JP2012230030A - Static water supply device for spent fuel pool - Google Patents

Static water supply device for spent fuel pool Download PDF

Info

Publication number
JP2012230030A
JP2012230030A JP2011099100A JP2011099100A JP2012230030A JP 2012230030 A JP2012230030 A JP 2012230030A JP 2011099100 A JP2011099100 A JP 2011099100A JP 2011099100 A JP2011099100 A JP 2011099100A JP 2012230030 A JP2012230030 A JP 2012230030A
Authority
JP
Japan
Prior art keywords
heat exchanger
spent fuel
water supply
fuel pool
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011099100A
Other languages
Japanese (ja)
Inventor
Kazuaki Kito
和明 木藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2011099100A priority Critical patent/JP2012230030A/en
Publication of JP2012230030A publication Critical patent/JP2012230030A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide a static water supply device for a spent fuel pool, which suppresses decrease in water volume of the spent fuel pool even when an external power source for cooling the spent fuel pool is lost over a long period.SOLUTION: Heat exchangers which exchange heat inside and outside a reactor building are installed above a spent fuel pool. The heat exchanger inside the reactor building is used for condensing vapor in the reactor building, and heat removed by vapor condensation is released from the heat exchanger outside the reactor building to the outside. Water which is formed by condensing the vapor with use of the heat exchanger inside the reactor building is collected by a condensed water recovery unit installed below the heat exchanger, and is returned to the spent fuel pool through a condensed water return pipe connecting a bottom of the condensed water recovery unit to the spent fuel pool.

Description

本発明は原子力発電プラントに用いられる使用済燃料プールの静的水供給装置に関する。   The present invention relates to a static water supply device for a spent fuel pool used in a nuclear power plant.

原子力発電システム、例えば沸騰水型軽水炉(以下、BWRと称す)は、原子炉建屋内に既に数サイクル運転経過した使用済燃料や、定期検査時に原子炉から取り出した燃料(以下、これらをまとめて使用済燃料と称す)を一時的に保管する使用済燃料プール(以下、SFPと略す)がある。使用済燃料はプールの下部に設置し、燃料が完全に冠水した状態で貯蔵している。使用済燃料は崩壊熱により発熱しているため、プール水を循環して冷却し、約40℃程度のプール水の温度に管理している。   Nuclear power generation systems, such as boiling water light water reactors (hereinafter referred to as BWRs), are used fuels that have already been operated for several cycles in the reactor building, and fuels that have been removed from the reactors during periodic inspections (hereinafter collectively referred to as these). There is a spent fuel pool (hereinafter abbreviated as SFP) that temporarily stores spent fuel). Spent fuel is installed at the bottom of the pool and stored with the fuel completely flooded. Since spent fuel generates heat due to decay heat, the pool water is circulated and cooled to control the temperature of the pool water at about 40 ° C.

一方、ポンプのような動力を使用しない自然循環方式の冷却法として、ヒートパイプを用いた空冷システムなどがある。一般的なヒートパイプの熱的な特徴は、伝熱工学資料などの技術資料に記載されている。最初の発想は、宇宙空間内の無重力状態で、動力を使わずに熱輸送能力を高める目的で、機器の冷却や除熱に使用されてきた。一方で、民生用ヒートパイプとして、電子機器の冷却及び産業機械の冷却などで、いくつかの製品に適用された実績がある。作動流体が液体単相流の自然循環による放熱に比べて、ヒートパイプでは作動媒体の沸騰・凝縮といった相変化現象を用いているため、これら流体の大きな蒸発潜熱による熱輸送能力の高さは際立っており、構造部材の熱伝導による熱移動に比べて極めて大きな熱輸送能力があることが知られている。   On the other hand, as a natural circulation type cooling method that does not use power such as a pump, there is an air cooling system using a heat pipe. The thermal characteristics of general heat pipes are described in technical data such as heat transfer engineering data. The first idea has been used for cooling and heat removal of equipment in the state of weightlessness in outer space in order to increase heat transport capacity without using power. On the other hand, as a heat pipe for consumer use, it has a track record of being applied to several products for cooling electronic devices and industrial machines. Compared to natural heat circulation of liquid single-phase flow in the working fluid, the heat pipe uses a phase change phenomenon such as boiling and condensation of the working medium. It is known that the heat transfer capability is extremely large compared to the heat transfer by heat conduction of the structural member.

