JP2014215250A - Air-cooling system of reactor containment vessel - Google Patents

Air-cooling system of reactor containment vessel Download PDF

Info

Publication number
JP2014215250A
JP2014215250A JP2013094528A JP2013094528A JP2014215250A JP 2014215250 A JP2014215250 A JP 2014215250A JP 2013094528 A JP2013094528 A JP 2013094528A JP 2013094528 A JP2013094528 A JP 2013094528A JP 2014215250 A JP2014215250 A JP 2014215250A
Authority
JP
Japan
Prior art keywords
containment vessel
peripheral surface
cooling system
air cooling
reactor containment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013094528A
Other languages
Japanese (ja)
Inventor
邦雄 星野
Kunio Hoshino
邦雄 星野
一義 青木
Kazuyoshi Aoki
一義 青木
伸泰 田島
Nobuyasu Tajima
伸泰 田島
智香子 岩城
Chikako Iwaki
智香子 岩城
勝信 渡邉
Katsunobu Watanabe
勝信 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013094528A priority Critical patent/JP2014215250A/en
Publication of JP2014215250A publication Critical patent/JP2014215250A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air-cooling system of a reactor containment vessel that improves cooling efficiency of the containment vessel.SOLUTION: An air-cooling system 10 of a reactor containment vessel comprises: a baffle board 14 that is provided in a gap between a reactor containment vessel 11 and a building 12 covering the containment vessel 11 and that generates rising air 13 along an outer peripheral surface 11a of the containment vessel; and a shaped unit 20 that is provided on an inner peripheral surface 14a of the baffle board and that changes flow characteristics of a flow path 15 formed by the inner peripheral surface 14a and the outer peripheral surface 11a of the containment vessel.

Description

本発明は、加圧水型原子炉における原子炉格納容器の空冷システムに関する。   The present invention relates to an air cooling system for a containment vessel in a pressurized water reactor.

原子力プラントにおいて、格納容器の内部で配管が破断するような過酷事故が発生した場合、冷却材の気化に伴う内部圧力の上昇を抑制するために、受動的な駆動力を利用する冷却システムが注目されている。
受動的な駆動力とは、ポンプ等の機器を動作させるような動的な駆動力とは異なり、冷却対象の構造的特徴及び自然の物理現象が関連しあって作用するものである。
In nuclear power plants, when severe accidents occur that cause piping to break inside the containment vessel, a cooling system that uses passive driving force is focused on to suppress an increase in internal pressure due to vaporization of the coolant. Has been.
A passive driving force is different from a dynamic driving force that operates a device such as a pump, and acts by relating the structural characteristics of the object to be cooled and natural physical phenomena.

格納容器の冷却システムの一つとして、その上部に設置した給水タンク(図1の符号18参照)から重力により冷却水を自然落下させる方法がある。この場合、給水タンクに収容された冷却水が枯渇すると、動的な駆動力により新たに冷却水を供給しない限り、格納容器の冷却を持続できなくなる問題がある。   As one of the containment vessel cooling systems, there is a method in which cooling water is naturally dropped by gravity from a water supply tank (see reference numeral 18 in FIG. 1) installed in the upper part thereof. In this case, when the cooling water stored in the water supply tank is depleted, there is a problem that the cooling of the containment vessel cannot be continued unless the cooling water is newly supplied by dynamic driving force.

そこで、受動的な駆動力を用いる永続的な格納容器の冷却システムとして、格納容器とこの格納容器の外周を覆う建屋との隙間にバッフル板を設け、外気が通過する流路を形成する方式が提案されている。
この方式によれば、格納容器の放熱を駆動力として自然対流を発生させ、格納容器の外周面に沿う上昇気流により、格納容器の空却が行われる(例えば、特許文献1)。
Therefore, as a permanent containment cooling system that uses passive driving force, there is a method in which a baffle plate is provided in the gap between the containment vessel and the building covering the outer periphery of the containment vessel to form a flow path through which outside air passes. Proposed.
According to this method, natural convection is generated by using the heat radiation of the storage container as a driving force, and the storage container is evacuated by the rising airflow along the outer peripheral surface of the storage container (for example, Patent Document 1).

特開2009−150846号公報JP 2009-150846 A

しかし、従来のバッフル板を用いた格納容器の冷却システムでは、格納容器の外周面に沿って流動する空気の流れの乱流強度が弱いため徐熱量が低く、空気の流体抵抗が大きく流速が向上しない課題があった。   However, in a conventional containment vessel cooling system using a baffle plate, the turbulence intensity of the air flow flowing along the outer peripheral surface of the containment vessel is weak, so the amount of heating is low, the fluid resistance of the air is large, and the flow velocity is improved. There was a problem not to be.

