JP2010238806A - Soft magnetic metal material component with improved corrosion resistance, and method of manufacturing the same - Google Patents

Soft magnetic metal material component with improved corrosion resistance, and method of manufacturing the same Download PDF

Info

Publication number
JP2010238806A
JP2010238806A JP2009083320A JP2009083320A JP2010238806A JP 2010238806 A JP2010238806 A JP 2010238806A JP 2009083320 A JP2009083320 A JP 2009083320A JP 2009083320 A JP2009083320 A JP 2009083320A JP 2010238806 A JP2010238806 A JP 2010238806A
Authority
JP
Japan
Prior art keywords
mass
oxide film
soft magnetic
corrosion resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009083320A
Other languages
Japanese (ja)
Other versions
JP5183550B2 (en
Inventor
Tomoharu Shigetomi
智治 重富
Junichi Katsuki
淳一 香月
Hiroshi Morikawa
広 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2009083320A priority Critical patent/JP5183550B2/en
Publication of JP2010238806A publication Critical patent/JP2010238806A/en
Application granted granted Critical
Publication of JP5183550B2 publication Critical patent/JP5183550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the corrosion resistance of a product which is made of a soft magnetic stainless steel and is magnetically annealed. <P>SOLUTION: A soft magnetism metal material component uses the soft magnetic stainless steel which has an oxide film in which the thickness of the oxide film measured by the glow discharge light emission analysis method (GDS) is ≥0.5 μm, and the analysis strength of Ti in the oxide film is ≥20 times of the base material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、モータ,電磁弁,磁気センサーなどに使用される軟磁性ステンレス鋼であって、磁気焼鈍後の鋼板表面の酸化皮膜の組成と厚みを抑制することで、耐食性を改善した軟磁性金属材料部品に関するものである。     The present invention is a soft magnetic stainless steel for use in motors, solenoid valves, magnetic sensors, etc., which has improved corrosion resistance by suppressing the composition and thickness of the oxide film on the surface of the steel sheet after magnetic annealing. It relates to material parts.

ステンレス鋼はその優れた耐食性により様々な用途で利用されており、フェライト系ステンレス鋼は軟磁性金属材料としても利用されている。軟磁性金属材料に特有の製造方法に、部品形状に加工された後で磁気的性質を回復するため、加工歪みの除去と結晶粒の粗大化を目的に磁気焼鈍と呼ばれる熱処理がある。フェライト系軟磁性ステンレス鋼の磁気焼鈍では900℃を超える焼鈍温度で1h以上の長時間の加熱が行われる。このとき、Tiを含有するフェライト系軟磁性ステンレス鋼を用いると、鋼板表面にTiを含有する酸化皮膜が形成され、本来耐食性の向上にも寄与するTiが酸化皮膜として消費されるため耐食性の劣化を伴う場合がある。   Stainless steel is used in various applications due to its excellent corrosion resistance, and ferritic stainless steel is also used as a soft magnetic metal material. A manufacturing method peculiar to soft magnetic metal materials includes a heat treatment called magnetic annealing for the purpose of removing processing strain and coarsening crystal grains in order to recover magnetic properties after being processed into a part shape. In the magnetic annealing of ferritic soft magnetic stainless steel, heating for a long time of 1 h or more is performed at an annealing temperature exceeding 900 ° C. At this time, if ferritic soft magnetic stainless steel containing Ti is used, an oxide film containing Ti is formed on the surface of the steel sheet, and Ti that originally contributes to an improvement in corrosion resistance is consumed as an oxide film, resulting in deterioration of corrosion resistance. May be accompanied.

このような磁気焼鈍による酸化皮膜の生成とそれに伴う耐食性の劣化を回避する方法としては、CrやMoなどの増量で素材の耐食性を向上することや、Tiの添加を避けることが考えられる。その様な方法は例えば特許文献1〜3に開示されたフェライト系軟磁性ステンレス鋼の成分を調整することで達成される。   As a method for avoiding the generation of an oxide film by such magnetic annealing and the accompanying deterioration in corrosion resistance, it is conceivable to improve the corrosion resistance of the material by increasing the amount of Cr, Mo or the like, or to avoid the addition of Ti. Such a method is achieved, for example, by adjusting the components of the ferritic soft magnetic stainless steel disclosed in Patent Documents 1 to 3.

