JP2010236051A - Sputtering method - Google Patents

Sputtering method Download PDF

Info

Publication number
JP2010236051A
JP2010236051A JP2009087337A JP2009087337A JP2010236051A JP 2010236051 A JP2010236051 A JP 2010236051A JP 2009087337 A JP2009087337 A JP 2009087337A JP 2009087337 A JP2009087337 A JP 2009087337A JP 2010236051 A JP2010236051 A JP 2010236051A
Authority
JP
Japan
Prior art keywords
targets
sputtering
substrate
target
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009087337A
Other languages
Japanese (ja)
Other versions
JP5363166B2 (en
Inventor
Yohei Ono
遙平 大野
Tatsunori Isobe
辰徳 磯部
Makoto Arai
新井  真
Yasuhiko Akamatsu
泰彦 赤松
Takashi Komatsu
孝 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2009087337A priority Critical patent/JP5363166B2/en
Publication of JP2010236051A publication Critical patent/JP2010236051A/en
Application granted granted Critical
Publication of JP5363166B2 publication Critical patent/JP5363166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sputtering method by which film hanging of an outer peripheral part of a substrate to be treated is prevented by a simple method so as to uniform a film thickness distribution. <P>SOLUTION: In the sputtering method, at least three pairs of targets are disposed side by side on a same plane, magnetic circuits 301c to 303d are disposed in parallel behind the targets 301a to 303b, powers higher than that of a sputtering power source E2 connected to the pair of targets 302a and 302b sandwiched by the pairs of targets of both ends are supplied from sputtering power sources E1 and E3 connected to the pairs of targets 301a to 301b and 303a to 303b of both ends in the disposed direction according to a prescribed power ratio and magnetic field intensity of both end parts in a direction perpendicular to the magnetic circuit disposed direction is increased. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被処理基板に薄膜を形成するスパッタリング方法に関し、特に、ターゲットを複数並設し、大面積の被処理基板に薄膜を形成するマルチカソードのスパッタリング方法に関する。   The present invention relates to a sputtering method for forming a thin film on a substrate to be processed, and more particularly to a multi-cathode sputtering method in which a plurality of targets are arranged side by side and a thin film is formed on a substrate to be processed having a large area.

近年、液晶などのディスプレイ分野を中心にして大面積基板に薄膜を形成するスパッタリング技術が重要になっている。スパッタリングによって大面積の被処理基板に薄膜を形成する場合には、真空チャンバ内で被処理基板に対向させて複数のターゲットを同一平面上に並設する方法が採用されている。   In recent years, a sputtering technique for forming a thin film on a large-area substrate has become important mainly in the display field such as liquid crystal. In the case where a thin film is formed on a substrate to be processed having a large area by sputtering, a method is adopted in which a plurality of targets are arranged in parallel on the same plane so as to face the substrate to be processed in a vacuum chamber.

しかし、ターゲットの表面がすべて上記被処理基板と平行に配置され、上記並設されたターゲット全体の外形寸法よりも大きな外形寸法の被処理基板上に成膜する場合は、被処理基板両端部に到達するスパッタリング粒子が被処理基板中央部に比べて不足するために、いわゆる膜だれが生じ、膜厚が不均一になるという不都合が生じていた。   However, when the target surfaces are all arranged in parallel with the substrate to be processed and the film is formed on the substrate to be processed having an outer dimension larger than the overall dimension of the target arranged in parallel, Since the amount of sputtered particles that arrive is insufficient compared to the central portion of the substrate to be processed, there has been a disadvantage that so-called film dripping occurs and the film thickness becomes non-uniform.

従来、このような不都合を解決するために、上記各ターゲットを取り付けたスパッタ源のうち、被処理基板の両端部に対向するスパッタ源を被処理基板側に傾斜させ、基板表面両端部に到達するスパッタリング粒子の量を補うことで、上記膜厚分布を均一なものにするという方法が提案されていた(例えば、特許文献1参照)。   Conventionally, in order to solve such an inconvenience, among the sputtering sources to which the respective targets are attached, the sputtering sources facing both ends of the substrate to be processed are inclined toward the substrate to be processed and reach both ends of the substrate surface. A method of making the film thickness distribution uniform by supplementing the amount of sputtered particles has been proposed (see, for example, Patent Document 1).

上記従来技術では、両端のスパッタ源を傾斜させるため、機構が複雑になり、傾斜の角度の調整も煩雑になるという不都合があった。   In the prior art described above, since the sputtering sources at both ends are inclined, the mechanism is complicated, and the adjustment of the inclination angle is complicated.

上記従来技術では、スパッタ電源から直流電圧を印加するDCスパッタリング方式を採用していた。DCスパッタリング方式では、カソード電極の上にターゲットがそれぞれ配置され、アノード電極が、隣り合うカソード電極間に配置されている。従って、アノード電極直下の被処理基板は、ターゲットとターゲットの隙間に対向しているため、この部分の膜厚が不均一になるという不都合が生じていた。   In the above prior art, a DC sputtering method in which a DC voltage is applied from a sputtering power source has been adopted. In the DC sputtering method, a target is disposed on each cathode electrode, and an anode electrode is disposed between adjacent cathode electrodes. Therefore, the substrate to be processed directly under the anode electrode faces the gap between the targets, and thus the thickness of this portion becomes inconvenient.

