスの輸送では、硫化物応力腐食割れや水素脆性というサワー腐食が問題となる。この問題に対応するため、米国防蝕技術協会(National Association of Corrosion Engineers:NACE)の規格では、溶接金属中のNi量が1質量%以下に規制されている。しかしながら、前述した従来の低水素系被覆アーク溶接棒は、Niにより溶接金属の靭性を確保しているため、得られる溶接金属はNi含有量が1質量%を超えてしまい、NACEの要求に十分に対応することができないという問題点がある。   In the development of oil and gas and the transportation of oil and gas, sour corrosion such as sulfide stress corrosion cracking and hydrogen embrittlement becomes a problem. In order to cope with this problem, the amount of Ni in the weld metal is regulated to 1 mass% or less in the standards of the National Association of Corrosion Engineers (NACE). However, since the conventional low hydrogen-based arc welding rod described above ensures the toughness of the weld metal with Ni, the resulting weld metal has a Ni content exceeding 1% by mass, which is sufficient for NACE requirements. There is a problem that it is not possible to cope with.

また、特許文献1に記載の低水素系被覆アーク溶接棒では、金属Mgを添加することにより、低い酸素量においても溶接金属の靭性を確保しているが、金属Mgの添加は、スパッタの発生や塗装性の低下などを招くため、溶接作業性が低下するという問題点がある。   In addition, in the low hydrogen-based coated arc welding rod described in Patent Document 1, the toughness of the weld metal is ensured even at a low oxygen content by adding metal Mg, but the addition of metal Mg causes spattering. In addition, there is a problem in that welding workability is deteriorated because it causes deterioration of paintability.

そこで、本発明は、Ni含有量が1質量%以下であっても、低温靭性が良好な溶接金属が得られる低水素系被覆アーク溶接棒を提供することを主目的とする。   Therefore, the main object of the present invention is to provide a low hydrogen-based coated arc welding rod that can obtain a weld metal having good low-temperature toughness even when the Ni content is 1% by mass or less.

本発明に係る低水素系被覆アーク溶接棒は、鋼心線を被覆剤で被覆した低水素系被覆アーク溶接棒であって、前記被覆剤の被覆率が溶接棒全質量あたり10〜40質量%であり、前記被覆剤は、該被覆剤全質量あたり、金属炭酸塩(CO換算値):10〜30質量%、金属フッ化物(F換算値):2〜13質量%、TiO:1〜7質量%、Si、Si合金及びSi酸化物からなる群から選択される少なくとも1種(Si換算値):合計で1.9〜11.7質量%、Ni及び/又はNi合金(Ni換算値):合計で0.5〜3.5質量%、Mo及び/又はMo合金(Mo換算値):合計で0.11〜0.45質量%、B、B合金及びB酸化物からなる群から選択される少なくとも1種(B換算値):合計で0.02〜0.25質量%、Ti及び/又はTi合金(Ti換算値):合計で0.2〜1.0質量%、Al、Al合金、Mg及びMg合金からなる群から選択される少なくとも1種(Al換算値又はMg換算値):合計で0.2〜1.8質量、Mn及び/又はMn合金(Mn換算値):1〜7質量%、Fe:3〜11質量%を含有する。 The low hydrogen-based coated arc welding rod according to the present invention is a low hydrogen-based coated arc welding rod in which a steel core wire is coated with a coating agent, and the coverage of the coating agent is 10 to 40% by mass with respect to the total mass of the welding rod. The coating agent is, based on the total mass of the coating agent, metal carbonate (CO 2 equivalent value): 10 to 30% by mass, metal fluoride (F equivalent value): 2 to 13% by mass, TiO 2 : 1 ~ 7 mass%, at least one selected from the group consisting of Si, Si alloy and Si oxide (Si equivalent value): 1.9 to 11.7 mass% in total, Ni and / or Ni alloy (Ni equivalent) Value): 0.5 to 3.5 mass% in total, Mo and / or Mo alloy (Mo conversion value): 0.11 to 0.45 mass% in total, group consisting of B, B alloy and B oxide At least one selected from (B converted value): 0.02 to 0.25% by mass in total, T And / or Ti alloy (Ti converted value): 0.2 to 1.0% by mass in total, at least one selected from the group consisting of Al, Al alloy, Mg and Mg alloy (Al converted value or Mg converted value) ): 0.2 to 1.8 mass in total, Mn and / or Mn alloy (Mn conversion value): 1 to 7 mass%, Fe: 3 to 11 mass%.

前記被覆剤としては、例えば、Ni及びNi合金の総含有量(Ni換算値)を[Ni]、Ti及びTi合金の総含有量(Ti換算値)を[Ti]、B、B合金及びB酸化物の総含有量(B換算値)を[B]、Mo及びMo合金の総含有量(Mo換算値)を[Mo]、Mn及びMn合金の総含有量(Mn換算値)を[Mn]としたとき、下記数式1を満たすものを使用することができる。   As the coating agent, for example, the total content of Ni and Ni alloy (Ni conversion value) is [Ni], and the total content of Ti and Ti alloy (Ti conversion value) is [Ti], B, B alloy and B The total oxide content (B conversion value) is [B], the total content of Mo and Mo alloy (Mo conversion value) is [Mo], and the total content of Mn and Mn alloy (Mn conversion value) is [Mn. ] Satisfying the following formula 1 can be used.

Figure 0006061712
Figure 0006061712

また、本発明の低水素系被覆アーク溶接棒は、引張強さが550MPa以上の高張力鋼の溶接に適用することができる。   Further, the low hydrogen-based coated arc welding rod of the present invention can be applied to welding of high strength steel having a tensile strength of 550 MPa or more.

本発明によれば、低水素系被覆アーク溶接棒の被覆剤組成及び被覆率を特定しているため、Ni含有量が1質量%以下であっても、低温靭性が良好な溶接金属を得ることができる。   According to the present invention, since the coating composition and coverage of the low hydrogen-based coated arc welding rod are specified, a weld metal with good low temperature toughness can be obtained even when the Ni content is 1% by mass or less. Can do.

横軸に被覆剤中のMo及びMnの総含有量をとり、縦軸に被覆剤中のNi、Ti及びBの総含有量をとって、実施例1〜15の被覆アーク溶接棒における被覆剤のMo及びMnの総含有量とNi、Ti及びBの総含有量の比と溶接金属性能との関係を示す図である。Taking the total content of Mo and Mn in the coating on the horizontal axis and taking the total content of Ni, Ti and B in the coating on the vertical axis, the coatings in the coated arc welding rods of Examples 1 to 15 It is a figure which shows the relationship between the ratio of the total content of Mo and Mn of this, the total content of Ni, Ti, and B, and a weld metal performance.

以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。   Hereinafter, embodiments for carrying out the present invention will be described in detail. Note that the present invention is not limited to the embodiments described below.