本発明はこのような事情を考慮してなされたもので、格納容器の除熱効率を向上させる原子炉格納容器の空冷システムを提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an air cooling system for a reactor containment vessel that improves the heat removal efficiency of the containment vessel.

本発明の実施形態に係る原子炉格納容器の空冷システムにおいて、原子炉の格納容器とこの格納容器を覆う建屋との隙間に設けられ前記格納容器の外周面に沿う上昇気流を生じさせるバッフル板と、前記バッフル板の内周面に設けられるとともにこの内周面と前記格納容器の外周面とにより形成される流路の流動特性を変化させる造形体と、を備えることを特徴とする。   In an air cooling system for a containment vessel according to an embodiment of the present invention, a baffle plate that is provided in a gap between the containment vessel of the reactor and a building that covers the containment vessel and generates an updraft along the outer peripheral surface of the containment vessel; And a shaped body that is provided on the inner peripheral surface of the baffle plate and changes the flow characteristics of the flow path formed by the inner peripheral surface and the outer peripheral surface of the containment vessel.

本発明により、格納容器の除熱効率を向上させる原子炉格納容器の空冷システムが提供される。   The present invention provides an air cooling system for a reactor containment vessel that improves the heat removal efficiency of the containment vessel.

(A)本発明に係る原子炉格納容器の空冷システムの第1実施形態を示す縦断面図、(B)第1実施形態に適用されるバッフル板の内周面の展開図。(A) The longitudinal cross-sectional view which shows 1st Embodiment of the air cooling system of the reactor containment vessel which concerns on this invention, (B) The expanded view of the internal peripheral surface of the baffle board applied to 1st Embodiment. (A)(B)第1実施形態に適用されるバッフル板の内周面の他の実施例を示す展開図。(A) (B) The expanded view which shows the other Example of the internal peripheral surface of the baffle board applied to 1st Embodiment. (A)本発明に係る原子炉格納容器の空冷システムの第2実施形態を示す縦断面図、(B1)(B2)第2実施形態に係る空冷システムのB−B部分水平断面図、(C1)(C2)第2実施形態に係る空冷システムの部分縦断面図。(A) Longitudinal sectional view showing a second embodiment of an air cooling system for a reactor containment vessel according to the present invention, (B1) (B2) BB partial horizontal sectional view of an air cooling system according to a second embodiment, (C1 (C2) The fragmentary longitudinal cross-sectional view of the air cooling system which concerns on 2nd Embodiment. (A)本発明に係る原子炉格納容器の空冷システムの第3実施形態を示す縦断面図、(B)そのB−B水平断面図。(A) The longitudinal cross-sectional view which shows 3rd Embodiment of the air cooling system of the reactor containment vessel which concerns on this invention, (B) The BB horizontal sectional view. (A)第4実施形態に適用されるバッフル板の内周面を示す展開図、(B)そのB−B縦断面図。(A) The expanded view which shows the internal peripheral surface of the baffle board applied to 4th Embodiment, (B) The BB longitudinal cross-sectional view. (A)第5実施形態に適用されるバッフル板の内周面を示す展開図、(B)そのB−B縦断面図。(A) The expanded view which shows the internal peripheral surface of the baffle board applied to 5th Embodiment, (B) The BB longitudinal cross-sectional view. (A)第6実施形態に適用されるバッフル板の内周面を示す展開図、(B)その部分拡大図。(A) The expanded view which shows the internal peripheral surface of the baffle board applied to 6th Embodiment, (B) The partial enlarged view. (A)本発明に係る原子炉格納容器の空冷システムの第7実施形態を示す縦断面図、(B)そのB−B水平断面図。(A) The longitudinal cross-sectional view which shows 7th Embodiment of the air cooling system of the reactor containment vessel which concerns on this invention, (B) The BB horizontal sectional view.

(第1実施形態)
以下、本発明の実施形態を添付図面に基づいて説明する。
図1(A)に示すように、第1実施形態に係る原子炉格納容器の空冷システム10は、原子炉の格納容器11とこの格納容器11を覆う建屋12との隙間に設けられ格納容器の外周面11aに沿う上昇気流13を生じさせるバッフル板14と、このバッフル板の内周面14aに設けられるとともにこの内周面14aと格納容器の外周面11aとにより形成される流路15の流動特性を変化させる造形体20と、を備えている。
(First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1 (A), a reactor containment vessel air cooling system 10 according to the first embodiment is provided in a gap between a reactor containment vessel 11 and a building 12 covering the containment vessel 11. Flow of a flow path 15 formed by a baffle plate 14 that generates an updraft 13 along the outer peripheral surface 11a and an inner peripheral surface 14a of the baffle plate and formed by the inner peripheral surface 14a and the outer peripheral surface 11a of the storage container. And a shaped body 20 that changes the characteristics.

