JP2010238784A - 半導体素子およびその製造方法 - Google Patents

半導体素子およびその製造方法 Download PDF

Info

Publication number
JP2010238784A
JP2010238784A JP2009082857A JP2009082857A JP2010238784A JP 2010238784 A JP2010238784 A JP 2010238784A JP 2009082857 A JP2009082857 A JP 2009082857A JP 2009082857 A JP2009082857 A JP 2009082857A JP 2010238784 A JP2010238784 A JP 2010238784A
Authority
JP
Japan
Prior art keywords
layer
metal layer
metal
silver
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009082857A
Other languages
English (en)
Inventor
Toshiaki Morita
俊章 守田
Takeshi Takahashi
高橋  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2009082857A priority Critical patent/JP2010238784A/ja
Publication of JP2010238784A publication Critical patent/JP2010238784A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

【課題】安価に作製できて、空隙の発生を抑止可能な半導体素子の構成と製造方法とを提供する。
【解決手段】化合物半導体結晶層2の一方の主表面に形成された第1金属層51と、導電性基板6の一方の主表面に形成された第2金属層53とを、液状またはペースト状の物質中に分散された酸化銀粒子を還元処理することにより得られる銀系接合層52を介して接合する。
【選択図】図1

Description

本発明は、化合物半導体結晶層と導電性基板とが金属層を介して接合された構造を有する発光ダイオードの構成とその製造方法とに係り、特に、金属層の構成およびこれを用いた化合物半導体結晶層と導電性基板との接合方法とに関する。
AlGaInP系材料、AlGaAs系材料またはAlGaInN系材料を発光層に用いた発光ダイオードは、各種情報機器、家電装置、産業用装置および自動車の表示用光源等として、ますます市場が拡大している。これらの各発光ダイオード、特に、AlGaInPを発光層に用いた発光ダイオードについては、輝度向上の観点から、発光ダイオード用の化合物半導体結晶層とSi等の導電性基板とを金属層を介して接合させた構造が盛んに検討されている(例えば、特許文献1および特許文献2参照)。
図3に、従来知られているこの種の発光ダイオードの断面構造を示す。この図から明らかなように、本例の発光ダイオードは、化合物半導体結晶層2と導電性基板6とを、金属層5を介して接合させた構造になっている。化合物半導体結晶層2は、主に、第1クラッド層21、活性層22および第2クラッド層23から構成される。化合物半導体結晶層2の接合部側の表面には、光透過性膜3と部分オーミック電極4が形成される。化合物半導体結晶層2の光放射側の表面には第1電極1が、導電性基板6の接合部と反対側の表面(裏面)には第2電極7がそれぞれ形成される。第1電極1と第2電極7は、化合物半導体結晶層2および導電性基板6とオーミック接触している。金属層5は、単層または多層で構成され、化合物半導体結晶層2と導電性基板6の接合層としての機能のほか、光透過性膜3と部分オーミック電極4との密着層としての機能、光反射層としての機能、部分オーミック電極4と導電性基板の構成元素が接合部界面に拡散するのを抑止する拡散抑止層としての機能、および導電性基板6とオーミック接触する層としての機能などを有している。