この不都合を簡易な構造で解消するために、近年、複数のターゲット対にそれぞれ交流電源を接続したACスパッタリング方式が多用されている。ACスパッタリング方式は、上記ターゲット対が相互にカソード電位とアノード電位を繰り返すため、ターゲット間にアノード電極を設置する必要がなく、上記のような不都合も生じない。   In order to eliminate this inconvenience with a simple structure, in recent years, an AC sputtering method in which an AC power source is connected to each of a plurality of target pairs is frequently used. In the AC sputtering method, since the target pair repeats a cathode potential and an anode potential with each other, it is not necessary to install an anode electrode between the targets, and the above disadvantages do not occur.

しかし、DCスパッタリング方式では、上記アノード電極の存在により、ある程度、プラズマがターゲットの外周にまで広がるが、ACスパッタリング方式では、上記の通り、電位が交互に変わるため、被処理基板両端部では、中央部に比べて電界強度が下がり、プラズマが均一に広がらず、被処理基板中央部に比べてスパッタリング粒子の供給が不足していた。   However, in the DC sputtering method, the plasma spreads to the outer periphery of the target to some extent due to the presence of the anode electrode. However, in the AC sputtering method, the potential changes alternately as described above. The electric field strength was lower than that of the portion, the plasma was not spread uniformly, and the supply of sputtering particles was insufficient as compared with the central portion of the substrate to be processed.

従って、上記従来技術の複雑な機構のスパッタ源を用いたスパッタリング方法を採用しない場合には、被処理基板両端部の膜だれは、交流電源を用いたACスパタッリング方式でより顕著に発生していた。   Therefore, in the case where the sputtering method using the sputtering source having the complicated mechanism of the above prior art is not adopted, the film dripping at both ends of the substrate to be processed is more noticeably generated by the AC sputtering method using the AC power source. .

ところで、近年、被処理基板上でのプラズマ密度をより高く維持するために、ターゲットと上記被処理基板との間に形成された電界と直交する閉ループ状の磁界を形成するマグネトロンスパッタリングという方式が主流になっている。一般に、マグネトロンスパッタリング方式では、中央磁石とこの中央磁石を取り囲み中央磁石と相反する磁極をもつ外周磁石とから構成された磁気回路をターゲットの後方に平行配置し、各ターゲットに対応させて並設している。   By the way, in recent years, in order to maintain a higher plasma density on the substrate to be processed, a method called magnetron sputtering that forms a closed-loop magnetic field orthogonal to the electric field formed between the target and the substrate to be processed has been mainstream. It has become. In general, in the magnetron sputtering method, a magnetic circuit composed of a central magnet and an outer peripheral magnet that surrounds the central magnet and has a magnetic pole opposite to the central magnet is arranged in parallel behind the target and arranged in parallel corresponding to each target. ing.

交流電源を用いたマグネトロンスパッタリングでは、上記電界が形成される方向と直交する方向の磁気回路の両端部で磁場強度が弱まるため、電界強度が下がることに起因して上記膜だれが生じた被処理基板両端部とは別の両端部でも膜だれが生じ、結果として、被処理基板外周全体に膜だれが生じるという不具合が生じていた。   In magnetron sputtering using an alternating current power source, the magnetic field strength is weakened at both ends of the magnetic circuit in the direction orthogonal to the direction in which the electric field is formed, so that the film dripping occurs due to the electric field strength decreasing. There has been a problem in that film dripping occurs at both ends other than both ends of the substrate, resulting in film dripping over the entire outer periphery of the substrate to be processed.

特開2004−346388(8ページ、図4)JP 2004-346388 (8 pages, FIG. 4)

本発明は、以上の点に鑑み、簡易な方法で、被処理基板外周部の膜だれを防止し、膜厚分布を均一化するスパッタリング方法を提供することをその課題とするものである。   In view of the above points, an object of the present invention is to provide a sputtering method that prevents film dripping at the outer periphery of the substrate to be processed and makes the film thickness distribution uniform by a simple method.

上記課題を解決するため、本発明のスパッタリング方法は、真空チャンバ内で、被処理基板に対向させて、少なくとも3つのターゲットを同一平面上に並設し、このターゲットの後方に磁気回路を平行配置し、上記各ターゲットに接続されたスパッタ電源から電力を供給してターゲットと上記被処理基板との間に電界を形成してプラズマを発生させると共に、上記電界と直交する方向に磁界を形成させ、上記各ターゲットをスパッタリングすることにより、上記被処理基板上に薄膜を形成するスパッタリング方法であって、並設方向両端のターゲットに接続されたスパッタ電源から、所定の電力比に従って、上記両端のターゲットに挟まれたターゲットに接続されたスパッタ電源よりも大きな電力を供給することを特徴とする。   In order to solve the above-described problem, the sputtering method of the present invention is arranged such that at least three targets are arranged in parallel on the same plane so as to face a substrate to be processed in a vacuum chamber, and magnetic circuits are arranged in parallel behind the targets. Then, electric power is supplied from the sputtering power source connected to each target to form an electric field between the target and the substrate to be processed to generate plasma, and a magnetic field is formed in a direction orthogonal to the electric field, A sputtering method for forming a thin film on the substrate to be processed by sputtering each of the above targets, from a sputtering power source connected to the targets at both ends in the juxtaposed direction, to the targets at both ends according to a predetermined power ratio It is characterized by supplying a larger electric power than the sputtering power source connected to the sandwiched target.

