JP2011133315A - Cooling structure of reactor containment vessel - Google Patents

Cooling structure of reactor containment vessel Download PDF

Info

Publication number
JP2011133315A
JP2011133315A JP2009292433A JP2009292433A JP2011133315A JP 2011133315 A JP2011133315 A JP 2011133315A JP 2009292433 A JP2009292433 A JP 2009292433A JP 2009292433 A JP2009292433 A JP 2009292433A JP 2011133315 A JP2011133315 A JP 2011133315A
Authority
JP
Japan
Prior art keywords
containment vessel
cooling structure
reactor containment
reactor
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009292433A
Other languages
Japanese (ja)
Inventor
Norio Sakai
紀夫 堺
Hisaki Sato
寿樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009292433A priority Critical patent/JP2011133315A/en
Publication of JP2011133315A publication Critical patent/JP2011133315A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a size of a nuclear plant and to reduce its cost, and to provide reliable cooling structure of a reactor containment vessel utilizing passive drive force by reducing or omitting volume of an upper cooling water storage tank installed at an upper portion of the reactor containment vessel. <P>SOLUTION: The cooling structure of a reactor containment vessel includes: an annular air passage 4 surrounding an outer peripheral surface of the reactor containment vessel 2; a side face cooling water storage tank 8 disposed at an outer periphery of the air passage 4; an annular gutter 10 provided on an outer peripheral surface of the containment vessel 3; a flow-down hole 12 provided at the bottom of the gutter 10; and a plurality of water supply ducts 9 for supplying cooling water of the side face cooling water storage tank 8 to the gutter 10. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、原子炉格納容器の冷却構造に関し、特に、受動的な駆動力を利用した原子炉格納容器の冷却構造に関する。   The present invention relates to a reactor containment cooling structure, and more particularly to a reactor containment cooling structure using passive driving force.

原子力プラントにおいて配管の破断等により冷却材が原子炉格納容器内へ放出された場合、冷却材が減圧によって高温の蒸気となるため、原子炉格納容器内の圧力が上昇する。従来、圧力上昇を抑制し格納容器の健全性を確保するため、発生した蒸気を格納容器内の圧力抑制プールに誘導し凝縮させる方法や、格納容器上部から格納容器スプレイにより内部に散水し、蒸気を凝縮させる方法が知られている。これらの方法では、圧力抑制プールやスプレイ水へ蓄積された熱はポンプ等の動的機器により、熱交換器を介して最終的に外部へ放出されている。   In the nuclear power plant, when the coolant is discharged into the reactor containment vessel due to pipe breakage or the like, the coolant becomes high-temperature steam due to decompression, and thus the pressure in the reactor containment vessel increases. Conventionally, in order to suppress the pressure rise and ensure the soundness of the containment vessel, the generated steam is guided to the pressure suppression pool in the containment vessel to condense, or the upper part of the containment vessel is sprayed into the containment vessel spray to A method for condensing the water is known. In these methods, heat accumulated in the pressure suppression pool and spray water is finally released to the outside through a heat exchanger by a dynamic device such as a pump.

近年、安全系の信頼性向上を図るため、格納容器内部の圧力抑制方法についても、従来のような動的機器ではなく、重力などの自然に存在する受動的な力を駆動力として格納容器の除熱を行う方法が提案されている(特許文献1)。   In recent years, in order to improve the reliability of the safety system, the pressure suppression method inside the containment vessel is not a dynamic device as in the past, but the natural passive force such as gravity is used as the driving force for the containment vessel. A method of removing heat has been proposed (Patent Document 1).

図10にその具体例を示す。原子炉圧力容器1を内包する格納容器2と原子炉建屋3の間に、格納容器2を取り囲む形で環状の空気流路4があり、格納容器2内に冷却材が放出されて圧力、温度が上昇した場合、空気流路4の下部から流入した空気は格納容器2の表面から加熱され、その熱を奪いながら煙突効果によって格納容器上部の煙突5から排気される。   FIG. 10 shows a specific example. Between the containment vessel 2 containing the reactor pressure vessel 1 and the reactor building 3, there is an annular air passage 4 surrounding the containment vessel 2, and the coolant is discharged into the containment vessel 2 so that the pressure and temperature are increased. Is raised, the air flowing in from the lower part of the air flow path 4 is heated from the surface of the containment vessel 2 and is exhausted from the chimney 5 at the upper part of the containment vessel due to the chimney effect while removing the heat.