図3に示した発光ダイオードは、第1電極1と第2電極7との間に電圧を印加し通電すると、活性層22で発光が起こる。発光光のうち、第1クラッド層21の方向に向かった光は、光放射面から外部に放射される。一方、第2クラッド層23の方向に向かった光の一部は金属層5で反射され、光放射面から外部に放射される。このように、第2クラッド層23の方向に放射された光を金属層5で反射させることにより、発光ダイオードの光取出し効率を向上させ、高輝度化を図ることが可能となる。
次に、図3に示した発光ダイオードの製造方法の一例を簡単に説明する。まず、単結晶基板上に化合物半導体結晶層2を形成したエピタキシャルウェハが作製される。化合物半導体結晶層2は、第1クラッド層21、活性層22、第2クラッド層23の順に単結晶基板上にエピタキシャル成長される。単結晶基板としては、化合物半導体結晶層2がAlGaAsやAlGaInP系材料の場合にはGaAs基板、AlGaInN系材料の場合には、サファイヤ基板やGaN基板を用いるのが一般的である。エピタキシャル成長法としては、MOVPE(有機金属気相成長)法が主に用いられる。
エピタキシャル成長工程の終了後、エピタキシャルウェハの化合物半導体結晶層2の表面に酸化シリコン、窒化シリコン等の光透過性膜3が形成される。光透過性膜3の形成方法としては、熱CVD法やプラズマCVD法が用いられるのが一般的である。光透過性膜3の形成工程の終了後、フォトリソグラフィー法を利用して、部分オーミック電極4が形成される。部分オーミック電極4は、単層または多層の金属層で構成され、形成方法としては、真空蒸着法やスパッタリング法が主に用いられる。
接合部の金属層5は多層で構成されるのがより一般的であり、それらの金属層の一部が、化合物半導体結晶層2側の表面、および導電性基板6の接合部側の表面にそれぞれ形成される。導電性基板6としては、機械的強度が大きく、熱伝導率が高いSiが用いられるのが一般的である。金属層5の形成方法としては、真空蒸着法やスパッタリング法が主に用いられる。
金属層5の形成終了後、エピタキシャルウェハと導電性基板6が、両者の金属層形成面が接触するように重ねられ、接合工程が実施される。接合は、真空中あるいは不活性ガス中において、エピタキシャルウェハおよび導電性基板6を加熱しながら、両者の接合界面に対してほぼ垂直な方向の加圧を施すことにより実施されるのが一般的である。金属層5としては、低融点金属を利用する方法や、金属間の固相接合を用いる方法がある。
低融点金属を利用する方法においては、Au−Sn等の比較的低融点の合金層をエピタキシャルウェハ側の接合面、または導電性基板6側の接合面に形成し、合金の融点以上の温度まで加熱することにより、接合が実施される。接合時の加熱温度としては、200℃〜400℃とするのが一般的である。
一方、金属間の固相接合を用いる方法においては、Au等の金属層がエピタキシャルウェハ側の接合面、および導電性基板6側の接合面に形成される。接合時の加熱温度は、300℃〜500℃とするのが一般的である。
接合工程終了後、単結晶基板を除去する工程を経て、化合物半導体結晶層2と導電性基板6が、金属層5を介して接合された化合物半導体ウェハが作製される。単結晶基板の除去は、機械的な研磨、溶液によるエッチングのいずれか、あるいは、両者を組み合わせた方法により実施される。しかる後に、化合物半導体ウェハの結晶層2側の表面と、導電性基板6側の表面に、第1電極1および第2電極7をそれぞれ形成する工程と、ダイシングによるチップ化工程とを経て、平面サイズが250μm角〜800μm角程度の発光ダイオードが作製される。第1電極1と第2電極7の形成においては、接触抵抗の低いオーミック接触を得るため、400℃程度の熱処理が実施される。
特開平10−12917号公報 特開2001−339100号公報
金属層5として低融点の合金層を用いた場合は、化合物半導体結晶層2と導電性基板6の接合界面に空隙が発生し、発光ダイオードの製造歩留りが著しく低下するという問題がある。その空隙は、第1電極1および第2電極7形成における熱処理時に、合金層の一部が液相化することにより発生すると推察される。
これに対して、金属層5として固相接合のAu層を用いた場合は、Au層の合計厚さを2μmよりも薄くした場合には空隙の発生が増加するが、Au層の合計厚さを2μm程度まで厚く形成することにより、空隙の発生を抑止することができる。Au層の厚さを2μmよりも薄くした場合に空隙の発生が増加するのは、例えば導電性基板6としてSiを用いる場合、エピタキシャルウェハと導電性基板6との線膨張係数差により、接合界面に大きな応力が発生するためであると考えられる。Au層を厚くすると、Au層が応力の緩和層として機能するため、空隙の発生が抑止されると推察される。