この方法によれば、ターゲットを同一平面上に並設したまま、並設方向両端部のターゲット表面の電界強度を上げることができる。   According to this method, it is possible to increase the electric field strength of the target surface at both ends in the juxtaposition direction while the targets are juxtaposed on the same plane.

また、上記少なくとも3つのターゲットに代えて、少なくとも3対のターゲット対を同一平面上に並設し、各ターゲット対に対応させて上記磁気回路を対で平行配置し、上記スパッタ電源としてターゲット対ごとに交流電源を接続し、両端のターゲット対に接続された交流電源から、所定の電力比に従って、上記両端のターゲット対に挟まれたターゲット対に接続された交流電源よりも大きな電力を供給すればよい。   Further, in place of the at least three targets, at least three target pairs are arranged in parallel on the same plane, the magnetic circuits are arranged in parallel corresponding to each target pair, and each target pair serves as the sputtering power source. If an AC power source is connected to the AC power source and the AC power source connected to the target pair at both ends is supplied with larger power than the AC power source connected to the target pair sandwiched between the target pair at both ends according to a predetermined power ratio, Good.

各交流電源から交流電圧を印加すると、各ターゲット対を構成する2つのターゲットをアノード電極とカソード電極とに交互に切り替えて、このアノード電極とカソード電極間にグロー放電を生じさせることによって上記プラズマを発生させることができる。この場合、上記所定の電力比に従って、並設方向両端のターゲット対に接続された交流電源の電力が、この両端のターゲット対に挟まれたターゲット対に接続された交流電源の電力よりも大きくなるように設定すればよい。なお、上記交流電源の所定の電力比は、被処理基板両端部の膜だれが生じず、両端部と中央部の不均一な膜厚を是正するような値で設定すればよい。   When an AC voltage is applied from each AC power source, the two targets constituting each target pair are alternately switched between an anode electrode and a cathode electrode, and a glow discharge is generated between the anode electrode and the cathode electrode, thereby generating the plasma. Can be generated. In this case, according to the predetermined power ratio, the power of the AC power source connected to the target pair at both ends in the juxtaposed direction becomes larger than the power of the AC power source connected to the target pair sandwiched between the target pairs at both ends. It should be set as follows. Note that the predetermined power ratio of the AC power source may be set to a value that does not cause film dripping at both ends of the substrate to be processed and corrects uneven film thickness at both ends and the center.

ところで、上記電界強度を上げた場合は、プラズマ密度がターゲットの並設方向の両端部で向上するが、各ターゲットの他方の両端部では、磁場強度が下がるため、プラズマ密度が他の箇所に比べて低くなる。このため、上記他方の両端部の磁場強度を上げる構成を採用すれば、上記他方の両端部のプラズマ密度も高くすることができ、被処理基板外周部全体のプラズマ密度が上がって、中央部のプラズマ密度との差異を是正することができる。このように磁場強度を上げるためには、例えば、上記磁気回路の並設方向と直交する方向の両端部に、各々補助磁石片を追加設置すればよい。   By the way, when the electric field strength is increased, the plasma density is improved at both ends of the target in parallel, but the magnetic field strength is reduced at the other end portions of each target. Become lower. For this reason, if the configuration in which the magnetic field strength at the other end is increased is adopted, the plasma density at the other end can be increased, and the plasma density of the entire outer periphery of the substrate to be processed is increased. Differences from plasma density can be corrected. In order to increase the magnetic field strength in this way, for example, auxiliary magnet pieces may be additionally installed at both ends in a direction orthogonal to the parallel arrangement direction of the magnetic circuits.

以上説明したように、本発明のスパッタリング方法は、複雑な機構を構築しなくても、ターゲットの並設方向両端部に対向する被処理基板の両端部のプラズマ密度を向上させることができるので、被処理基板の膜だれを防止し、膜厚分布を均一化させることができるという効果を奏する。   As described above, the sputtering method of the present invention can improve the plasma density at both ends of the substrate to be processed facing both ends in the parallel direction of the target without constructing a complicated mechanism. It is possible to prevent dripping of the substrate to be processed and to make the film thickness distribution uniform.

また、交流電源を使用する場合は、上記ターゲットの他方の両端部に補助磁石片を追加設置することにより、ターゲットの他方の両端部の磁場強度も上げることができるので、被処理基板の外周部全体の膜だれを防止することができるという効果を奏する。   In addition, when an AC power source is used, an auxiliary magnet piece is additionally installed at the other end of the target, so that the magnetic field strength at the other end of the target can be increased. There is an effect that dripping of the entire film can be prevented.