さらに、格納容器2の上部には上部冷却水貯蔵タンク6が設けられ、タンク6に連通する上部散水管7から水を格納容器上部の表面へ散水する。水は重力によってそのまま格納容器2の外周側面を流れ落ちる過程で壁面からの熱伝達によって蒸発し、空気とともに環状流路4を上昇して煙突5から排出される。これらの効果により、動的機器を用いることなく格納容器2の内部を冷却、減圧することができる。   Further, an upper cooling water storage tank 6 is provided at the upper part of the containment vessel 2, and water is sprinkled from the upper sprinkling pipe 7 communicating with the tank 6 to the upper surface of the containment vessel. The water evaporates by heat transfer from the wall surface in the process of flowing down the outer peripheral side surface of the containment vessel 2 as it is due to gravity, and rises along the annular flow path 4 together with the air and is discharged from the chimney 5. With these effects, the inside of the storage container 2 can be cooled and decompressed without using a dynamic device.

特許第2813412号公報Japanese Patent No. 2813412

上述したように、重力により水を格納容器2の上部表面に散水し、格納容器の除熱を行う場合、動力機器を使用しないため動力機器の故障を考慮する必要がない。その反面、重力を利用するため格納容器の上部に上部冷却水貯蔵タンク6を設置する必要があり、原子炉建屋3全体の高さが増え、重心が高くなる問題がある。   As described above, when water is sprinkled on the upper surface of the containment vessel 2 by gravity to remove heat from the containment vessel, it is not necessary to consider the failure of the drive device because the power device is not used. On the other hand, in order to use gravity, it is necessary to install the upper cooling water storage tank 6 on the upper part of the containment vessel, and there is a problem that the overall height of the reactor building 3 increases and the center of gravity increases.

特に、原子炉出力が大きいプラントでは、必要な除熱量を確保するために、格納容器2や上部冷却水貯蔵タンク6が大型化し、原子炉建屋3全体の大型化につながる。一方、耐震設計、建設コストの観点からは、プラントの建屋高さ、重心はできるだけ低くすることが望ましい。   In particular, in a plant having a large reactor output, the containment vessel 2 and the upper cooling water storage tank 6 are enlarged in order to secure a necessary heat removal amount, leading to an increase in the size of the entire reactor building 3. On the other hand, from the viewpoint of seismic design and construction cost, it is desirable to make the plant building height and center of gravity as low as possible.

本発明は上記課題を解決するためになされたものであり、原子炉格納容器上部に設置する上部冷却水貯蔵タンクの容積を低減するか又は省略することによって、原子力プラントの小型化及び低コスト化を図ることができるとともに、受動的な駆動力を利用した高信頼性の原子炉格納容器の冷却構造を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and by reducing or omitting the volume of the upper cooling water storage tank installed in the upper part of the reactor containment vessel, the nuclear power plant can be reduced in size and cost. An object of the present invention is to provide a highly reliable reactor containment cooling structure using passive driving force.

本発明は上記課題を解決するためになされたもので、本発明に係る原子炉格納容器の冷却構造は、原子炉格納容器の外周面を取り囲む環状の空気流路と、前記空気流路の外周に配置した側面冷却水貯蔵タンクと、前記格納容器の外周面に設けられた環状の樋と、前記樋の底部に設けられた流下孔と、前記側面冷却水貯蔵タンクの冷却水を前記樋に配水する複数の配水ダクトと、を有することを特徴とする。
また、本発明は、上記本発明に係る原子炉格納容器の冷却構造を前記格納容器の高さ方向に複数段設けたことを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and a reactor containment vessel cooling structure according to the present invention comprises an annular air flow path surrounding the outer peripheral surface of the nuclear reactor containment vessel, and an outer periphery of the air flow path. The side cooling water storage tank disposed on the outer periphery of the containment vessel, an annular trough provided on the outer peripheral surface of the containment vessel, a flow hole provided in the bottom of the trough, and the cooling water in the side cooling water storage tank are provided in the trough. And a plurality of water distribution ducts for distributing water.
Further, the present invention is characterized in that a plurality of stages of the reactor containment cooling structure according to the present invention are provided in the height direction of the containment vessel.

本発明によれば、原子炉格納容器上部に設置する上部冷却水貯蔵タンクの容積を低減するか又は省略することによって、原子力プラントの小型化及び低コスト化を図ることができるとともに、受動的な駆動力を利用した高信頼性の原子炉格納容器の冷却構造を提供することができる。   According to the present invention, it is possible to reduce the size and cost of the nuclear power plant by reducing or omitting the volume of the upper cooling water storage tank installed on the upper part of the reactor containment vessel, and passively. It is possible to provide a highly reliable reactor containment cooling structure using driving force.