格納容器11は、炉心を収容した圧力容器(図示略)、蒸気発生器(図示略)及び一次冷却系の設備(図示略)を格納するものであり、過酷事故が発生した場合、放射性物質の放散に対する障壁を形成する。そして、この格納容器11は、建屋12に囲われている。   The containment vessel 11 stores a pressure vessel (not shown) containing a reactor core, a steam generator (not shown), and primary cooling system equipment (not shown). When a severe accident occurs, Form a barrier to dissipation. The storage container 11 is surrounded by a building 12.

建屋12の側壁と格納容器の外周面11aとの隙間には、バッフル板14が設けられている。
このバッフル板14は、水平断面視において格納容器11と同心円状に配置される円筒体であり、その上端において建屋12に固定支持され、その下端は自由端となっている。
これにより流路15が、この建屋12の側壁の上部に設けられた換気孔16から、バッフル板14の下端を経由し、建屋12の天頂に設けられた排気孔17まで通じるように形成される。そして、流路15のエアは、格納容器11の放熱により昇温して膨張し、自然対流による上昇気流13を生じさせ、格納容器の外周面11aを連続的に流動して除熱を行う。
A baffle plate 14 is provided in the gap between the side wall of the building 12 and the outer peripheral surface 11a of the storage container.
The baffle plate 14 is a cylindrical body arranged concentrically with the storage container 11 in a horizontal sectional view, and is fixedly supported by the building 12 at the upper end thereof, and the lower end thereof is a free end.
Thereby, the flow path 15 is formed so as to communicate from the ventilation hole 16 provided in the upper part of the side wall of the building 12 to the exhaust hole 17 provided in the top of the building 12 via the lower end of the baffle plate 14. . The air in the flow path 15 is heated and expanded by the heat radiation of the storage container 11 to generate an ascending air flow 13 by natural convection, and continuously flows on the outer peripheral surface 11a of the storage container to remove heat.

給水タンク18は、建屋12の天頂の排気孔17の周囲に設けられており、格納容器11の上部表面に散水して、その冷却効果を向上させる。
給水タンク18から散水された水は、重力によってそのまま格納容器の外周面11aを流れ落ちるが、この流れ落ちる過程で熱交換により気化し、上昇気流13とともに上昇して排気孔17から排出される。
そして、給水タンク18の貯蔵水が枯渇した後も、外気が換気孔16から取り込まれ、格納容器11の放熱に伴い生じた上昇気流13により、この格納容器11の除熱が維持される。
The water supply tank 18 is provided around the exhaust hole 17 at the zenith of the building 12 and sprays water on the upper surface of the storage container 11 to improve the cooling effect.
The water sprayed from the water supply tank 18 flows down the outer peripheral surface 11a of the containment vessel as it is due to gravity. In this process, the water is vaporized by heat exchange, rises together with the rising air flow 13, and is discharged from the exhaust hole 17.
Then, even after the stored water in the water supply tank 18 is depleted, outside air is taken in from the ventilation holes 16, and the heat removal of the storage container 11 is maintained by the rising airflow 13 generated by the heat dissipation of the storage container 11.

造形体20は、図1(B)に示すように、バッフル板の内周面14aの法線方向に伸びる複数の柱状体20Aが、配列して構成される。
このように造形体20が、バッフル板の内周面14aに設けられていることにより、上昇気流13に乱流27を生じさせ、流体抵抗を減じて自然対流の流速を高めて、除熱効率を向上させる。
これにより、動的な駆動力を用いない受動的な空冷システムにより、過酷事故が発生した場合に格納容器11の内部で発生する崩壊熱を、効率よく外部に逃がすことができる。
As shown in FIG. 1B, the shaped body 20 is configured by arranging a plurality of columnar bodies 20A extending in the normal direction of the inner peripheral surface 14a of the baffle plate.
Since the shaped body 20 is provided on the inner peripheral surface 14a of the baffle plate as described above, the turbulent flow 27 is generated in the ascending air flow 13, the fluid resistance is reduced, the flow rate of natural convection is increased, and the heat removal efficiency is increased. Improve.
Thereby, by the passive air cooling system which does not use a dynamic driving force, the decay heat which generate | occur | produces inside the storage container 11 when a severe accident generate | occur | produces can be efficiently escaped outside.