本発明にかかるスパッタリング方法を実施するスパッタリング装置の構成図。The block diagram of the sputtering device which enforces the sputtering method concerning this invention. (a)補助磁石片を追加設置した状態を示す上面図、(b)補助磁石片を追加設置した状態を示すA方向からみた側面図、(c)補助磁石片を追加設置した状態を示すB方向からみた側面図。(A) Top view showing a state in which auxiliary magnet pieces are additionally installed, (b) Side view of the state in which auxiliary magnet pieces are additionally installed as viewed from the direction A, (c) B showing a state in which auxiliary magnet pieces are additionally installed. The side view seen from the direction. パワー比の補正の有無による膜厚の変化を示すグラフ。The graph which shows the change of the film thickness by the presence or absence of correction | amendment of power ratio. 補助磁石片の追加設置の有無による膜厚の変化を示すグラフ。The graph which shows the change of the film thickness by the presence or absence of the additional installation of an auxiliary magnet piece.

図1を参照して、1は、交流電源を用いたマルチカソード方式のスパッタリング装置である。スパッタリング装置1は、真空排気手段(図示せず)を用いて所定の真空度に維持されるスパッタ室11を有する。スパッタ室11内の上部には、被処理基板Sが配置されている。被処理基板Sは、基板搬送手段(図示せず)によって、後述する複数のターゲット対と対向した位置に順次搬送される。   Referring to FIG. 1, reference numeral 1 denotes a multi-cathode sputtering apparatus using an AC power source. The sputtering apparatus 1 includes a sputtering chamber 11 that is maintained at a predetermined degree of vacuum using a vacuum exhaust unit (not shown). A substrate to be processed S is disposed in the upper part of the sputtering chamber 11. The substrate S to be processed is sequentially transferred to a position facing a plurality of target pairs, which will be described later, by a substrate transfer means (not shown).

スパッタ室11には、ガス導入系20が設けられている。ガス導入系20は、アルゴンなどのスパッタガスや反応性スパッタリングの際に用いられる酸素などの反応性ガスをガス源20aからマスフローコントローラ20bを設置したガス管20cを介してスパッタ室11内に一定の流量で導入できるようになっている。   A gas introduction system 20 is provided in the sputtering chamber 11. The gas introduction system 20 supplies a constant amount of a sputtering gas such as argon or a reactive gas such as oxygen used for reactive sputtering into the sputtering chamber 11 from a gas source 20a through a gas pipe 20c provided with a mass flow controller 20b. It can be introduced at a flow rate.

スパッタ室11内の下部には、マルチカソード体30が配設されている。マルチカソード体30は、略直方体等の同一形状に形成されたターゲットを対にした3つのターゲット対301、302及び303を有している。ターゲット対301、302及び303を構成する各ターゲット301aと301b、302aと302b、303aと303bは、いずれも、Al合金、MoやITOなど被処理基板S上に成膜しようとする薄膜の組成に応じ、各々公知の方法で作製され、冷却用バッキングプレート(図示せず)に接合されている。各ターゲット対301、302、303は、その未使用時スパッタ面が、被処理基板Sに平行な同一平面上に位置するように並設されている。   A multi-cathode body 30 is disposed in the lower part of the sputtering chamber 11. The multi-cathode body 30 has three target pairs 301, 302, and 303 in which targets formed in the same shape such as a substantially rectangular parallelepiped are paired. Each of the targets 301a and 301b, 302a and 302b, and 303a and 303b constituting the target pair 301, 302, and 303 has a composition of a thin film to be formed on the substrate S to be processed, such as an Al alloy, Mo, or ITO. Accordingly, each is manufactured by a known method and joined to a cooling backing plate (not shown). The target pairs 301, 302, and 303 are juxtaposed so that their unused sputtering surfaces are located on the same plane parallel to the substrate S to be processed.

なお、ターゲット対301、302、303を並設した外形寸法は、被処理基板Sの外形寸法よりも大きくなるように設定される。   The external dimension in which the target pairs 301, 302, and 303 are arranged side by side is set to be larger than the external dimension of the substrate S to be processed.

各ターゲット301a〜303bの裏面には、これら各ターゲットと同一外形に形成された電極と絶縁板とが、各々取り付けられており(図示せず)、マルチカソード体30に配設されている。   On the back surface of each of the targets 301 a to 303 b, electrodes and insulating plates formed in the same outer shape as these targets are respectively attached (not shown) and disposed on the multi-cathode body 30.

上記各電極は、スパッタ室11の外部に配置した3個の交流電源E1、E2、E3に接続され、交流電圧をターゲット対301、302、303にそれぞれ印加することができるようになっている。すなわち、ターゲット対301を例に説明すると、ターゲット301aとターゲット301bに対して交流電源E1を接続し、一方のターゲット301aに対して負の電位を印加した場合は、ターゲット301bには接地電位または正の電位が印加され、アノードの役割を果たす。従って、負の電位を印加されたターゲット301aがスパッタされ、交流電源の周波数に応じて、ターゲット301aとターゲット301bの電位が交互に切り替わることで、ターゲット301a、302bがスパッタされる。他のターゲット302a、302b、303a、303bも、上記と同様にスパッタされる。   Each of the electrodes is connected to three AC power sources E1, E2, and E3 arranged outside the sputtering chamber 11, so that an AC voltage can be applied to the target pairs 301, 302, and 303, respectively. That is, the target pair 301 will be described as an example. When the AC power supply E1 is connected to the targets 301a and 301b and a negative potential is applied to one of the targets 301a, the target 301b has a ground potential or a positive potential. Is applied to act as an anode. Therefore, the target 301a to which a negative potential is applied is sputtered, and the targets 301a and 302b are sputtered by alternately switching the potential of the target 301a and the target 301b in accordance with the frequency of the AC power supply. Other targets 302a, 302b, 303a, and 303b are sputtered in the same manner as described above.