特開2002−226954JP 2002-226594 A 特開平10−36950JP 10-36950 A 特開平09−263902JP 09-263902

しかしながら、CrやMoなどの合金元素の添加量の増大は飽和磁束密度の低下を招くため、用途によってはできる限り合金元素の添加量を低くすることが望まれる。また、Tiは耐食性の改善とともにフェライト組織を安定させる目的でも有効な元素であり、特にCr含有量が10〜13質量%のCr含有量の低いフェライト系軟磁性ステンレス鋼においては、むしろTiの添加は必須である。   However, an increase in the addition amount of alloy elements such as Cr and Mo leads to a decrease in saturation magnetic flux density. Therefore, depending on the application, it is desired to reduce the addition amount of alloy elements as much as possible. Ti is an effective element for the purpose of improving the corrosion resistance and stabilizing the ferrite structure. In particular, in the case of a ferrite soft magnetic stainless steel having a Cr content of 10 to 13 mass% and a low Cr content, the addition of Ti is rather preferable. Is essential.

このように、10〜13質量%のCrと0.1〜0.3質量%Tiの添加を前提として、磁気焼鈍後の耐食性を改善するため、発明者等は新たに磁気焼鈍時に生成する鋼板の表面酸化皮膜の制御を試みた。
すなわち、磁気焼鈍時に酸化皮膜の生成を抑制するのではなく、積極的に酸化皮膜を生成することを特徴とし、GDSで測定される鋼板表面の酸化皮膜の厚みを0.5μm以上とし、酸化皮膜中のTiの強度が母材の20倍以上の組成からなる酸化皮膜を特徴とするフェライト系軟磁性ステンレス鋼を用いた軟磁性金属材料部品を提案する。
Thus, in order to improve the corrosion resistance after magnetic annealing on the premise of addition of 10 to 13% by mass of Cr and 0.1 to 0.3% by mass of Ti, the inventors newly developed a steel plate generated during magnetic annealing. Attempts were made to control the surface oxide film.
That is, it is characterized in that the oxide film is not actively suppressed during magnetic annealing, but is actively generated, and the thickness of the oxide film on the surface of the steel sheet measured by GDS is 0.5 μm or more. A soft magnetic metal material part using a ferrite soft magnetic stainless steel characterized by an oxide film having a composition in which the strength of Ti is 20 times or more that of the base metal is proposed.

ステンレス鋼表面に形成されたTi主体の酸化皮膜によって磁気焼鈍された製品の耐食性が改善される。   The corrosion resistance of the magnetically annealed product is improved by the Ti-based oxide film formed on the stainless steel surface.

図1は各皮膜厚み・皮膜中のTiの分析強度比における発銹状況を示す図である。FIG. 1 is a diagram showing the glazing state in each film thickness and the analytical strength ratio of Ti in the film. 焼鈍温度と皮膜厚みの関係である。It is the relationship between annealing temperature and film thickness.

発明者等は低CrかつTiを添加したフェライト系軟磁性ステンレス鋼を用いて様々な磁気焼鈍条件による表面改質を試みた結果以下の知見を得た。
まず、素材の成分限定理由について述べる。
C:0.02質量%以下
Cは炭化物を形成して耐食性および磁気的性質を劣化する元素であるため、その上限を0.02質量%とした。
Si:0.2〜2.0質量%
Siはフェライト組織を安定化するとともに素材の電気抵抗率を向上し、磁気的性質の改善に有効な元素でありその効果を得るため0.2質量%以上の添加とした。しかしながら、過剰の添加は素材を硬質化して加工性を劣化するためその上限を2.0質量%とした。
The inventors obtained the following knowledge as a result of attempting surface modification under various magnetic annealing conditions using low-Cr and Ti-added ferritic soft magnetic stainless steel.
First, the reasons for limiting the ingredients of the material will be described.
C: 0.02% by mass or less C is an element that forms carbides and deteriorates corrosion resistance and magnetic properties, so the upper limit was made 0.02% by mass.
Si: 0.2-2.0 mass%
Si stabilizes the ferrite structure and improves the electrical resistivity of the material, and is an effective element for improving the magnetic properties. However, excessive addition hardens the material and degrades workability, so the upper limit was made 2.0 mass%.

