JP2016203253A - Low hydrogen type coated arc welding rod - Google Patents

Low hydrogen type coated arc welding rod Download PDF

Info

Publication number
JP2016203253A
JP2016203253A JP2016013465A JP2016013465A JP2016203253A JP 2016203253 A JP2016203253 A JP 2016203253A JP 2016013465 A JP2016013465 A JP 2016013465A JP 2016013465 A JP2016013465 A JP 2016013465A JP 2016203253 A JP2016203253 A JP 2016203253A
Authority
JP
Japan
Prior art keywords
welding
welding rod
total
arc
low hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016013465A
Other languages
Japanese (ja)
Other versions
JP6437471B2 (en
Inventor
佑介 齋藤
Yusuke Saito
佑介 齋藤
高橋 将
Susumu Takahashi
将 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Publication of JP2016203253A publication Critical patent/JP2016203253A/en
Application granted granted Critical
Publication of JP6437471B2 publication Critical patent/JP6437471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a low hydrogen type coated arc welding rod, excellent in stability of an arc, and excellent in low temperature toughness by providing high strength welding metal, in multi-layer welding of the steel pipe circumference of a 490 MPa-class or more.SOLUTION: A low hydrogen type coated arc welding rod includes metal carbonate:25-45%, metal fluoride:5-15%, rutile:2-7%, alumina:0.2-2.0%, zircon sand:0.3-1.5%, magnesium oxide:0.1-1.0%, hematite:0.1-1.0%, Si:5-10%, Mn:2.0-6.5%, Ni:0.8-1.8%, Ti:0.5-3.5%, a B alloy and a B compound:0.03-0.15% in a B conversion value and iron powder:15-35% in mass% to the coating agent whole mass, and applies a coating agent in the coating ratio of 28-42%.SELECTED DRAWING: None

Description

本発明は、軟鋼心線に被覆剤が塗布されている低水素系被覆アーク溶接棒に関し、特に直流電源を用いた490MPa級以上の鋼管円周の多層盛溶接において、アークの安定性に優れ、溶接金属の強度及び低温での靱性が優れる低水素系被覆アーク溶接棒に関するものである。   The present invention relates to a low hydrogen-based coated arc welding rod in which a coating agent is applied to a mild steel core wire, and in particular, in a multi-layer welding of a steel pipe circumference of 490 MPa class or higher using a DC power source, the arc stability is excellent, The present invention relates to a low hydrogen-based coated arc welding rod excellent in weld metal strength and toughness at low temperatures.

金属炭酸塩及び金属弗化物を主成分とする低水素系被覆アーク溶接棒は、イルミナイト系やライムチタニヤ系被覆アーク溶接棒に比べて全姿勢における溶接が容易でかつ機械的性質が優れている。また、低水素系被覆アーク溶接棒は、立向下進溶接が可能な高セルロース系被覆アーク溶接棒に比べて拡散性水素量が少なく耐割れ性に優れることから、鋼管の円周溶接等にも多く用いられている。   Low hydrogen-based coated arc welding rods composed mainly of metal carbonate and metal fluoride are easier to weld in all positions and have better mechanical properties than illuminite-based and lime-titania coated arc welding rods. In addition, low hydrogen-based coated arc welding rods have less diffusible hydrogen and superior crack resistance than high-cellulosic-coated arc welding rods that allow vertical downward welding. Are often used.

低水素系被覆アーク溶接棒は、一般的に交流電源を用いて溶接する場合を想定して設計してあることが多いが、鋼管を屋外で円周溶接する場合には、直流電源が用いられることが多い。この直流電源を用いて低水素系被覆アーク溶接棒により溶接した場合は、磁気吹きや被覆剤の片溶けが生じてアークが不安定となり、健全なビードが得られないという問題がある。このため、直流電源を使用した場合においても、アークの安定性に優れ、溶接金属の機械的性能の良好な低水素系被覆アーク溶接棒の開発要望が高い。   Low hydrogen-based coated arc welding rods are often designed assuming that they are generally welded using an AC power source, but when steel pipes are circumferentially welded outdoors, a DC power source is used. There are many cases. When this DC power source is used for welding with a low hydrogen-based coated arc welding rod, there is a problem that magnetic blowing or partial melting of the coating material occurs, the arc becomes unstable, and a sound bead cannot be obtained. For this reason, even when a DC power source is used, there is a high demand for developing a low hydrogen-based coated arc welding rod that has excellent arc stability and good mechanical performance of the weld metal.

鋼管の円周溶接などに用いられる被覆アーク溶接棒に関して、例えば、特許文献1に、被覆剤中のチタン酸カリウムの平均粒径並びにその含有量を限定することによりアーク切れを少なくし、更に各成分の含有量の最適化を図ることにより溶接ビードを連続して均一に得るとともに一般的な溶接作業性も良好にするという技術の開示がある。   With respect to the coated arc welding rod used for circumferential welding of steel pipes, for example, Patent Document 1 reduces the arc breakage by limiting the average particle size and content of potassium titanate in the coating, There is a disclosure of a technique for obtaining a weld bead continuously and uniformly by optimizing the content of components and improving general welding workability.

また、特許文献2には、被覆剤中のカリ長石、ルチール及びアルミナの含有量を調整することによって、裏波溶接から最終層の溶接までの全層を効率よく溶接することができ、良好なアーク安定性及びビード形状を得ることができるという技術の開示がある。   Further, in Patent Document 2, by adjusting the content of potassium feldspar, rutile and alumina in the coating material, all layers from back wave welding to final layer welding can be efficiently welded. There is a technical disclosure that arc stability and bead shape can be obtained.

しかし、特許文献1及び特許文献2に記載の技術は、何れも交流電源を用いた場合に有効であるが、これらの低水素系被覆アーク溶接棒で直流電源を用いて溶接した場合には、磁気吹きやアーク切れが発生してアークが不安定となり、健全なビードが得られないという問題点があった。   However, the techniques described in Patent Document 1 and Patent Document 2 are both effective when an AC power source is used, but when welding using a DC power source with these low hydrogen-based coated arc welding rods, There was a problem that a magnetic bead or arc break occurred and the arc became unstable, and a healthy bead could not be obtained.