伝熱工学資料(改訂第4版)、日本機械学会Heat transfer engineering data (4th revised edition), Japan Society of Mechanical Engineers

現行BWRで用いられているSFPプール水の冷却システムは、一般的に電動ポンプで冷却水を循環させている。冷却水を循環するために必要な電源が喪失した場合、SFP内のプール水は使用済燃料から発生する崩壊熱により徐々に加熱される。SFP内には十分な水量が確保されているため、SFPのプール水の温度上昇は非常にゆるやかであるが、電源の喪失が長期におよぶ場合には、SFPのプール水の一部は蒸発して失われる可能性がある。   The SFP pool water cooling system used in the current BWR generally circulates cooling water using an electric pump. When the power source necessary for circulating the cooling water is lost, the pool water in the SFP is gradually heated by decay heat generated from the spent fuel. Since there is a sufficient amount of water in the SFP, the temperature rise of the SFP pool water is very gradual, but if the power loss is prolonged, a part of the SFP pool water evaporates. May be lost.

本発明の目的は、電源の喪失が長期におよぶ場合でも、使用済燃料プールのプール水の減少を抑制できる使用済燃料プールの静的水供給装置を提供することにある。   The objective of this invention is providing the static water supply apparatus of the spent fuel pool which can suppress the reduction | decrease of the pool water of a spent fuel pool, even when the loss of a power supply is prolonged.

上記目的を達成するため本発明は、使用済燃料プールよりも上部に、原子炉建屋内外で熱交換する熱交換器を設置する。原子炉建屋内側の熱交換器は、原子炉建屋内の蒸気を凝縮するためのもので、蒸気凝縮により奪った熱は原子炉建屋外側の熱交換器から外部に放出する。原子炉建屋内側の熱交換器で蒸気を凝縮して生成した水は、熱交換器の下部に設置した凝縮水回収器で集め、凝縮器回収器下部から使用済燃料プールへと接続した凝縮水戻し管を通してSFPに戻す構造とする。   In order to achieve the above object, the present invention installs a heat exchanger for exchanging heat inside and outside the reactor building above the spent fuel pool. The heat exchanger on the reactor building side is for condensing the steam inside the reactor building, and the heat taken away by the steam condensation is released to the outside from the heat exchanger on the reactor building outdoor side. The water generated by condensing steam in the heat exchanger inside the reactor building is collected by the condensate recovery unit installed at the bottom of the heat exchanger, and the condensed water connected from the lower part of the condenser recovery unit to the spent fuel pool It is set as the structure returned to SFP through a return pipe.

本発明によれば、長期の電源喪失時でも使用済燃料プールのプール水の減少を抑制できる。   According to the present invention, it is possible to suppress a decrease in pool water of the spent fuel pool even when power is lost for a long time.

本発明の好適な一実施例である使用済燃料プールの静的水供給装置の構成図である。It is a block diagram of the static water supply apparatus of the spent fuel pool which is one suitable Example of this invention. 伝熱促進用フィンを表した図である。It is a figure showing the heat transfer promotion fin. 外側熱交換器の傾斜を表した図である。It is a figure showing the inclination of an outer side heat exchanger.

発明者らは、長期の電源喪失時にSFP内のプール水の減少を抑制するには、SFPよりも上部に、原子炉建屋内外で熱交換する熱交換器を設置し、原子炉建屋内の蒸気を凝縮してSFPに戻せば良いとの結論に達した。   In order to suppress the decrease of pool water in the SFP when power is lost for a long time, the inventors installed a heat exchanger for exchanging heat outside and inside the reactor building above the SFP, and steam inside the reactor building. It was concluded that it is sufficient to condense and return to SFP.