本発明の第1の実施形態に係る原子炉格納容器の冷却構造の全体構成図。The whole block diagram of the cooling structure of the nuclear reactor containment vessel concerning the 1st Embodiment of this invention. 図1のA−A’矢視図。FIG. 2 is a view taken along the line A-A ′ of FIG. 1. 本発明の第1の実施形態に係る樋の部分切り欠き図。The partial notch figure of the scissors which concern on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る原子炉格納容器の冷却構造の変形例。The modification of the cooling structure of the reactor containment vessel which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る原子炉格納容器の冷却構造の全体構成図。The whole block diagram of the cooling structure of the nuclear reactor containment vessel which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る樋の拡大断面図。The expanded sectional view of the bag which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る原子炉格納容器の冷却構造の横断面図。The cross-sectional view of the reactor containment cooling structure according to the fourth embodiment of the present invention. 本発明の第5の実施形態に係る原子炉格納容器の冷却構造の全体構成図。The whole block diagram of the cooling structure of the reactor containment vessel which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係る原子炉格納容器の冷却構造の上部拡大図。The upper part enlarged view of the cooling structure of the nuclear reactor containment vessel which concerns on the 5th Embodiment of this invention. 従来の原子炉格納容器の冷却構造の全体構成図。The whole block diagram of the cooling structure of the conventional reactor containment vessel.

以下、本発明に係る原子炉格納容器の冷却構造の実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of a reactor containment cooling structure according to the present invention will be described with reference to the drawings.

(第1の実施形態)
本発明の第1の実施形態に係る原子炉格納容器の冷却構造を、図1乃至3を用いて説明する。
図1は本発明の第1の実施形態に係る原子炉格納容器の冷却構造の全体構成図で、図2はそのA−A断面図である。図1、図2において、格納容器2の外周を取り囲む環状の空気流路4のさらに外側を取り囲むように側面冷却水貯蔵タンク8を設ける。側面冷却水貯蔵タンク8は図2に示すように全周を取り囲む一つの環状のタンク又は複数の分割された環状のタンク(図示せず)から構成される。
(First embodiment)
A reactor containment cooling structure according to a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is an overall configuration diagram of a reactor containment cooling structure according to a first embodiment of the present invention, and FIG. 2 is an AA cross-sectional view thereof. In FIG. 1 and FIG. 2, a side cooling water storage tank 8 is provided so as to surround the outer side of the annular air flow path 4 that surrounds the outer periphery of the storage container 2. As shown in FIG. 2, the side cooling water storage tank 8 is composed of one annular tank or a plurality of divided annular tanks (not shown) surrounding the entire circumference.

側面冷却水貯蔵タンク8には周方向に一定間隔で配水ダクト9を接続し、その先端は格納容器の外周面に設置した環状の樋10の上部まで延びている。さらに、樋10と格納容器2の接合部には、図3に示すようにその周方向に沿って所定間隔で樋10の底部に流下孔12が設置されている。   A water distribution duct 9 is connected to the side cooling water storage tank 8 at regular intervals in the circumferential direction, and its tip extends to the top of an annular trough 10 installed on the outer peripheral surface of the containment vessel. Further, as shown in FIG. 3, flow-down holes 12 are provided at the bottom of the tub 10 at predetermined intervals along the circumferential direction at the joint between the tub 10 and the storage container 2.

このように構成された原子炉格納容器の冷却構造において、格納容器2の内部に高温の蒸気が放出され減圧の必要が生じた場合、側面冷却水貯蔵タンク8から配水ダクト9を介して重力により樋10に冷却水を流し込む。樋10に流れ込んだ冷却水は格納容器2と樋10の接合面に設けた流下孔12を通って格納容器2の外周面を流れ落ちる。   In the reactor containment vessel cooling structure configured as described above, when high-temperature steam is released into the containment vessel 2 and pressure reduction is required, it is caused by gravity from the side cooling water storage tank 8 through the water distribution duct 9. Pour cooling water into the bowl 10. The cooling water that has flowed into the tub 10 flows down the outer peripheral surface of the storage container 2 through the flow-down hole 12 provided in the joint surface between the storage container 2 and the tub 10.