マルチカソード体30には、各ターゲット301a〜303bの後方にそれぞれ磁気回路301c及び301d、302c及び302d、303c及び303dが設けられている。各磁気回路301c〜303dは、いずれも各ターゲット301a〜303bに平行に設けた支持部305を有している。支持部305の上には、中央磁石306とこの中央磁石306を取り囲み中央磁石306と相反する磁極をもつ外周磁石307及び308とが平行配置されている。中央磁石306、外周磁石307及び308は、各ターゲット301a〜303bの並設方向に直交する方向に沿った棒状のものである。   The multi-cathode body 30 is provided with magnetic circuits 301c and 301d, 302c and 302d, 303c and 303d behind the targets 301a to 303b, respectively. Each of the magnetic circuits 301c to 303d has a support portion 305 provided in parallel with each of the targets 301a to 303b. A central magnet 306 and outer peripheral magnets 307 and 308 surrounding the central magnet 306 and having magnetic poles opposite to the central magnet 306 are arranged in parallel on the support portion 305. The central magnet 306 and the outer peripheral magnets 307 and 308 are rod-shaped along a direction orthogonal to the parallel arrangement direction of the targets 301a to 303b.

各磁気回路301c〜303dの中央磁石306と外周磁石307及び308とによってターゲット表面に閉ループ状の磁場が形成され、この磁場によって電子が閉込められてこの部分に高密度プラズマが発生する。   A closed loop magnetic field is formed on the target surface by the central magnet 306 and the outer peripheral magnets 307 and 308 of each of the magnetic circuits 301c to 303d, and electrons are confined by this magnetic field to generate high-density plasma in this portion.

そして、各ターゲット301a〜303bと対向した位置に被処理基板Sを搬送し、ガス導入系20により、スパッタ室11にスパッタガスを導入し、各交流電源E1〜E3を介して各ターゲット301a〜303bに電力を供給すると、各ターゲット301a〜303bに垂直な電界が形成されるとともに、各磁気回路301c〜303dによって上記電界と直交する閉ループ状の磁界が形成され、被処理基板S上に成膜される。   And the to-be-processed substrate S is conveyed to the position facing each target 301a-303b, sputtering gas is introduce | transduced into the sputtering chamber 11 by the gas introduction system 20, and each target 301a-303b is passed via each AC power supply E1-E3. When electric power is supplied to the substrate, an electric field perpendicular to each of the targets 301a to 303b is formed, and a magnetic field in a closed loop shape perpendicular to the electric field is formed by each of the magnetic circuits 301c to 303d. The

このとき各交流電源E1〜E3から供給される電力が、いずれも同一の場合、電位が交互に変わるため、併設されたターゲットの両端部(本実施の形態では、ターゲット301aと303b)に対向する被処理基板Sの両端部までプラズマが均一に広がらず、被処理基板S中央部に比べてスパッタリング粒子の供給が不足する。   At this time, when the power supplied from each of the AC power sources E1 to E3 is the same, the potentials are alternately changed, so that both ends of the target (the targets 301a and 303b in the present embodiment) face each other. The plasma does not spread uniformly to both ends of the substrate to be processed S, and the supply of sputtering particles is insufficient as compared with the central portion of the substrate to be processed S.

スパッタリング粒子の供給が、不足すると、被処理基板Sの上記両端部は、十分に成膜されず、いわゆる膜だれが発生する。   If the supply of the sputtered particles is insufficient, the both end portions of the substrate S to be processed are not sufficiently formed, and so-called film dripping occurs.

そこで、交流電源E1〜E3のうち、並設方向の両端のターゲット対301及び303に接続された交流電源E1及びE3の電力をE2よりも大きくし、上記両端部のスパッタリング粒子の供給を上記中央部と均一にするようにした。   Therefore, among the AC power supplies E1 to E3, the power of the AC power supplies E1 and E3 connected to the target pairs 301 and 303 at both ends in the juxtaposed direction is made larger than E2, and the supply of the sputtering particles at the both ends is performed at the center. It was made uniform with the part.

この方法によれば、交流電源E1〜E3のいわばパワー比の補正のみにより、被処理基板Sの上記膜だれを是正することができるため、特殊な構造のスパッタリング装置を使用しなくても、簡単な方法により、信頼性の高い成膜が可能になる。   According to this method, since the film dripping of the substrate S to be processed can be corrected only by correcting the power ratio of the AC power supplies E1 to E3, it is easy without using a sputtering apparatus having a special structure. By this method, highly reliable film formation becomes possible.

なお、図1では、交流電源は、E1〜E3の3つを備えたもので説明したが、これに限定する趣旨ではない。被処理基板Sの面積に応じて並設するターゲット対の数が増えた場合であっても、膜だれが生じるのは上記両端部であるから、パワー比の補正は、並設方向の両端のターゲット対に接続された2つの交流電源によって行なえばよい。   In FIG. 1, the AC power supply has been described as having three E1 to E3, but the present invention is not limited to this. Even when the number of target pairs to be arranged in parallel increases in accordance with the area of the substrate S to be processed, the film dripping occurs at the both end portions. What is necessary is just to carry out by two alternating current power supplies connected to the target pair.

