JP2010236885A - Cooling structure of reactor containment vessel - Google Patents

Cooling structure of reactor containment vessel Download PDF

Info

Publication number
JP2010236885A
JP2010236885A JP2009082237A JP2009082237A JP2010236885A JP 2010236885 A JP2010236885 A JP 2010236885A JP 2009082237 A JP2009082237 A JP 2009082237A JP 2009082237 A JP2009082237 A JP 2009082237A JP 2010236885 A JP2010236885 A JP 2010236885A
Authority
JP
Japan
Prior art keywords
reactor containment
containment vessel
reactor
wall surface
cooling structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009082237A
Other languages
Japanese (ja)
Inventor
Norio Sakai
紀夫 堺
Hisaki Sato
寿樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009082237A priority Critical patent/JP2010236885A/en
Publication of JP2010236885A publication Critical patent/JP2010236885A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reactor containment vessel and a reactor building with a reduced volume and height by considerably increasing a cooling efficiency of the reactor containment vessel only by a passive driving force. <P>SOLUTION: A cooling structure of the reactor containment vessel includes: a plurality of heat dissipating fins 8 radially extending from the upper part of the reactor containment vessel 2 housing a reactor pressure vessel 1, extending in the vertical direction on the lateral side wall face of the reactor containment vessel 2 and reaching the lower part of the lateral wall face; a plurality of blades 9 rotatably supported by a water spray tube 7 disposed on the upper part of the reactor containment vessel 2; and a plurality of branched tubes 10 rotatably supported by the blades 9 or the spray tube 7 for spraying the cooling water supplied by the water spray tube 7 on the upper part of the reactor containment vessel 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、原子炉格納容器の冷却構造に関し、特に、受動的な駆動力を利用した原子炉格納容器の冷却構造に関する。   The present invention relates to a reactor containment cooling structure, and more particularly to a reactor containment cooling structure using passive driving force.

原子力プラントにおいて配管の破断等により原子炉冷却材が原子炉格納容器内へ漏洩した場合、冷却材が蒸気となり原子炉格納容器内の圧力が上昇する。従来、圧力上昇に対する原子炉格納容器の健全性を確保するため、発生した蒸気を原子炉格納容器内の圧力抑制プールに誘導し凝縮放熱させる方法や、原子炉格納容器上部からスプレイにより散水し、蒸気を凝縮させる方法が知られている。これらの方法では、プールやスプレイ水に蓄積された熱はポンプ等の動的機器により熱交換器を介して外部へ放出されている。   In the nuclear power plant, when the reactor coolant leaks into the reactor containment vessel due to pipe breakage or the like, the coolant becomes steam and the pressure in the reactor containment vessel increases. Conventionally, in order to ensure the soundness of the containment vessel against pressure rise, the generated steam is guided to the pressure suppression pool in the containment vessel to condense and dissipate heat, or by spraying from the top of the containment vessel by spraying, Methods for condensing steam are known. In these methods, heat accumulated in the pool and spray water is released to the outside through a heat exchanger by a dynamic device such as a pump.

近年、安全系の信頼性向上のため、重力などの受動的な力により原子炉格納容器の除熱を行う方法が提案されている(特許文献1)。図11に従来の受動的な力を利用した原子炉格納容器の冷却構造を示す。原子炉圧力容器1を内包する原子炉格納容器2と原子炉建屋3の間に空気流路4が設けられ、原子炉格納容器2の下部から流入する空気は原子炉格納容器2の壁面から加熱されるため、煙突効果によって空気流路4を上昇し、原子炉格納容器2上部の煙突5から排気される。   In recent years, in order to improve the reliability of the safety system, a method for removing heat from the reactor containment vessel by a passive force such as gravity has been proposed (Patent Document 1). FIG. 11 shows a conventional reactor containment cooling structure using passive force. An air flow path 4 is provided between the reactor containment vessel 2 containing the reactor pressure vessel 1 and the reactor building 3, and air flowing from the lower part of the reactor containment vessel 2 is heated from the wall surface of the reactor containment vessel 2. Therefore, the air flow path 4 rises due to the chimney effect and is exhausted from the chimney 5 above the reactor containment vessel 2.

さらに、原子炉格納容器2の上部には冷却水貯蔵タンク6が配置され、高温の蒸気が原子炉格納容器2内へ放出されると、散水管7から貯蔵タンク6中の水を原子炉格納容器2の上部に散水する。散水された水は重力によってそのまま原子炉格納容器2の側面を流れ落ちる過程で壁面からの熱伝達によって蒸発し、やはり煙突5から排出される。これらの効果により、事故時に動的機器を用いることなく原子炉格納容器2内部を冷却、減圧することができる。   Further, a cooling water storage tank 6 is disposed above the reactor containment vessel 2, and when high-temperature steam is discharged into the reactor containment vessel 2, the water in the storage tank 6 is stored in the reactor from the sprinkler pipe 7. Water is sprayed on the upper part of the container 2. The sprinkled water evaporates by heat transfer from the wall surface in the process of flowing down the side surface of the reactor containment vessel 2 as it is due to gravity, and is also discharged from the chimney 5. Due to these effects, the inside of the reactor containment vessel 2 can be cooled and decompressed without using dynamic equipment in the event of an accident.