このとき、流下孔12を格納容器2の外周面に接するように設けられているので、流下孔12を通過した冷却水は格納容器の外周面に接触しながら流下する。冷却水は外周面を流れ落ちる過程で格納容器2からの熱伝達により蒸発し、空気流路4を矢印11で示すように上昇して煙突5から外部へ排気される。また、樋10の底部に格納容器2の外周面に接するように複数の流下孔12を設けたことにより、格納容器の外周面全体は均一に冷却される。   At this time, since the flow-down hole 12 is provided so as to contact the outer peripheral surface of the storage container 2, the cooling water that has passed through the flow-down hole 12 flows down while contacting the outer peripheral surface of the storage container. The cooling water evaporates by heat transfer from the containment vessel 2 in the process of flowing down the outer peripheral surface, and ascends the air flow path 4 as indicated by an arrow 11 and is exhausted from the chimney 5 to the outside. In addition, by providing the plurality of flow-down holes 12 at the bottom of the bowl 10 so as to contact the outer peripheral surface of the storage container 2, the entire outer peripheral surface of the storage container is uniformly cooled.

なお、図4のように、格納容器2の直径が高さ方向で変化し、かつ低い位置ほど大きくなるような形状をしている場合は、直径が変化する位置の上部に配水ダクト9の先端が来るような配置を行うことによって、樋10や流下孔12のような構造を格納容器外周面に設けることなく、流出する冷却水を格納容器の側面に散水することができる。   In addition, as shown in FIG. 4, when the storage container 2 has a shape in which the diameter changes in the height direction and becomes larger as the position is lower, the tip of the water distribution duct 9 is located above the position where the diameter changes. By arranging such that the cooling water flowing out can be sprinkled on the side surface of the storage container without providing a structure such as the eaves 10 and the flow-down hole 12 on the outer peripheral surface of the storage container.

本第1の実施形態によれば、格納容器2を側面から除熱するのに必要な冷却水源を側面冷却水貯蔵タンク8とすることにより、上部冷却水貯蔵タンク6から格納容器2の上面へ注水する冷却水は、上面のみを冷却するのに必要な量を確保すればよいため、上部冷却水貯蔵タンクの容積を低減し、建屋の高さ及び重心を低くすることができるので、原子力プラントの小型化及び低コスト化を図ることができるとともに、受動的な駆動力を利用した効率的かつ高信頼性の原子炉格納容器の冷却構造を提供することができる。   According to the first embodiment, the cooling water source required to remove heat from the side surface of the storage container 2 is the side surface cooling water storage tank 8, so that the upper cooling water storage tank 6 moves to the upper surface of the storage container 2. Since the cooling water to be injected needs only to secure an amount necessary for cooling only the upper surface, the volume of the upper cooling water storage tank can be reduced and the height and center of gravity of the building can be lowered. Therefore, it is possible to provide an efficient and highly reliable cooling structure for a containment vessel using a passive driving force.

(第2の実施形態)
本発明の第2の実施形態に係る原子炉格納容器の冷却構造を、図5を用いて説明する。
第2の実施形態では、側面冷却水貯蔵タンク8および対応する樋10等からなる冷却構造を、格納容器2の高さに応じて複数段設けることを特徴とする。
(Second Embodiment)
A reactor containment cooling structure according to a second embodiment of the present invention will be described with reference to FIG.
The second embodiment is characterized in that a plurality of cooling structures including the side cooling water storage tank 8 and the corresponding basket 10 are provided in accordance with the height of the containment vessel 2.

図5は冷却構造を2段配置した例で、原子炉格納容器2の外周部の建屋3に、上段の側面冷却水貯蔵タンク8aと配水ダクト9aと樋10a、及び下段の側面冷却水貯蔵タンク8bと配水ダクト9bと樋10bが設けられている。この場合、下段の樋10bは、上段の樋10aから流下し格納容器2の外周面上に形成する冷却水膜が蒸発によってなくなる位置よりも下に設けることが望ましい。   FIG. 5 shows an example in which the cooling structure is arranged in two stages. In the building 3 on the outer periphery of the reactor containment vessel 2, the upper side cooling water storage tank 8 a, the water distribution duct 9 a, the eaves 10 a, and the lower side cooling water storage tank. 8b, a water distribution duct 9b, and a gutter 10b are provided. In this case, it is desirable to provide the lower ridge 10b below the position where the cooling water film flowing down from the upper ridge 10a and forming on the outer peripheral surface of the storage container 2 disappears due to evaporation.