ところが、Au層の形成方法である真空蒸着法やスパッタリング法は、Au原料の利用効率が5%〜25%と極めて低く、Au層の形成工程に係わる製造コストが高いという問題がある。ここで、原料の利用効率とは、接合用の金属層5の形成工程において、接合部の表面に形成された金属層5の重量と、真空蒸着装置またはスパッタリング装置で消費した金属原料の重量との比である。かかる不都合は、発光ダイオード以外に半導体素子についても、同様に発生する。
本発明は、かかる従来技術の問題点を解決するためになされたものであり、その目的は、安価に作製できて、空隙の発生を抑止可能な半導体素子の構成と製造方法とを提供することにある。
本発明は、前記課題を解決するため、半導体素子の構成に関して、第1に、化合物半導体結晶層と導電性基板とが金属層を介して接合された構造を有する半導体素子において、前記金属層は、前記化合物半導体結晶層の一方の主表面に形成された第1金属層と、前記導電性基板の一方の主表面に形成された第2金属層と、これら第1金属層と第2金属層とを接合する銀または銀系合金の焼結体からなる金属微粒子層を有するという構成にした。
金属微粒子層の形成は、酸化銀粒子を分散させた液状またはペースト状の接合剤を第1金属層および第2金属層のいずれか一方または両方に塗布した後、接合剤を介して第1金属層と第2金属層とを重ね合わせ、加熱および加圧条件下で接合剤中に分散された酸化銀粒子を還元処理することにより得られる。したがって、接合剤層の形成に真空蒸着法やスパッタ法を適用する必要がなく、原料の利用効率を大幅に高めることができる。また、第1および第2の金属層と金属微粒子層との接合は、酸化銀粒子を還元処理することにより固相において行うことができるので、接合界面における空隙の発生を抑制することができる。また、第1および第2の金属層と金属微粒子層との接合を酸化銀粒子を還元処理することにより行うことができることから、化合物半導体結晶層の加熱温度を比較的低温に抑制することができて、良品の歩留まりを高めることができる。
本発明は、半導体素子の構成に関して第2に、前記第1の半導体素子において、前記第1金属層および前記第2金属層のうちの少なくともいずれか一方の金属層は、前記金属微粒子層と接する面が、チタンまたはチタン系合金をもって形成されているという構成にした。
チタンまたはチタン系合金は、その表面に安定なチタン酸化物層を生じて不動態化するので、金属層の表面をチタンまたはチタン系合金をもって形成すると、金属層に特別な保護層を形成する必要がなく、半導体素子の製造を容易化することができる。
本発明は、半導体素子の構成に関して第3に、前記第2の半導体素子において、前記チタンまたはチタン系合金をもって形成される面は、その表層部にチタン系酸化物層を有しているという構成にした。
酸化銀粒子を還元処理すると、その還元熱によって金属層が局部的に高温に加熱されるので、表層部にチタン酸化物層がある金属層についてもそのまま接合が可能となる。よって、酸化銀粒子の還元処理に先立って金属層の表面からチタン酸化物を除去する処理を行う必要がなく、半導体素子の製造を容易なものにすることができる。
本発明は、半導体素子の構成に関して第4に、前記第1の半導体素子において、前記化合物半導体結晶層の一方の主表面と前記第1金属層との間に、光透過成膜および部分オーミック電極を形成するという構成にした。
かかる構成によると、活性層の背面側から第1の金属層側に向けて出射された光を第1の金属層にて反射することができるので、光の取り出し効率を高めることができる。
本発明は、半導体素子の構成に関して第5に、前記第1の半導体素子において、前記金属微粒子層を構成する銀または銀系合金の平均粒径が、ナノオーダーであるという構成にした。
かかる構成によると、金属層と金属微粒子層との接合面を極めて平滑に形成することができるので、空隙の発生を抑制することができる。