本発明の実施形態に係る低水素系被覆アーク溶接棒は、鋼心線を被覆剤で被覆した低水素系被覆アーク溶接棒であり、覆剤の被覆率が溶接棒全質量あたり10〜40質量%である。また、被覆剤は、その全質量あたり、金属炭酸塩(CO換算値):10〜30質量%、金属フッ化物(F換算値):2〜13質量%、TiO:1〜7質量%、Si、Si合金及びSi酸化物からなる群から選択される少なくとも1種(Si換算値):合計で1.9〜11.7質量%、Ni及び/又はNi合金(Ni換算値):合計で0.5〜3.5質量%、Mo及び/又はMo合金(Mo換算値):合計で0.11〜0.45質量%、B、B合金及びB酸化物からなる群から選択される少なくとも1種(B換算値):合計で0.02〜0.25質量%、Ti及び/又はTi合金(Ti換算値):合計で0.2〜1.0質量%、Al、Al合金、Mg及びMg合金からなる群から選択される少なくとも1種(Al換算値又はMg換算値):合計で0.2〜1.8質量、Mn及び/又はMn合金(Mn換算値):1〜7質量%、Fe:3〜11質量%を含有する。 The low hydrogen-based coated arc welding rod according to an embodiment of the present invention is a low-hydrogen-based coated arc welding rod in which a steel core wire is coated with a coating agent, and the covering ratio of the coating agent is 10 to 40 mass per total mass of the welding rod. %. Further, the coating, the total mass, metal carbonate (CO 2 conversion value): 10 to 30 mass%, metal fluoride (F-converted value): 2 to 13 wt%, TiO 2: 1 to 7 wt% At least one selected from the group consisting of Si, Si alloy and Si oxide (Si equivalent value): 1.9 to 11.7% by mass in total, Ni and / or Ni alloy (Ni equivalent value): Total 0.5 to 3.5 mass%, Mo and / or Mo alloy (Mo conversion value): 0.11 to 0.45 mass% in total, selected from the group consisting of B, B alloy and B oxide At least one (B converted value): 0.02 to 0.25% by mass in total, Ti and / or Ti alloy (Ti converted value): 0.2 to 1.0% by mass in total, Al, Al alloy, At least one selected from the group consisting of Mg and Mg alloys (Al converted value or Mg converted value) 0.2 to 1.8 mass in total, Mn and / or Mn alloy (Mn converted value): 1 to 7 mass%, Fe: containing 3 to 11 wt%.

[鋼心線]
鋼心線の種類は、母材や溶接条件などに応じて適宜選択することができるが、例えば引張強さが550MPa以上の高張力鋼を溶接する場合は、製造面とコスト面から、軟鋼心線を用いることが好ましい。本実施形態の低水素系被覆アーク溶接棒に使用する軟鋼心線の具体例としては、JIS G3503に規定されているSWRY 11などが挙げられる。
[Steel core]
The type of the steel core wire can be appropriately selected according to the base material, welding conditions, etc. For example, when welding high-tensile steel having a tensile strength of 550 MPa or more, from the viewpoint of manufacturing and cost, It is preferable to use a wire. Specific examples of the mild steel core wire used for the low hydrogen-based coated arc welding rod of the present embodiment include SWRY 11 defined in JIS G3503.

[溶接棒全質量に対する被覆剤の被覆率:10〜40質量%]
被覆アーク溶接棒の被覆剤の被覆率(%)は、(被覆剤の質量(質量%)/溶接棒全質量(質量%))×100により算出される。被覆率が10質量%未満であると、シールド不足となり、溶接金属中のN量及び水素量が増加し、溶接金属の靭性及び耐割れ性が低下する。一方、被覆率が40質量%を超えると、アーク長が長くなり、アーク切れが発生する。よって、本実施形態の低水素系被覆アーク溶接棒においては、被覆剤の被覆率は10〜40質量%とする。
[Coating ratio of coating agent with respect to the total mass of the welding rod: 10 to 40% by mass]
The coating rate (%) of the coating agent of the coated arc welding rod is calculated by (mass of coating agent (mass%) / total mass of welding rod (mass%)) × 100. When the coverage is less than 10% by mass, the shield is insufficient, the amount of N and the amount of hydrogen in the weld metal are increased, and the toughness and crack resistance of the weld metal are lowered. On the other hand, when the coverage exceeds 40% by mass, the arc length becomes long and arc breakage occurs. Therefore, in the low hydrogen-based coated arc welding rod of this embodiment, the coating rate of the coating agent is 10 to 40% by mass.

次に、本実施形態の低水素系被覆アーク溶接棒の被覆剤の成分限定理由について説明する。なお、以下に示す各成分の含有量は、被覆剤全質量あたりの含有量である。   Next, the reason for limiting the components of the coating material of the low hydrogen-based coated arc welding rod of this embodiment will be described. In addition, content of each component shown below is content per coating-material total mass.

[金属炭酸塩(CO換算値):10〜30質量%]
金属炭酸塩は、溶接中に分解してCOを発生し、シールド効果によって、溶接金属中のN量及び水素量を低減させることができる成分である。しかしながら、金属炭酸塩含有量が10質量%未満では、その効果が得られず、また、30質量%を超えると、スパッタが多発するようになる。よって、金属炭酸塩含有量は、CO換算値で、10〜30質量%とする。
[Metal carbonate (CO 2 equivalent): 10 to 30% by mass]
Metal carbonate is a component that decomposes during welding to generate CO 2 and can reduce the amount of N and the amount of hydrogen in the weld metal by a shielding effect. However, if the metal carbonate content is less than 10% by mass, the effect cannot be obtained, and if it exceeds 30% by mass, spatter frequently occurs. Therefore, the metal carbonate content is in terms of CO 2 value, 10 to 30 mass%.

[金属フッ化物(F換算値):2〜13質量%]
金属フッ化物は、耐気孔性を維持するために不可欠の成分であり、また、スラグ剤としても作用する。しかしながら、金属フッ化物含有量が2質量%未満では、耐気孔性が劣化し、また13質量%を超えると、アークが不安定となって立向上進溶接が困難となる。よって、金属フッ化物含有量は、F換算値で、2〜13質量%とする。
[Metal fluoride (F equivalent): 2 to 13% by mass]
Metal fluoride is an indispensable component for maintaining porosity resistance, and also acts as a slag agent. However, when the metal fluoride content is less than 2% by mass, the porosity resistance is deteriorated, and when it exceeds 13% by mass, the arc becomes unstable and it is difficult to perform the vertical improvement welding. Therefore, metal fluoride content shall be 2-13 mass% in F conversion value.

[TiO:1〜7質量%]
TiOは、全姿勢、特に立向溶接での作業性を維持するためのスラグ剤として添加されるが、その含有量が1質量%未満では立向上進溶接が困難となり、また、7質量%を超えると、粘性が過多となって耐気孔性が劣化する。よって、TiO含有量は1〜7質量%とする。
[TiO 2 : 1 to 7% by mass]
TiO 2 is added as a slag agent for maintaining the workability in all positions, particularly vertical welding, but if its content is less than 1% by mass, it is difficult to perform vertical improvement welding, and 7% by mass. If it exceeds 1, the viscosity becomes excessive and the pore resistance deteriorates. Therefore, the TiO 2 content is 1 to 7% by mass.

[Si、Si合金及びSi酸化物のうち少なくとも1種(Si換算値):合計で1.9〜11.7質量%]
Siは、金属又は合金の形態で添加されると、脱酸作用により溶接金属中の酸素と反応してSiOを生成し、このSiOは、粘結剤やスラグ造滓剤として作用する。また、Si酸化物の形態で添加されても、同様に粘結剤やスラグ造滓剤として作用する。
[At least one of Si, Si alloy and Si oxide (Si equivalent value): 1.9 to 11.7% by mass in total]
When Si is added in the form of a metal or an alloy, it reacts with oxygen in the weld metal by a deoxidation action to generate SiO 2 , and this SiO 2 acts as a binder or a slag fouling agent. Moreover, even if it adds with the form of Si oxide, it acts as a binder and a slag fossilizing agent similarly.