一方、特許文献3には、直流電源用の低水素系被覆アーク溶接棒に関する技術の開示がある。即ち、この特許文献3の開示技術は、直流電源用溶接棒として使用する鋼心線の炭素量が溶接金属の酸素量に大きく影響する点に着目し、その炭素量の適正化を図ったものである。しかし、特許文献3に記載の技術は、直流電源を用いて下向姿勢で溶接した溶接金属の低温破壊靭性値が得られるというものであって、鋼管の円周溶接などの多層盛溶接においては、良好なビードが得られないという問題点があった。   On the other hand, Patent Document 3 discloses a technique relating to a low hydrogen-based coated arc welding rod for a DC power source. That is, the disclosed technique of Patent Document 3 focuses on the fact that the carbon content of a steel core wire used as a welding rod for a DC power supply greatly affects the oxygen content of the weld metal, and attempts to optimize the carbon content. It is. However, the technique described in Patent Document 3 is that a low temperature fracture toughness value of a weld metal welded in a downward posture using a DC power source can be obtained, and in multi-layer welding such as circumferential welding of a steel pipe, There was a problem that a good bead could not be obtained.

特開2012−143810号公報JP2012-143810A 特開2000−117487号公報JP 2000-117487 A 特開2010−227968号公報JP 2010-227968 A

そこで本発明は、上述した問題点に鑑みて案出されたものであり、直流電源を用いた490MPa級以上の鋼管円周の多層盛溶接において、アークの安定性に優れて、高強度な溶接金属が得られるとともに低温靱性が優れる低水素系被覆アーク溶接棒を提供することを目的とする。   Therefore, the present invention has been devised in view of the above-described problems, and is excellent in arc stability and high-strength welding in multi-layer welding of a steel pipe circumference of 490 MPa class or higher using a DC power source. An object of the present invention is to provide a low hydrogen-based coated arc welding rod that provides a metal and is excellent in low-temperature toughness.

本発明者らは、低水素系被覆アーク溶接棒を用いて交流電源と直流電源で溶接した場合の差異を詳細に調査した結果、直流電源で溶接した場合は、交流電源で溶接した場合に比べて、アーク長が長くなって被覆剤が脆くなることに起因して磁気吹きや被覆剤の片溶けが生じやすく、アークが不安定となって健全なビードが得られなくなることを突き止めた。   As a result of investigating the difference in the case of welding with an AC power source and a DC power source using a low hydrogen-based coated arc welding rod, the inventors have compared with the case of welding with a DC power source as compared with the case of welding with an AC power source. As a result, it has been found that magnetic arcing or partial melting of the coating tends to occur due to the length of the arc becoming long and the coating becomes brittle, and the arc becomes unstable and a healthy bead cannot be obtained.

そこで、低水素系被覆アーク溶接棒を用いて直流電源で鋼管円周の溶接を行った場合においても磁気吹きや被覆剤の片溶けが生じず、かつ、良好なビード形状を得るために、被覆剤成分について種々試作をして検討した。   Therefore, in order to obtain a good bead shape without magnetic blowing or partial melting of the coating material even when the steel pipe circumference is welded with a DC power source using a low hydrogen based arc welding rod, Various preparations of the agent components were studied.

その結果、鉄粉の添加を適量とし、被覆率を適正値にすることで、直流電源で多層盛溶接した場合でも磁気吹きや被覆剤の片溶けが生じなくなり、金属炭酸塩、アルミナ、ルチール及びヘマタイトを適量とすることで、アークが安定して良好なビード形状が得られ、金属弗化物を適量とすることで、ビード形状及びスラグ剥離性が良好になることを突き止めた。また、ジルコンサンドの添加量を調整することにより、さらに被覆剤の片溶け防止に効果があることを突き止めた。   As a result, by adding an appropriate amount of iron powder and setting the coverage ratio to an appropriate value, even when multi-layer welding is performed with a DC power source, magnetic blowing or partial melting of the coating does not occur, and metal carbonate, alumina, rutile and It has been found that by using an appropriate amount of hematite, the arc is stable and a good bead shape can be obtained, and by using an appropriate amount of metal fluoride, the bead shape and slag peelability can be improved. Further, it was found that adjusting the amount of zircon sand added has an effect of further preventing the coating from being partially melted.

溶接金属の低温靭性を確保するためには、被覆剤成分のSi、Mn、Ni、Ti及びB量を適量とし、溶接金属の強度の確保は、Mn及びNiを適量とすることで得られることを見出した。   In order to ensure the low temperature toughness of the weld metal, the amount of coating component Si, Mn, Ni, Ti and B should be appropriate, and the strength of the weld metal can be ensured by making Mn and Ni appropriate. I found.

すなわち、本発明の要旨は、軟鋼心線に被覆剤が塗布されている低水素系被覆アーク溶接棒において、被覆剤全質量に対する質量%で、金属炭酸塩の1種または2種以上の合計:25〜45%、金属弗化物の1種または2種以上の合計:5〜15%、ルチール:2〜7%、アルミナ:0.2〜2.0%、ジルコンサンド:0.3〜1.5%、酸化マグネシウム:0.1〜1.0%、ヘマタイト:0.1〜1.0%、Si:5〜10%、Mn:2.0〜6.5%、Ni:0.8〜1.8%、Ti:0.5〜3.5%、B合金及びB化合物:B換算値の1種または2種以上の合計で0.03〜0.15%、鉄粉:15〜35%を含有し、残部は、スラグ形成剤、脱酸剤、塗装剤、水ガラスの固質分及び不可避不純物からなる被覆剤を、前記軟鋼心線の外周に当該低水素系被覆アーク溶接棒全質量に対する質量%で、28〜42%の被覆率で塗布したことを特徴とする。   That is, the gist of the present invention is a low hydrogen-based arc welding rod in which a coating agent is applied to a mild steel core wire, in a mass% with respect to the total mass of the coating agent, and a total of one or more metal carbonates: 25-45%, total of one or more metal fluorides: 5-15%, rutile: 2-7%, alumina: 0.2-2.0%, zircon sand: 0.3-1. 5%, magnesium oxide: 0.1 to 1.0%, hematite: 0.1 to 1.0%, Si: 5 to 10%, Mn: 2.0 to 6.5%, Ni: 0.8 to 1.8%, Ti: 0.5 to 3.5%, B alloy and B compound: 0.03 to 0.15% in total of one or more of B conversion values, iron powder: 15 to 35 And the balance is a slag forming agent, a deoxidizing agent, a coating agent, a coating agent composed of a solid content of water glass and inevitable impurities, and the mild steel core. By mass% with respect to the low hydrogen type covered electrode total mass on the outer periphery of, characterized by being coated with from 28 to 42% coverage.