Mn:0.5質量%以下
Mnはフェライト組織の安定化を阻害するとともに、硫化物を形成し易く磁気的性質を劣化するためその上限を0.5質量%とした。
P:0.05質量%以下
Pは燐化物を形成して磁気的性質を劣化する元素であるため、その上限を0.05質量%とした。
S:0.005質量%以下
Sは硫化物を形成して磁気的性質を劣化する元素であるため、その上限を0.005質量%とした。
Ni:0.5質量%以下
Niはフェライト組織の安定化を阻害し磁気的性質を劣化するためその上限を0.5質量%とした。
Mn: 0.5% by mass or less Mn inhibits the stabilization of the ferrite structure, and easily forms sulfides and deteriorates the magnetic properties, so the upper limit was made 0.5% by mass.
P: 0.05% by mass or less Since P is an element that forms a phosphide and deteriorates the magnetic properties, the upper limit is set to 0.05% by mass.
S: 0.005 mass% or less Since S is an element that forms sulfides and degrades magnetic properties, the upper limit was made 0.005 mass%.
Ni: 0.5% by mass or less Ni has an upper limit of 0.5% by mass because it inhibits the stabilization of the ferrite structure and deteriorates the magnetic properties.

Cr:10〜13質量%
Crは耐食性を向上するための必須元素であるとともに、フェライト組織を安定化する効果ももつ。その効果を得るため10質量%以上の添加とした。一方で過剰の添加は飽和磁束密度の低下を招くためその上限を13質量%とした。本発明はCrを過剰に添加しない条件で耐食性を改善することを特徴とする。
Al:0.01〜2.0質量%以下
AlはSiと同様にフェライト組織を安定化するとともに素材の電気抵抗率を向上し、磁気的性質の改善に有効な元素である。しかしながら、過剰の添加は素材を硬質化して加工性を劣化するためその上限を2.0質量%とした。
Ti:0.1〜0.3質量%
Tiは耐食性を改善するとともにフェライト組織の安定化にも有効な元素である。また、本発明では表面改質に有効な元素でありその効果を得るためその効果を得るため0.1質量%以上の添加とした。一方、過剰な添加は表面疵の増大など鋼材の品質を劣化するためその上限を0.3質量%とした。
Cr: 10-13 mass%
Cr is an essential element for improving the corrosion resistance and also has an effect of stabilizing the ferrite structure. In order to acquire the effect, it added to 10 mass% or more. On the other hand, excessive addition causes a decrease in saturation magnetic flux density, so the upper limit was made 13 mass%. The present invention is characterized in that the corrosion resistance is improved under the condition that Cr is not added excessively.
Al: 0.01 to 2.0% by mass or less Al, like Si, is an element that stabilizes the ferrite structure and improves the electrical resistivity of the material and is effective in improving magnetic properties. However, excessive addition hardens the material and degrades workability, so the upper limit was made 2.0 mass%.
Ti: 0.1 to 0.3% by mass
Ti is an element that improves corrosion resistance and is effective in stabilizing the ferrite structure. Further, in the present invention, it is an element effective for surface modification, and in order to obtain the effect, the addition was made 0.1% by mass or more. On the other hand, excessive addition deteriorates the quality of the steel material, such as an increase in surface defects, so the upper limit was made 0.3 mass%.

N:0.02質量%以下
Nは窒化物を形成して磁気的性質を劣化する元素であるため、その上限を0.02質量%とした。
N: 0.02% by mass or less Since N is an element that forms a nitride and deteriorates magnetic properties, the upper limit is set to 0.02% by mass.

次に磁気焼鈍時の表面改質方法について述べる。
本発明では磁気焼鈍の雰囲気を真空中とするが、0.1Paより低い真空度では磁気焼鈍時に酸化皮膜の生成が軽減され僅かながら残存する酸化皮膜が耐食性を劣化する。一方、1.0Paを超える真空度では磁気焼鈍時に過剰に酸化し、耐食性の劣るFe系酸化物の生成が考えられる。またその後の使用環境において皮膜の剥離などが懸念される。そのため適正真空度を0.1〜1.0Paとした。
Next, the surface modification method during magnetic annealing will be described.
In the present invention, the atmosphere of magnetic annealing is in a vacuum, but when the degree of vacuum is lower than 0.1 Pa, the formation of an oxide film is reduced during magnetic annealing, and the remaining oxide film slightly deteriorates the corrosion resistance. On the other hand, when the degree of vacuum exceeds 1.0 Pa, it may be excessively oxidized during magnetic annealing, and the formation of Fe-based oxides with poor corrosion resistance can be considered. Moreover, there is a concern about peeling of the film in the subsequent use environment. Therefore, the appropriate degree of vacuum is set to 0.1 to 1.0 Pa.