しかしながら、Si、Si合金及びSi酸化物の総含有量が、Si換算値で、1.9質量%未満の場合、スラグ不足により立向上進溶接が困難となる。一方、Si、Si合金及びSi酸化物の総含有量が、Si換算値で、11.7質量%を超えると、スラグがガラス状となり、スラグ剥離性が劣化する。よって、Si、Si合金及びSi酸化物の総含有量は、Si換算値で、1.9〜11.7質量%とする。   However, when the total content of Si, Si alloy, and Si oxide is less than 1.9% by mass in terms of Si, it is difficult to improve the vertical welding due to insufficient slag. On the other hand, when the total content of Si, Si alloy and Si oxide exceeds 11.7% by mass in terms of Si, the slag becomes glassy and the slag peelability deteriorates. Therefore, the total content of Si, Si alloy and Si oxide is 1.9 to 11.7% by mass in terms of Si.

なお、被覆剤は、金属Si、Si合金及びSi酸化物のうち少なくとも1種を含有していればよい。また、被覆剤に添加されるSi合金としては、例えばFe−SiやFe−Si−Bなどの鉄合金が挙げられる。   In addition, the coating agent should just contain at least 1 sort (s) among metal Si, Si alloy, and Si oxide. Examples of the Si alloy added to the coating agent include iron alloys such as Fe-Si and Fe-Si-B.

[Ni及び/又はNi合金(Ni換算値):合計で0.5〜3.5質量%]
Ni及びNi合金は、溶接金属の耐力向上及び低温靭性の改善に極めて有効な成分である。しかしながら、Ni及びNi合金の総含有量が0.5質量%未満では、その効果が不十分となり、また、3.5質量%を超えると、高温割れ(凝固割れ)が発生しやすくなる。よって、Ni及びNi合金の総含有量は、Ni換算値で、0.5〜3.5質量%とする。
[Ni and / or Ni alloy (Ni conversion value): 0.5 to 3.5 mass% in total]
Ni and Ni alloy are extremely effective components for improving the proof stress and low temperature toughness of the weld metal. However, if the total content of Ni and Ni alloy is less than 0.5% by mass, the effect is insufficient, and if it exceeds 3.5% by mass, hot cracking (solidification cracking) tends to occur. Therefore, the total content of Ni and Ni alloy is 0.5 to 3.5% by mass in terms of Ni.

Ni及びNi合金の総含有量は、溶接金属の耐力向上及び低温靭性向上の観点から、1.0質量%以上とすることが好ましく、また、耐高温割れ性向上の観点から、3.0質量%以下とすることが好ましい。更に、本実施形態の低水素系被覆アーク溶接棒では、NACE規格に準拠し、溶接金属のNi含有量が1質量%以下となるように、被覆剤におけるNi及びNi合金の総含有量を規制することが好ましい。   The total content of Ni and Ni alloy is preferably 1.0% by mass or more from the viewpoint of improving the yield strength and low temperature toughness of the weld metal, and from the viewpoint of improving hot cracking resistance, 3.0 mass. % Or less is preferable. Further, in the low hydrogen-based coated arc welding rod of this embodiment, the total content of Ni and Ni alloy in the coating is regulated so that the Ni content of the weld metal is 1% by mass or less in accordance with the NACE standard. It is preferable to do.

なお、被覆剤は、金属NiとNi合金の少なくとも一方を含有していればよい。また、Ni成分は、通常、金属Ni粉やNi−MgなどのNi合金粉の形態で、被覆剤に添加される。   In addition, the coating agent should just contain at least one of metal Ni and Ni alloy. The Ni component is usually added to the coating agent in the form of Ni alloy powder such as metal Ni powder or Ni-Mg.

[Mo及び/又はMo合金(Mo換算値):合計で0.11〜0.45質量%]
Mo及びMo合金は、溶接金属の焼き入れ性を確保する効果がある。しかしながら、Mo及びMo合金の総含有量が0.11質量%未満では、その効果が得られず、また、0.45質量%を超えると、溶接金属の焼入れ性が大幅に上昇し、靭性が低下する。よって、Mo及びMo合金の総含有量は、Mo換算値で、0.11〜0.45質量%とする。
[Mo and / or Mo alloy (Mo conversion value): 0.11 to 0.45 mass% in total]
Mo and Mo alloy have the effect of ensuring the hardenability of the weld metal. However, when the total content of Mo and Mo alloy is less than 0.11% by mass, the effect cannot be obtained. When the total content exceeds 0.45% by mass, the hardenability of the weld metal is significantly increased and the toughness is increased. descend. Therefore, the total content of Mo and the Mo alloy is 0.11 to 0.45% by mass in terms of Mo.

Mo及びMo合金の総含有量は、焼き入れ性を向上し、溶接金属の強度を確保する観点から、0.15質量%以上とすることが好ましく、また、溶接金属の靭性確保の観点から、0.40質量%以下とすることが好ましい。なお、被覆剤は、金属MoとMo合金の少なくとも一方を含有していればよい。また、Mo成分は、通常、Fe−Moなどの鉄合金の形態で、被覆剤に添加される。   From the viewpoint of improving the hardenability and securing the strength of the weld metal, the total content of Mo and Mo alloy is preferably 0.15% by mass or more, and from the viewpoint of ensuring the toughness of the weld metal, It is preferable to set it as 0.40 mass% or less. In addition, the coating material should just contain at least one of metal Mo and Mo alloy. The Mo component is usually added to the coating agent in the form of an iron alloy such as Fe-Mo.

[B、B合金及びB酸化物のうち少なくとも1種(B換算値):合計で0.02〜0.25質量%]
B、B合金及びB酸化物は、旧γ粒界に偏析し、粒界フェライトの発生を抑制することによって、溶接金属の靭性を向上させる作用がある。しかしながら、これらの総含有量が、B換算で、0.02質量%未満であると、溶接金属の靭性を向上させる効果が十分に得られない。一方、B、B合金及びB酸化物の総含有量が、B換算で、0.25質量%を超えると、溶接金属の耐高温割れ性が劣化する。よって、B、B合金及びB酸化物の総含有量は、B換算値で、0.02〜0.25質量%とする。
[At least one of B, B alloy and B oxide (B conversion value): 0.02 to 0.25% by mass in total]
B, B alloy and B oxide segregate at the old γ grain boundary and suppress the generation of grain boundary ferrite, thereby improving the toughness of the weld metal. However, when these total contents are less than 0.02% by mass in terms of B, the effect of improving the toughness of the weld metal cannot be sufficiently obtained. On the other hand, if the total content of B, B alloy and B oxide exceeds 0.25 mass% in terms of B, the hot crack resistance of the weld metal deteriorates. Therefore, the total content of B, B alloy and B oxide is 0.02 to 0.25% by mass in terms of B.