特許第2813412号公報Japanese Patent No. 2813412

図11に示すような従来の冷却構造は、重力により原子炉格納容器2壁面に散水を行うことで動力機器を使用しないメリットがあるが、一方、重力を利用するため冷却水貯蔵タンク6が原子炉格納容器2の上方に設置され、原子炉建屋3全体の高さが増え、重心が高くなる問題がある。   The conventional cooling structure as shown in FIG. 11 has the advantage of not using power equipment by sprinkling water on the wall of the reactor containment vessel 2 by gravity, but on the other hand, the cooling water storage tank 6 has an atomic structure because it uses gravity. There is a problem that it is installed above the reactor containment vessel 2 and the height of the entire reactor building 3 is increased and the center of gravity is increased.

特に、原子炉出力が大きいプラントでは、必要な除熱容量を確保するために原子炉格納容器の表面積を増大させる必要があり、原子炉格納容器、原子炉建屋、冷却水貯蔵タンクが巨大化することから、耐震設計及び建築コストの観点からもプラントの大きさはできるだけ小さくすることが望ましい。   Especially in plants with large reactor power, it is necessary to increase the surface area of the containment vessel in order to secure the necessary heat removal capacity, and the containment vessel, reactor building, and cooling water storage tank will become huge. Therefore, it is desirable to reduce the size of the plant as much as possible from the viewpoint of seismic design and construction cost.

また、原子炉格納容器2の上部から散水する場合、重力によって原子炉格納容器側面を流下する際に、冷却水が原子炉格納容器2の表面全体に均一に分布しないと、原子炉格納容器2の表面温度分布が均一にならず、冷却水の蒸発による除熱の効果が十分に発揮できない可能性がある。   In addition, when water is sprayed from the upper part of the reactor containment vessel 2, if the cooling water is not uniformly distributed over the entire surface of the reactor containment vessel 2 when flowing down the side of the reactor containment vessel by gravity, the reactor containment vessel 2 There is a possibility that the surface temperature distribution is not uniform, and the effect of heat removal by evaporation of the cooling water cannot be sufficiently exhibited.

本発明は上記課題を解決するためになされたものであり、受動的な駆動力を利用した原子炉格納容器の冷却構造において、原子炉格納容器、原子炉建屋、冷却水貯蔵タンクの容積を低減し、原子力プラント全体の巨大化を抑制することができる除熱効率の高い原子炉格納容器の冷却構造を提供することを目的とする。   The present invention has been made to solve the above problems, and in the reactor containment cooling structure using passive driving force, the volume of the reactor containment vessel, reactor building, and cooling water storage tank is reduced. It is an object of the present invention to provide a reactor containment vessel cooling structure with high heat removal efficiency that can suppress the enlargement of the whole nuclear power plant.

本発明は上記課題を解決するためになされたもので、本発明に係る原子炉格納容器の冷却構造は、原子炉圧力容器を内包する原子炉格納容器の上部から径方向へ放射状に伸び、前記原子炉格納容器の側壁面を鉛直方向に伸びて側壁面下部に達する複数の放熱フィンと、前記原子炉格納容器の上部に設けられた散水管に回転可能に支持された複数の羽根と、前記羽根又は前記散水管に回転可能に支持され前記散水管から供給される冷却水を前記原子炉格納容器の上部に散水する複数の分岐管と、を備えることを特徴とする。   The present invention was made to solve the above problems, and the reactor containment vessel cooling structure according to the present invention extends radially from the upper portion of the reactor containment vessel containing the reactor pressure vessel, A plurality of radiating fins extending vertically in the side wall surface of the reactor containment vessel and reaching the lower side of the side wall surface, a plurality of blades rotatably supported by watering pipes provided on the upper portion of the reactor containment vessel, and And a plurality of branch pipes that are rotatably supported by blades or the watering pipes and spray water supplied from the watering pipes to the upper part of the reactor containment vessel.

また、本発明に係る原子炉格納容器の冷却構造は、原子炉圧力容器を内包する原子炉格納容器の側壁面を螺旋状に取り囲むようにして側壁面下部に達する放熱フィンと、前記原子炉格納容器の上部に設けられた散水管に回転可能に支持された複数の羽根と、前記羽根又は前記散水管に回転可能に支持され前記散水管から供給される冷却水を前記原子炉格納容器の上部に散水する複数の分岐管と、を備えることを特徴とする。   The reactor containment vessel cooling structure according to the present invention includes a radiation fin reaching the lower portion of the side wall surface so as to spirally surround the side wall surface of the reactor containment vessel containing the reactor pressure vessel, and the reactor containment A plurality of blades rotatably supported by watering pipes provided at the upper part of the vessel, and cooling water supplied rotatably from the watering pipes rotatably supported by the blades or the watering pipes. And a plurality of branch pipes for spraying water.