磁気焼鈍温度については、920℃に満たない温度では本発明で提案する十分な厚さの酸化皮膜が得られないことと、磁気焼鈍は前工程で導入された加工歪みを再結晶によって除去する目的を有するため920℃以上の温度を必要とする。980℃を超えると本発明の皮膜組成が得られないことと焼鈍費用が増大するだけである。そのため温度範囲は920〜980℃とした。均熱時間については酸化皮膜の十分な成長と磁気焼鈍の本来の目的である結晶粒の粗大化を考慮して2h以上とした。均熱時間の上限は焼鈍コストを考慮すると4h程度までで十分である。   Regarding the magnetic annealing temperature, an oxide film with a sufficient thickness proposed in the present invention cannot be obtained at a temperature lower than 920 ° C., and the purpose of magnetic annealing is to remove the processing strain introduced in the previous step by recrystallization. Therefore, a temperature of 920 ° C. or higher is required. If it exceeds 980 ° C., the film composition of the present invention cannot be obtained and the annealing cost only increases. Therefore, the temperature range was 920 to 980 ° C. The soaking time was set to 2 hours or more in consideration of sufficient growth of the oxide film and coarsening of crystal grains, which is the original purpose of magnetic annealing. The upper limit of the soaking time is sufficient up to about 4 h in consideration of the annealing cost.

本発明においては、磁気焼鈍によって得られる鋼板表面の酸化皮膜はGDSで測定される厚みが0.5μm以上であり、GDSで測定される酸化皮膜中のTiの強度が母材の20倍以上であることを特徴とする。このとき、酸化皮膜の厚みはGDSにより得られるFeの深さ方向の強度変化から定量化した。すなわち、ステンレス鋼素材のスパッタ深さを実測して得られたスパッタ時間とスパッタ深さの関係を基準として、酸化皮膜厚みの2倍以上の深さまで分析を行った。本発明の酸化皮膜はTiおよびAlを主体としているため、酸化皮膜中には殆どFeは検出されず母材に近づくにともないFeの分析強度が大きくなる。そこでFeの分析強度が母材と比較して1/2となる位置を酸化皮膜の厚みと定義した。次に、皮膜組成については酸化皮膜中の各元素の分析強度を母材中の分析強度で除した値を分析強度比として定義した。このとき酸化皮膜中で深さ方向に各元素の強度比は変化するためその平均値を用いた。   In the present invention, the oxide film on the surface of the steel sheet obtained by magnetic annealing has a thickness measured by GDS of 0.5 μm or more, and the strength of Ti in the oxide film measured by GDS is 20 times or more that of the base material. It is characterized by being. At this time, the thickness of the oxide film was quantified from the intensity change in the depth direction of Fe obtained by GDS. That is, the analysis was performed up to a depth of twice or more the oxide film thickness on the basis of the relationship between the sputtering time and the sputtering depth obtained by actually measuring the sputtering depth of the stainless steel material. Since the oxide film of the present invention is mainly composed of Ti and Al, almost no Fe is detected in the oxide film, and the analytical strength of Fe increases as it approaches the base material. Therefore, the position where the analytical strength of Fe is ½ compared to the base metal is defined as the thickness of the oxide film. Next, with respect to the film composition, the value obtained by dividing the analytical strength of each element in the oxide film by the analytical strength in the base material was defined as the analytical strength ratio. At this time, since the intensity ratio of each element changes in the depth direction in the oxide film, the average value was used.