B、B合金及びB酸化物の総含有量は、0.06質量%以上であることが好ましく、これにより、靭性向上効果を更に高めることができる。また、耐高温割れ性の観点から、B、B合金及びB酸化物の総含有量は、0.20質量%以下であることが好ましい。なお、被覆剤は、金属B、B合金及びB酸化物のうち少なくとも1種を含有していればよい。また、B成分は、通常、Fe−Si−BなどのFe合金やB酸化物の形態で、被覆剤に添加される。   The total content of B, B alloy and B oxide is preferably 0.06% by mass or more, whereby the effect of improving toughness can be further enhanced. From the viewpoint of hot cracking resistance, the total content of B, B alloy and B oxide is preferably 0.20% by mass or less. In addition, the coating agent should just contain at least 1 sort (s) among the metal B, B alloy, and B oxide. Further, the B component is usually added to the coating agent in the form of an Fe alloy such as Fe—Si—B or a B oxide.

[Ti及び/又はTi合金(Ti換算値):合計で0.2〜1.0質量%]
Ti及びTi合金は、溶接金属中で酸化物又は固溶体として存在するが、酸化物による旧γ粒内のアシキュラーフェライトの核として、溶接金属の靭性向上に寄与する。即ち、被覆剤にTi及びTi合金が添加されていると、旧γ粒内において、Ti酸化物を核としてアシキュラーフェライトが生成する。このアシキュラーフェライトは、組織の微細化に寄与し、溶接金属の靭性を向上させる作用がある。
[Ti and / or Ti alloy (Ti converted value): 0.2 to 1.0% by mass in total]
Ti and Ti alloys exist as oxides or solid solutions in the weld metal, but contribute to improving the toughness of the weld metal as a core of acicular ferrite in the old γ grains by the oxide. That is, when Ti and a Ti alloy are added to the coating agent, acicular ferrite is generated with the Ti oxide as a nucleus in the old γ grains. This acicular ferrite contributes to the refinement of the structure and has the effect of improving the toughness of the weld metal.

しかしながら、Ti及びTi合金の総含有量が0.2質量%未満の場合、十分な生成ができず、フェライトの粗大化により溶接金属の靭性が劣化する。一方、Ti及びTi合金の総含有量が1.0質量%を超えると、固溶Tiが過多となり、溶接金属が強度過多となり、靭性も劣化する。よって、Ti及びTi合金の総含有量は、Ti換算値で、0.2〜1.0質量%とする。   However, when the total content of Ti and Ti alloy is less than 0.2% by mass, sufficient generation cannot be performed, and the toughness of the weld metal deteriorates due to the coarsening of ferrite. On the other hand, if the total content of Ti and Ti alloy exceeds 1.0% by mass, the solid solution Ti becomes excessive, the weld metal becomes excessively strong, and the toughness deteriorates. Therefore, the total content of Ti and Ti alloy is 0.2 to 1.0% by mass in terms of Ti.

Ti及びTi合金の総含有量は、溶接金属の靭性向上の観点から、0.4質量%以上とすることが好ましく、また、靭性劣化抑制効果向上の観点から、0.8質量%以下とすることが好ましい。なお、被覆剤は、金属TiとTi合金の少なくとも一方を含有していればよい。また、Ti成分は、通常、Fe−TiなどのFe合金の形態で、被覆剤に添加される。   The total content of Ti and Ti alloy is preferably 0.4% by mass or more from the viewpoint of improving the toughness of the weld metal, and is 0.8% by mass or less from the viewpoint of improving the effect of suppressing toughness deterioration. It is preferable. In addition, the coating material should just contain at least one of metal Ti and Ti alloy. The Ti component is usually added to the coating agent in the form of an Fe alloy such as Fe-Ti.

[Al、Al合金、Mg及びMg合金のうち少なくとも1種(Al換算値又はMg換算値):合計で0.2〜1.8質量]
Al及びAl合金、並びにMg及びMg合金は、強脱酸剤であり、溶接金属の酸素量を低減し、靭性を向上させる作用がある。しかしながら、これらの総含有量が、0.2質量%未満の場合、酸素量低減の効果が不十分となる。一方、Al及びAl合金、並びにMg及びMg合金の総含有量が1.8質量%を超えると、スパッタが多く発生し、溶接作業性が劣化する。
[At least one of Al, Al alloy, Mg and Mg alloy (Al converted value or Mg converted value): 0.2 to 1.8 mass in total]
Al and Al alloy, and Mg and Mg alloy are strong deoxidizers, and have the effect of reducing the oxygen content of the weld metal and improving toughness. However, when the total content is less than 0.2% by mass, the effect of reducing the oxygen amount is insufficient. On the other hand, when the total content of Al and Al alloy, and Mg and Mg alloy exceeds 1.8% by mass, a lot of spatter is generated and welding workability is deteriorated.

よって、Al及びAl合金、並びにMg及びMg合金の総含有量は、Al及びAl合金についてはAl換算値で、Mg及びMg合金についてはMg換算値で、0.2〜1.8質量%とする。なお、被覆剤は、Al及びAl合金、並びにMg及びMg合金のうち少なくとも1種を含有していればよい。   Therefore, the total content of Al and Al alloy, and Mg and Mg alloy is 0.2 to 1.8% by mass in terms of Al for Al and Al alloy, and in terms of Mg for Mg and Mg alloy. To do. In addition, the coating agent should just contain at least 1 sort (s) among Al and Al alloy, and Mg and Mg alloy.

[Mn及び/又はMn合金(Mn換算値):1〜7質量%]
Mn及びMn合金は、溶接金属の強度の確保と脱酸を目的として添加する。また、Mn及びMn合金は、靭性が優れた溶接金属を得るためにも重要な成分である。しかしながら、Mn及びMn合金の総含有量が1質量%未満の場合、溶接金属の強度が低下し、靭性も劣化する。一方、Mn及びMn合金の総含有量が7質量%を超えると、溶接金属の焼入れ性が増えて、靭性が低下する。
[Mn and / or Mn alloy (Mn equivalent): 1 to 7% by mass]
Mn and Mn alloy are added for the purpose of ensuring the strength of the weld metal and deoxidation. Mn and Mn alloys are also important components for obtaining a weld metal having excellent toughness. However, when the total content of Mn and the Mn alloy is less than 1% by mass, the strength of the weld metal is lowered and the toughness is also deteriorated. On the other hand, if the total content of Mn and the Mn alloy exceeds 7% by mass, the hardenability of the weld metal increases and the toughness decreases.

よって、Mn及びMn合金の総含有量は、Mn換算値で、1〜7質量%とする。Mn及びMn合金の総含有量は、溶接金属の強度及び靭性の確保の観点から、3質量%以上とすることが好ましく、また、靭性劣化抑制効果向上の観点から、5質量%以下とすることが好ましい。なお、被覆剤は、金属MnとMn合金の少なくとも一方を含有していればよい。また、Mn成分は、通常、Fe−Mnなどの鉄合金や金属Mnの形態で、被覆剤に添加される。   Therefore, the total content of Mn and the Mn alloy is 1 to 7% by mass in terms of Mn. The total content of Mn and Mn alloy is preferably 3% by mass or more from the viewpoint of ensuring the strength and toughness of the weld metal, and is 5% by mass or less from the viewpoint of improving the effect of suppressing toughness deterioration. Is preferred. In addition, the coating agent should just contain at least one of metal Mn and a Mn alloy. Further, the Mn component is usually added to the coating agent in the form of an iron alloy such as Fe—Mn or metal Mn.