本発明によれば、原子炉格納容器の外表面に放熱フィンを設けるとともに、原子炉格納容器の上部又は側壁部に冷却水を注入する分岐管又は注水管を設けたことにより、受動的な駆動力のみで原子炉格納容器の除熱効率を大幅に高くすることができるため、容積および高さを低減した原子炉格納容器及び原子炉建屋を提供することができる。   According to the present invention, the heat radiation fin is provided on the outer surface of the reactor containment vessel, and the passive drive is provided by providing the branch pipe or the water injection pipe for injecting the cooling water into the upper part or the side wall part of the reactor containment vessel. Since the heat removal efficiency of the reactor containment vessel can be significantly increased only by force, a reactor containment vessel and a reactor building with a reduced volume and height can be provided.

本発明の第1の実施形態に係る原子炉格納容器の冷却構造の全体構成図。1 is an overall configuration diagram of a reactor containment cooling structure according to a first embodiment of the present invention. 本発明の第1の実施形態に係る原子炉格納容器のA−A断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の第1の実施形態に係る原子炉格納容器のB−B断面図。BB sectional drawing of the nuclear reactor containment vessel which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る羽根及び分岐管の概略図。Schematic of the blade | wing and branch pipe which concern on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る羽根及び分岐管の変形図。The deformation | transformation figure of the blade | wing and branch pipe which concern on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る放熱フィンの構成図。The block diagram of the radiation fin which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る放熱フィンの構成図。The block diagram of the radiation fin which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る放熱フィンの除熱特性を示す図。The figure which shows the heat removal characteristic of the radiation fin which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る原子炉格納容器の冷却構造の全体構成図。The whole block diagram of the cooling structure of the reactor containment vessel concerning the 4th Embodiment of this invention. 本発明の第4の実施形態に係る原子炉格納容器の冷却構造の変形図。The deformation | transformation figure of the cooling structure of the reactor containment vessel which concerns on the 4th Embodiment of this invention. 従来の原子炉格納容器の冷却構造の全体構成図。The whole block diagram of the cooling structure of the conventional reactor containment vessel.

以下、本発明に係る実施形態について、図面を参照して説明する。
(第1の実施形態)
本発明の第1の実施形態に係る原子炉格納容器の冷却構造を、図1〜4を用いて説明する。
図1において、原子炉圧力容器1を収納する原子炉格納容器2の外面には、複数の放熱フィンが原子炉格納容器の上部から下部へ放射状に設置され、かつ、原子炉格納容器2の側面では原子炉建屋3の間にある空気流路4の中を、鉛直下向きに原子炉格納容器下部まで伸びている。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
(First embodiment)
A reactor containment cooling structure according to a first embodiment of the present invention will be described with reference to FIGS.
In FIG. 1, a plurality of radiating fins are installed radially from the upper part to the lower part of the reactor containment vessel 2 on the outer surface of the reactor containment vessel 2 that houses the reactor pressure vessel 1. Then, the inside of the air flow path 4 between the reactor buildings 3 extends vertically downward to the lower part of the reactor containment vessel.

また、原子炉格納容器2の上部には空気流路4を上昇してきた空気を排気する煙突5が設けられ、その内部には羽根9が設けられている。また、煙突5の外側には冷却水貯蔵タンク6が設けられ、その中には原子炉格納容器2の外表面へ注水する水が貯蔵されている。   Further, a chimney 5 for exhausting the air that has risen through the air flow path 4 is provided in the upper part of the reactor containment vessel 2, and a blade 9 is provided therein. In addition, a cooling water storage tank 6 is provided outside the chimney 5, in which water that is poured into the outer surface of the reactor containment vessel 2 is stored.

また、図4に示すように、冷却水貯蔵タンク6へ接続される散水管7は、煙突5の略中心において複数の羽根9を回転可能に支持するとともに、水平方向へ伸びる複数の分岐管10を有し、かつ、各分岐管10は羽根9に支持されている。   As shown in FIG. 4, the water spray pipe 7 connected to the cooling water storage tank 6 rotatably supports the plurality of blades 9 at the approximate center of the chimney 5 and also has a plurality of branch pipes 10 extending in the horizontal direction. And each branch pipe 10 is supported by a blade 9.