また、本実施の形態では、交流電源を接続したACスパッタリング方式について説明したが、これに限定する趣旨ではなく、DCスパッタリング方式の場合でも、並設方向両端のターゲットに接続されたDC電源のパワー比を補正すればよい。   In this embodiment, the AC sputtering method in which an AC power source is connected has been described. However, the present invention is not limited to this, and the power of the DC power source connected to the targets at both ends in the juxtaposed direction is not limited to this. The ratio may be corrected.

図2は、本発明にかかるスパッタリング方法の第2の実施形態を示す概略図である。以下、図1に対応する部分については、同一の符号を付して詳細な説明は省略する。   FIG. 2 is a schematic view showing a second embodiment of the sputtering method according to the present invention. Hereinafter, parts corresponding to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図1で説明した第1の実施形態では、電源E1〜電源E3のパワー比を補正し、上記両端部の電界強度を上げた場合、プラズマ密度がターゲット301a〜303bの並設方向の両端部で向上するが、各ターゲットの他方の両端部では、中央部に比べて磁場強度が下がるため、プラズマ密度が低くなる。   In the first embodiment described with reference to FIG. 1, when the power ratio of the power source E1 to the power source E3 is corrected and the electric field strength at the both end portions is increased, the plasma density is at both end portions in the parallel arrangement direction of the targets 301a to 303b. Although improved, the plasma density is lower at the other end of each target because the magnetic field strength is lower than at the center.

上記他方の両端部のプラズマ密度を高めるためには、磁気回路301c〜303dの並設方向と直交する方向の各両端部の磁場強度を上げればよい。   In order to increase the plasma density at the other end, the magnetic field strength at each end in the direction orthogonal to the direction in which the magnetic circuits 301c to 303d are arranged may be increased.

磁場強度を上げる方法としては、例えば、上記他方の両端部に補助磁石片を追加設置すればよい。   As a method for increasing the magnetic field strength, for example, auxiliary magnet pieces may be additionally installed at the other end portions.

図2(a)は、各磁気回路301c〜303dの各中央磁石306、外周磁石307及び308の上記他方の両端部に、補助磁石片306a及び306bと、307a及び307bと、308a及び308bとを追加設置した状態をスパッタリング装置1の上面からみた図である。さらに、A方向からの側面視の状態は図2(b)に、B方向からの側面視の状態は図2(c)に示した。   FIG. 2A shows auxiliary magnet pieces 306a and 306b, 307a and 307b, and 308a and 308b at the other ends of the central magnet 306 and outer magnets 307 and 308 of the magnetic circuits 301c to 303d. It is the figure which looked at the state installed additionally from the upper surface of the sputtering device. Further, the side view from the A direction is shown in FIG. 2B, and the side view from the B direction is shown in FIG. 2C.

図2(b)では、補助磁石片306a〜308bの追加設置により、A方向から見た被処理基板Sの両端部の膜だれの傾斜が緩やかになり、F1からF2のように改善されたこと示している。   In FIG. 2B, the additional installation of the auxiliary magnet pieces 306a to 308b makes the inclination of the film dripping at both ends of the substrate S to be processed viewed from the direction A, which is improved from F1 to F2. Show.

図2(c)では、パワー比の補正により、B方向から見た被処理基板Sの両端部の膜だれの傾斜が緩やかになり、F3からF4のように改善されたことを示してる。   FIG. 2 (c) shows that the inclination of the film dripping at both ends of the substrate to be processed S viewed from the B direction has become gentle due to the correction of the power ratio, and has been improved from F3 to F4.

すなわち、上記パワー比の補正と、補助磁石片306a〜308bの追加設置による磁場強度の補強とにより、被処理基板Sの中央部とすべての周辺部で、従来のスパッタリング方法に比べて、スパッタリング粒子を均一に到達させることができるようになった。   That is, by correcting the power ratio and reinforcing the magnetic field strength by additionally installing auxiliary magnet pieces 306a to 308b, the sputtered particles at the central portion and all the peripheral portions of the substrate S to be processed are compared with the conventional sputtering method. Can be reached uniformly.

本実施例では、図1で説明した交流電源のパワー比を補正する方法を行った。スパッタリング条件は、真空排気されているスパッタ室内の圧力を0.3Paとし、7つのAlターゲット対を並設し、各々のターゲット対に交流電源を接続した。   In this embodiment, the method of correcting the power ratio of the AC power source described in FIG. 1 was performed. The sputtering conditions were such that the pressure in the sputtering chamber being evacuated was 0.3 Pa, seven Al target pairs were juxtaposed, and an AC power source was connected to each target pair.

並設方向両端のターゲット対に接続された交流電源の供給電力を80kWとし、この両端の交流電源に挟まれた5つの交流電源の供給電力を75kWとし、比較例として、上記同一条件下で、パワー比を補正せず、すべての交流電源の供給電力を75kWとした。   The supply power of the AC power source connected to the target pair at both ends of the parallel arrangement direction is 80 kW, the supply power of the five AC power sources sandwiched between the AC power sources at both ends is 75 kW, and as a comparative example, under the same conditions, The power ratio was not corrected, and the power supplied to all AC power sources was 75 kW.