本発明の低水素系被覆アーク溶接棒によれば、直流電源を用いて490MPa級以上の鋼管円周の多層盛溶接において、磁気吹きや被覆剤の片溶けが生じず、アークの安定性に優れて良好なビード形状が得られ、一般的な溶接作業性も良好であるので溶接能率が大幅に改善できるとともに、溶接金属の機械的性能も良好であるので高品質な溶接部が得られる。   According to the low hydrogen-based coated arc welding rod of the present invention, in a multi-layer welding of a steel pipe circumference of 490 MPa class or more using a direct current power source, magnetic blowing or partial melting of the coating does not occur, and the arc stability is excellent. Thus, a good bead shape can be obtained, and the general welding workability is also good, so that the welding efficiency can be greatly improved, and the mechanical performance of the weld metal is also good, so that a high-quality weld is obtained.

以下、本発明を適用した低水素系被覆アーク溶接棒について詳細に説明をする。本発明を適用した低水素系被覆アーク溶接棒は、軟鋼心線に被覆剤が塗布されている。低水素系被覆アーク溶接棒の各成分組成における含有率は、被覆材全質量に対する質量%で表すこととし、以下では単に%と記載する。   Hereinafter, the low hydrogen type | system | group covering arc welding rod to which this invention is applied is demonstrated in detail. In the low hydrogen-based coated arc welding rod to which the present invention is applied, a coating agent is applied to a mild steel core wire. The content of each component composition of the low hydrogen-based coated arc welding rod is expressed as mass% with respect to the total mass of the coating material, and is simply described as% below.

[金属炭酸塩の1種または2種以上の合計:25〜45%]
金属炭酸塩は、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、炭酸マンガンなどを指し、アーク中で分解してCO2ガスを発生させて溶着金属を大気から遮蔽し保護する働きがある。金属炭酸塩の1種または2種以上の合計が25%未満であると、シールド効果が不足してブローホールが発生しやすくなる。一方、金属炭酸塩の1種または2種以上の合計が45%を超えると、アークが不安定となって全姿勢溶接でビード形状が凸状になり、スラグ剥離性も悪くなる。したがって、金属炭酸塩の1種または2種以上の合計は25〜45%とする。
[Total of one or more metal carbonates: 25 to 45%]
Metal carbonate refers to calcium carbonate, magnesium carbonate, barium carbonate, manganese carbonate, etc., and has the function of shielding and protecting the deposited metal from the atmosphere by being decomposed in an arc to generate CO 2 gas. If the total of one or more of the metal carbonates is less than 25%, the shielding effect is insufficient and blow holes are likely to occur. On the other hand, if the total of one or more of the metal carbonates exceeds 45%, the arc becomes unstable, the bead shape becomes convex in all-position welding, and the slag peelability is also deteriorated. Therefore, the total of one or more metal carbonates is 25 to 45%.

[金属弗化物の1種または2種以上の合計:5〜15%]
金属弗化物は蛍石、弗化バリウム、弗化マグネシウム、弗化アルミニウムなどを指し、溶融スラグの粘性を下げてスラグ流動性を良好にし、ビード形状を良好にする働きがある。金属弗化物の1種または2種以上の合計が5%未満であると、適正な溶融スラグの粘性が得られず、全姿勢溶接でビードの形状が不良になる。一方、金属弗化物の1種または2種以上の合計が15%を超えると、スラグ剥離性が不良になる。したがって、金属弗化物の1種または2種以上の合計は5〜15%とする。
[Total of one or more metal fluorides: 5 to 15%]
Metal fluoride refers to fluorite, barium fluoride, magnesium fluoride, aluminum fluoride, etc., and has a function of lowering the viscosity of molten slag to improve slag fluidity and to improve the bead shape. If the total of one or more of the metal fluorides is less than 5%, an appropriate molten slag viscosity cannot be obtained, and the bead shape becomes poor in all-position welding. On the other hand, if the total of one or more metal fluorides exceeds 15%, the slag peelability becomes poor. Therefore, the total of one or more metal fluorides is 5 to 15%.

[ルチール:2〜7%]
ルチールは、アーク安定剤として作用するとともに、溶融スラグの粘性を調整する。ルチールが2%未満であると、アークが不安定となり、全姿勢溶接でビード形状が不良になる。一方、ルチールが7%を超えると、溶融スラグの粘性が高くなってスラグ流動性が悪くなり、立向姿勢及び上向姿勢での溶接時のビードの形状が凸状となる。したがって、ルチールは2〜7%とする。
[Lucille: 2-7%]
Rutile acts as an arc stabilizer and adjusts the viscosity of the molten slag. If the rutile is less than 2%, the arc becomes unstable and the bead shape becomes poor in all-position welding. On the other hand, if the rutile exceeds 7%, the viscosity of the molten slag becomes high and the slag fluidity becomes poor, and the shape of the bead at the time of welding in the vertical posture and the upward posture becomes convex. Therefore, rutile is 2 to 7%.

[アルミナ:0.2〜2.0%]
アルミナは、アークを安定にするとともに、溶融スラグの粘性を調整する。アルミナが0.2%未満であると、アークが不安定となり、全姿勢溶接でビード形状が不良となる。一方、アルミナが2.0%を超えると、スラグがガラス状となってスラグ剥離が不良になる。したがって、アルミナは0.2〜2.0%とする。
[Alumina: 0.2-2.0%]
Alumina stabilizes the arc and adjusts the viscosity of the molten slag. When alumina is less than 0.2%, the arc becomes unstable, and the bead shape becomes poor in all-position welding. On the other hand, if alumina exceeds 2.0%, the slag becomes glassy and slag peeling becomes poor. Therefore, alumina is 0.2 to 2.0%.

[ジルコンサンド:0.3〜1.5%]
ジルコンサンドは、溶融スラグの粘性を調整する他、融点が2700℃と高いので、被覆剤及び心線が過熱した際も安定した耐火性を有し、被覆剤の片溶けを抑制する働きがある。また、他の酸化物よりも機械的強度に優れているので、被覆剤自体が物理的な衝撃を受けてもが破損しにくくなり、上向姿勢などの不安定な溶接姿勢で被覆アーク溶接棒の先端部が鋼板開先部に接触した場合でも被覆欠けが生じにくく、安定した溶接が可能となる。ジルコンサンドが0.3%未満では、被覆剤の片溶けが発生しやすくなる。また、被覆剤自体の機械的強度が弱くなり、被覆欠けが発生しやすくなる。一方、ジルコンサンドが1.5%を超えると、溶融スラグの粘性が高くなり、スラグ流動性が低下するので、立向姿勢及び上向姿勢溶接でビード形状が凸状となる。したがって、ジルコンサンドは0.3〜1.5%とする。
[Zircon sand: 0.3-1.5%]
In addition to adjusting the viscosity of molten slag, zircon sand has a high melting point of 2700 ° C, so it has stable fire resistance even when the coating material and the core wire are overheated, and has the function of suppressing melting of the coating material. . In addition, because it has better mechanical strength than other oxides, it is less likely to be damaged even when the coating itself is subjected to a physical impact, and the coated arc welding rod can be used in an unstable welding posture such as an upward posture. Even when the tip of the steel plate contacts the steel plate groove, chipping is less likely to occur and stable welding is possible. If the zircon sand is less than 0.3%, partial melting of the coating tends to occur. In addition, the mechanical strength of the coating agent itself is weakened, and chipping is likely to occur. On the other hand, if the zircon sand exceeds 1.5%, the viscosity of the molten slag increases and the slag fluidity decreases, so that the bead shape becomes convex in the vertical posture and the upward posture welding. Therefore, the zircon sand is 0.3 to 1.5%.