本発明は、前記課題を解決するため、半導体素子の製造方法に関して、第1に、化合物半導体結晶層の一方の主表面に第1金属層を形成する工程と、前記導電性基板の一方の主表面に第2金属層を形成する工程と、前記第1金属層と前記第2金属層とを接合する工程とを有する発光ダイオードの製造方法において、前記第1金属層と前記第2金属層とを接合する工程は、前記第1金属層および前記第2金属層のいずれか一方または両方に、酸化銀粒子を分散させた液状またはペースト状の接合剤を塗布する工程と、前記接合剤を介して前記第1金属層と前記第2金属層とを重ね合わせる工程と、前記接合剤中に分散された酸化銀粒子を還元して銀ナノ粒子の焼結体からなる金属微粒子層を生成する工程とを含むという構成にした。
上述のように、かかる構成によると、接合剤層の形成に真空蒸着法やスパッタ法を適用する必要がないので、原料の利用効率を大幅に高めることができると共に、接合界面における空隙の発生および過熱による化合物半導体結晶層の損傷を抑制することができ、良品の歩留まりを高めることができる。
本発明は、半導体素子の製造方法に関して第2に、前記第1の半導体素子の製造方法において、前記酸化銀粒子は、平均粒径が1nm〜50μmであるという構成にした。
実験によると、平均粒径が1nm〜50μmの酸化銀粒子を用いた場合、酸化銀粒子を還元処理することによって得られる銀ナノ粒子の平均粒径をナノオーダーにすることができる。なお、酸化銀粒子の平均粒径の測定方法は、レーザー回折・散乱法による分布測定法により粒度分布を測定して実施する。この方法は、粒子群にレーザー光を照射し、そこから発せられる回折・散乱光の強度分布パターンから計算によって粒度分布を求める方法である。粒子にレーザビームを照射すると、その粒子からは前後・上下・左右と様々な方向に光が発せられる。これが「回折・散乱光」と呼ばれる光である。回折散乱光の強さは、光が発せられる方向に一定の空間パターンを描く。これが「光強度分布パターン」である。「光強度分布パターン」は、粒子の大きさによって様々な形に変化することが知られている。粒子の大きさと光強度分布パターンとの間には、1対1の対応関係が存在し、光強度分布パターンを検出すれば粒子の大きさが判る。実際の粒度分布測定では、測定対象は単一の粒子ではなく多数の粒子からなる粒子群の場合が多い。粒子群には大きさの異なる複数の粒子が混在しており、発せられる光強度分布パターンはそれぞれの粒子からの回折・散乱光の重ね合わせとなる。この光強度分布パターンを検出して解析することで、どれくらいの大きさの粒子がどれくらいの割合で含まれているか(粒度分布)を求めることができる。また、焼結後の銀粒子の平均粒径は、焼結体の断面をSEMで観察して測定することができる。
本発明は、半導体素子の製造方法に関して第3に、前記第1の半導体素子の製造方法において、前記接合剤中に分散された酸化銀粒子を還元して銀ナノ粒子の焼結体からなる金属微粒子層を生成する工程における前記接合剤の加熱温度が100℃〜450℃であるという構成にした。
実験によると、接合剤中に分散された酸化銀粒子を還元処理する際の接合剤の加熱温度を100℃〜450℃とすることにより、良品の歩留まりを高めることができる。
本発明によれば、化合物半導体結晶層と導電性基板を接合するための金属層を、化合物半導体結晶層の一方の主表面に形成された第1金属層と、導電性基板の一方の主表面に形成された第2金属層と、これら第1金属層と第2金属層とを接合する銀または銀系合金の焼結体からなる金属微粒子層を有するという構成にしたので、塗布による金属微粒子層の形成が可能になり、従来の真空蒸着法やスパッタ法等を適用する場合に比べて、金属原料の利用効率を大幅に向上でき、発光ダイオード等の半導体素子の製造コストを削減できる。また、第1および第2の金属層と金属微粒子層との接合を、酸化銀粒子を還元処理することにより固相において行うことができるので、接合界面における空隙の発生を抑制することができると共に、化合物半導体結晶層の加熱温度を比較的低温に抑制することができて、良品の歩留まりを高めることができる。
実施形態に係る発光ダイオードの断面構造を模式的に示す断面図である。 実施形態に係る発光ダイオードの接合部の構成を詳細に示した図である。 従来の発光ダイオードの断面構造を模式的に示す断面図である。