また、造形体20の他の実施例として、図2(A)に示すようなV字形状体20B、図2(B)に示すような四角錐体20C、その他、図示を省略するがU字型、X字型、アーチ型、逆V字型、三角錐型といった形状を有する複数の突起物の配列により構成することができる。
このように、造形体20は、バッフル板14への施工性も鑑みて、上昇気流13に乱流を生じさせることができる形状のものが、適宜採用される。
As another example of the shaped body 20, a V-shaped body 20B as shown in FIG. 2A, a quadrangular pyramid 20C as shown in FIG. It can be constituted by an array of a plurality of protrusions having shapes such as a mold, an X shape, an arch shape, an inverted V shape, and a triangular pyramid shape.
As described above, the shaped body 20 is appropriately adopted in a shape capable of generating a turbulent flow in the ascending air flow 13 in view of workability to the baffle plate 14.

一般論として、流路15のレイノルズ数が小さいほど流れが層流となり除熱量が小さくなるが、レイノルズ数が104のオーダーになるよう流路15を設計すれば、造形体20の後流に乱流が生じることが知られている。 In general, the smaller the Reynolds number of the flow path 15, the more laminar the flow becomes, and the smaller the heat removal amount becomes. However, if the flow path 15 is designed so that the Reynolds number is on the order of 10 4 , It is known that turbulence occurs.

(第2実施形態)
図3(A)に示すように第2実施形態に係る原子炉格納容器の空冷システム10において造形体20Dは、図3(B1)(B2)に示すように、バッフル板の内周面14aに固定具23により固定され、格納容器の外周面11aに対向するように設けられる支持板21を含む。そして、この支持板21の表面には、複数の突起物22が配列している。
なお、図3において図1と共通の構成又は機能を有する部分は、同一符号で示し、重複する説明を省略する。
(Second Embodiment)
As shown in FIG. 3A, in the reactor containment vessel air cooling system 10 according to the second embodiment, the shaped body 20D is formed on the inner peripheral surface 14a of the baffle plate as shown in FIGS. 3B1 and 3B2. It includes a support plate 21 that is fixed by the fixture 23 and provided to face the outer peripheral surface 11a of the storage container. A plurality of protrusions 22 are arranged on the surface of the support plate 21.
3, parts having the same configuration or function as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

支持板21は、バッフル板の内周面14aの下側に環状に設けられており、突起物22は、この支持板21の内周面(図3(B1)(C1))及び外周面(図3(B2)(C2))のいずれかに設けられる。
突起物22が支持板21の内周面に設けられている場合は、図3(C1)に示すように、支持板21は、上に行くに従い内傾するように設けられる。これにより、発生した渦流を格納容器の外周面11aの近くに誘導して除熱効果を高めることができる。
The support plate 21 is annularly provided below the inner peripheral surface 14a of the baffle plate, and the protrusions 22 are formed on the inner peripheral surface (FIG. 3 (B1) (C1)) and the outer peripheral surface ( 3 (B2) (C2)).
When the protrusion 22 is provided on the inner peripheral surface of the support plate 21, as shown in FIG. 3 (C1), the support plate 21 is provided so as to incline as it goes upward. Thereby, the generated eddy current can be guided near the outer peripheral surface 11a of the containment vessel to enhance the heat removal effect.

突起物22が支持板21の外周面に設けられている場合は、図3(C2)に示すように、支持板21の上側のバッフル板の内周面14aに傾斜板24が設けられている。これにより、発生した渦流を格納容器の外周面11aの近くに誘導して除熱効果を高めることができる。   When the protrusion 22 is provided on the outer peripheral surface of the support plate 21, as shown in FIG. 3 (C 2), the inclined plate 24 is provided on the inner peripheral surface 14 a of the baffle plate on the upper side of the support plate 21. . Thereby, the generated eddy current can be guided near the outer peripheral surface 11a of the containment vessel to enhance the heat removal effect.