[酸化マグネシウム:0.1〜1.0%]
酸化マグネシウムは、耐熱性に優れているため、被覆剤の片溶けを抑制する働きがある。酸化マグネシウムが0.1%未満では、被覆剤の片溶けが発生しやすくなる。一方、酸化マグネシウムが1.0%を超えると、溶融スラグの粘性が高くなってスラグ流動性が低下し、立向姿勢及び上向姿勢溶接でビード形状が凸状となる。したがって、酸化マグネシウムは0.1〜1.0%とする。
[Magnesium oxide: 0.1 to 1.0%]
Since magnesium oxide is excellent in heat resistance, it has a function of suppressing partial melting of the coating agent. If the magnesium oxide is less than 0.1%, partial dissolution of the coating tends to occur. On the other hand, when magnesium oxide exceeds 1.0%, the viscosity of the molten slag becomes high and the slag fluidity decreases, and the bead shape becomes convex in the vertical posture and the upward posture welding. Therefore, the magnesium oxide is 0.1 to 1.0%.

[ヘマタイト:0.1〜1.0%]
ヘマタイトは、アークを安定にする作用がある。ヘマタイトが0.1%未満では、アークの吹付けが弱くなってアークが不安定になる。一方、ヘマタイトが1.0%を超えると、溶接金属中の酸素量が多くなり、低温靭性が低下する。したがって、ヘマタイトは0.1〜1.0%とする。
[Hematite: 0.1 to 1.0%]
Hematite has the effect of stabilizing the arc. If hematite is less than 0.1%, the arc spray becomes weak and the arc becomes unstable. On the other hand, if hematite exceeds 1.0%, the amount of oxygen in the weld metal increases, and the low temperature toughness decreases. Therefore, hematite is 0.1 to 1.0%.

[Si:5〜10%]
Siは、金属Si、Fe−Si、Fe−Si−Mn等から添加され、溶接金属の脱酸を目的として使用されるが、特に、アークを安定にする働きが大きく、溶接作業性の確保の面からも必要である。Siが5%未満では、脱酸不足となって溶接金属の低温靭性が低下し、ブローホールが発生しやすくなる。また、アークが不安定となり、全姿勢溶接でビード形状が不良となり、特に、立向姿勢及び上向姿勢での溶接では継続が困難となる。一方、Siが10%を超えると、粒界に低融点酸化物を析出させ、溶接金属の低温靱性が低下する。したがって、Siは5〜10%とする。
[Si: 5 to 10%]
Si is added from metals Si, Fe-Si, Fe-Si-Mn, etc., and is used for the purpose of deoxidation of weld metal. In particular, it has a large function to stabilize the arc and ensures welding workability. It is necessary from the aspect. If Si is less than 5%, deoxidation is insufficient, the low temperature toughness of the weld metal is lowered, and blow holes are likely to occur. In addition, the arc becomes unstable, and the bead shape becomes poor in all-position welding, and in particular, it is difficult to continue in welding in a vertical posture and an upward posture. On the other hand, when Si exceeds 10%, a low melting point oxide is precipitated at the grain boundary, and the low temperature toughness of the weld metal is lowered. Therefore, Si is 5 to 10%.

[Mn:2.0〜6.5%]
Mnは、金属Mn、Fe−Mn、Fe−Si−Mn等から添加され、Siと同様に脱酸剤として添加する他、溶接金属の強度向上に有効である。Mnが2.0%未満では、溶接金属の強度が低下する。また、脱酸不足となって溶接金属中にブローホールが発生しやすくなる。一方、Mnが6.5%を超えると、溶接金属の強度が過剰に高くなり、低温靭性が低くなる。したがって、Mnは2.0〜6.5%とする。
[Mn: 2.0 to 6.5%]
Mn is added from metals Mn, Fe—Mn, Fe—Si—Mn, etc., and is added as a deoxidizer in the same manner as Si, and is effective in improving the strength of the weld metal. If Mn is less than 2.0%, the strength of the weld metal decreases. Also, deoxidation is insufficient and blow holes are likely to occur in the weld metal. On the other hand, if Mn exceeds 6.5%, the strength of the weld metal becomes excessively high and the low-temperature toughness becomes low. Therefore, Mn is set to 2.0 to 6.5%.

[Ni:0.8〜1.8%]
Niは、金属Niから添加され、溶接金属の強度及び低温靭性を向上させる元素である。Niが0.8%未満では、必要な溶接金属の強度及び低温靭性を確保することができない。一方、Niが1.8%を超えると、溶接金属の強度が過剰に高くなり、低温靭性が低下する。したがって、Niは0.8〜1.8%とする。
[Ni: 0.8 to 1.8%]
Ni is an element which is added from the metal Ni and improves the strength and low temperature toughness of the weld metal. If Ni is less than 0.8%, the required weld metal strength and low temperature toughness cannot be ensured. On the other hand, if Ni exceeds 1.8%, the strength of the weld metal becomes excessively high, and the low-temperature toughness decreases. Therefore, Ni is made 0.8 to 1.8%.

[Ti:0.5〜3.5%]
Tiは、金属Ti、Fe−Ti等から添加され、アークの電位傾度を低下させてアークを安定にする働きがある。また、脱酸剤として有効で、溶接金属中に歩留まって溶接金属のミクロ組織を微細化して低温靭性を向上させる働きがある。Tiが0.5%未満では、アークが不安定となるともに、アーク長が伸びて被覆剤の片溶けが発生しやすくなる。また、溶接金属のミクロ組織が微細化されず、溶接金属の低温靭性が低下する。一方、Tiが3.5%を超えると、溶接金属中のTi酸化物の析出が増加し、溶接金属の低温靱性が低下する。したがって、Tiは0.5〜3.5%とする。
[Ti: 0.5 to 3.5%]
Ti is added from metal Ti, Fe—Ti, or the like, and has a function of stabilizing the arc by reducing the potential gradient of the arc. Moreover, it is effective as a deoxidizer, and has a function of improving the low temperature toughness by yielding in the weld metal and refining the microstructure of the weld metal. When Ti is less than 0.5%, the arc becomes unstable and the arc length is increased, and the coating material is likely to be partially melted. Moreover, the microstructure of the weld metal is not refined, and the low temperature toughness of the weld metal is reduced. On the other hand, when Ti exceeds 3.5%, precipitation of Ti oxide in the weld metal increases, and the low temperature toughness of the weld metal decreases. Therefore, Ti is 0.5 to 3.5%.