図1は、温度、均熱時間を各々変えて磁気焼鈍した際に得られた酸化皮膜の厚みと皮膜中のTiの分析強度比と、5%NaCl、35℃の塩水噴霧試験により腐食試験した際の発銹の有無を示したものである。発銹の起こらない皮膜としては、厚みが0.5μm以上、Tiの分析強度比が20以上である必要があることがわかる。
図2には、本発明に係る鋼材を各温度にて均熱時間2h、真空度0.1Paで磁気焼鈍した際に得られた鋼板表面の酸化皮膜の厚みと発銹の有無を示したものである。920〜980℃の領域では発銹が認められない。920℃を下回る均熱温度の場合、耐食性を発揮するために必要な酸化皮膜の厚みがえられなかったため、発銹が認められた。また、980℃を超えた場合には、酸化皮膜の厚みは十分なものの皮膜中のTi濃度が低く、やはり発銹が認められた。
FIG. 1 shows the corrosion test by the thickness of the oxide film and the analytical strength ratio of Ti in the film obtained by magnetic annealing at different temperatures and soaking times, and a salt spray test of 5% NaCl at 35 ° C. This shows the presence or absence of the occurrence of the event. It can be seen that the film that does not generate wrinkles needs to have a thickness of 0.5 μm or more and an analytical strength ratio of Ti of 20 or more.
FIG. 2 shows the thickness of the oxide film on the surface of the steel sheet obtained when the steel according to the present invention is magnetically annealed at each temperature at a soaking time of 2 h and a degree of vacuum of 0.1 Pa. It is. In the range of 920 to 980 ° C., no soot is observed. In the case of a soaking temperature lower than 920 ° C., the thickness of the oxide film necessary for exhibiting corrosion resistance could not be obtained, and thus glazing was observed. Moreover, when it exceeded 980 degreeC, although the thickness of the oxide film was sufficient , the Ti density | concentration in a film | membrane was low, and also the generation | occurrence | production was recognized.

表1に示すフェライト系ステンレス鋼板を、通常の溶製,熱間圧延,熱延板焼鈍,冷間圧延および仕上げ焼鈍と酸洗を経て板厚0.5mmに製造し、表2に示す条件で磁気焼鈍を行った。   The ferritic stainless steel sheet shown in Table 1 is manufactured to a sheet thickness of 0.5 mm through ordinary melting, hot rolling, hot rolled sheet annealing, cold rolling, finish annealing and pickling, and under the conditions shown in Table 2. Magnetic annealing was performed.

Figure 2010238806
Figure 2010238806

表2にはGDSで測定された磁気焼鈍後の鋼板の表面の皮膜厚みと、皮膜組成、および磁気焼鈍後の耐食試験結果と磁気的性質を示す。耐食性の評価は幅40mm,長さ60mmの試験片を用いて5%NaCl、35℃の塩水噴霧試験により行い、発銹点が認められない場合を記号○、発銹が認められた場合を記号×で示した。磁気的性質は印加磁場0.8kA/mとして保磁力を測定した。   Table 2 shows the film thickness on the surface of the steel sheet after magnetic annealing, the film composition, the corrosion test result after magnetic annealing, and the magnetic properties measured by GDS. Corrosion resistance is evaluated by a salt spray test at 5% NaCl and 35 ° C using a test piece with a width of 40 mm and a length of 60 mm. Symbol ○ indicates that no sprung point is observed, symbol indicates that sprout is observed Indicated by ×. The magnetic properties were measured for coercive force with an applied magnetic field of 0.8 kA / m.

Figure 2010238806
Figure 2010238806

磁気焼鈍温度が低い試料No.5、均熱時間が短い試料No.6,No.7および真空度が低い試料No.9は酸化皮膜の厚みが本発明の条件を満足しなかった。均熱時間を0とした試料No.4は皮膜厚みと皮膜組成が何れも本発明の条件を満たさなかった。焼鈍温度が高い試料No.8は酸化皮膜の厚みは十分であったが、酸化皮膜の組成が本発明の条件を満足しなかった。その結果、試料No.5〜9では発銹が認められた。
また、焼鈍温度が低い試料No.5および均熱時間を0とした試料No.6は他と比較して保磁力が2倍大きく磁気的性質も劣った。
Sample No. with low magnetic annealing temperature 5. Sample No. 5 with a short soaking time. 6, no. 7 and sample No. In No. 9, the thickness of the oxide film did not satisfy the conditions of the present invention. Sample No. with a soaking time of 0 was set. No. 4 film thickness and film composition did not satisfy the conditions of the present invention. Sample No. with high annealing temperature. In No. 8, the thickness of the oxide film was sufficient, but the composition of the oxide film did not satisfy the conditions of the present invention. As a result, sample no. On 5-9, bruising was observed.
In addition, Sample No. with a low annealing temperature was used. Sample No. 5 with a soaking time of 0 and a soaking time of 0. No. 6 had twice the coercive force and was inferior in magnetic properties.