これにより、長期の電源喪失時でもSFPプール水の減少を抑制できるため、原子炉の安全性をさらに向上することができる。   Thereby, since the decrease in SFP pool water can be suppressed even when power is lost for a long time, the safety of the nuclear reactor can be further improved.

上記の検討結果を反映した、本発明の実施例を以下に説明する。   Examples of the present invention reflecting the above examination results will be described below.

本発明の好適な一実施例である実施例1の使用済燃料プールの静的水供給装置を、図1を用いて説明する。本実施例は沸騰水型軽水炉(BWR)の例を示しているが、基本的な構成が近い、例えば加圧水型軽水炉などにも適用できる。   A spent water pool static water supply apparatus according to embodiment 1, which is a preferred embodiment of the present invention, will be described with reference to FIG. Although the present embodiment shows an example of a boiling water light water reactor (BWR), the present invention can be applied to a pressurized water light water reactor, for example, whose basic structure is close.

本発明の使用済燃料プールの静的水供給装置は、原子炉建屋1の外側に設置された外側熱交換器2、内側に設置された内側熱交換器3、内側熱交換器の下方に設置された凝縮水回収器4、凝縮水回収器下部に接続された凝縮水戻し管5を備えている。外側熱交換器と内側熱交換器は、高温側接続管6と低温側接続管7で接続されている。   The spent water pool static water supply device of the present invention is installed below the outer heat exchanger 2 installed outside the reactor building 1, the inner heat exchanger 3 installed inside, and the inner heat exchanger. The condensed water recovery device 4 and the condensed water return pipe 5 connected to the lower portion of the condensed water recovery device are provided. The outer heat exchanger and the inner heat exchanger are connected by a high temperature side connecting pipe 6 and a low temperature side connecting pipe 7.

凝縮水回収器の下方には使用済燃料を貯蔵する使用済燃料プール(SFP)8があり、その中には使用済燃料9が貯蔵されている。通常時のSFP水位は使用済燃料の上端より上で、かつSFPの上端10より下にある。   Below the condensate recovery unit is a spent fuel pool (SFP) 8 for storing spent fuel, in which spent fuel 9 is stored. The normal SFP water level is above the upper end of the spent fuel and below the upper end 10 of the SFP.

SFP内のプール水は、通常は外部電源により駆動される崩壊熱除去系などで冷却されている。外部電源が喪失した場合には、使用済燃料の崩壊熱により、プール水温は徐々に上昇することになる。SFPは崩壊熱に対して十分大きな水量が確保されており、短時間の外部電源喪失ではプール水温の上昇は小さく問題とならない。外部電源の喪失が長期にわたる場合には、プール水温上昇によりプール水が蒸発し、プール水量が減少することになる。SFPから蒸発したプール水は原子炉建屋内部に蒸気の形で放出される。   The pool water in the SFP is usually cooled by a decay heat removal system driven by an external power source. When the external power source is lost, the pool water temperature gradually rises due to the decay heat of the spent fuel. In SFP, a sufficiently large amount of water is secured against decay heat, and when the external power supply is lost for a short time, the rise in pool water temperature is small and does not cause a problem. When the loss of the external power supply is long, the pool water evaporates due to the rise in pool water temperature, and the pool water volume decreases. Pool water evaporated from the SFP is discharged into the reactor building in the form of steam.