本実施例の結果を示すグラフを図3に示す。横軸に、ターゲット対の並設方向と同一方向の被処理基板上の距離を被処理基板X軸方向(mm)として示し、縦軸に膜厚(Å)を示した。測定位置は、被処理基板の上記X軸方向と直交するY軸方向の922mm上とした。   A graph showing the results of this example is shown in FIG. The horizontal axis indicates the distance on the target substrate in the same direction as the target pair juxtaposition direction as the target substrate X-axis direction (mm), and the vertical axis indicates the film thickness (Å). The measurement position was 922 mm above the Y-axis direction orthogonal to the X-axis direction of the substrate to be processed.

パワー比の補正をした場合は、膜厚の最大値が、被処理基板の882mm上で3062Åであり、最小値が、被処理基板の2378mm上で2683Åであった。なお、膜厚の平均は、2883Åで膜厚分布は、6.6%であった。   When the power ratio was corrected, the maximum value of the film thickness was 3062 mm on 882 mm of the substrate to be processed, and the minimum value was 2683 mm on 2378 mm of the substrate to be processed. The average film thickness was 2883 mm, and the film thickness distribution was 6.6%.

一方、パワー比の補正をしない場合は、膜厚の最大値が、被処理基板の1918mm上で3084Åであり、最小値が、被処理基板の2378mm上で2526Åであった。なお、膜厚の平均は、2878Åで膜厚分布は、9.9%であった。   On the other hand, when the power ratio was not corrected, the maximum value of the film thickness was 3084 mm on 1918 mm of the substrate to be processed, and the minimum value was 2526 mm on 2378 mm of the substrate to be processed. The average film thickness was 2878 mm and the film thickness distribution was 9.9%.

被処理基板X軸方向の両端の膜厚を比較すると、一方の端部22mm上では、パワー比の補正をした場合は、膜厚は2708Åであり、パワー比の補正をしない場合、2614Åであった。他方の端部2378mm上では、上記の通り、各々の最小値(パワー比の補正をした場合:2683Å、パワー比の補正をしない場合:2526Å)であった。   Comparing the film thickness at both ends in the X-axis direction of the substrate to be processed, on one end 22 mm, the film thickness was 2708 mm when the power ratio was corrected, and 2614 mm when the power ratio was not corrected. It was. On the other end 2378 mm, as described above, the minimum values were obtained (when the power ratio was corrected: 2683 mm, when the power ratio was not corrected: 2526 mm).

図3のグラフからも明らかな通り、パワー比の補正をすることにより、上記被処理基板のX軸方向の両端部の膜だれが改善され、パワー比の補正をしない場合に比べて膜厚分布の均一化を図ることができるようになった。   As is apparent from the graph of FIG. 3, by correcting the power ratio, the film dripping at both ends in the X-axis direction of the substrate to be processed is improved, and the film thickness distribution is compared with the case where the power ratio is not corrected. Can now be made uniform.

本実施例では、図2で説明した補助磁石片を追加設置して磁界強度を補強する方法を行った。スパッタリング条件は、実施例1と同様、真空排気されているスパッタ室内の圧力を0.3Paとし、7つのAlターゲット対に各々交流電源を接続した。補助磁石片は、磁気回路を並設する方向と直交する方向の両端部に各々設置した。比較例は、補助磁石片を追加設置しないものである。   In this embodiment, a method of reinforcing the magnetic field strength by additionally installing the auxiliary magnet piece described in FIG. The sputtering conditions were the same as in Example 1, with the pressure in the sputtering chamber being evacuated being 0.3 Pa, and an AC power source was connected to each of the seven Al target pairs. The auxiliary magnet pieces were respectively installed at both ends in the direction orthogonal to the direction in which the magnetic circuits are arranged side by side. In the comparative example, no auxiliary magnet piece is additionally installed.

本実施例の結果を示すグラフを図4に示す。横軸に、膜厚(Å)を示し、縦軸に、ターゲット対の並設方向と直交する方向の被処理基板上の距離を被処理基板Y軸方向(mm)として示した。測定位置は、被処理基板の上記X軸方向の922mm上とした。   A graph showing the results of this example is shown in FIG. The abscissa indicates the film thickness (、), and the ordinate indicates the distance on the substrate to be processed in the direction orthogonal to the direction in which the target pairs are juxtaposed, as the Y-axis direction (mm) of the substrate to be processed. The measurement position was 922 mm above the X-axis direction of the substrate to be processed.

補助磁石片を追加設置した場合は、膜厚の最大値が、被処理基板の2000mm上で3205Åであり、最小値が、被処理基板の2180mm上で2852Åであった。なお、膜厚の平均は、3045.7Åで、膜厚分布は、5.8%であった。   When the auxiliary magnet piece was additionally installed, the maximum value of the film thickness was 3205 mm on 2000 mm of the substrate to be processed, and the minimum value was 2852 mm on 2180 mm of the substrate to be processed. The average film thickness was 3045.7 mm, and the film thickness distribution was 5.8%.