以下に、本発明に係る発光ダイオードの実施形態を図面を用いて説明する。図1に示すように、本例の発光ダイオードは、化合物半導体結晶層2と導電性基板6とを金属層5を介して接合させた構造を有する。化合物半導体結晶層2の上面には第1電極1、導電性基板6の下面には第2電極7が形成されている。本実施形態の化合物半導体結晶層2は、第1電極1側から、電極コンタクト層24と、AlGaInPの第1クラッド層21、活性層(発光層)22および第2クラッド層23から成る発光層部と、中間層25と、GaP層26とを有する。また、GaP層26の下面には、発光光に対して透明な光透過性膜3と部分オーミック電極4とからなる層が形成されている。金属層5は、光透過性膜3と部分オーミック電極4とからなる層の表面に形成された第1金属層51と、導電性基板6の表面に形成された第2金属層53と、第1金属層51と第2金属層53と間に接合層として形成された銀系接合層(金属微粒子層)52とから構成される。
第1金属層51および第2金属層53は多層で構成され、化合物半導体結晶層2と導電性基板6を接合する接合層としての機能のほか、光透過性膜3と部分オーミック電極4とを密着させる密着層としての機能、活性層22からの光を反射する光反射層としての機能、部分オーミック電極4と導電性基板6の構成元素が接合部界面に拡散するのを抑止する拡散抑止層としての機能、導電性基板6とオーミック接触する層としての機能などを有する。なお、第1金属層51の銀系接合層52との接合面は、厚さ1nmのチタンで形成されている。
銀系接合層52は、粒径が数μmオーダーの酸化銀粒子にミリスチルアルコールを加え、大気中で250℃に加熱することにより還元生成した銀が焼結して形成した金属層である。加熱還元時に生成した銀粒子は、粒径がナノオーダーであり、低温焼結が可能である。したがって、化合物半導体結晶層2の過熱による損傷を抑制することができる。第1金属層51の表面に形成したチタン電極と銀系接合層52との接合は、図2に示すように、チタン表面に形成したチタン系酸化物膜と銀系接合層52とが接合している構造になっている。このように、チタン系酸化物膜と銀系接合層52とを接合する構成にすると、第1金属層51及び第2金属層53の接合に先立ってチタン系酸化物膜を除去する必要がないので、発光ダイオードの製造を容易化することができる。
銀系接合層52の基になる酸化銀粒子は、平均粒径が1nmから50μmの範囲のものを用いることがより好ましい。その理由は、以下の通りである。化合物半導体結晶層2と導電性基板6との接合においては、接合界面の空隙発生を抑える上で、銀焼結層52の表面が平滑であることが望ましい。平均粒径が1nmから50μmの酸化銀粒子を用いた場合、形成した金属微粒子層52の表面は、走査型プローブ顕微鏡 (Scanning Probe Microscope;SPM)で測定した中心線平均粗さRaが9nm以下となり、極めて平滑であった。平均粒径が30nmを超えると、中心線平均粗さRaが増加する傾向がみられたが、平均粒径が100nm以下では、接合界面に空隙はみられなかった。
銀系接合層52の形成に際しては、酸化銀粒子を分散させた液状あるいはペースト状物質(接合剤)を、第1金属層51の表面と第2金属層53の表面のいずれか一方、または両方に塗布する。その後、大気中250℃加熱により酸化銀を還元させて銀ナノ粒子を生成させ、銀焼結接合層52を形成する。
金属微粒子を分散させた液状あるいはペースト状物質を、塗布・被着させる方法としては、インクジェット法(スプレー法)またはスクリーン印刷法が用いられる。
本実施形態の発光ダイオードは、発光出力が高く、信頼性も高いことから、信号機、自動車の外装ランプ、液晶テレビのバックライトモジュール等への適用が可能である。
なお、上記実施形態では、発光ダイオードを例にとって説明したが、本発明は、化合物半導体結晶層と導電性基板とが金属層を介して接合された構造を有する、発光ダイオード以外の半導体素子にも勿論適用できる。
次に、本発明の実施例を説明する。この実施例では、図1に示す上記実施形態の発光ダイオードと同一の断面構造を有する発光ダイオードを作製した。すなわち、本実施例の発光ダイオードは、図1に示すように、化合物半導体結晶層2と導電性基板6とを金属層5を介して接合させ、化合物半導体結晶層2の上面と導電性基板6の下面に、発光ダイオードに通電するための第1電極1と第2電極7をそれぞれ形成した。