本実施例では、原子炉建屋の外側と内側に、外側熱交換器と内側熱交換器を設置しており、外側熱交換器と内側熱交換器は高温側接続管と低温側接続管で接続されたヒートパイプの閉ループを構成している。この閉ループの内部にはヒートパイプの作動流体として、35℃〜99℃の間で沸騰する流体(以下、低沸点流体と称す)が封入されている。SFPからプール水が蒸発している状況では、内側熱交換器の周囲は大気圧の水の飽和温度100℃に近い状態であり、内側熱交換器内部の低沸点流体は周囲の熱を吸収して蒸発する。この時逆に、内側熱交換器外部の蒸気は熱を奪われて冷却、凝縮することになる。内側熱交換器内部で蒸発した低沸点流体は、内側熱交換器上部に接続された高温側接続管を通って外側熱交換器に流入する。外側熱交換器の周囲は外気温(国内であれば〜35℃程度)であるため、低沸点流体は外部に熱を放出して凝縮する。凝縮した低沸点流体は低温側接続管を通って再び内側熱交換器へと流入する。   In this example, an outer heat exchanger and an inner heat exchanger are installed on the outer and inner sides of the reactor building, and the outer heat exchanger and the inner heat exchanger are connected by a high-temperature side connection pipe and a low-temperature side connection pipe. Constitutes a closed loop of heat pipes. Inside this closed loop, a fluid boiling between 35 ° C. and 99 ° C. (hereinafter referred to as a low boiling point fluid) is enclosed as a working fluid of the heat pipe. In the situation where pool water evaporates from SFP, the inside of the inner heat exchanger is in a state close to the saturation temperature of 100 ° C of atmospheric water, and the low boiling point fluid inside the inner heat exchanger absorbs the surrounding heat. Evaporate. Conversely, the steam outside the inner heat exchanger is deprived of heat and cooled and condensed. The low boiling point fluid evaporated inside the inner heat exchanger flows into the outer heat exchanger through the high temperature side connecting pipe connected to the upper part of the inner heat exchanger. Since the outside heat exchanger has an outside air temperature (about 35 ° C. in Japan), the low boiling point fluid condenses by releasing heat to the outside. The condensed low boiling point fluid flows again into the inner heat exchanger through the low temperature side connecting pipe.

熱交換性能を向上するため、外側熱交換器や内側熱交換器には冷却促進用のフィンを付けると効果的である。熱交換器は数百本の伝熱管12により構成される(図2)。図2では、鉛直方向に備えた伝熱管12に対して、複数本の伝熱促進用フィン11を水平面に対して角度αだけ傾斜させて設けている。内側熱交換器については、フィンの設置角度を水平面に対してα=10°以上の傾斜を付けると良い。好ましくは水平面に対してα=90°(垂直方向)のフィンが良い。伝熱促進用のフィンに角度をつけることで、内側熱交換器表面で凝縮した水を凝縮水回収器に効率よく流下させることが出来る。   In order to improve the heat exchange performance, it is effective to add fins for promoting cooling to the outer heat exchanger and the inner heat exchanger. The heat exchanger is composed of several hundred heat transfer tubes 12 (FIG. 2). In FIG. 2, with respect to the heat transfer tube 12 provided in the vertical direction, a plurality of heat transfer promotion fins 11 are provided to be inclined by an angle α with respect to the horizontal plane. About an inner side heat exchanger, it is good to attach the inclination of (alpha) = 10 degrees or more to the installation angle of a fin with respect to a horizontal surface. Preferably, fins with α = 90 ° (vertical direction) with respect to the horizontal plane are used. By providing an angle to the heat transfer-promoting fin, the water condensed on the inner heat exchanger surface can efficiently flow down to the condensate recovery unit.

さらに、低沸点流体が一部に滞留することを防止するため、高温側接続管は外側熱交換器および内側熱交換器の上端部、低温側接続管は外側熱交換器および内側熱交換器の下端部に設置し、外側熱交換器の上端高さおよび下端高さは、内側熱交換器の上端高さおよび下端高さより上方になるような配置にすると良い。   Furthermore, in order to prevent the low boiling point fluid from staying in part, the high temperature side connecting pipe is the upper end of the outer heat exchanger and the inner heat exchanger, and the low temperature side connecting pipe is the outer heat exchanger and the inner heat exchanger. It is good to arrange | position so that it may install in a lower end part and the upper end height and lower end height of an outer side heat exchanger may become higher than the upper end height and lower end height of an inner side heat exchanger.