[B合金及びB化合物:B換算値の1種または2種以上の合計で0.03〜0.15%]
Bは、Fe−B、Fe−Mn−Bや硼砂、硼酸ナトリウム等から添加され、溶接金属の焼き入れ性を高くして粒界フェライトの生成を抑制し、溶接金属の低温靭性の向上に有効である。B合金及びB化合物のB換算値の1種または2種以上の合計が0.03%未満では、Bによる粒界フェライトの抑制効果が働かず、フェライト粒が粗大になり、溶接金属の低温靭性が低下する。一方、B合金及びB化合物のB換算値の1種または2種以上の合計が0.15%を超えると、溶接金属が粗大なラス状組織になり、溶接金属の低温靭性が低下する。したがって、B合金及びB化合物のB換算値の1種または2種以上の合計は0.03〜0.15%とする。
[B alloy and B compound: 0.03 to 0.15% in total of one or more of B conversion values]
B is added from Fe-B, Fe-Mn-B, borax, sodium borate, etc., and enhances the hardenability of the weld metal to suppress the formation of intergranular ferrite and is effective in improving the low temperature toughness of the weld metal. It is. If the total of one or more of B conversion values of B alloy and B compound is less than 0.03%, the effect of suppressing grain boundary ferrite by B does not work, and the ferrite grains become coarse, and the low temperature toughness of the weld metal Decreases. On the other hand, when the total of one or more of B conversion values of the B alloy and the B compound exceeds 0.15%, the weld metal becomes a coarse lath structure, and the low temperature toughness of the weld metal is lowered. Accordingly, the total of one or more of the B converted values of the B alloy and the B compound is 0.03 to 0.15%.

[鉄粉:15〜35%]
鉄粉は、アークの電位傾度を低下させてアーク長を短くし、被覆剤の片溶けを防止する働きがあり、直流電源での溶接において非常に重要な原料である。鉄粉が15%未満では、アーク長が長くなって不安定となり、被覆剤の片溶けが発生する。一方、鉄粉が35%を超えると、溶接時後半に溶接棒が赤熱(以下、棒焼けという。)し、最後までの溶接が困難となる。したがって、鉄粉は15〜35%とする。
[Iron powder: 15-35%]
Iron powder is a very important raw material in welding with a DC power source because it reduces the arc potential gradient, shortens the arc length, and prevents partial melting of the coating material. If the iron powder is less than 15%, the arc length becomes long and unstable, and the coating material is partially melted. On the other hand, if the iron powder exceeds 35%, the welding rod becomes red hot (hereinafter referred to as “bar burning”) in the latter half of welding, and welding to the end becomes difficult. Therefore, the iron powder is 15 to 35%.

[被覆剤の軟鋼心線の外周への被覆率:低水素系被覆アーク溶接棒全質量に対する質量%で28〜42%]
軟鋼心線への被覆率(低水素系被覆アーク溶接棒全質量に対する質量%)は、被覆剤の片溶けや、スラグ状態に大きく影響する。被覆剤の被覆率が低水素系被覆アーク溶接棒全質量に対する質量%(以下、単に%という。)で28%未満では、被覆自体が脆くなり、被覆剤の片溶けが発生する。一方、被覆剤の被覆率が42%を超えると、スラグ量が過多となり、立向姿勢や上向姿勢溶接での継続が困難となる。したがって、軟鋼心線への被覆率は28〜42%とする。
[Coating ratio of coating material on the outer periphery of the mild steel core wire: 28 to 42% by mass% with respect to the total mass of the low hydrogen based arc welding rod]
The covering ratio (mass% with respect to the total mass of the low hydrogen-based coated arc welding rod) on the mild steel core wire greatly affects the melting of the coating material and the slag state. If the coating rate of the coating agent is less than 28% by mass% (hereinafter simply referred to as%) with respect to the total mass of the low hydrogen-based coated arc welding rod, the coating itself becomes brittle and partial melting of the coating occurs. On the other hand, when the coating rate of the coating agent exceeds 42%, the amount of slag becomes excessive, and it is difficult to continue the vertical posture or the upward posture welding. Therefore, the coverage to the mild steel core wire is 28 to 42%.

なお、本発明を適用した低水素系被覆アーク溶接棒の残部は、スラグ形成剤として、珪砂、水ガラスからの珪酸ソーダ及び珪酸カリウムの固質分等の1種以上を合計で15%以下、脱酸剤として、マグネシウム、アルミニウム、アルミマグネシウム等の1種以上を合計で3%以下、塗装剤としてアルギン酸ソーダ、マイカ等の1種以上を合計で4%以下、水ガラスのNa2O、K2O固質分及び不可避不純物である。
また、使用する軟鋼心線は、JIS G3523 SWY11を用いることが好ましいが、軟鋼心線中のCは、軟鋼心線の全質量に対する質量%で0.05〜0.08%が好ましい。Cの含有量は、強度を調整するために被覆剤からも適正に調整できるが、低水素系被覆アーク溶接棒全質量に対する質量%で、軟鋼心線と被覆剤の合計で0.06〜0.20%であることが好ましい。軟鋼心線のPは靭性を劣化するので、軟鋼心線の全質量に対する質量%で0.010%以下、Sはスラグの流動性を悪化させるので軟鋼心線の全質量に対する質量%で0.010%以下、NはBとの結合力が強く焼き入れ性を劣化させるので軟鋼心線の全質量に対する質量%で0.005%以下であることが好ましい。
In addition, the remainder of the low hydrogen-based coated arc welding rod to which the present invention is applied is a total of 15% or less of one or more solid substances such as silica sand, sodium silicate and potassium silicate from slag forming agent, As a deoxidizer, one or more of magnesium, aluminum, aluminum magnesium, etc. is 3% or less in total. As a coating agent, one or more of sodium alginate, mica, etc. is 4% or less in total, Na 2 O, K of water glass 2 O solid content and inevitable impurities.
Moreover, it is preferable to use JIS G3523 SWY11 for the mild steel core wire to be used, but C in the mild steel core wire is preferably 0.05 to 0.08% in mass% with respect to the total mass of the mild steel core wire. The content of C can be adjusted appropriately from the coating material in order to adjust the strength. However, the C content is mass% with respect to the total mass of the low hydrogen-based coated arc welding rod, and the total of the mild steel core wire and the coating material is 0.06 to 0. 20% is preferable. Since P of the mild steel core deteriorates toughness, it is 0.010% or less in terms of mass% with respect to the total mass of the mild steel core, and S deteriorates the fluidity of slag. Since 010% or less and N has a strong bonding force with B and deteriorates the hardenability, it is preferably 0.005% or less in terms of mass% with respect to the total mass of the mild steel core wire.