このような構成の冷却構造において、一次冷却材が漏洩し原子炉格納容器2内部の圧力、温度が上昇する事態になった時には、原子炉格納容器上部の冷却水貯蔵タンク6から伸びる散水管7、分岐管10を通じて原子炉格納容器2上部へ注水を行うが、このとき空気も空気流路4の下部にある流入口から原子炉格納容器2から発生する熱を除去しながら、空気流路4を通って上昇し、煙突5へ達する。この空気の上昇気流によって羽根9が回転するため、羽根9に支持されている分岐管10も回転し、原子炉格納容器2の上部へ円周方向に均一に冷却水を散水することができる。   In the cooling structure having such a configuration, when the primary coolant leaks and the pressure and temperature inside the reactor containment vessel 2 rise, the water spray pipe 7 extending from the cooling water storage tank 6 above the reactor containment vessel. Then, water is poured into the upper part of the reactor containment vessel 2 through the branch pipe 10, and at this time, the air flow path 4 while removing the heat generated from the reactor containment vessel 2 from the inlet at the lower part of the air flow path 4. Ascend through and reach chimney 5. Since the blades 9 are rotated by the rising airflow of the air, the branch pipe 10 supported by the blades 9 is also rotated, and the cooling water can be uniformly sprayed to the upper part of the reactor containment vessel 2 in the circumferential direction.

原子炉格納容器2の上面へ均等に散水された冷却水は、側面にある放熱フィン8の間隙に流れ込み、放熱フィン8に沿って原子炉格納容器2の側壁面を流下していく。流下する冷却水は原子炉格納容器2の側壁面、および放熱フィン8からの熱伝達により蒸発すると、空気流路4を上昇して煙突5から外部へ放出される。このとき、放熱フィン8は原子炉格納容器2の上部から放射状に等間隔で、かつ鉛直方向に設置されているので、原子炉格納容器の側壁面では空気流路4を通過する空気の上昇流に対する圧力損失を低減することができる。   Cooling water sprayed evenly on the upper surface of the reactor containment vessel 2 flows into the gaps between the radiation fins 8 on the side surfaces, and flows down along the side walls of the reactor containment vessel 2 along the radiation fins 8. When the cooling water flowing down evaporates due to heat transfer from the side wall surface of the reactor containment vessel 2 and the heat radiation fins 8, the cooling water rises up the air flow path 4 and is discharged from the chimney 5 to the outside. At this time, the radiating fins 8 are radially arranged from the upper part of the reactor containment vessel 2 at equal intervals in the vertical direction, so that the upward flow of air passing through the air flow path 4 on the side wall surface of the reactor containment vessel The pressure loss with respect to can be reduced.

また、流下する冷却水の流れは鉛直方向に伸びる放熱フィン8に拘束されるため、あふれた冷却水の水膜は途中で円周方向に分裂、併合することがなく、原子炉格納容器2の周方向に均一に分布させることができるため、冷却水の蒸発による除熱効果はより効率的になる。
さらに、放熱フィン8により原子炉格納容器2の側壁面の伝熱面積が増加するため、空気流路4を通過する冷却空気への熱伝達量も向上する。
Moreover, since the flow of the cooling water flowing down is restrained by the heat radiation fins 8 extending in the vertical direction, the overflow cooling water film does not split and merge in the circumferential direction on the way, and the reactor containment vessel 2 Since it can distribute uniformly in the circumferential direction, the heat removal effect by evaporation of the cooling water becomes more efficient.
Furthermore, since the heat transfer area of the side wall surface of the reactor containment vessel 2 is increased by the radiation fins 8, the amount of heat transfer to the cooling air passing through the air flow path 4 is also improved.

なお、羽根8と分岐管10は必ずしも一体化支持する必要はなく、図5に示すように羽根の回転力が例えば散水管の延長部又は他の部材を介して分岐管10に伝われば、分岐管10を別個に設置することも可能である。
以上説明したように、本第1の実施形態によれば、原子炉格納容器の外表面に放熱フィンを放射状かつ鉛直方向に設けるとともに、原子炉格納容器の上部に冷却水を均一に散布する羽根を設けたことにより、受動的な駆動力のみで原子炉格納容器の除熱効率を高くすることができ、その結果、原子炉格納容器及び原子炉建屋の容積および高さを大幅に低減することができる。
The blade 8 and the branch pipe 10 do not necessarily need to be integrally supported. As shown in FIG. 5, if the rotational force of the blade is transmitted to the branch pipe 10 through, for example, an extension of the water spray pipe or other members, the branch is generated. It is also possible to install the tube 10 separately.
As described above, according to the first embodiment, the radiation fins are provided radially and vertically on the outer surface of the reactor containment vessel, and the blades uniformly spray the cooling water on the upper portion of the reactor containment vessel. By providing this, the heat removal efficiency of the reactor containment vessel can be increased with only passive driving force, and as a result, the volume and height of the reactor containment vessel and the reactor building can be greatly reduced. it can.

(第2の実施形態)
本発明の第2の実施形態に係る原子炉格納容器の冷却構造を、図6を用いて説明する。
本第2の実施形態では、原子炉格納容器2の側壁面に設置される放熱フィン8は、図6に示すように、原子炉格納容器2の側壁面と原子炉建屋3の内壁面の両方に固定されるように設けられている。
(Second Embodiment)
A reactor containment cooling structure according to a second embodiment of the present invention will be described with reference to FIG.
In the second embodiment, the radiation fins 8 installed on the side wall surface of the reactor containment vessel 2 are both on the side wall surface of the reactor containment vessel 2 and the inner wall surface of the reactor building 3 as shown in FIG. It is provided so that it may be fixed to.