外側熱交換器は、原子炉建屋外部から消防車の放水などにより冷却可能な構造としておくとさらに良い。放水を効率よく外側熱交換器にあてるため、外側熱交換器を水平面に対して角度β=30°〜180°の範囲で角度を付けて設置すると良い(図3)。   It is further preferable that the outer heat exchanger has a structure that can be cooled from the outdoor part of the reactor building by water discharge from a fire engine. In order to efficiently apply water discharge to the outer heat exchanger, the outer heat exchanger may be installed at an angle in the range of β = 30 ° to 180 ° with respect to the horizontal plane (FIG. 3).

本発明の目的は原子炉建屋内部から外部へ熱を逃がすことにあるので、内側熱交換器と外側熱交換器はヒートパイプ以外の熱交換方法で接続されていても問題無い。   Since the object of the present invention is to release heat from the inside of the reactor building to the outside, there is no problem even if the inner heat exchanger and the outer heat exchanger are connected by a heat exchange method other than a heat pipe.

内側熱交換器の周囲では上述のように、SFPから蒸発した蒸気が冷却、凝縮される。凝縮して生成された水は内側熱交換器表面を伝って下部へと落ちることになる。内側熱交換器周囲で凝縮した水を回収するため、内側熱交換器の下方に皿状の凝縮水回収器を設置する。凝縮水回収器に溜まった凝縮水は、凝縮水回収器下部に接続した凝縮水戻し管から排出する。   As described above, the vapor evaporated from the SFP is cooled and condensed around the inner heat exchanger. The water produced by condensation will flow down along the inner heat exchanger surface. In order to collect the water condensed around the inner heat exchanger, a dish-shaped condensate collector is installed below the inner heat exchanger. The condensed water collected in the condensed water collector is discharged from a condensed water return pipe connected to the lower part of the condensed water collector.

凝縮水戻し管はSFP内に接続されており、その出口高さは凝縮水の飛散を防ぐためにSFP上端より下とするが、好ましくは、通常時のSFP水位より下が良い。
以上の構成を取ることで、外部電源が長期に喪失した場合でも、SFPから蒸発した蒸気を凝縮して再びSFPに戻すことができるため、SFPのプール水の減少を抑制できる。
The condensed water return pipe is connected to the SFP, and its outlet height is lower than the upper end of the SFP in order to prevent scattering of condensed water, but preferably lower than the normal SFP water level.
By adopting the above configuration, even when the external power source is lost for a long time, the vapor evaporated from the SFP can be condensed and returned to the SFP again, so that the decrease of the pool water of the SFP can be suppressed.

1…原子炉建屋、2…外側熱交換器、3…内側熱交換器、4…凝縮水回収器、5…凝縮水戻し管、6…高温側接続管、7…低温側接続管、8…使用済燃料プール、9…使用済燃料、10…使用済燃料プール上端、11…伝熱促進用フィン、12…伝熱管。   DESCRIPTION OF SYMBOLS 1 ... Reactor building, 2 ... Outer heat exchanger, 3 ... Inner heat exchanger, 4 ... Condensate recovery unit, 5 ... Condensate return pipe, 6 ... High temperature side connection pipe, 7 ... Low temperature side connection pipe, 8 ... Spent fuel pool, 9 ... spent fuel, 10 ... upper end of spent fuel pool, 11 ... heat transfer promotion fin, 12 ... heat transfer tube.

Claims (10)