本実施例では、化合物半導体結晶層2は、電極コンタクト層24、第1クラッド層21、活性層22、第2クラッド層23、中間層25、GaP層26から構成される。電極コンタクト層24の上面には第1電極1が形成され、第1電極1の直下以外の領域の電極コンタクト層24はエッチングによって除去されている。これは、光吸収性を有する電極コンタクト層24による光の取出し効率の低下を防ぐためである。
GaP層26の下面には、発光光に対して透明な光透過性膜3と、部分オーミック電極4とから成る層が形成されている。光透過性膜3として、本実施例では、酸化シリコン膜を用いた。部分オーミック電極4は、p型のGaP層26とオーミック接続されていて、さらに金属層5(51)にも接続されている。
金属層5は、第1金属層51、金属微粒子層52および第2金属層53から構成される。第1金属層51と第2金属層53は、いずれも銀系接合層52と接する表面の金属層をTi層とし、このTi層の厚さは0.1μmとした。また、銀系接合層52は、第2金属層53の表面に形成し、厚さは1.8μmとした。
導電性基板6としては、n型の単結晶Siを用いた。導電性基板6の接合部とは反対側の面には、第2電極7が形成され、第2電極7は、導電性基板6とオーミック接触している。
信頼度試験としては、周囲温度85℃、湿度85%の環境における電流密度約22.2A/cmでの2000時間の通電試験、周囲温度85℃、湿度85%の環境における2000時間の放置試験、および温度−55℃〜100℃の熱衝撃試験を実施した。本実施例による発光ダイオードでは、信頼度試験後における発光出力の変動は2%以内と小さく、また、順方向電圧には変化がみられなかった。これに対して、銀系接合層52の代わりに、真空蒸着法で形成したAu層(厚さ1.8μm)を用いて作製した比較例の発光ダイオードの信頼度試験においては、熱衝撃試験後の発光出力が、約7%低下した。熱衝撃試験における発光出力の低下には、化合物半導体結晶層2と導電性基板6の線膨張係数の差による応力が関与すると考えられ、銀系接合層52の適用によりその応力が緩和されたと推察される。
発光ダイオードと導電性基板6の接合時における圧力は、本実施例では、約0.5MPaとしたが、0.1MPaから10MPaの圧力の範囲で、本実施例と同様に良好な結果が得られた。無加圧とした場合でも、接合界面の空隙が増加することはなかった。一方、圧力を10MPaよりも高くした場合は、発光ダイオードの破壊が頻繁に発生し、歩留りが低下した。
接合時の加熱温度については、本実施例では、約250℃としたが、100℃〜450℃の温度範囲では、本実施例と同様に良好な結果が得られた。加熱温度を高くした場合は、作製した発光ダイオードの順方向電圧が増加する傾向がみられた。順方向電圧の上昇は、主に、部分オーミック電極4と、GaP層26の接触抵抗が増加したためと考えられる。なお、本実施例では、酸化銀粒子を含む液状物質を第2金属層53の表面に塗布したが、第1金属層51の表面、あるいは、第1金属層51と第2金属層53の両方の表面に塗布して形成しても良い。また、酸化銀粒子を含む液状物質を塗布し、熱処理により銀系接合層52を形成する際に、本実施例ではホットプレート(ヒータで加熱された板状治具)を用いたが、赤外線照射等他の加熱手段を用いることも可能である。
第1電極1の最上層をAu層とし、ワイヤボンディングによる外部端子との接続を実施する場合、ワイヤボンディング時の接続加重による下地層の破壊を防ぎ、充分な接続強度を確保するためには、Au層の厚さとして0.3μm〜1μm程度が必要である。また、通常、第1電極1のような発光ダイオードの上部電極は、平面形状が直径100μm程度の概略円形状に加工されるのが一般的である。そのため、平面サイズが300μm×300μmの発光ダイオードの上部電極のAu層の形成方法として真空蒸着法を用いた場合、Au原料の利用効率は、1〜2%程度まで低下する。従って、Au層のほとんどの部分をスクリーン印刷法によるAu微粒子層で構成することにより、Au原料の利用効率を大幅に向上させることが可能になる。
本発明は、発光ダイオード等の半導体素子における化合物半導体結晶層と導電性基板の接合に適用することができる。
1 第1電極
2 化合物半導体結晶層
21 第1クラッド層
22 活性層
23 第2クラッド層
24 電極コンタクト層
25 中間層
26 GaP層
3 光透過性膜
4 部分オーミック電極
5 金属層
51 第1金属層
52 銀系接合層(金属微粒子層)
53 第2金属層
6 導電性基板
7 第2電極