これにより、空気流路4を流れる空気は周方向への流れが抑制されるため、鉛直方向に空気の流れを整流させ、圧力損失をより低減することができるとともに、羽根8に対し十分な差圧を有する上昇気流を供給することができる。   Thereby, since the flow of the air flowing through the air flow path 4 is suppressed in the circumferential direction, the flow of air can be rectified in the vertical direction, pressure loss can be further reduced, and a sufficient difference with respect to the blade 8 An updraft with pressure can be supplied.

本第2の実施形態によれば、原子炉格納容器の側壁面と建屋の内側面に放熱フィンを固定接続することにより、原子炉格納容器2の除熱効率がさらに高くなり、その結果、原子炉格納容器及び原子炉建屋の容積および高さを低減することができる。   According to the second embodiment, the heat removal efficiency of the reactor containment vessel 2 is further increased by fixedly connecting the radiation fins to the side wall surface of the reactor containment vessel and the inner side surface of the building. The volume and height of the containment vessel and reactor building can be reduced.

(第3の実施形態)
本発明の第3の実施形態に係る原子炉格納容器の冷却構造を、図7及び図8を用いて説明する。図7は原子炉格納容器2の側壁面の一部拡大図である。
本第3の実施形態では、原子炉格納容器2の側壁面を鉛直方向に伸びる放熱フィン8に鉛直方向に沿って周期的に突起形状11を設けている。
(Third embodiment)
A reactor containment cooling structure according to a third embodiment of the present invention will be described with reference to FIGS. FIG. 7 is a partially enlarged view of the side wall surface of the reactor containment vessel 2.
In the third embodiment, the projection shape 11 is periodically provided along the vertical direction on the radiation fin 8 extending in the vertical direction on the side wall surface of the reactor containment vessel 2.

また、突起形状11は鉛直下側の端部12に近づくほど幅が小さくなっている。
このような突起形状とすることにより、空気流路4の下部から上昇してくる空気流れは、突起形状11の周りにおいて、図8に示すように、下端において突起形状11の側面に垂直な方向の速度勾配が小さくなる。そのため、突起形状の端部12では温度境界層の厚さが低減し、空気への熱伝達率が向上する。
これにより、原子炉格納容器2から発生する熱の除熱容量をより高くすることができる。
Further, the protrusion shape 11 becomes smaller in width as it approaches the vertically lower end 12.
By adopting such a protrusion shape, the air flow rising from the lower part of the air flow path 4 is directed around the protrusion shape 11 in a direction perpendicular to the side surface of the protrusion shape 11 at the lower end as shown in FIG. The velocity gradient becomes smaller. Therefore, the thickness of the temperature boundary layer is reduced at the protruding end 12 and the heat transfer rate to the air is improved.
Thereby, the heat removal capacity of the heat generated from the reactor containment vessel 2 can be further increased.

本第3の実施形態によれば、原子炉格納容器の放熱フィンの一部を突起形状とすることにより、原子炉格納容器2の除熱効率がさらに高くなり、その結果、原子炉格納容器及び原子炉建屋の容積および高さを低減することができる。   According to the third embodiment, the heat removal efficiency of the reactor containment vessel 2 is further increased by forming a part of the radiation fins of the reactor containment vessel into a protruding shape. As a result, the reactor containment vessel and the atomic reactor The volume and height of the furnace building can be reduced.

(第4の実施形態)
本発明の第4の実施形態に係る原子炉格納容器の冷却構造を、図9及び図10を用いて説明する。
(Fourth embodiment)
A reactor containment cooling structure according to a fourth embodiment of the present invention will be described with reference to FIGS.

本第4の実施形態では、原子炉格納容器2の側壁面から下部に至る放熱フィン8は、原子炉格納容器2の側壁面を螺旋状に取り囲むように設置されている。このとき、分岐管10から原子炉格納容器2の上面へ均等に散水された冷却水は、原子炉格納容器2の上面から側壁面へ達すると、放熱フィン8に沿って原子炉格納容器2の側壁面を周回しながら流下していくため、原子炉格納容器側壁面を均一にぬらすことができ、冷却水の蒸発による除熱効果をさらに効率的にすることができる。   In the fourth embodiment, the radiating fins 8 extending from the side wall surface of the nuclear reactor containment vessel 2 to the lower part are installed so as to surround the side wall surface of the nuclear reactor containment vessel 2 in a spiral shape. At this time, when the cooling water sprayed evenly from the branch pipe 10 to the upper surface of the reactor containment vessel 2 reaches the side wall surface from the upper surface of the reactor containment vessel 2, along the radiation fins 8, Since it flows down while circling the side wall surface, the side wall surface of the reactor containment vessel can be wetted uniformly, and the heat removal effect by evaporation of the cooling water can be made more efficient.