[Fe:3〜11質量%]
Feは、スラグ形成剤及びアーク安定剤として作用する。しかしながら、Fe含有量が3質量%未満の場合、スラグ発生量が過多となり、スラグ巻込などの溶接欠陥が発生しやすくなる。また、Fe含有量が11質量%を超えると、前述した必須合金成分を目的とする量まで添加することが難しくなる。よって、Fe含有量は3〜11質量%とする。なお、Fe成分は、鉄粉やFe系合金の形態で、被覆剤に添加される。
[Fe: 3 to 11% by mass]
Fe acts as a slag former and arc stabilizer. However, when the Fe content is less than 3% by mass, the amount of slag generated becomes excessive, and welding defects such as slag entrainment are likely to occur. Moreover, when Fe content exceeds 11 mass%, it will become difficult to add the essential alloy component mentioned above to the target quantity. Therefore, Fe content shall be 3-11 mass%. The Fe component is added to the coating agent in the form of iron powder or Fe-based alloy.

[([Ni]+[Ti]+[B])/([Mo]+[Mn]):0.3〜1.2]
Ni、Ti及びBは、溶接金属の低温靭性の向上に有効な元素である。また、Mo及びMnは、溶接金属の強度の向上に有効な元素である。そして、本発明者は、溶接金属の強度と低温靭性の両方を向上させるために、これらの元素の配合バランスについて鋭意検討を行った。その結果、Ni、Ti及びBの総含有量と、Mo及びMnの総含有量との比を特定の範囲にすることにより、溶接金属の低温靭性と強度とが改善されるだけではなく、溶接金属の耐高温割れ性及びスラグ剥離性についても良好な結果が得られることを見出した。
[([Ni] + [Ti] + [B]) / ([Mo] + [Mn]): 0.3 to 1.2]
Ni, Ti and B are effective elements for improving the low temperature toughness of the weld metal. Mo and Mn are effective elements for improving the strength of the weld metal. And this inventor earnestly examined about the mixing | blending balance of these elements, in order to improve both the intensity | strength and low temperature toughness of a weld metal. As a result, the ratio of the total content of Ni, Ti and B and the total content of Mo and Mn is not only improved in the low temperature toughness and strength of the weld metal, but also in welding. It has been found that good results can be obtained with respect to hot cracking resistance and slag peelability of metal.

即ち、本実施形態の低水素系被覆アーク溶接棒においては、Ni、Ti及びBの総含有量と、Mo及びMnの総含有量との比が、下記数式2を満たすようにすることが好ましい。なお、下記数式2に示す[Ni]は、Ni及びNi合金の総含有量(Ni換算値)であり、[Ti]はTi及びTi合金の総含有量(Ti換算値)であり、[B]はB、B合金及びB酸化物の総含有量(B換算値)であり、[Mo]はMo及びMo合金の総含有量(Mo換算値)であり、[Mn]はMn及びMn合金の総含有量である。   That is, in the low hydrogen-based coated arc welding rod of this embodiment, it is preferable that the ratio of the total content of Ni, Ti and B and the total content of Mo and Mn satisfy the following formula 2. . In addition, [Ni] shown in Equation 2 below is the total content of Ni and Ni alloy (Ni conversion value), [Ti] is the total content of Ti and Ti alloy (Ti conversion value), and [B ] Is the total content of B, B alloy and B oxide (B conversion value), [Mo] is the total content of Mo and Mo alloy (Mo conversion value), [Mn] is Mn and Mn alloy Is the total content.

Figure 0006061712
Figure 0006061712

ここで、Ni、Ti及びBの総含有量とMo及びMnの総含有量との比(([Ni]+[Ti]+[B])/([Mo]+[Mn]))が0.3未満の場合、溶接金属の焼入れ性が高まり、溶接金属の強度上昇や靭性劣化が生じることがある。また、Ni、Ti及びBの総含有量とMo及びMnの総含有量との比(([Ni]+[Ti]+[B])/([Mo]+[Mn]))が1.2を超えると、溶接金属の焼入れ性が低下して強度が低下したり、耐高温割れ性やスラグ剥離性が劣化することがある。   Here, the ratio (([Ni] + [Ti] + [B]) / ([Mo] + [Mn])) of the total content of Ni, Ti and B and the total content of Mo and Mn is 0. If it is less than .3, the hardenability of the weld metal is increased, and the strength of the weld metal may be increased and the toughness may be deteriorated. Further, the ratio (([Ni] + [Ti] + [B]) / ([Mo] + [Mn])) of the total content of Ni, Ti and B to the total content of Mo and Mn is 1. If it exceeds 2, the hardenability of the weld metal is lowered and the strength is lowered, and the hot crack resistance and slag peelability may be deteriorated.

一方、Ni、Ti及びBの総含有量とMo及びMnの総含有量との比(([Ni]+[Ti]+[B])/([Mo]+[Mn]))を0.3〜1.2の範囲にすると、溶接金属の焼き入れ性及び強度を良好な状態に保ちつつ、Ni添加及びTiとBの複合添加による組織制御作用によって、組織の粗大化を抑制し、溶接金属を高靱化することができる。更に、高温割れの発生を抑制できると共に、スラグ剥離性などの溶接作業性も向上する。その結果、Ni含有量が1質量%以下であっても、低温靭性、強度及び耐高温割れ性に優れた溶接金属が得られる。   On the other hand, the ratio (([Ni] + [Ti] + [B]) / ([Mo] + [Mn])) of the total content of Ni, Ti and B to the total content of Mo and Mn is set to 0. When it is in the range of 3 to 1.2, while maintaining the hardenability and strength of the weld metal in a good state, the microstructure is suppressed by the structure control action by the addition of Ni and the combined addition of Ti and B, and welding is performed. The metal can be toughened. Furthermore, the occurrence of hot cracks can be suppressed and welding workability such as slag peelability is improved. As a result, even if the Ni content is 1% by mass or less, a weld metal excellent in low temperature toughness, strength and hot crack resistance can be obtained.

Ni、Ti及びBの総含有量とMo及びMnの総含有量との比(([Ni]+[Ti]+[B])/([Mo]+[Mn]))は、0.4以上であることがより好ましく、これにより、溶接金属の強度上昇を抑制し、靭性劣化を回避する効果が向上する。また、耐高温割れ性の向上及びスラグ剥離性劣化回避の観点から、Ni、Ti及びBの総含有量とMo及びMnの総含有量との比(([Ni]+[Ti]+[B])/([Mo]+[Mn]))は、0.9以下であることがより好ましい。   The ratio of the total content of Ni, Ti and B to the total content of Mo and Mn (([Ni] + [Ti] + [B]) / ([Mo] + [Mn])) is 0.4. It is more preferable that this is the case, and this improves the effect of suppressing the strength increase of the weld metal and avoiding toughness deterioration. Further, from the viewpoint of improving hot cracking resistance and avoiding deterioration of slag peelability, the ratio of the total content of Ni, Ti and B to the total content of Mo and Mn (([Ni] + [Ti] + [B ]) / ([Mo] + [Mn])) is more preferably 0.9 or less.