原子炉建屋と、該原子炉建屋内部に設置された使用済燃料プールを持つ原子力発電プラントにおいて、
前記原子炉建屋には使用済燃料プールの静的水供給装置が設置され、該使用済燃料プールの静的水供給装置は、前記原子炉建屋外部に設置された外側熱交換器、内部に設置された内側熱交換器を持ち、前記外側熱交換器と内側熱交換器は接続されており、内側熱交換器で吸収した熱を外側熱交換器から放出できる構造であり、前記内側熱交換器下方には凝縮水回収器を設置し、該凝縮水回収器の下部には凝縮水戻し管が接続され、該凝縮水戻し管の出口は前記使用済燃料プールであることを特徴とする使用済燃料プールの静的水供給装置。
In a nuclear power plant having a nuclear reactor building and a spent fuel pool installed inside the reactor building,
A static water supply device for a spent fuel pool is installed in the reactor building, and the static water supply device for the spent fuel pool is installed inside an outer heat exchanger installed outside the reactor building. The outer heat exchanger is connected to the inner heat exchanger, and the heat absorbed by the inner heat exchanger can be discharged from the outer heat exchanger. A condensed water recovery unit is installed below, a condensed water return pipe is connected to the lower part of the condensed water recovery unit, and the outlet of the condensed water return pipe is the spent fuel pool. Static water supply device for fuel pool.
請求項1記載の使用済燃料プールの静的水供給装置において、前記外側熱交換器と前記内側熱交換器は、高温側接続管と該高温側接続管より低い位置にある低温側接続管で接続され、内部に作動流体が封入されたヒートパイプ熱交換器であることを特徴とする使用済燃料プールの静的水供給装置。   The static water supply apparatus for a spent fuel pool according to claim 1, wherein the outer heat exchanger and the inner heat exchanger are a high temperature side connecting pipe and a low temperature side connecting pipe at a position lower than the high temperature side connecting pipe. A static water supply device for a spent fuel pool, which is a heat pipe heat exchanger connected and filled with a working fluid. 請求項2記載の使用済燃料プールの静的水供給装置において、ヒートパイプ内部の作動流体は沸点が35〜99℃の間の流体であることを特徴とする使用済燃料プールの静的水供給装置。   The static water supply device for a spent fuel pool according to claim 2, wherein the working fluid inside the heat pipe is a fluid having a boiling point between 35 and 99 ° C. apparatus. 請求項2記載の使用済燃料プールの静的水供給装置において、前記外側熱交換器の上端高さは、前記内側熱交換器の上端高さよりも高いことを特徴とする使用済燃料プールの静的水供給装置。   The static water supply device for a spent fuel pool according to claim 2, wherein the upper end height of the outer heat exchanger is higher than the upper end height of the inner heat exchanger. Water supply device. 請求項2記載の使用済燃料プールの静的水供給装置において、前記外側熱交換器の下端高さは、前記内側熱交換器の下端高さよりも高いことを特徴とする使用済燃料プールの静的水供給装置。   The static water supply device for a spent fuel pool according to claim 2, wherein a lower end height of the outer heat exchanger is higher than a lower end height of the inner heat exchanger. Water supply device. 請求項1記載の使用済燃料プールの静的水供給装置において、前記外側熱交換器は水平面に対して30〜180°の角度を持っていることを特徴とする使用済燃料プールの静的水供給装置。   2. The spent water pool static water supply device according to claim 1, wherein the outer heat exchanger has an angle of 30 to 180 [deg.] With respect to a horizontal plane. Feeding device. 請求項1記載の使用済燃料プールの静的水供給装置において、前記外側熱交換器と前記内側熱交換器の少なくとも一方は、伝熱促進用のフィンを持つことを特徴とする使用済燃料プールの静的水供給装置。   2. The spent fuel pool static water supply device according to claim 1, wherein at least one of the outer heat exchanger and the inner heat exchanger has fins for promoting heat transfer. 3. Static water supply device. 請求項6記載の使用済燃料プールの静的水供給装置において、前記内側熱交換器に設置された伝熱促進用のフィンは、水平面に対して10°以上の角度を持つことを特徴とする使用済燃料プールの静的水供給装置。   The static water supply device for a spent fuel pool according to claim 6, wherein the heat transfer promoting fins installed in the inner heat exchanger have an angle of 10 ° or more with respect to a horizontal plane. Static water supply device for spent fuel pool. 請求項1〜7のいずれか1項に記載の使用済燃料プールの静的水供給装置は、沸騰水型軽水炉プラントに設置されることを特徴とする使用済燃料プールの静的水供給装置。   The static water supply apparatus for a spent fuel pool according to any one of claims 1 to 7, wherein the static water supply apparatus for a spent fuel pool is installed in a boiling water light water reactor plant. 請求項1〜7のいずれか1項に記載の使用済燃料プールの静的水供給装置は、加圧水型軽水炉プラントに設置されることを特徴とする使用済燃料プールの静的水供給装置。   The spent water pool static water supply apparatus according to any one of claims 1 to 7, wherein the spent water pool static water supply apparatus is installed in a pressurized water light water reactor plant.
JP2011099100A 2011-04-27 2011-04-27 Static water supply device for spent fuel pool Withdrawn JP2012230030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011099100A JP2012230030A (en) 2011-04-27 2011-04-27 Static water supply device for spent fuel pool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011099100A JP2012230030A (en) 2011-04-27 2011-04-27 Static water supply device for spent fuel pool