Claims (8)

  1. 化合物半導体結晶層と導電性基板とが金属層を介して接合された構造を有する半導体素子において、
    前記金属層は、前記化合物半導体結晶層の一方の主表面に形成された第1金属層と、前記導電性基板の一方の主表面に形成された第2金属層と、これら第1金属層と第2金属層とを接合する銀または銀系合金の焼結体からなる金属微粒子層を有することを特徴とする半導体素子。
  2. 前記第1金属層および前記第2金属層のうちの少なくともいずれか一方の金属層は、前記金属微粒子層と接する面が、チタンまたはチタン系合金をもって形成されていることを特徴とする半導体素子。
  3. 前記チタンまたはチタン系合金をもって形成される面は、その表層部にチタン系酸化物層を有していることを特徴とする請求項2に記載の半導体素子。
  4. 前記化合物半導体結晶層の一方の主表面と前記第1金属層との間に、光透過成膜および部分オーミック電極を形成したことを特徴とする請求項1に記載の半導体素子。
  5. 前記金属微粒子層を構成する銀または銀系合金の平均粒径が、ナノオーダーであることを特徴とする請求項1に記載の半導体素子。
  6. 化合物半導体結晶層の一方の主表面に第1金属層を形成する工程と、前記導電性基板の一方の主表面に第2金属層を形成する工程と、前記第1金属層と前記第2金属層とを接合する工程とを有する半導体素子の製造方法において、
    前記第1金属層と前記第2金属層とを接合する工程は、前記第1金属層および前記第2金属層のいずれか一方または両方に、酸化銀粒子を分散させた液状またはペースト状の接合剤を塗布する工程と、前記接合剤を介して前記第1金属層と前記第2金属層とを重ね合わせる工程と、前記接合剤中に分散された酸化銀粒子を還元して銀ナノ粒子の焼結体からなる金属微粒子層を生成する工程とを含むことを特徴とする半導体素子の製造方法。
  7. 前記酸化銀粒子は、平均粒径が1nm〜50μmであることを特徴とする請求項6に記載の半導体素子の製造方法。
  8. 前記接合剤中に分散された酸化銀粒子を還元して銀ナノ粒子の焼結体からなる金属微粒子層を生成する工程における前記接合剤の加熱温度が100℃〜450℃であることを特徴とする請求項6に記載の半導体素子の製造方法。
JP2009082857A 2009-03-30 2009-03-30 半導体素子およびその製造方法 Pending JP2010238784A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009082857A JP2010238784A (ja) 2009-03-30 2009-03-30 半導体素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082857A JP2010238784A (ja) 2009-03-30 2009-03-30 半導体素子およびその製造方法