さらに、図10に示すように原子炉格納容器2の側壁面から注水するような注水管13を設けることによって、原子炉格納容器2上部から流れてくる過程で壁面からの熱伝達により蒸発する分の冷却水を途中で補うことができる。この場合、原子炉格納容器上部から散水する冷却水貯蔵タンク6の水の一部を、それよりも低い位置にある冷却水貯蔵タンク14に振り分けることができるため、原子炉格納容器2の上方にある冷却水貯蔵タンク6の容量を小さくでき、原子炉建屋3の容積および高さを低減することができる。   Furthermore, as shown in FIG. 10, by providing a water injection pipe 13 for injecting water from the side wall surface of the reactor containment vessel 2, it is possible to evaporate by heat transfer from the wall surface in the process of flowing from the upper portion of the reactor containment vessel 2. The cooling water can be supplemented on the way. In this case, a part of the water in the cooling water storage tank 6 sprinkled from the upper part of the reactor containment vessel can be distributed to the cooling water storage tank 14 located at a lower position, so that The capacity of a certain cooling water storage tank 6 can be reduced, and the volume and height of the reactor building 3 can be reduced.

なお、本第4の実施形態では、原子炉格納容器2の上部にフィンが設けられていないが、第1の実施形態に示す放射状のフィンを原子炉格納容器2の上部に設けてもよい。その場合、原子炉格納容器2の上部に設けられた放射状のフィンと側壁面に設けられた螺旋状フィンにより、原子炉格納容器全体を均一にぬらすことができ、冷却水の蒸発による除熱効果をさらに効率的にすることができる。
本第4の実施形態によれば、原子炉格納容器の側壁面に放熱フィンを螺旋状に周回させるとともに、原子炉格納容器の上部に冷却水を均一に散布する羽根を設け、さらに、側壁面からも冷却水を注水可能とすることにより、受動的な駆動力のみで原子炉格納容器の除熱効率を高くすることができ、その結果、原子炉格納容器及び原子炉建屋の容積および高さを低減することができる。
In the fourth embodiment, fins are not provided on the upper portion of the reactor containment vessel 2, but radial fins shown in the first embodiment may be provided on the upper portion of the reactor containment vessel 2. In that case, the radial containment fin provided on the upper part of the reactor containment vessel 2 and the spiral fin provided on the side wall can uniformly wet the entire reactor containment vessel, and the heat removal effect by evaporation of the cooling water can be achieved. Can be made more efficient.
According to the fourth embodiment, the radiating fins are spirally wound around the side wall surface of the reactor containment vessel, and the blades for uniformly spraying the cooling water are provided on the upper portion of the reactor containment vessel. Therefore, it is possible to increase the heat removal efficiency of the containment vessel only with passive driving force, and as a result, the volume and height of the containment vessel and the reactor building can be increased. Can be reduced.

1,2…原子炉圧力容器、3…原子炉建屋、4…空気流路、5…煙突、6…冷却水貯蔵タンク、7…散水管、8…放熱フィン、9…羽根、10…分岐管、11…突起形状、12…突起形状の端部、13…注水管、14…冷却水貯蔵タンク。 DESCRIPTION OF SYMBOLS 1, 2 ... Reactor pressure vessel, 3 ... Reactor building, 4 ... Air flow path, 5 ... Chimney, 6 ... Cooling water storage tank, 7 ... Sprinkling pipe, 8 ... Radiation fin, 9 ... Blade, 10 ... Branch pipe 11 ... Projection shape, 12 ... End part of projection shape, 13 ... Water injection pipe, 14 ... Cooling water storage tank.

Claims (6)