Publications (1)

Publication Number Publication Date
JP2012230030A true JP2012230030A (en) 2012-11-22

Family

ID=47431684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011099100A Withdrawn JP2012230030A (en) 2011-04-27 2011-04-27 Static water supply device for spent fuel pool

Country Status (1)

Country Link
JP (1) JP2012230030A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101515712B1 (en) * 2013-11-11 2015-04-27 한국수력원자력 주식회사 Self-assembly water supplying apparatus for water supplying of spent fuel storage tank
KR102516924B1 (en) * 2021-10-22 2023-03-31 한국수력원자력 주식회사 Mitigation system for loss of coolant in spent fuel pool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101515712B1 (en) * 2013-11-11 2015-04-27 한국수력원자력 주식회사 Self-assembly water supplying apparatus for water supplying of spent fuel storage tank
KR102516924B1 (en) * 2021-10-22 2023-03-31 한국수력원자력 주식회사 Mitigation system for loss of coolant in spent fuel pool

Similar Documents

Publication Publication Date Title
US10472996B2 (en) Autonomous self-powered system for removing thermal energy from pools of liquid heated by radioactive materials, and method of the same
US20120294407A1 (en) Nuclear Power Plant, Fuel Pool Water Cooling Facility and Method Thereof
KR100906717B1 (en) Air/Water hybrid passive reactor cavity cooling apparatus and method for core decay heat removal of a High Temperature Gas-Cooled Reactor
JP5829465B2 (en) Nuclear fuel cooling system
CN205177415U (en) Active heat pipe cooling system of spent fuel pool of nuclear power plant non -
KR20140058544A (en) Power generation from decay heat for spent nuclear fuel pool cooling and monitoring
JP6402171B2 (en) Passive cooling system for coolant storage area of nuclear power plant
CN108882654B (en) Phase change cooling system, cooling system and converter cabinet cooling system
JP6022286B2 (en) Condensing chamber cooling system
JP2012233698A (en) Nuclear power plant emergency cooling system
JP2009168775A (en) Heat recovery system of spent fuel
JP5555669B2 (en) Nuclear power plant and fuel pool water cooling method
JP5690202B2 (en) Nuclear decay heat removal equipment
JP2012230030A (en) Static water supply device for spent fuel pool
CN105006258A (en) Floating passive cooling device and system of spent fuel pool in nuclear power plant
KR101815958B1 (en) Passive containment cooling system for pressurized water reactor using phase-change material
KR101278906B1 (en) Apparatus for preventing thermal shock having a condensate mixing storage tank on condensate return line
KR101494372B1 (en) The apparatus of bubble jet heat pipe in cooling system of spent fuel pool
JP2014114981A (en) Static cooling system
JP2013096928A (en) Reactor facilities and reactor containment vessel cooling system
JP2016003961A (en) Nuclear power plant cooling system and nuclear power plant cooling method
JP6004438B2 (en) Reactor cooling system
CN214279619U (en) Containment heat exporting system
JP2014174138A (en) Operation method of fast reactor decay heat removal system
Han et al. Investigation on a Complete Passive Cooling System Using Large-Scale Separate Heat Pipes in Spent Fuel Pool

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701