[その他の成分]
被覆剤は、前述した各成分の他に、粘結剤として、澱粉、パルプ及びセルロースなどの有機物、ケイ酸カリウム及びケイ酸ナトリウムなどの無機物を含有していてもよい。これらの粘結剤の含有量は、作業性改善の観点から、被覆剤全質量あたり、0.2〜4.0質量%とすることが好ましい。ただし、マイカ、タルク及びセリサイトなどの結晶水を含有するケイ酸塩は、溶接金属中の水素量を増加させるために、実質的には含有しないことが望ましい。
[Other ingredients]
The coating agent may contain organic substances such as starch, pulp and cellulose, and inorganic substances such as potassium silicate and sodium silicate in addition to the components described above. The content of these binders is preferably 0.2 to 4.0% by mass with respect to the total mass of the coating material from the viewpoint of improving workability. However, it is desirable that the silicate containing crystal water such as mica, talc and sericite is not substantially contained in order to increase the amount of hydrogen in the weld metal.

また、被覆剤は、アーク安定剤として、NaO及びKOなどを含有していてもよい。これらのアーク安定剤の含有量は、作業性改善の観点から、被覆剤全質量あたり、0.5〜4.0質量%とすることが好ましい。 Further, the coating, as an arc stabilizer, may contain such Na 2 O and K 2 O. The content of these arc stabilizers is preferably 0.5 to 4.0% by mass with respect to the total mass of the coating material from the viewpoint of improving workability.

[製造方法]
本実施形態の低水素系被覆アーク溶接棒を製造する際は、通常の溶接棒塗装機により、鋼心線の周囲に、前述した組成の被覆剤を、被覆率が10〜40質量%となるように被覆塗装する。その際、作業性の観点から、被覆剤に、ケイ酸ナトリウムやケイ酸カリウムに代表される水ガラスなどの粘結剤を含有させることが好ましい。その後、被覆剤で被覆された鋼心線を350〜550℃で焼成することにより、被覆剤中の水分を除去し、低水素系被覆アーク溶接棒とする。なお、鋼心線には、前述したようにJIS G3503に規定されているSWRY 11などを用いることができる。
[Production method]
When manufacturing the low hydrogen-based coated arc welding rod of this embodiment, the coating rate of 10 to 40% by mass of the coating agent having the above-described composition is formed around the steel core wire by a normal welding rod coating machine. Apply coating. At this time, from the viewpoint of workability, it is preferable that the coating agent contains a binder such as water glass represented by sodium silicate or potassium silicate. Thereafter, the steel core wire coated with the coating agent is fired at 350 to 550 ° C., thereby removing moisture in the coating agent to obtain a low hydrogen-based coated arc welding rod. As described above, SWRY 11 defined in JIS G3503 can be used for the steel core wire.

以上詳述したように、本実施形態の低水素系被覆アーク溶接棒では、被覆剤組成及び被覆率を特定しているため、Ni含有量が1質量%以下でかつ低温靭性が良好な溶接金属を得ることができる。この低水素系被覆アーク溶接棒は、溶接作業性にも優れており、引張強さが550MPa以上の高張力鋼の溶接に特に好適である。   As described in detail above, in the low hydrogen-based coated arc welding rod of this embodiment, since the coating composition and the coverage are specified, the weld metal having a Ni content of 1% by mass or less and good low temperature toughness. Can be obtained. This low hydrogen-based coated arc welding rod is excellent in welding workability and is particularly suitable for welding high-tensile steel having a tensile strength of 550 MPa or more.

そして、Ni、Ti及びBの総含有量と、Mo及びMnの総含有量との比が、上記数式2を満たす被覆剤組成にすると、脆性破壊の遷移温度を低温側に移行させることができると共に、強度の低下も抑制することができるため、低温靭性及び強度の両方が優れた溶接金属が得られる。また、溶接金属中のNi含有量をNACEの規格に適合した範囲に調整することもでき、耐高温割れ性能も確保することができる。これにより、低温環境下で使用される構造物の安全性をより一層高めることが可能となる。   And if the ratio of the total content of Ni, Ti and B and the total content of Mo and Mn is a coating composition that satisfies the above formula 2, the transition temperature of brittle fracture can be shifted to the low temperature side. At the same time, since a decrease in strength can be suppressed, a weld metal excellent in both low temperature toughness and strength can be obtained. Further, the Ni content in the weld metal can be adjusted to a range that conforms to the NACE standard, and high temperature cracking resistance can be ensured. Thereby, it becomes possible to further improve the safety of the structure used in a low temperature environment.

以下、本発明の実施例及び比較例を挙げて、本発明の効果について具体的に説明する。本実施例においては、溶接棒塗装機を用いて、軟鋼心線(直径4.0mm、長さ400mm)を、下記表1に示す成分組成の被覆剤で被覆した後、470℃で約1時間焼成し、実施例及び比較例の各低水素系被覆アーク溶接棒を作製した。なお、実施例及び比較例の各溶接棒の被覆率は、下記表1に示す通りである。また、下記表1に示す被覆剤No.1〜15が本発明の範囲内のものであり、No.16〜20は本発明の範囲から外れるものである。 Hereinafter, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples of the present invention. In this example, using a welding rod coating machine, a mild steel core wire (diameter: 4.0 mm, length: 400 mm) was coated with a coating agent having the composition shown in Table 1 below, and then at 470 ° C. for about 1 hour. Firing was carried out to produce each of the low hydrogen-based coated arc welding rods of Examples and Comparative Examples. In addition, the coverage of each welding rod of an Example and a comparative example is as showing in following Table 1. In addition, the coating agent No. 1 to 15 are within the scope of the present invention. 16-20 are outside the scope of the present invention.

Figure 0006061712
Figure 0006061712

次に、前述した方法で作製した実施例及び比較例の各被覆アーク溶接棒を用いて、各種性能確認試験を実施した。以下、各試験の具体的内容について説明する。   Next, various performance confirmation tests were performed using the respective coated arc welding rods of Examples and Comparative Examples prepared by the above-described methods. Hereinafter, the specific contents of each test will be described.

<試験1:全溶着金属溶接>
実施例及び比較例の各被覆アーク溶接棒について、下記表2に示す成分組成(残部はFe及び不可避的不純物)の鋼板を母材とし、下記表3に示す条件にて溶接を行い、得られた溶接金属の機械的性質及び化学成分を、下記表4に示す試験方法により調べた。その際、機械的性質については、0.2%耐力が460MPa以上、引張強さが560MPa以上及び−60℃における吸収エネルギーが47J以上のものを合格とした。
<Test 1: All-welded metal welding>
For each coated arc welding rod of Examples and Comparative Examples, a steel plate having the composition shown in the following Table 2 (the balance is Fe and inevitable impurities) is used as a base material, and welding is performed under the conditions shown in Table 3 below. The mechanical properties and chemical components of the weld metal were examined by the test methods shown in Table 4 below. At that time, regarding mechanical properties, those having a 0.2% proof stress of 460 MPa or more, a tensile strength of 560 MPa or more, and an absorbed energy at −60 ° C. of 47 J or more were regarded as acceptable.

Figure 0006061712
Figure 0006061712

Figure 0006061712
Figure 0006061712

Figure 0006061712
Figure 0006061712

<試験2:立向上進溶接試験>
実施例及び比較例の被覆アーク溶接棒について、上記表2に示す組成の鋼板を母材とし、下記表5に示す条件にて立向上進溶接を行い、溶接作業性として、「ビード円滑性」、「等脚性」及び「ビードのなじみ」を評価した。
<Test 2: Standing improvement welding test>
For the coated arc welding rods of the examples and comparative examples, the steel plate having the composition shown in Table 2 above is used as a base material, and the vertical improvement welding is performed under the conditions shown in Table 5 below. "Isopodity" and "Familiarity of beads" were evaluated.