原子炉圧力容器を内包する原子炉格納容器の上部から径方向へ放射状に伸び、前記原子炉格納容器の側壁面を鉛直方向に伸びて側壁面下部に達する複数の放熱フィンと、前記原子炉格納容器の上部に設けられた散水管に回転可能に支持された複数の羽根と、前記羽根又は前記散水管に回転可能に支持され前記散水管から供給される冷却水を前記原子炉格納容器の上部に散水する複数の分岐管と、を備えることを特徴とする原子炉格納容器の冷却構造。   A plurality of radiating fins extending radially from the upper part of the reactor containment containing the reactor pressure vessel in a radial direction, vertically extending the side wall surface of the reactor containment vessel and reaching the lower side of the side wall surface, and the reactor containment A plurality of blades rotatably supported by watering pipes provided at the upper part of the vessel, and cooling water supplied rotatably from the watering pipes rotatably supported by the blades or the watering pipes. A reactor containment vessel cooling structure, comprising: a plurality of branch pipes that spray water. 前記放熱フィンの一方は前記原子炉格納容器側壁面に接続され、他方は前記原子炉格納容器を取り囲む原子炉建屋の内壁面に接続されていることを特徴とする請求項1記載の原子炉格納容器の冷却構造。   2. The reactor containment according to claim 1, wherein one of the radiation fins is connected to a side wall surface of the reactor containment vessel and the other is connected to an inner wall surface of a reactor building surrounding the reactor containment vessel. Container cooling structure. 前記放熱フィンの先端部が鉛直方向に沿って周期的な突起形状を有していることを特徴とする請求項1又は2記載の原子炉格納容器の冷却構造。   The cooling structure for a reactor containment vessel according to claim 1 or 2, wherein a tip end portion of the radiation fin has a periodic projection shape along a vertical direction. 前記突起形状は鉛直下側の端部に近づくほど幅が小さくなっていることを特徴とする請求項3記載の原子炉格納容器の冷却構造。   The reactor containment vessel cooling structure according to claim 3, wherein the protrusion has a width that decreases as it approaches an end portion on a vertically lower side. 原子炉圧力容器を内包する原子炉格納容器の側壁面を螺旋状に取り囲むようにして側壁面下部に達する放熱フィンと、前記原子炉格納容器の上部に設けられた散水管に回転可能に支持された複数の羽根と、前記羽根又は前記散水管に回転可能に支持され前記散水管から供給される冷却水を前記原子炉格納容器の上部に散水する複数の分岐管と、を備えることを特徴とする原子炉格納容器の冷却構造。   It is rotatably supported by heat radiation fins that reach the lower portion of the side wall surface so as to spirally surround the side wall surface of the reactor containment vessel containing the reactor pressure vessel, and a sprinkler pipe provided at the upper portion of the reactor containment vessel. A plurality of blades, and a plurality of branch pipes that are rotatably supported by the blades or the water spray pipes and spray water supplied from the water spray pipes to the upper part of the reactor containment vessel. Reactor containment cooling structure. 前記放熱フィンの間隙に注水管を配置したことを特徴とする請求項5記載の原子炉格納容器の冷却構造。   6. The reactor containment vessel cooling structure according to claim 5, wherein water injection pipes are disposed in the gaps between the radiation fins.
JP2009082237A 2009-03-30 2009-03-30 Cooling structure of reactor containment vessel Pending JP2010236885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009082237A JP2010236885A (en) 2009-03-30 2009-03-30 Cooling structure of reactor containment vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082237A JP2010236885A (en) 2009-03-30 2009-03-30 Cooling structure of reactor containment vessel

Publications (1)

Publication Number Publication Date
JP2010236885A true JP2010236885A (en) 2010-10-21

Family

ID=43091352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082237A Pending JP2010236885A (en) 2009-03-30 2009-03-30 Cooling structure of reactor containment vessel

Country Status (1)