本発明によれば、モータ,電磁弁,磁気センサーなどに使用される軟磁性金属材料として耐食性を改善した軟磁性金属材料部品を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the soft-magnetic metal material component which improved corrosion resistance can be provided as a soft-magnetic metal material used for a motor, a solenoid valve, a magnetic sensor, etc.

Claims (3)

グロー放電発光分析法(GDS)で測定した酸化皮膜の厚みが0.5μm以上であり、酸化皮膜中のTiの分析強度が母材の20倍以上からなる酸化皮膜を有する軟磁性ステンレス鋼を用いた軟磁性金属材料部品。   Uses soft magnetic stainless steel having an oxide film thickness of 0.5 μm or more measured by glow discharge emission spectrometry (GDS) and an oxide film in which the analytical strength of Ti in the oxide film is 20 times that of the base material Soft magnetic metal material parts. C:0.02質量%以下、Si:0.2〜2.0質量%、Mn:0.5質量%以下、P:0.05質量%以下、S:0.005質量%以下、Ni:0.5質量%以下、Cr:10〜13質量%、Al:0.01〜2.0質量%以下、Ti:0.1〜0.3質量%、N:0.02質量%以下を含有し、残部がFeおよび不可避的不純物からなる請求項1に記載の軟磁性ステンレス鋼部品。   C: 0.02 mass% or less, Si: 0.2-2.0 mass%, Mn: 0.5 mass% or less, P: 0.05 mass% or less, S: 0.005 mass% or less, Ni: 0.5 mass% or less, Cr: 10-13 mass%, Al: 0.01-2.0 mass% or less, Ti: 0.1-0.3 mass%, N: 0.02 mass% or less The soft magnetic stainless steel part according to claim 1, wherein the balance is made of Fe and inevitable impurities. 真空度0.1〜1.0Paの雰囲気中で温度920〜980℃、均熱2h以上の磁気焼鈍を行うことを特徴とする請求項2に記載の軟磁性金属材料部品の製造方法。   The method for producing a soft magnetic metal material part according to claim 2, wherein magnetic annealing is performed at a temperature of 920 to 980 ° C and a soaking temperature of 2 hours or more in an atmosphere having a degree of vacuum of 0.1 to 1.0 Pa.
JP2009083320A 2009-03-30 2009-03-30 Soft magnetic metal material parts with improved corrosion resistance and manufacturing method thereof Active JP5183550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009083320A JP5183550B2 (en) 2009-03-30 2009-03-30 Soft magnetic metal material parts with improved corrosion resistance and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009083320A JP5183550B2 (en) 2009-03-30 2009-03-30 Soft magnetic metal material parts with improved corrosion resistance and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010238806A true JP2010238806A (en) 2010-10-21
JP5183550B2 JP5183550B2 (en) 2013-04-17