Figure 0006061712
Figure 0006061712

<試験3:すみ肉溶接試験>
実施例及び比較例の被覆アーク溶接棒について、上記表2に示す組成の鋼板を母材とし、下記表6に示す条件にてすみ肉溶接を行い、溶接作業性として、「スラグ剥離性」、「スパッタ発生性」及び「耐気孔性」を評価した。
<Test 3: Fillet welding test>
For the coated arc welding rods of the examples and comparative examples, the steel plate having the composition shown in Table 2 above is used as a base material, fillet welding is performed under the conditions shown in Table 6 below, and the welding workability is "slag peelability" “Spatter generation” and “porosity resistance” were evaluated.

Figure 0006061712
Figure 0006061712

<試験4: 耐高温割れ性能>
実施例及び比較例の被覆アーク溶接棒について、上記表2に示す組成の鋼板を母材とし、下記表7に示す条件にて溶接を行い、得られた溶接金属の耐高温割れ性をC形ジグ拘束突合せ溶接割れ試験によって評価した。その際、「割れ率(%)」は、溶接ビード長さ(クレータ部10mmを除く)に対する割れ亀裂長さの割合(=割れ亀裂長/溶接ビード長)とし、10%以下を合格とした。
<Test 4: Hot crack resistance>
For the coated arc welding rods of Examples and Comparative Examples, the steel plate having the composition shown in Table 2 above was used as a base material, and welding was performed under the conditions shown in Table 7 below. It was evaluated by a jig restraint butt weld cracking test. At that time, the “cracking rate (%)” is the ratio of crack length to weld bead length (excluding crater portion 10 mm) (= crack length / weld bead length), and 10% or less was accepted.

Figure 0006061712
Figure 0006061712

実施例及び比較例の各被覆アーク溶接棒により得られた溶接金属の組成を下記表8に、その他の評価結果を下記表9にまとめて示す。なお、下記表8に示す溶接金属組成における残部はFe及び不可避的不純物である。下記表9に示す「溶接作業性」の評価において、○は良好、×は不良を示す。また、「総合評価」は、評価項目の中に1つでも「×」や「不合格」があるものは×とした。   The composition of the weld metal obtained by each of the coated arc welding rods of Examples and Comparative Examples is shown in Table 8 below, and other evaluation results are shown in Table 9 below. The balance in the weld metal composition shown in Table 8 below is Fe and inevitable impurities. In the evaluation of “welding workability” shown in Table 9 below, ○ indicates good and × indicates poor. In addition, “Comprehensive evaluation” was evaluated as “x” if even one of the evaluation items had “×” or “Fail”.

Figure 0006061712
Figure 0006061712

Figure 0006061712
Figure 0006061712

上記表8及び表9に示すように、被覆剤の組成や被覆率が本発明の範囲から外れる被覆剤を使用した比較例16〜22の被覆アーク溶接棒は、溶接作業性が劣っていた。更に、比較例16〜20の被覆アーク溶接棒を用いたものは、溶接金属の機械的性質も劣っていた。   As shown in Table 8 and Table 9 above, the coated arc welding rods of Comparative Examples 16 to 22 using a coating material in which the composition and coverage ratio of the coating material deviated from the scope of the present invention were inferior in welding workability. Furthermore, the thing using the covering arc welding rod of Comparative Examples 16-20 was inferior also in the mechanical property of a weld metal.

これに対して、本発明の範囲内の被覆剤を使用した実施例1〜15の被覆アーク溶接棒は、溶接作業性が良好で、機械的性質が良好な溶接金属が得られた。特に、Ni、Ti及びBの総含有量とMo及びMnの総含有量との比(([Ni]+[Ti]+[B])/([Mo]+[Mn]))が0.3〜1.2の範囲にある被覆剤を使用した実施例1〜7,12〜15の被覆アーク溶接棒は、全ての項目で優れた評価結果が得られた。   On the other hand, with the coated arc welding rods of Examples 1 to 15 using the coating agent within the scope of the present invention, a weld metal having good welding workability and good mechanical properties was obtained. In particular, the ratio (([Ni] + [Ti] + [B]) / ([Mo] + [Mn])) of the total content of Ni, Ti and B to the total content of Mo and Mn is 0. In the coated arc welding rods of Examples 1 to 7 and 12 to 15 using the coating agent in the range of 3 to 1.2, excellent evaluation results were obtained in all items.

図1は横軸に被覆剤中のMo及びMnの総含有量をとり、縦軸に被覆剤中のNi、Ti及びBの総含有量をとって、実施例1〜15の被覆アーク溶接棒における被覆剤のMo及びMnの総含有量とNi、Ti及びBの総含有量の比と溶接金属性能との関係を示す図である。図1に示すように、被覆剤のNi、Ti及びBの総含有量とMo及びMnの総含有量との比(([Ni]+[Ti]+[B])/([Mo]+[Mn]))が0.3未満のものは、0.3以上のものに比べて靭性が劣る傾向にあった。また、Ni、Ti及びBの総含有量とMo及びMnの総含有量との比(([Ni]+[Ti]+[B])/([Mo]+[Mn]))が1.2を超えるものは、1.2以下のものよりも、強度が劣る傾向にあった。   1 shows the total content of Mo and Mn in the coating on the horizontal axis, and the total content of Ni, Ti and B in the coating on the vertical axis. It is a figure which shows the relationship between the ratio of the total content of Mo and Mn of a coating material in Ni, the total content of Ni, Ti, and B, and weld metal performance. As shown in FIG. 1, the ratio (([Ni] + [Ti] + [B]) / ([Mo] +) of the total content of Ni, Ti and B and the total content of Mo and Mn in the coating agent) When [Mn])) was less than 0.3, the toughness tended to be inferior to that of 0.3 or more. Further, the ratio (([Ni] + [Ti] + [B]) / ([Mo] + [Mn])) of the total content of Ni, Ti and B to the total content of Mo and Mn is 1. Those exceeding 2 tended to have lower strength than those below 1.2.

以上の結果から、本発明によれば、Ni含有量が1質量%以下であっても、低温靭性が良好な溶接金属が得られることが確認された。   From the above results, according to the present invention, it was confirmed that a weld metal having good low temperature toughness can be obtained even when the Ni content is 1% by mass or less.