本第2の実施形態によれば、側面冷却水貯蔵タンク8及び樋10等からなる冷却構造を格納容器の高さ方向に複数段設けることにより、格納容器をその外周面及び高さ方向の全長にわたって効率的に冷却することができるため、建屋の高さ及び重心をさらに低くすることができる。
なお、本実施形態では冷却構造を2段配置した例で説明したが、それに限定されず、例えば3段以上配置してもよい。
According to the second embodiment, by providing a plurality of cooling structures including the side cooling water storage tank 8 and the eaves 10 in the height direction of the containment vessel, the outer circumference of the containment vessel and the overall length in the height direction are provided. Therefore, the height and center of gravity of the building can be further reduced.
In addition, although this embodiment demonstrated the example which has arrange | positioned 2 steps | paragraphs of cooling structures, it is not limited to it, For example, you may arrange | position 3 steps | paragraphs or more.

(第3の実施形態)
本発明の第3の実施形態に係る原子炉格納容器の冷却構造を、図6を用いて説明する。
本実施形態では、冷却水膜13を確実に格納容器2の外周面に形成させるため、樋10の底部に設けた流下孔12を流出口に近づくほど格納容器側へ絞られるような形状とする。
また、流下孔12の流入口の周囲には、樋10の高さ方向に堰14が設けられている。
(Third embodiment)
A reactor containment cooling structure according to a third embodiment of the present invention will be described with reference to FIG.
In the present embodiment, in order to reliably form the cooling water film 13 on the outer peripheral surface of the storage container 2, the flow-down hole 12 provided in the bottom of the tub 10 is shaped so as to be narrowed toward the storage container as it approaches the outlet. .
In addition, a weir 14 is provided in the height direction of the eaves 10 around the inlet of the downflow hole 12.

このように構成された冷却構造において、配水ダクト9から樋10に流入した冷却水は、いったん樋10に溜まり、水位が堰14の高さまで達してから堰を超えて流下孔12を流下し始めるため、周方向に複数存在する流下孔12から流下する冷却水量が等しくなり、格納容器2の外周面からの除熱量を周方向に均等化させ、格納容器の温度分布が不均一となるのを防止する。
本第3の実施形態によれば、上記のように樋を構成したことにより、格納容器外周面の全体にわたって均一かつ効率的に冷却することができる。
In the cooling structure configured in this manner, the cooling water that has flowed into the dredging 10 from the water distribution duct 9 once accumulates in the dredging 10, and starts to flow down the downhole 12 beyond the weir after the water level reaches the height of the weir 14. Therefore, the amount of cooling water flowing down from the plurality of flow holes 12 in the circumferential direction becomes equal, the amount of heat removed from the outer peripheral surface of the containment vessel 2 is equalized in the circumferential direction, and the temperature distribution of the containment vessel becomes uneven. To prevent.
According to the third embodiment, since the bag is configured as described above, it is possible to uniformly and efficiently cool the entire outer peripheral surface of the storage container.

(第4の実施形態)
本発明の第4の実施形態に係る原子炉格納容器の冷却構造を、図7を用いて説明する。
本実施形態では、周方向に複数個配置された配水ダクト9に流量調節弁15を設け、さらに配水ダクト9の設置位置に対応する格納容器2の内周側に温度計16を設置する。
(Fourth embodiment)
A reactor containment cooling structure according to a fourth embodiment of the present invention will be described with reference to FIG.
In the present embodiment, a flow control valve 15 is provided in a plurality of water distribution ducts 9 arranged in the circumferential direction, and a thermometer 16 is installed on the inner peripheral side of the containment vessel 2 corresponding to the installation position of the water distribution duct 9.

また、配水ダクト9の流出口の下部にある樋10は、仕切り板17によって所定間隔で周方向に区画されており、樋10の各区画における水位、および樋10から流下孔12を通じて格納容器2の側面を流れる水量は、当該区画に対応する配水ダクト9から流れ込む冷却水量により調節可能になっている。   The trough 10 at the lower part of the outlet of the water distribution duct 9 is partitioned in the circumferential direction by a partition plate 17 at a predetermined interval, and the containment container 2 through the water level in each section of the trough 10 and the downhole 12 from the trough 10. The amount of water flowing through the side surface of the water can be adjusted by the amount of cooling water flowing from the water distribution duct 9 corresponding to the section.

このように構成された冷却構造において、格納容器冷却系が作動しているとき、各配水ダクト9に設けられた流量調節弁15の開度は温度計16の検出値に基づいて調整される。すなわち、ある箇所の温度計16の検出値が他よりも高い値を示していたときには、対応する配水ダクト9の流量調節弁15の開度を他に比べて大きくすることにより、樋10への流入量、側面を流下する冷却水量を多くし、当該箇所の除熱量を向上させることができる。   In the cooling structure configured as described above, when the containment vessel cooling system is operating, the opening degree of the flow rate adjusting valve 15 provided in each water distribution duct 9 is adjusted based on the detection value of the thermometer 16. That is, when the detected value of the thermometer 16 at a certain location shows a higher value than the others, the opening degree of the flow control valve 15 of the corresponding water distribution duct 9 is made larger than the others, so that The amount of cooling water flowing down the inflow amount and the side surface can be increased, and the amount of heat removal at the location can be improved.