(第3実施形態)
図4(A)(B)に示すように第3実施形態に係る原子炉格納容器の空冷システム10は、バッフル板14の下端に設けられ上昇気流13を斜め方向に案内する旋回板28をさらに備えている。
なお、図4において図1と共通の構成又は機能を有する部分は、同一符号で示し、重複する説明を省略する。
(Third embodiment)
As shown in FIGS. 4 (A) and 4 (B), the reactor containment vessel air cooling system 10 according to the third embodiment further includes a swirl plate 28 provided at the lower end of the baffle plate 14 and guiding the ascending airflow 13 in an oblique direction. I have.
4, parts having the same configuration or function as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

この旋回板28により、バッフル板14の下端における流路15の折り返し部分から、上昇気流13が、格納容器の外周面11aに沿って周回方向に旋回することになる。
その後、上昇気流13は旋回しながら造形体20を通過することにより、乱流を生じさせ、流体抵抗を減じてさらに格納容器の外周面11aを周回方向に旋回する。
これにより、上昇気流13は、格納容器の外周面11aとの接触時間が増すために、伝熱量が増加して除熱効率が向上する。
The swirl plate 28 causes the ascending air flow 13 to swirl in the circumferential direction along the outer peripheral surface 11a of the storage container from the folded portion of the flow path 15 at the lower end of the baffle plate 14.
Thereafter, the ascending air current 13 passes through the shaped body 20 while turning, thereby generating a turbulent flow, reducing the fluid resistance, and further turning the outer peripheral surface 11a of the storage container in the circulation direction.
Thereby, since the ascending airflow 13 increases the contact time with the outer peripheral surface 11a of the containment vessel, the amount of heat transfer is increased and the heat removal efficiency is improved.

(第4実施形態)
図5(A)(B)に示すように、第4実施形態に係る原子炉格納容器の空冷システム10において造形体20は、格納容器の外周面11aに尖端を向けた環状体20Eであり、バッフル板の内周面14aに複数が略平行に設けられている。
なお、図5において図1(B)と共通の構成又は機能を有する部分は、同一符号で示し、重複する説明を省略する。
(Fourth embodiment)
As shown in FIGS. 5 (A) and 5 (B), in the reactor containment vessel air cooling system 10 according to the fourth embodiment, the shaped body 20 is an annular body 20E having a pointed end toward the outer peripheral surface 11a of the containment vessel. A plurality of baffle plates are provided substantially in parallel on the inner peripheral surface 14a.
Note that in FIG. 5, portions having the same structure or function as those in FIG. 1B are denoted by the same reference numerals, and redundant description is omitted.

環状体20Eの断面形状は、三角形であるために、上昇気流13は、この環状体20Eを乗り越えた後流部に乱流を生じさせ、この乱流が格納容器の外周面11aに当たることにより、除熱効果の向上が図られる。
また給水タンク18から散水された水のうちバッフル板の内周面14aを流れ落ちるものは、環状体20Eの断面三角の尖端から格納容器の外周面11aに誘導され、除熱効果の向上に寄与する。
Since the cross-sectional shape of the annular body 20E is a triangle, the rising air flow 13 causes a turbulent flow in the wake portion over the annular body 20E, and this turbulent flow hits the outer peripheral surface 11a of the containment vessel. The heat removal effect is improved.
Further, water that has sprinkled from the water supply tank 18 that flows down the inner peripheral surface 14a of the baffle plate is guided from the tip of the triangular section of the annular body 20E to the outer peripheral surface 11a of the containment vessel, thereby contributing to an improvement in heat removal effect. .

(第5実施形態)
図6(A)(B)に示すように第5実施形態に係る原子炉格納容器の空冷システム10において造形体20は、格納容器の外周面11aに尖端を向けた螺旋体20Fであり、バッフル板の内周面14aに少なくとも一条設けられている。
この螺旋体20Fにより、格納容器の外周面11aを周回する上昇気流13が生じ、上昇気流13と格納容器の外周面11aとの接触時間が増し、伝熱量が増加して除熱効率が向上する。
また、断面形状が三角形の螺旋体20Fを乗り越えた上昇気流13は、この螺旋体20Fの後流部に乱流を生じさせ、この乱流が格納容器の外周面11aに当たることにより、除熱効果の向上が図られる。
(Fifth embodiment)
As shown in FIGS. 6A and 6B, in the reactor containment vessel air cooling system 10 according to the fifth embodiment, the shaped body 20 is a spiral body 20F having a pointed end toward the outer peripheral surface 11a of the containment vessel. At least one strip is provided on the inner peripheral surface 14a.
The spiral body 20F generates an ascending airflow 13 that circulates around the outer peripheral surface 11a of the storage container, and the contact time between the ascending airflow 13 and the outer peripheral surface 11a of the storage container increases, thereby increasing the amount of heat transfer and improving the heat removal efficiency.
Further, the rising air flow 13 over the spiral body 20F having a triangular cross section causes turbulence in the wake portion of the spiral body 20F, and this turbulent flow hits the outer peripheral surface 11a of the containment vessel, thereby improving the heat removal effect. Is planned.