Claims (3)

鋼心線を被覆剤で被覆した低水素系被覆アーク溶接棒であって、
前記被覆剤の被覆率が溶接棒全質量あたり10〜40質量%であり、
前記被覆剤は、該被覆剤全質量あたり、
金属炭酸塩(CO換算値):10〜30質量%、
金属フッ化物(F換算値):2〜13質量%、
TiO:1〜7質量%、
Si、Si合金及びSi酸化物からなる群から選択される少なくとも1種(Si換算値):合計で1.9〜11.7質量%、
Ni及び/又はNi合金(Ni換算値):合計で0.5〜3.5質量%、
Mo及び/又はMo合金(Mo換算値):合計で0.11〜0.45質量%、
B、B合金及びB酸化物からなる群から選択される少なくとも1種(B換算値):合計で0.02〜0.25質量%、
Ti及び/又はTi合金(Ti換算値):合計で0.2〜1.0質量%、
Al、Al合金、Mg及びMg合金からなる群から選択される少なくとも1種(Al換算値又はMg換算値):合計で0.2〜1.8質量、
Mn及び/又はMn合金(Mn換算値):1〜7質量%、
Fe:3〜11質量%
を含有する低水素系被覆アーク溶接棒。
A low hydrogen-based coated arc welding rod in which a steel core wire is coated with a coating agent,
The coating rate of the coating agent is 10 to 40% by mass with respect to the total mass of the welding rod,
The coating agent is based on the total mass of the coating agent,
Metal carbonate (CO 2 equivalent value): 10 to 30% by mass,
Metal fluoride (F conversion value): 2 to 13% by mass,
TiO 2 : 1 to 7% by mass,
At least one selected from the group consisting of Si, Si alloy and Si oxide (Si equivalent value): 1.9 to 11.7% by mass in total,
Ni and / or Ni alloy (Ni conversion value): 0.5 to 3.5% by mass in total,
Mo and / or Mo alloy (Mo conversion value): 0.11 to 0.45 mass% in total,
At least one selected from the group consisting of B, B alloy and B oxide (B conversion value): 0.02 to 0.25% by mass in total,
Ti and / or Ti alloy (Ti converted value): 0.2 to 1.0% by mass in total,
At least one selected from the group consisting of Al, Al alloy, Mg and Mg alloy (Al converted value or Mg converted value): 0.2 to 1.8 mass in total,
Mn and / or Mn alloy (Mn equivalent value): 1 to 7% by mass,
Fe: 3 to 11% by mass
Low hydrogen-based coated arc welding rod containing
前記被覆剤は、Ni及びNi合金の総含有量(Ni換算値)を[Ni]、Ti及びTi合金の総含有量(Ti換算値)を[Ti]、B、B合金及びB酸化物の総含有量(B換算値)を[B]、Mo及びMo合金の総含有量(Mo換算値)を[Mo]、Mn及びMn合金の総含有量(Mn換算値)を[Mn]としたとき、下記数式(A)を満たすことを特徴とする請求項1に記載の低水素系被覆アーク溶接棒。

Figure 0006061712
The coating agent has a total content of Ni and Ni alloy (Ni conversion value) of [Ni], and a total content of Ti and Ti alloy (Ti conversion value) of [Ti], B, B alloy and B oxide. The total content (B conversion value) was [B], the total content of Mo and Mo alloy (Mo conversion value) was [Mo], and the total content of Mn and Mn alloy (Mn conversion value) was [Mn]. The low hydrogen based coated arc welding rod according to claim 1, wherein the following mathematical formula (A) is satisfied.

Figure 0006061712
引張強さが550MPa以上の高張力鋼の溶接に用いられることを特徴とする請求項1又は2に記載の低水素系被覆アーク溶接棒。   The low hydrogen-based coated arc welding rod according to claim 1 or 2, which is used for welding high-tensile steel having a tensile strength of 550 MPa or more.
JP2013022589A 2013-02-07 2013-02-07 Low hydrogen coated arc welding rod Active JP6061712B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013022589A JP6061712B2 (en) 2013-02-07 2013-02-07 Low hydrogen coated arc welding rod
SG2013089669A SG2013089669A (en) 2013-02-07 2013-12-04 Low-hydrogen covered electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013022589A JP6061712B2 (en) 2013-02-07 2013-02-07 Low hydrogen coated arc welding rod

Publications (2)

Publication Number Publication Date
JP2014151338A JP2014151338A (en) 2014-08-25
JP6061712B2 true JP6061712B2 (en) 2017-01-18

Family

ID=51573740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013022589A Active JP6061712B2 (en) 2013-02-07 2013-02-07 Low hydrogen coated arc welding rod

Country Status (2)

Country Link
JP (1) JP6061712B2 (en)
SG (1) SG2013089669A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437471B2 (en) * 2015-04-24 2018-12-12 日鐵住金溶接工業株式会社 Low hydrogen coated arc welding rod
JP6434387B2 (en) * 2015-09-29 2018-12-05 日鐵住金溶接工業株式会社 Low hydrogen coated arc welding rod
JP7387450B2 (en) 2020-01-09 2023-11-28 日鉄溶接工業株式会社 Iron powder low hydrogen coated arc welding rod

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109593A (en) * 1979-02-13 1980-08-23 Kobe Steel Ltd Coated electrode
JPS62199294A (en) * 1986-02-26 1987-09-02 Kobe Steel Ltd Low hydrogen coated electrode
JPS63144895A (en) * 1986-12-09 1988-06-17 Kobe Steel Ltd Low hydrogen type coated electrode
JP2711060B2 (en) * 1993-09-29 1998-02-10 株式会社神戸製鋼所 Low hydrogen coated arc welding rod
JPH10272594A (en) * 1997-03-28 1998-10-13 Nippon Steel Corp Low hydrogen type coated electrode
JP5404127B2 (en) * 2009-03-27 2014-01-29 株式会社神戸製鋼所 Low hydrogen coated arc welding rod

Also Published As

Publication number Publication date
JP2014151338A (en) 2014-08-25
SG2013089669A (en) 2014-09-26

Similar Documents

Publication Publication Date Title
JP4646764B2 (en) Flux-cored wire for gas shielded arc welding
JP6040125B2 (en) Flux cored wire
JP6322093B2 (en) Flux-cored wire for gas shielded arc welding
JP5415998B2 (en) Flux-cored wire for gas shielded arc welding
JP4255453B2 (en) Low alloy steel weld metal and flux cored wire
JP6216642B2 (en) Low hydrogen coated arc welding rod
JP5138242B2 (en) Flux-cored wire for duplex stainless steel welding
JP5890280B2 (en) Low hydrogen coated arc welding rod
JP2013018012A (en) Flux-cored wire for gas-shielded arc welding of high-tensile steel
JP6385846B2 (en) 9% Ni steel welding flux cored wire
JP6296550B2 (en) Ni-base alloy-coated arc welding rod
JP5450260B2 (en) Weld metal with excellent hot crack resistance
JP2016203253A (en) Low hydrogen type coated arc welding rod
JP6786472B2 (en) Flux-cored wire for duplex stainless steel welding
JP2003019595A (en) Flux cored wire for gas-shielded arc welding for low alloy heat resistant steel
JP6061712B2 (en) Low hydrogen coated arc welding rod
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2020168651A (en) COATED ARC WELDING ELECTRODE FOR 9% Ni STEEL WELDING
CN104858567A (en) Metal cored welding wire for welding of automobile exhaust pipe
JP6641084B2 (en) Low hydrogen coated arc welding rod with excellent resistance to bar burn during welding
JP2971234B2 (en) High Cr austenitic stainless steel wire for gas shielded arc welding and coated arc welding rod
JP6786431B2 (en) Carbon-based flux-cored wire for carbon dioxide shield arc welding
JP5457301B2 (en) Flux-cored wire for gas shielded arc welding
JP6688344B2 (en) Low-hydrogen coated arc welding rod
JP2021126674A (en) COATED ELECTRODE FOR 9% Ni STEEL WELDING

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161213

R150 Certificate of patent or registration of utility model

Ref document number: 6061712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150