本第4の実施形態によれば、樋を周方向に区画し、各配水ダクトに流量調節弁及び格納容器に温度計を設けたことにより、格納容器外周面を、格納容器の温度分布に応じてさらに均一かつ効率的に冷却することができる。   According to the fourth embodiment, the cage is partitioned in the circumferential direction, and each distribution duct is provided with a flow control valve and a thermometer in the containment vessel, so that the outer peripheral surface of the containment vessel is in accordance with the temperature distribution of the containment vessel. More uniformly and efficiently.

(第5の実施形態)
本発明の第5の実施形態に係る原子炉格納容器の冷却構造を、図8及び図9を用いて説明する。
(Fifth embodiment)
A reactor containment cooling structure according to a fifth embodiment of the present invention will be described with reference to FIGS.

本実施形態では、冷却空気流路18を空気流路4が格納容器上部を通過する区間の外周部に設けている。冷却空気流路18の流入口19は原子炉建屋3の外側側面に設置し、流出口20の高さ位置は空気流路4の流出口に相当する煙突5の高さ位置に等しくなるようにする。これにより、格納容器2の上部における空気流路は、格納容器2の外周面から続く空気流路4と、格納容器2の上部の原子炉建屋3の近傍を流れる冷却空気流路18とに二重化される。   In this embodiment, the cooling air flow path 18 is provided in the outer peripheral part of the area where the air flow path 4 passes the upper part of the storage container. The inlet 19 of the cooling air passage 18 is installed on the outer side surface of the reactor building 3, and the height of the outlet 20 is equal to the height of the chimney 5 corresponding to the outlet of the air passage 4. To do. Thereby, the air flow path in the upper part of the containment vessel 2 is duplexed into the air flow path 4 continuing from the outer peripheral surface of the containment vessel 2 and the cooling air flow path 18 flowing in the vicinity of the reactor building 3 in the upper part of the containment vessel 2. Is done.

また、冷却空気流路18と空気流路4との隔壁21は金属等の熱伝導性の良いものを用い、さらに、表面には図9に示すように鉛直下向きへ伸びる冷却フィン22を設けてもよい。   Further, the partition wall 21 between the cooling air flow path 18 and the air flow path 4 is made of a metal or the like having good thermal conductivity, and the surface is provided with cooling fins 22 extending vertically downward as shown in FIG. Also good.

このように構成された冷却構造において、格納容器冷却系が作動しているとき、側面冷却水貯蔵タンク8から樋10、流下孔12を通り、格納容器2の外周面を流れ落ちる冷却水は、格納容器から熱を受け取って徐々に蒸発し、水蒸気として空気とともに空気流路4を上昇する。上昇してきた空気と蒸気が格納容器2の上部に達すると、冷却空気流路18を流れる気流との熱交換により、隔壁21上に水蒸気の一部が凝縮して水滴23が付着する。これらは隔壁21上に設けたフィン22を介して格納容器2の上面へ落下する。落下した水滴23は格納容器2のからの熱を奪い、再度蒸発する。これにより、格納容器上面の冷却に用いる上部冷却水貯蔵タンクを上部に設置しないときも、格納容器2の上面は冷却水により覆われ、その潜熱によって除熱を行うことができる。   In the cooling structure configured as described above, when the containment vessel cooling system is operating, the cooling water flowing down the outer peripheral surface of the containment vessel 2 from the side cooling water storage tank 8 through the eaves 10 and the flow-down holes 12 is stored. It receives heat from the container and gradually evaporates, and ascends the air flow path 4 with air as water vapor. When the rising air and steam reach the upper part of the containment vessel 2, a part of the water vapor 23 is condensed on the partition wall 21 due to heat exchange with the airflow flowing through the cooling air flow path 18, and the water droplets 23 adhere. These fall to the upper surface of the storage container 2 through the fins 22 provided on the partition wall 21. The dropped water drop 23 takes heat from the storage container 2 and evaporates again. Thereby, even when the upper cooling water storage tank used for cooling the upper surface of the storage container is not installed at the upper part, the upper surface of the storage container 2 is covered with the cooling water, and heat can be removed by the latent heat.