以下、本発明を適用した低水素系被覆アーク溶接棒の実施例にについて具体的に説明する。   Hereinafter, specific examples of the low hydrogen-based coated arc welding rod to which the present invention is applied will be described.

直径4.0mm、長さ400mmのJIS G3523 SWY11の軟鋼心線(C:0.06質量%、Si:0.01質量%、Mn:0.48質量%、P:0.009質量%、S:0.005質量%、N:0.0023質量%)の外周に、表1に示す成分組成の被覆剤を塗装した後、乾燥させて各種低水素系被覆アーク溶接棒を試作した。   JIS G3523 SWY11 soft steel core wire having a diameter of 4.0 mm and a length of 400 mm (C: 0.06 mass%, Si: 0.01 mass%, Mn: 0.48 mass%, P: 0.009 mass%, S : 0.005% by mass, N: 0.0023% by mass), a coating material having the composition shown in Table 1 was applied to the outer periphery and dried to produce various low hydrogen-based coated arc welding rods.

Figure 2016203253
Figure 2016203253

これら試作した各種被覆アーク溶接棒を用い、溶接作業性、溶接金属性能について調査を行った。   Using these various types of coated arc welding rods, we investigated the welding workability and weld metal performance.

溶接作業性の評価は、490MPa級鋼管(板厚:9mm、内径:150mm、開先角度:60°、ギャップ:1.0mm、ルートフェイス:1.0mm)の水平固定管に対し、各試作溶接棒6本を使用し、直流溶接機を用い、溶接電流123Aで上向姿勢から順次全姿勢の溶接を実施し、ビード形状及びアークの安定性、スラグ剥離性等を目視で調査した後、溶接欠陥については、JIS Z 3104に準じてX線透過試験を行った。   Welding workability was evaluated for each of the 490 MPa class steel pipes (plate thickness: 9 mm, inner diameter: 150 mm, groove angle: 60 °, gap: 1.0 mm, route face: 1.0 mm) for each prototype welding. Using 6 rods, using a DC welder, welding in all positions sequentially from the upward position with a welding current of 123A, and after visually examining the bead shape, arc stability, slag peelability, etc., welding About the defect, the X-ray transmission test was done according to JISZ3104.

溶接金属性能の評価は、490MPa級鋼(板厚20mm)を用い、JIZ Z3111に準じて直流溶接機で溶着金属を行い、引張試験片(A0号)と衝撃試験片(Vノッチ試験片)を採取して機械的性能を調査した。   Weld metal performance was evaluated by using 490MPa class steel (plate thickness 20mm), welding metal with DC welding machine according to JIZ Z3111, and using tensile test piece (A0) and impact test piece (V notch test piece). Samples were collected and examined for mechanical performance.

溶着金属の強度の評価は、引張強さが550〜650MPaを良好とした。靭性の評価は、試験温度−40℃でシャルピー衝撃試験を実施し、吸収エネルギーの3回の平均値が110J以上を良好とした。これらの試験結果を表2にまとめて示す。   The strength of the weld metal was evaluated as good when the tensile strength was 550 to 650 MPa. For the evaluation of toughness, a Charpy impact test was conducted at a test temperature of −40 ° C., and the average value of the absorbed energy three times was 110 J or more. These test results are summarized in Table 2.

Figure 2016203253
Figure 2016203253

表1、表2中の溶接棒No.1〜10が本発明例、溶接棒No.12〜22は比較例である。   In Tables 1 and 2, the welding rod No. 1 to 10 are examples of the present invention, welding rod Nos. 12 to 22 are comparative examples.

本発明例である溶接棒No.1〜No.10は、被覆剤中の金属炭酸塩の1種または2種以上の合計、金属弗化物の1種または2種以上の合計、ルチール、アルミナ、ジルコンサンド、酸化マグネシウム、ヘマタイト、Si、Mn、Ni、Ti、B合金及びB化合物のB換算値の1種または2種以上の合計及び鉄粉が適量で、被覆率も適正であるので、アークが安定して被覆剤の片溶けや棒焼けがなく、ビード形状及びスラグ剥離性も良好で、ブローホール等の溶接欠陥もなく、溶着金属の引張強さ及び吸収エネルギーも良好な値であり、極めて満足な結果であった。   The welding rod no. 1-No. 10 is a total of one or more metal carbonates in the coating, a total of one or more metal fluorides, rutile, alumina, zircon sand, magnesium oxide, hematite, Si, Mn, Ni , Ti, B alloy and B compound total of one or more of B conversion value and iron powder are appropriate amount and covering rate is also appropriate, so that the arc is stable and the coating material melts and burns In addition, the bead shape and slag peelability were good, there were no weld defects such as blowholes, and the tensile strength and absorbed energy of the deposited metal were also good values, which was a very satisfactory result.

溶接棒No.11は、金属炭酸塩の合計が少ないので、ブローホールが発生した。また、酸化マグネシウムが多いので、立向姿勢及び上向姿勢溶接でビード形状が凸状となった。さらに、Tiが少ないので、アーク長が長くなってアークが不安定になり、被覆剤の片溶けが発生し、溶着金属の吸収エネルギーが低かった。   Welding rod no. No. 11 had blowholes because the total amount of metal carbonate was small. Moreover, since there was much magnesium oxide, the bead shape became convex shape by standing posture and upward posture welding. Further, since Ti is small, the arc length becomes long, the arc becomes unstable, the coating material melts, and the absorbed energy of the deposited metal is low.

溶接棒No.12は、金属炭酸塩の合計が多いので、アークが不安定で、全姿勢溶接でビード形状が凸状となり、スラグ剥離性も不良であった。また、被覆率が低いので、被覆剤の片溶けが発生した。さらに、Siが多いので、溶着金属の吸収エネルギーが低かった。   Welding rod no. In No. 12, since the total amount of metal carbonate was large, the arc was unstable, the bead shape became convex in all-position welding, and the slag peelability was also poor. Moreover, since the coating rate was low, partial melting of the coating agent occurred. Furthermore, since there is much Si, the absorbed energy of the weld metal was low.