(第6実施形態)
図7(A)(B)に示すように第6実施形態に係る原子炉格納容器の空冷システム10において造形体20は、中央が肉厚に形成された複数の静止翼20Gが翼面29を揃えて螺旋状に配列して構成されている。
このように、静止翼20Gが配列することにより、格納容器の外周面を周回する上昇気流13が生じるとともに、静止翼20Gを通過した上昇気流13は乱流となり、除熱効率が向上する。
(Sixth embodiment)
As shown in FIGS. 7 (A) and 7 (B), in the reactor containment vessel air cooling system 10 according to the sixth embodiment, the shaped body 20 includes a plurality of stationary blades 20G, the center of which is formed with a thick wall. It is arranged and arranged in a spiral.
As described above, by arranging the stationary blades 20G, the ascending airflow 13 that circulates around the outer peripheral surface of the storage container is generated, and the ascending airflow 13 that has passed through the stationary blade 20G becomes a turbulent flow, thereby improving the heat removal efficiency.

(第7実施形態)
図8(A)(B)に示すように第7実施形態に係る原子炉格納容器の空冷システム10は、建屋12の上部に設けられた換気孔16からバッフル板14の下端まで下降気流を誘導する流路15において、建屋の内周面12a及びバッフル板の外周面14bの少なくとも一部に下降気流の流動方向に沿う複数の溝26が形成されている。
(Seventh embodiment)
As shown in FIGS. 8A and 8B, the reactor containment vessel air cooling system 10 according to the seventh embodiment induces a downdraft from the ventilation hole 16 provided in the upper part of the building 12 to the lower end of the baffle plate 14. In the flow path 15, a plurality of grooves 26 are formed along at least a part of the inner peripheral surface 12 a of the building and the outer peripheral surface 14 b of the baffle plate along the flow direction of the downdraft.

この溝26の断面形状は、三角形、半円形またはU字形を示す場合が考えられるが、特に限定はない。また、この溝26の断面形状を、流動方向に沿って周期的に変化させる場合もある。
このように構成されることにより、下降気流の流動抵抗の低減が図られ、流路15における流速が高まり格納容器の除熱効率が向上する。
The cross-sectional shape of the groove 26 may be triangular, semicircular, or U-shaped, but is not particularly limited. Further, the cross-sectional shape of the groove 26 may be periodically changed along the flow direction.
With this configuration, the flow resistance of the downdraft is reduced, the flow velocity in the flow path 15 is increased, and the heat removal efficiency of the storage container is improved.

以上述べた少なくともひとつの実施形態の原子炉格納容器の空冷システムによれば、格納容器の外周面に沿う上昇気流を生じさせるバッフル板の内周面に造形体が設けられることにより、取り込んだ外気の流速を高めて格納容器の除熱効率を向上させることが可能となる。   According to the air cooling system for a reactor containment vessel according to at least one embodiment described above, the shaped body is provided on the inner peripheral surface of the baffle plate that generates the rising air flow along the outer peripheral surface of the containment vessel, thereby It is possible to improve the heat removal efficiency of the containment vessel by increasing the flow rate.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

10…空冷システム、11…格納容器、11a…格納容器の外周面、12…建屋、12a…建屋の内周面、13…上昇気流、14…バッフル板、14a…バッフル板の内周面、14b…バッフル板の外周面、15…流路、16…換気孔、17…排気孔、18…給水タンク、20…造形体、20A…柱状体、20B…V字形状体、20C…四角錐体、20D…造形体、20E…環状体、20F…螺旋体、20G…静止翼、21…支持板、22…突起物、23…固定具、24…傾斜板、26…溝、27…乱流、28…旋回板、29…翼面。   DESCRIPTION OF SYMBOLS 10 ... Air cooling system, 11 ... Containment container, 11a ... Outer peripheral surface of storage container, 12 ... Building, 12a ... Inner peripheral surface of building, 13 ... Ascending air flow, 14 ... Baffle plate, 14a ... Inner peripheral surface of baffle plate, 14b ... outer peripheral surface of baffle plate, 15 ... flow path, 16 ... ventilation hole, 17 ... exhaust hole, 18 ... water supply tank, 20 ... shaped body, 20A ... columnar body, 20B ... V-shaped body, 20C ... square pyramid, 20D ... Modeling body, 20E ... annular body, 20F ... helical body, 20G ... stationary wing, 21 ... support plate, 22 ... projection, 23 ... fixing tool, 24 ... tilt plate, 26 ... groove, 27 ... turbulent flow, 28 ... Swivel plate, 29 ... wing surface.