本第5の実施形態によれば、格納容器の冷却構造を二重化することにより、格納容器上方の冷却上部冷却水貯蔵タンクが省略可能となるとともに、格納容器の上面及び外周面を効率的に冷却することができるため、建屋の高さ及び重心をさらに低くすることができる。   According to the fifth embodiment, by doubling the cooling structure of the containment vessel, the cooling upper cooling water storage tank above the containment vessel can be omitted, and the upper surface and outer peripheral surface of the containment vessel can be efficiently cooled. Therefore, the height and center of gravity of the building can be further reduced.

以上、本発明に係る原子炉格納容器の冷却構造の実施形態を説明したが、本発明はこれに限定されず、これらを適宜組み合わせて原子炉格納容器の冷却構造を構成してもよい。   As mentioned above, although embodiment of the cooling structure of the containment vessel concerning this invention was described, this invention is not limited to this, You may comprise the cooling structure of a containment vessel suitably combining these.

1…原子炉圧力容器、2…格納容器、3…原子炉建屋、4…空気流路、5…煙突、6…上部冷却水貯蔵タンク、7…上部散水管、8…側面冷却水貯蔵タンク、9…配水ダクト、10…樋、12…流下孔、13…冷却水膜、14…堰、15…流量調節弁、16…温度計、17…仕切り板、18…冷却空気流路、19…冷却空気流路入口、20…冷却空気流路出口、21…隔壁、22…フィン、23…水滴。 DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 ... Containment vessel, 3 ... Reactor building, 4 ... Air flow path, 5 ... Chimney, 6 ... Upper cooling water storage tank, 7 ... Upper water spray pipe, 8 ... Side cooling water storage tank, DESCRIPTION OF SYMBOLS 9 ... Water distribution duct, 10 ... Soot, 12 ... Downflow hole, 13 ... Cooling water film, 14 ... Weir, 15 ... Flow control valve, 16 ... Thermometer, 17 ... Partition plate, 18 ... Cooling air flow path, 19 ... Cooling Air channel inlet, 20 ... cooling air channel outlet, 21 ... partition, 22 ... fin, 23 ... water droplet.

Claims (10)

原子炉格納容器の外周面を取り囲む環状の空気流路と、前記空気流路の外周に配置した側面冷却水貯蔵タンクと、前記格納容器の外周面に設けられた環状の樋と、前記樋の底部に設けられた流下孔と、前記側面冷却水貯蔵タンクの冷却水を前記樋に配水する複数の配水ダクトと、を有することを特徴とする原子炉格納容器の冷却構造。   An annular air passage surrounding the outer peripheral surface of the reactor containment vessel, a side cooling water storage tank disposed on the outer periphery of the air passage, an annular trough provided on the outer peripheral surface of the containment vessel, and A reactor containment vessel cooling structure comprising a down hole provided in a bottom portion and a plurality of water distribution ducts for distributing cooling water of the side surface cooling water storage tank to the trough. 前記側面冷却水貯蔵タンクは環状又は複数に分割された環状の貯蔵タンクからなることを特徴とする請求項1記載の原子炉格納容器の冷却構造。   2. The reactor containment vessel cooling structure according to claim 1, wherein the side cooling water storage tank is an annular storage tank or an annular storage tank divided into a plurality of parts. 前記流下孔は前記格納容器の外周面に接して設けられていることを特徴とする請求項1又は2記載の原子炉格納容器の冷却構造。   3. The reactor containment vessel cooling structure according to claim 1, wherein the flow-down hole is provided in contact with an outer peripheral surface of the containment vessel. 前記樋の格納容器側であって前記流下孔の周囲に堰を設けたことを特徴とする請求項3記載の原子炉格納容器の冷却構造。   The reactor containment vessel cooling structure according to claim 3, wherein a weir is provided on the side of the containment vessel of the dredger and around the downflow hole. 前記流下孔は流出口に近づくほど格納容器側へ絞られる形状であることを特徴とする請求項4記載の原子炉格納容器の冷却構造。   The reactor containment vessel cooling structure according to claim 4, wherein the downflow hole has a shape that is narrowed toward the containment vessel as it approaches the outflow port. 前記環状の樋を複数の区画に分割し、各区画に配置された前記配水ダクトに流量調節弁を設けたことを特徴とする請求項1乃至4いずれかに記載の原子炉格納容器の冷却構造。   5. The reactor containment vessel cooling structure according to claim 1, wherein the annular dredger is divided into a plurality of compartments, and a flow control valve is provided in the water distribution duct arranged in each compartment. . 前記格納容器の内周面に前記区画に対応して温度計を設け、前記流量調節弁の開度を前記温度計の検出値に基づいて調節することを特徴とする請求項6記載の原子炉格納容器の冷却構造。   The reactor according to claim 6, wherein a thermometer is provided on the inner peripheral surface of the containment vessel corresponding to the section, and the opening degree of the flow control valve is adjusted based on a detection value of the thermometer. Containment container cooling structure. 請求項1乃至7いずれかに記載の原子炉格納容器の冷却構造を、前記格納容器の高さ方向に複数段設けたことを特徴とする原子炉格納容器の冷却構造。   8. A reactor containment vessel cooling structure according to claim 1, wherein the reactor containment vessel cooling structure according to any one of claims 1 to 7 is provided in a plurality of stages in a height direction of the containment vessel. 前記原子炉格納容器の上方の空気流路の隔壁の外周に冷却空気流路を設けたことを特徴とする請求項1乃至8いずれかに記載の原子炉格納容器の冷却構造。   9. The reactor containment vessel cooling structure according to claim 1, wherein a cooling air passage is provided on an outer periphery of a partition wall of an air passage above the reactor containment vessel. 前記隔壁に、前記格納容器の上面に向けて冷却フィンを設けたことを特徴とする請求項9記載の原子炉格納容器の冷却構造。   The reactor containment vessel cooling structure according to claim 9, wherein the partition wall is provided with cooling fins toward an upper surface of the containment vessel.
JP2009292433A 2009-12-24 2009-12-24 Cooling structure of reactor containment vessel Pending JP2011133315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009292433A JP2011133315A (en) 2009-12-24 2009-12-24 Cooling structure of reactor containment vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009292433A JP2011133315A (en) 2009-12-24 2009-12-24 Cooling structure of reactor containment vessel