溶接棒No.13は、金属弗化物の合計が少ないので、全姿勢溶接でビード形状が不良であった。また、鉄粉が多いので、棒焼けが発生した。さらに、ヘマタイトが多いので、溶着金属の吸収エネルギーが低かった。   Welding rod no. No. 13 had a poor bead shape in all-position welding because the total amount of metal fluoride was small. In addition, because there was a lot of iron powder, bar burning occurred. Furthermore, since there is much hematite, the absorbed energy of the weld metal was low.

溶接棒No.14は、金属弗化物の合計が多いので、スラグ剥離性が不良であった。また、Siが少ないので、アークが不安定になり、全姿勢溶接でビード形状が不良となり、特に立向姿勢及び上向姿勢溶接では持続困難となった。さらに、溶着金属の吸収エネルギーが低く、ブローホールが発生した。   Welding rod no. No. 14 had a poor total slag removability because of the large amount of metal fluoride. Further, since the amount of Si is small, the arc becomes unstable, and the bead shape becomes poor in all position welding, and it becomes difficult to sustain particularly in the vertical position and upward position welding. Furthermore, the absorbed energy of the weld metal was low and blow holes were generated.

溶接棒No.15は、ルチールが少ないので、アークが不安定となり、全姿勢溶接でビード形状が不良であった。また、Mnが少ないので、溶着金属の引張強さが低く、ブローホールも発生した。   Welding rod no. In No. 15, since there was little rutile, the arc became unstable and the bead shape was poor in all-position welding. Moreover, since Mn was small, the tensile strength of the weld metal was low, and blow holes were also generated.

溶接棒No.16は、ルチールが多いので、立向及び上向姿勢溶接でビード形状が凸状となった。また、ヘマタイトが少ないので、アークが不安定であった。さらに、Mnが多いので、溶着金属の引張強さが高く、吸収エネルギーが低かった。   Welding rod no. Since No. 16 had a lot of rutile, the bead shape became convex by vertical and upward posture welding. Moreover, since there was little hematite, the arc was unstable. Furthermore, since there was much Mn, the tensile strength of the weld metal was high and the absorbed energy was low.

溶接棒No.17は、アルミナが少ないので、アークが不安定となり、全姿勢溶接でビード形状が不良であった。また、Niが少ないので、溶着金属の引張強さ及び吸収エネルギーが低かった。   Welding rod no. In No. 17, since the amount of alumina was small, the arc became unstable and the bead shape was poor in all-position welding. Moreover, since there was little Ni, the tensile strength and absorbed energy of the deposit metal were low.

溶接棒No.18は、アルミナが多いので、スラグ剥離性が不良であった。また、Niが多いので、溶着金属の引張強さが高く、吸収エネルギーが低かった。   Welding rod no. No. 18 was poor in slag removability because of the large amount of alumina. Moreover, since there was much Ni, the tensile strength of the weld metal was high and the absorbed energy was low.

溶接棒No.19は、ジルコンサンドが少ないので、被覆剤の片溶け及び被覆欠けが発生した。また、Tiが多いので、溶着金属の吸収エネルギーが低かった。   Welding rod no. In No. 19, since the zircon sand was small, partial melting of the coating agent and lack of coating occurred. Moreover, since there is much Ti, the absorbed energy of the weld metal was low.

溶接棒No.20は、ジルコンサンドが多いので、立向姿勢及び上向姿勢溶接でビード形状が凸状となった。また、B換算値の合計が少ないので、溶着金属の吸収エネルギーが低かった。   Welding rod no. No. 20 has a large amount of zircon sand, so that the bead shape became convex by welding in an upright posture and an upward posture. Moreover, since the total of B conversion value was small, the absorbed energy of the weld metal was low.

溶接棒No.21は、酸化マグネシウムが少ないので、被覆剤の片溶けが発生した。また、B換算値の合計が多いので、溶着金属の吸収エネルギーが低かった。   Welding rod no. No. 21 had a small amount of magnesium oxide, so that partial dissolution of the coating agent occurred. Moreover, since the total of B conversion values was large, the absorbed energy of the weld metal was low.

溶接棒No.22は、鉄粉が少ないので、アーク長が長く不安定となり、被覆剤の片溶けが発生した。また、被覆率が高いので、スラグ生成量が多くなり、立向姿勢及び上向姿勢溶接では持続困難であり、鋼板の一部のみ溶接して溶着金属試験は中止した。   Welding rod no. In No. 22, since there was little iron powder, arc length became long and became unstable, and the piece of coating material melted. Moreover, since the coverage was high, the amount of slag generation increased, and it was difficult to sustain in the vertical posture and upward posture welding. Only a part of the steel plate was welded, and the weld metal test was stopped.

Claims (1)

軟鋼心線に被覆剤が塗布されている低水素系被覆アーク溶接棒において、
被覆剤全質量に対する質量%で、
金属炭酸塩の1種または2種以上の合計:25〜45%、
金属弗化物の1種または2種以上の合計:5〜15%、
ルチール:2〜7%、
アルミナ:0.2〜2.0%、
ジルコンサンド:0.3〜1.5%、
酸化マグネシウム:0.1〜1.0%、
ヘマタイト:0.1〜1.0%、
Si:5〜10%、
Mn:2.0〜6.5%、
Ni:0.8〜1.8%、
Ti:0.5〜3.5%、
B合金及びB化合物:B換算値の1種または2種以上の合計で0.03〜0.15%、
鉄粉:15〜35%を含有し、
残部は、スラグ形成剤、脱酸剤、塗装剤、水ガラスの固質分及び不可避不純物からなる被覆剤を、前記軟鋼心線の外周に当該低水素系被覆アーク溶接棒全質量に対する質量%で、28〜42%の被覆率で塗布したことを特徴とする低水素系被覆アーク溶接棒。
In a low hydrogen-based coated arc welding rod with a coating applied to a mild steel core wire,
In mass% of the total mass of the coating
Total of one or more metal carbonates: 25 to 45%,
Total of one or more metal fluorides: 5 to 15%,
Lucille: 2-7%,
Alumina: 0.2-2.0%
Zircon sand: 0.3-1.5%
Magnesium oxide: 0.1 to 1.0%,
Hematite: 0.1-1.0%,
Si: 5 to 10%
Mn: 2.0 to 6.5%,
Ni: 0.8 to 1.8%,
Ti: 0.5 to 3.5%
B alloy and B compound: 0.03 to 0.15% in total of one or more of B conversion values,
Containing iron powder: 15-35%,
The remainder is a slag former, deoxidizer, coating agent, water glass solids and a coating composed of unavoidable impurities in mass% with respect to the total mass of the low hydrogen-based coated arc welding rod on the outer periphery of the mild steel core wire. A low hydrogen-based arc welding rod characterized by being applied at a coverage of 28 to 42%.
JP2016013465A 2015-04-24 2016-01-27 Low hydrogen coated arc welding rod Active JP6437471B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015089060 2015-04-24
JP2015089060 2015-04-24