Publications (1)

Publication Number Publication Date
JP2010238784A true JP2010238784A (ja) 2010-10-21

Family

ID=43092875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082857A Pending JP2010238784A (ja) 2009-03-30 2009-03-30 半導体素子およびその製造方法

Country Status (1)

Country Link
JP (1) JP2010238784A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102267A1 (ja) * 2011-01-28 2012-08-02 株式会社日立製作所 回路基板、及びそれを用いた半導体装置
JP2018525836A (ja) * 2015-08-19 2018-09-06 ソラア レイザー ダイオード インク レーザダイオードを用いた特殊一体型光源
US11101618B1 (en) 2009-05-29 2021-08-24 Kyocera Sld Laser, Inc. Laser device for dynamic white light
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11437774B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. High-luminous flux laser-based white light source
US11594862B2 (en) 2018-12-21 2023-02-28 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
US11973308B2 (en) 2015-08-19 2024-04-30 Kyocera Sld Laser, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817675B1 (en) 2009-05-29 2023-11-14 Kyocera Sld Laser, Inc. Laser device for white light
US11101618B1 (en) 2009-05-29 2021-08-24 Kyocera Sld Laser, Inc. Laser device for dynamic white light
WO2012102267A1 (ja) * 2011-01-28 2012-08-02 株式会社日立製作所 回路基板、及びそれを用いた半導体装置
JPWO2012102267A1 (ja) * 2011-01-28 2014-06-30 株式会社日立製作所 回路基板、及びそれを用いた半導体装置
JP5677685B2 (ja) * 2011-01-28 2015-02-25 株式会社日立製作所 回路基板、及びそれを用いた半導体装置
US11437775B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. Integrated light source using a laser diode
JP2022126662A (ja) * 2015-08-19 2022-08-30 キョウセラ エスエルディー レイザー,インコーポレイテッド レーザダイオードを用いた特殊一体型光源
JP7082043B2 (ja) 2015-08-19 2022-06-07 キョウセラ エスエルディー レイザー,インコーポレイテッド レーザダイオードを用いた特殊一体型光源
US11437774B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. High-luminous flux laser-based white light source
JP7305007B2 (ja) 2015-08-19 2023-07-07 キョウセラ エスエルディー レイザー,インコーポレイテッド レーザダイオードを用いた特殊一体型光源
JP2018525836A (ja) * 2015-08-19 2018-09-06 ソラア レイザー ダイオード インク レーザダイオードを用いた特殊一体型光源
US11973308B2 (en) 2015-08-19 2024-04-30 Kyocera Sld Laser, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11594862B2 (en) 2018-12-21 2023-02-28 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11788699B2 (en) 2018-12-21 2023-10-17 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system

Similar Documents

Publication Publication Date Title
JP2010238784A (ja) 半導体素子およびその製造方法
US11616172B2 (en) Semiconductor light emitting device with frosted semiconductor layer
JP2009004766A (ja) 化合物半導体ウェハ、発光ダイオード及びその製造方法
EP2157623B1 (en) Semiconductor light emitting element and method for manufacturing the same
US9263644B2 (en) Semiconductor light-emitting device and method of forming electrode
JP5829453B2 (ja) 半導体発光素子
JP2007173530A (ja) 半導体発光素子
JP2010541209A (ja) 高い光取り出しの発光ダイオードチップとその製造方法
JP2007318157A (ja) 半導体発光機器のための反射電極
JP2008118125A (ja) 半導体発光素子、照明装置および半導体発光素子の製造方法
JP2008263015A (ja) 半導体発光素子
TW201108538A (en) Photonic crystal band-edge laser diode
JP6058897B2 (ja) 半導体素子の製造方法
JP2007335877A (ja) 発光ダイオードおよびその製造方法
JP5792694B2 (ja) 半導体発光素子
EP2642516A2 (en) Method of manufacturing semiconductor element
EP2642515B1 (en) Semiconductor element and method of manufacturing the same
JP2010123861A (ja) 貼り合わせ基板の製造方法、発光ダイオードの製造方法及び発光ダイオード