Family

ID=43092896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009083320A Active JP5183550B2 (en) 2009-03-30 2009-03-30 Soft magnetic metal material parts with improved corrosion resistance and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5183550B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152854A1 (en) * 2015-03-26 2016-09-29 新日鐵住金ステンレス株式会社 Stainless steel having excellent brazeability
CN110212712A (en) * 2017-07-15 2019-09-06 芜湖乾凯材料科技有限公司 Electric machine iron core of low stress and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186829A (en) * 1991-07-29 1993-07-27 Kenichi Arai Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation
JPH08193219A (en) * 1995-01-13 1996-07-30 Nisshin Steel Co Ltd Stainless steel excellent in antibacterial characteristic and its production
JPH10121137A (en) * 1996-10-21 1998-05-12 Nkk Corp Production of silicon steel sheet, and silicon steel sheet
JP2001240911A (en) * 2000-03-01 2001-09-04 Nisshin Steel Co Ltd Stainless steel-made member to be red-heated and its producing method
JP2006037220A (en) * 2004-06-23 2006-02-09 Nippon Steel & Sumikin Stainless Steel Corp High chromium steel having excellent coating film adhesion and corrosion resistance under coating
JP2007051314A (en) * 2005-08-16 2007-03-01 Nippon Steel Corp Grain-oriented electromagnetic steel sheet with film having superior adhesiveness, and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186829A (en) * 1991-07-29 1993-07-27 Kenichi Arai Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation
JPH08193219A (en) * 1995-01-13 1996-07-30 Nisshin Steel Co Ltd Stainless steel excellent in antibacterial characteristic and its production
JPH10121137A (en) * 1996-10-21 1998-05-12 Nkk Corp Production of silicon steel sheet, and silicon steel sheet
JP2001240911A (en) * 2000-03-01 2001-09-04 Nisshin Steel Co Ltd Stainless steel-made member to be red-heated and its producing method
JP2006037220A (en) * 2004-06-23 2006-02-09 Nippon Steel & Sumikin Stainless Steel Corp High chromium steel having excellent coating film adhesion and corrosion resistance under coating
JP2007051314A (en) * 2005-08-16 2007-03-01 Nippon Steel Corp Grain-oriented electromagnetic steel sheet with film having superior adhesiveness, and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152854A1 (en) * 2015-03-26 2016-09-29 新日鐵住金ステンレス株式会社 Stainless steel having excellent brazeability
CN107406945A (en) * 2015-03-26 2017-11-28 新日铁住金不锈钢株式会社 The excellent stainless steel of soldering
JPWO2016152854A1 (en) * 2015-03-26 2017-12-21 新日鐵住金ステンレス株式会社 Stainless steel with excellent brazeability
CN107406945B (en) * 2015-03-26 2019-12-03 新日铁住金不锈钢株式会社 The excellent stainless steel of soldering property
US10669606B2 (en) 2015-03-26 2020-06-02 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel having excellent brazeability
CN110212712A (en) * 2017-07-15 2019-09-06 芜湖乾凯材料科技有限公司 Electric machine iron core of low stress and preparation method thereof
CN110212712B (en) * 2017-07-15 2021-09-07 芜湖乾凯材料科技有限公司 Low-stress motor iron core and preparation method thereof

Also Published As

Publication number Publication date
JP5183550B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP6370276B2 (en) High Al content damping ferritic stainless steel material and manufacturing method
JP2022507339A (en) Non-magnetic austenitic stainless steel and its manufacturing method
WO2015166729A1 (en) Martensitic stainless-steel sheet and metal gasket
WO2017030063A1 (en) Vibration-damping ferritic stainless steel material, and production method
JP5324149B2 (en) Corrosion resistant austenitic stainless steel
WO2016039429A1 (en) Austenitic stainless steel sheet which is not susceptible to diffusion bonding
JP5183550B2 (en) Soft magnetic metal material parts with improved corrosion resistance and manufacturing method thereof
JP2008038191A (en) Austenitic stainless steel and its production method
JP2003301245A (en) Precipitation hardening soft magnetic ferritic stainless steel
WO2019097691A1 (en) Austenitic stainless steel sheet and method for producing same
JP2005089850A (en) High strength ferritic stainless steel
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JP2013049918A (en) Electromagnetic stainless steel and method of manufacturing the same
JP2004099926A (en) High-strength soft magnetic stainless steel and method for manufacturing the same
JP6587881B2 (en) Ferritic stainless steel wire for fastening parts
JP5110637B2 (en) Hysteresis motor and method for manufacturing hysteresis motor rotor
JP5500840B2 (en) Soft magnetic stainless steel with improved design and manufacturing method thereof
JP2021161469A (en) Ferritic stainless steel
JP2011190523A (en) Ferrite single phase stainless steel sheet having excellent corrosion resistance in weld heat affected zone
JP2020125518A (en) Al-containing ferritic stainless steel sheet and method for producing the same
WO2022124215A1 (en) Ferritic stainless steel sheet and production method
JP2007039741A (en) High-manganese stainless steel having superior stress corrosion cracking resistance
JP6983321B2 (en) Austenitic stainless steel
JP3561922B2 (en) Manufacturing method of soft magnetic stainless steel
JP2006510799A (en) Low frequency magnetic shield made from soft magnetic alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130115

R150 Certificate of patent or registration of utility model

Ref document number: 5183550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250