Claims (11)

原子炉の格納容器とこの格納容器を覆う建屋との隙間に設けられ前記格納容器の外周面に沿う上昇気流を生じさせるバッフル板と、
前記バッフル板の内周面に設けられるとともにこの内周面と前記格納容器の外周面とにより形成される流路の流動特性を変化させる造形体と、を備えることを特徴とする原子炉格納容器の空冷システム。
A baffle plate that is provided in a gap between a containment vessel of the nuclear reactor and a building that covers the containment vessel and generates an upward air flow along the outer peripheral surface of the containment vessel;
A reactor containment vessel comprising: a shaped body that is provided on an inner circumferential surface of the baffle plate and changes a flow characteristic of a flow path formed by the inner circumferential surface and the outer circumferential surface of the containment vessel. Air cooling system.
前記造形体は、前記バッフル板の内周面の法線方向に伸びる複数の柱状体を含むことを特徴とする請求項1に記載の原子炉格納容器の空冷システム。   2. The reactor containment vessel air cooling system according to claim 1, wherein the shaped body includes a plurality of columnar bodies extending in a normal direction of an inner peripheral surface of the baffle plate. 前記造形体は、U字型、V字型、X字型、アーチ型、逆V字型、三角錐型、四角錐型のうちいずれかの形状を有する突起物を含むことを特徴とする請求項1又は請求項2に記載の原子炉格納容器の空冷システム。   The shaped body includes a protrusion having any one of a U shape, a V shape, an X shape, an arch shape, an inverted V shape, a triangular pyramid shape, and a quadrangular pyramid shape. Item 3. A reactor containment vessel air cooling system according to Item 1 or Item 2. 前記造形体は、前記バッフル板の内周面に固定され前記格納容器の外周面に対向するように設けられる支持板を含むことを特徴とする請求項1から請求項3のいずれか1項に記載の原子炉格納容器の空冷システム。   The said model | molding body contains the support plate provided so that it may be fixed to the internal peripheral surface of the said baffle plate, and may be opposed to the outer peripheral surface of the said storage container. The reactor containment air cooling system described. 前記バッフル板の下端に設けられ前記上昇気流を斜め方向に案内する旋回板をさらに備えることを特徴とする請求項1から請求項4のいずれか1項に記載の原子炉格納容器の空冷システム。   5. The reactor containment vessel air cooling system according to claim 1, further comprising a swivel plate provided at a lower end of the baffle plate to guide the ascending airflow in an oblique direction. 6. 前記造形体は、前記格納容器の外周面に尖端を向けた環状体であり前記バッフル板の内周面に複数が略平行に設けられていることを特徴とする請求項1から請求項5のいずれか1項に記載の原子炉格納容器の空冷システム。   6. The molded body according to claim 1, wherein the shaped body is an annular body having a tip pointed toward an outer peripheral surface of the storage container, and a plurality of the shaped bodies are provided substantially in parallel on the inner peripheral surface of the baffle plate. The air cooling system for a reactor containment vessel according to any one of the preceding claims. 前記造形体は、前記格納容器の外周面に尖端を向けた螺旋体であることを特徴とする請求項1から請求項5のいずれか1項に記載の原子炉格納容器の空冷システム。   6. The reactor containment vessel air cooling system according to claim 1, wherein the shaped body is a spiral body having a tip pointed toward an outer peripheral surface of the containment vessel. 前記造形体は、中央が肉厚に形成された複数の静止翼が翼面を揃えて螺旋状に配列してなることを特徴とする請求項1から請求項5のいずれか1項に記載の原子炉格納容器の空冷システム。   6. The shaped body according to any one of claims 1 to 5, wherein a plurality of stationary blades having a thick center are aligned in a spiral manner with the blade surfaces aligned. Reactor containment air cooling system. 前記建屋の上部に設けられた換気孔から前記バッフル板の下端まで下降気流を誘導する流路において、前記建屋の内周面及び前記バッフル板の外周面の少なくとも一部に前記下降気流の流動方向に沿う複数の溝が形成されていることを特徴とする請求項1から請求項8のいずれか1項に記載の原子炉格納容器の空冷システム。   The flow direction of the downdraft on at least a part of the inner peripheral surface of the building and the outer peripheral surface of the baffle plate in the flow path for guiding the downflow air from the ventilation hole provided in the upper part of the building to the lower end of the baffle plate 9. A reactor containment vessel air cooling system according to any one of claims 1 to 8, wherein a plurality of grooves extending along the line are formed. 前記溝は、三角形、半円形またはU字形の断面形状を示すことを特徴とする請求項9に記載の原子炉格納容器の空冷システム。   10. The reactor containment vessel air cooling system according to claim 9, wherein the groove has a triangular, semicircular, or U-shaped cross-sectional shape. 10. 前記溝の断面形状が前記流動方向に沿って周期的に変化することを特徴とする請求項9又は請求項10に記載の原子炉格納容器の空冷システム。   The cross-sectional shape of the said groove | channel changes periodically along the said flow direction, The air cooling system of the nuclear reactor containment vessel of Claim 9 or Claim 10 characterized by the above-mentioned.
JP2013094528A 2013-04-26 2013-04-26 Air-cooling system of reactor containment vessel Pending JP2014215250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013094528A JP2014215250A (en) 2013-04-26 2013-04-26 Air-cooling system of reactor containment vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013094528A JP2014215250A (en) 2013-04-26 2013-04-26 Air-cooling system of reactor containment vessel