Publications (2)

Publication Number Publication Date
JP2016203253A true JP2016203253A (en) 2016-12-08
JP6437471B2 JP6437471B2 (en) 2018-12-12

Family

ID=57488425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016013465A Active JP6437471B2 (en) 2015-04-24 2016-01-27 Low hydrogen coated arc welding rod

Country Status (1)

Country Link
JP (1) JP6437471B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019016817A1 (en) * 2017-07-20 2019-01-24 Zika Industries Ltd. Low manganese emitting welding flux
JP2021049576A (en) * 2019-09-26 2021-04-01 日鉄溶接工業株式会社 Iron powder low-hydrogen type coated electrode
JP2021058905A (en) * 2019-10-04 2021-04-15 日鉄溶接工業株式会社 Iron powder low-hydrogen type coated electrode
CN115213581A (en) * 2021-04-21 2022-10-21 天津市金桥焊材集团股份有限公司 High-toughness welding rod for X80 grade pipeline steel
CN116197573A (en) * 2023-04-26 2023-06-02 天津市金桥焊材集团股份有限公司 Low-alkalinity ocean engineering root welding electrode
JP7387450B2 (en) 2020-01-09 2023-11-28 日鉄溶接工業株式会社 Iron powder low hydrogen coated arc welding rod

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564994A (en) * 1978-11-10 1980-05-16 Kobe Steel Ltd Welding material
JPS5744497A (en) * 1980-08-11 1982-03-12 Kobe Steel Ltd Low hydrogen type covered arc welding rod
JPS5785696A (en) * 1980-11-18 1982-05-28 Kobe Steel Ltd Low hydrogen type coated electrode
JPH05111791A (en) * 1991-10-21 1993-05-07 Nippon Steel Corp Low hydrogen coated arc welding electrode
JPH0970690A (en) * 1995-09-08 1997-03-18 Kobe Steel Ltd Low hydrogen type coated arc electrode
JP2014036992A (en) * 2012-08-20 2014-02-27 Kobe Steel Ltd Low hydrogen type coated electrode
JP2014151338A (en) * 2013-02-07 2014-08-25 Kobe Steel Ltd Low hydrogen type covered electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564994A (en) * 1978-11-10 1980-05-16 Kobe Steel Ltd Welding material
JPS5744497A (en) * 1980-08-11 1982-03-12 Kobe Steel Ltd Low hydrogen type covered arc welding rod
JPS5785696A (en) * 1980-11-18 1982-05-28 Kobe Steel Ltd Low hydrogen type coated electrode
JPH05111791A (en) * 1991-10-21 1993-05-07 Nippon Steel Corp Low hydrogen coated arc welding electrode
JPH0970690A (en) * 1995-09-08 1997-03-18 Kobe Steel Ltd Low hydrogen type coated arc electrode
JP2014036992A (en) * 2012-08-20 2014-02-27 Kobe Steel Ltd Low hydrogen type coated electrode
JP2014151338A (en) * 2013-02-07 2014-08-25 Kobe Steel Ltd Low hydrogen type covered electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019016817A1 (en) * 2017-07-20 2019-01-24 Zika Industries Ltd. Low manganese emitting welding flux
JP2021049576A (en) * 2019-09-26 2021-04-01 日鉄溶接工業株式会社 Iron powder low-hydrogen type coated electrode
JP7210410B2 (en) 2019-09-26 2023-01-23 日鉄溶接工業株式会社 Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JP2021058905A (en) * 2019-10-04 2021-04-15 日鉄溶接工業株式会社 Iron powder low-hydrogen type coated electrode
JP7239437B2 (en) 2019-10-04 2023-03-14 日鉄溶接工業株式会社 Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JP7387450B2 (en) 2020-01-09 2023-11-28 日鉄溶接工業株式会社 Iron powder low hydrogen coated arc welding rod
CN115213581A (en) * 2021-04-21 2022-10-21 天津市金桥焊材集团股份有限公司 High-toughness welding rod for X80 grade pipeline steel
CN116197573A (en) * 2023-04-26 2023-06-02 天津市金桥焊材集团股份有限公司 Low-alkalinity ocean engineering root welding electrode

Also Published As

Publication number Publication date
JP6437471B2 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
JP6437471B2 (en) Low hydrogen coated arc welding rod
JP6177177B2 (en) Low hydrogen coated arc welding rod
JP5179073B2 (en) Flux-cored wire for gas shielded arc welding
JP6434387B2 (en) Low hydrogen coated arc welding rod
JP5890280B2 (en) Low hydrogen coated arc welding rod
JP5400472B2 (en) Flux cored wire
JP2012121051A (en) Flux-cored wire for gas shielded arc welding
JP2013158777A (en) Flux-cored wire for gas shield arc welding
JP2011025298A (en) Gas shielded arc welding method
JP2010253494A (en) Flux-cored wire
JP6437419B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6051086B2 (en) Low hydrogen coated arc welding rod
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6046022B2 (en) Low hydrogen coated arc welding rod
JP2010064087A (en) Flux cored wire for gas-shielded arc welding
JP6084948B2 (en) Flux-cored wire for gas shielded arc welding
JP2020168651A (en) COATED ARC WELDING ELECTRODE FOR 9% Ni STEEL WELDING
JP2015205304A (en) Flux-cored wire for gas shield arc welding
JP7387450B2 (en) Iron powder low hydrogen coated arc welding rod
JP5157653B2 (en) Low hydrogen type coated arc welding rod for DC power welding machine
JP6641084B2 (en) Low hydrogen coated arc welding rod with excellent resistance to bar burn during welding
JP2007216282A (en) Flux-cored wire for self-shielded arc welding
JP2014065066A (en) Flux cored wire for horizontal gas shielded arc welding
JP2017170515A (en) Flux-cored wire for gas shield arc welding
JP5455422B2 (en) Low hydrogen coated arc welding rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181114

R150 Certificate of patent or registration of utility model

Ref document number: 6437471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250