Publications (1)

Publication Number Publication Date
JP2011133315A true JP2011133315A (en) 2011-07-07

Family

ID=44346215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009292433A Pending JP2011133315A (en) 2009-12-24 2009-12-24 Cooling structure of reactor containment vessel

Country Status (1)

Country Link
JP (1) JP2011133315A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035387A (en) * 2021-03-05 2021-06-25 哈尔滨工程大学 PCS (Power distribution System) long-term cooling water tank capable of operating efficiently

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035387A (en) * 2021-03-05 2021-06-25 哈尔滨工程大学 PCS (Power distribution System) long-term cooling water tank capable of operating efficiently
CN113035387B (en) * 2021-03-05 2022-11-18 哈尔滨工程大学 PCS (Power distribution System) long-term cooling water tank capable of operating efficiently

Similar Documents

Publication Publication Date Title
JP2010236885A (en) Cooling structure of reactor containment vessel
JP6277322B2 (en) PCV cooling system, and PCV / reactor pressure vessel joint cooling system
KR101005668B1 (en) Core-catcher with unified cooling water flow path
JP5463196B2 (en) Nuclear power plant with reactor containment cooling equipment
JPH0659077A (en) Passive cooler for nuclear reactor
JP2002156485A (en) Reactor
KR20040100164A (en) Passive safety-grade decay-heat removal method and decay-heat removal system for lmr with pool direct heat cooling process
US10784004B2 (en) Containment cooling system capable of improving coolant utilization rate
JP2006322627A (en) Heat exchanger, its manufacturing method, and nuclear reactor containment vessel system
CN103730170B (en) A kind of accident mitigation device of intensified safety shell heat extraction
JP4620449B2 (en) Core catcher cooling assembly and nuclear reactor having the assembly
JP2012198168A (en) Reactor container cooling apparatus and reactor building with the reactor container cooling apparatus
JP2007232529A (en) Molten corium cooling device, reactor containment vessel, and installation method of molten corium cooling device
JP2010271261A (en) Core melt holding device and containment vessel
JP2011133315A (en) Cooling structure of reactor containment vessel
JP2008139023A (en) Device for holding melt in reactor and reactor containment vessel
JP2011196964A (en) Reactor containment vessel
WO2016013961A1 (en) Deaerator (variants)
JP4031259B2 (en) Reactor containment cooling equipment
KR102371676B1 (en) Passive residual heat removal system
CN110400644B (en) Passive containment heat discharge structure
CN207299968U (en) A kind of improved cooling tower
CN203598642U (en) Leaching device
CN207663806U (en) A kind of passive double containment of band segmentation self-contained water tank
JP2000075083A (en) Fast reactor and mist separator used for the fast reactor