Publications (1)

Publication Number Publication Date
JP2014215250A true JP2014215250A (en) 2014-11-17

Family

ID=51941102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013094528A Pending JP2014215250A (en) 2013-04-26 2013-04-26 Air-cooling system of reactor containment vessel

Country Status (1)

Country Link
JP (1) JP2014215250A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112154568A (en) * 2018-05-31 2020-12-29 本田技研工业株式会社 Accumulator package
JP2021039894A (en) * 2019-09-03 2021-03-11 本田技研工業株式会社 Battery pack
CN113035399A (en) * 2021-03-05 2021-06-25 哈尔滨工程大学 Self-driven drainage type efficient heat exchanger with built-in containment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112154568A (en) * 2018-05-31 2020-12-29 本田技研工业株式会社 Accumulator package
CN112154568B (en) * 2018-05-31 2024-04-26 本田技研工业株式会社 Battery package
US12009498B2 (en) 2018-05-31 2024-06-11 Honda Motor Co., Ltd. Battery pack
JP2021039894A (en) * 2019-09-03 2021-03-11 本田技研工業株式会社 Battery pack
CN112531260A (en) * 2019-09-03 2021-03-19 本田技研工业株式会社 Accumulator battery
JP7016844B2 (en) 2019-09-03 2022-02-07 本田技研工業株式会社 Battery pack
US11283122B2 (en) 2019-09-03 2022-03-22 Honda Motor Co., Ltd. Battery pack
CN112531260B (en) * 2019-09-03 2023-01-03 本田技研工业株式会社 Accumulator battery
CN113035399A (en) * 2021-03-05 2021-06-25 哈尔滨工程大学 Self-driven drainage type efficient heat exchanger with built-in containment
CN113035399B (en) * 2021-03-05 2022-11-15 哈尔滨工程大学 Self-driven drainage type efficient heat exchanger with built-in containment

Similar Documents

Publication Publication Date Title
EP2376778B1 (en) Wind turbine comprising a cooling circuit
JP5766613B2 (en) Power generation module having coolant deflecting shielding plate
JP2010236885A (en) Cooling structure of reactor containment vessel
EP2837004B1 (en) Passive containment air cooling for nuclear power plants
JP2009058392A (en) Reactor
JP2014215250A (en) Air-cooling system of reactor containment vessel
JP2015518149A5 (en)
JP4599319B2 (en) Steam separator
CN103680643A (en) Mid span mixing grid
KR101921406B1 (en) Nuclear reactor system for SMR having improved cooling reliability
WO2012081232A1 (en) Pressure water reactor
CN202550775U (en) Waterway of water-cooling baseframe of motor with vortex generation function
CN202190221U (en) Radiating structure of inverter box body
JP2009075001A (en) Nuclear reactor
CN104019690A (en) Oil-immersed transformer cooling fin
CN208139926U (en) A kind of extension tube attached of cross flow cooling tower broadcasts water cover
JP2013029099A (en) Stationary equipment
CN203026178U (en) Reactor internal at lower part of reactor
JP2012021877A (en) Core molten material holding device and containment vessel
JP2014526633A (en) Wind turbine tower with tower wall reinforcement for guiding ambient air
JP6230424B2 (en) Wind power generator
CN203673835U (en) Mixing framework
JP2010175331A (en) Heat removal structure for radioactive waste storage container
JP5818450B2 (en) Reactor vessel
CN206301682U (en) The valve saturable reactor of spiral-shaped structure