Country Link
JP (1) JP2010236885A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176274A1 (en) * 2011-06-21 2012-12-27 一般社団法人太陽エネルギー研究所 Steam generating apparatus
JP2013002877A (en) * 2011-06-14 2013-01-07 Toshiba Corp Cooling system for reactor container
CN103489490A (en) * 2012-06-13 2014-01-01 中国核动力研究设计院 Passive containment vessel spraying device
KR101383451B1 (en) 2012-09-24 2014-04-10 한국수력원자력 주식회사 Cooling device for external wall of reactor vessel
CN104662614A (en) * 2012-08-21 2015-05-27 Smr发明技术有限公司 Component cooling water system for nuclear power plant
JP2015518148A (en) * 2012-04-12 2015-06-25 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Passive containment air cooling for nuclear power plants.
JP2015518149A (en) * 2012-04-12 2015-06-25 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Passive containment air cooling for nuclear power plants.
WO2015103790A1 (en) * 2014-01-13 2015-07-16 中科华核电技术研究院有限公司 Nuclear power plant containment cooling system and spray flow control method therefor
JP2015522804A (en) * 2012-05-21 2015-08-06 エスエムアール・インベンテック・エルエルシー Passive containment protection system
JP2016223990A (en) * 2015-06-03 2016-12-28 大学共同利用機関法人自然科学研究機構 Generating structure of free surface flow to cover surface of structure
CN110991010A (en) * 2019-11-13 2020-04-10 中国辐射防护研究院 Method for estimating weakening coefficient of aerosol spraying and natural sedimentation of containment vessel
US10665354B2 (en) 2012-05-21 2020-05-26 Smr Inventec, Llc Loss-of-coolant accident reactor cooling system
US10672523B2 (en) 2012-05-21 2020-06-02 Smr Inventec, Llc Component cooling water system for nuclear power plant
US10720249B2 (en) 2012-05-21 2020-07-21 Smr Inventec, Llc Passive reactor cooling system
KR20210156610A (en) * 2020-06-18 2021-12-27 한국수력원자력 주식회사 Passive residual heat removal system
US11901088B2 (en) 2012-05-04 2024-02-13 Smr Inventec, Llc Method of heating primary coolant outside of primary coolant loop during a reactor startup operation
US11935663B2 (en) 2012-05-21 2024-03-19 Smr Inventec, Llc Control rod drive system for nuclear reactor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002877A (en) * 2011-06-14 2013-01-07 Toshiba Corp Cooling system for reactor container
WO2012176274A1 (en) * 2011-06-21 2012-12-27 一般社団法人太陽エネルギー研究所 Steam generating apparatus
JP2015518148A (en) * 2012-04-12 2015-06-25 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Passive containment air cooling for nuclear power plants.
JP2015518149A (en) * 2012-04-12 2015-06-25 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Passive containment air cooling for nuclear power plants.
US11901088B2 (en) 2012-05-04 2024-02-13 Smr Inventec, Llc Method of heating primary coolant outside of primary coolant loop during a reactor startup operation
US10720249B2 (en) 2012-05-21 2020-07-21 Smr Inventec, Llc Passive reactor cooling system
JP2015522804A (en) * 2012-05-21 2015-08-06 エスエムアール・インベンテック・エルエルシー Passive containment protection system
US9786393B2 (en) 2012-05-21 2017-10-10 Smr Inventec, Llc Passive reactor containment protection system
US11935663B2 (en) 2012-05-21 2024-03-19 Smr Inventec, Llc Control rod drive system for nuclear reactor
US10665354B2 (en) 2012-05-21 2020-05-26 Smr Inventec, Llc Loss-of-coolant accident reactor cooling system
US10672523B2 (en) 2012-05-21 2020-06-02 Smr Inventec, Llc Component cooling water system for nuclear power plant
CN103489490A (en) * 2012-06-13 2014-01-01 中国核动力研究设计院 Passive containment vessel spraying device
CN104662614A (en) * 2012-08-21 2015-05-27 Smr发明技术有限公司 Component cooling water system for nuclear power plant
KR101383451B1 (en) 2012-09-24 2014-04-10 한국수력원자력 주식회사 Cooling device for external wall of reactor vessel
WO2015103790A1 (en) * 2014-01-13 2015-07-16 中科华核电技术研究院有限公司 Nuclear power plant containment cooling system and spray flow control method therefor
GB2536393A (en) * 2014-01-13 2016-09-14 China Nuclear Power Tech Res Inst Nuclear power plant containment cooling system and spray flow control method therefor
GB2536393B (en) * 2014-01-13 2020-10-07 China Nuclear Power Tech Research Institute Nuclear power plant containment cooling system and spray flow control method therefor
JP2016223990A (en) * 2015-06-03 2016-12-28 大学共同利用機関法人自然科学研究機構 Generating structure of free surface flow to cover surface of structure
CN110991010B (en) * 2019-11-13 2023-07-14 中国辐射防护研究院 Weakening coefficient estimation method for containment aerosol spraying and natural sedimentation
CN110991010A (en) * 2019-11-13 2020-04-10 中国辐射防护研究院 Method for estimating weakening coefficient of aerosol spraying and natural sedimentation of containment vessel
KR102414756B1 (en) * 2020-06-18 2022-06-28 한국수력원자력 주식회사 Passive residual heat removal system
KR20210156610A (en) * 2020-06-18 2021-12-27 한국수력원자력 주식회사 Passive residual heat removal system

Similar Documents

Publication Publication Date Title
JP2010236885A (en) Cooling structure of reactor containment vessel
CN107210071B (en) Passive heat removal system inside containment
US20130272474A1 (en) Passive containment air cooling for nuclear power plants
JP5463196B2 (en) Nuclear power plant with reactor containment cooling equipment
JP6516345B2 (en) Passive containment air cooling for nuclear power plants
TW201324534A (en) Pressurized water reactor with compact passive safety systems
JP2006322627A (en) Heat exchanger, its manufacturing method, and nuclear reactor containment vessel system
JP6402171B2 (en) Passive cooling system for coolant storage area of nuclear power plant
WO2014193988A1 (en) Passive reactor cooling system
CN103730170B (en) A kind of accident mitigation device of intensified safety shell heat extraction
JP6022286B2 (en) Condensing chamber cooling system
JP2012198168A (en) Reactor container cooling apparatus and reactor building with the reactor container cooling apparatus
JP2014185989A (en) Core catcher
CN107527662A (en) A kind of passive double containment of band segmentation self-contained water tank
JP2010217091A (en) Containment vessel passive cooling system and liquid-metal-cooled reactor
JP2011196700A (en) System and method for removing residual heat
CN103377730B (en) A kind of separate air heat of cooling trap that is thermal source with containment inner water tank
JP6775382B2 (en) Core catcher
JP2012230030A (en) Static water supply device for spent fuel pool
JP2014215250A (en) Air-cooling system of reactor containment vessel
KR102067396B1 (en) Small modular reactor system equipped with naturally circulating second cooling complex
CN103377734A (en) Sunken containment with separated air cooling hot trap
JP2010175331A (en) Heat removal structure for radioactive waste storage container
CN207663806U (en) A kind of passive double containment of band segmentation self-contained water tank
JP2011133315A (en) Cooling structure of reactor containment vessel