一方、補助磁石片を追加設置しない場合は、膜厚の最大値が、被処理基板の1900mm上で3195Åであり、最小値が、被処理基板の20mm上で2617Åであった。なお、膜厚の平均は、3004.3Åで、膜厚分布は、9.9%であった。   On the other hand, when no auxiliary magnet piece was additionally installed, the maximum value of the film thickness was 3195 mm on 1900 mm of the substrate to be processed, and the minimum value was 2617 mm on 20 mm of the substrate to be processed. The average film thickness was 3004.3 mm, and the film thickness distribution was 9.9%.

被処理基板Y軸方向の両端の膜厚を比較すると、一方の端部20mm上では、補助磁石片を追加設置した場合は、膜厚は2864Åであり、追加設置しない場合、上記の通り最小値(2617Å)であった。他方の端部2180mmでは、補助磁石片を追加設置した場合は、上記の通り、最小値(2852Å)であり、追加設置しない場合、2672Åであった。   Comparing the film thickness at both ends in the Y-axis direction of the substrate to be processed, the film thickness is 2864 mm when an auxiliary magnet piece is additionally installed on one end 20 mm, and the minimum value as described above when no additional magnet is installed. (2617 cm). At the other end 2180 mm, when the auxiliary magnet piece was additionally installed, the minimum value (2852 mm) was obtained as described above, and when the additional magnet piece was not additionally installed, it was 2672 mm.

図4のグラフからも明らかな通り、補助磁石片を追加設置することにより、上記被処理基板のY軸方向の両端部の膜だれが改善され、補助磁石片を追加設置しない場合に比べて膜厚分布の均一化を図ることができるようになった。   As is apparent from the graph of FIG. 4, the additional installation of the auxiliary magnet piece improves the film dripping at both ends in the Y-axis direction of the substrate to be processed, and the film is thinner than the case where no additional auxiliary magnet piece is installed. The thickness distribution can be made uniform.

1 スパッタリング装置
11 スパッタ室
20 ガス導入系
30 マルチカソード体
301〜303 ターゲット対
E1〜E3 交流電源
S 被処理基板
DESCRIPTION OF SYMBOLS 1 Sputtering apparatus 11 Sputtering chamber 20 Gas introduction system 30 Multi-cathode bodies 301 to 303 Target pairs E1 to E3 AC power source S Substrate

Claims (4)

真空チャンバ内で、被処理基板に対向させて、少なくとも3つのターゲットを同一平面上に並設し、このターゲットの後方に磁気回路を平行配置し、上記各ターゲットに接続されたスパッタ電源から電力を供給してターゲットと上記被処理基板との間に電界を形成してプラズマを発生させると共に、上記電界と直交する方向に磁界を形成させ、上記各ターゲットをスパッタリングすることにより、上記被処理基板上に薄膜を形成するスパッタリング方法であって、
並設方向両端のターゲットに接続されたスパッタ電源から、所定の電力比に従って、上記両端のターゲットに挟まれたターゲットに接続されたスパッタ電源よりも大きな電力を供給することを特徴とするスパッタリング方法。
In a vacuum chamber, at least three targets are arranged in parallel on the same plane so as to face the substrate to be processed, and a magnetic circuit is arranged in parallel behind the targets, and power is supplied from a sputtering power source connected to each target. Supplying an electric field between the target and the substrate to be processed to generate plasma, forming a magnetic field in a direction perpendicular to the electric field, and sputtering each of the targets, thereby A sputtering method for forming a thin film on
A sputtering method characterized by supplying a larger electric power from a sputtering power source connected to targets at both ends in the juxtaposed direction than a sputtering power source connected to targets sandwiched between the targets at both ends in accordance with a predetermined power ratio.
上記少なくとも3つのターゲットに代えて、少なくとも3対のターゲット対を同一平面上に並設し、各ターゲット対に対応させて上記磁気回路を対で平行配置し、上記スパッタ電源としてターゲット対ごとに交流電源を接続し、両端のターゲット対に接続された交流電源から、所定の電力比に従って、上記両端のターゲット対に挟まれたターゲット対に接続された交流電源よりも大きな電力を供給することを特徴とする請求項1記載のスパッタリング方法。   Instead of the at least three targets, at least three target pairs are arranged in parallel on the same plane, and the magnetic circuits are arranged in parallel in correspondence with each target pair. A power supply is connected, and from the AC power source connected to the target pair at both ends, according to a predetermined power ratio, larger power is supplied than the AC power source connected to the target pair sandwiched between the target pairs at both ends. The sputtering method according to claim 1. 上記磁気回路の並設方向と直交する方向の両端部の磁場強度を上げることを特徴とする請求項2記載のスパッタリング方法。   The sputtering method according to claim 2, wherein the magnetic field strength at both ends in a direction orthogonal to the parallel arrangement direction of the magnetic circuits is increased. 上記磁気回路の並設方向と直交する方向の両端部に、各々補助磁石片を追加設置し、上記両端部の磁場強度を上げることを特徴とする請求項3記載のスパッタリング方法。
The sputtering method according to claim 3, wherein auxiliary magnet pieces are additionally installed at both ends of the magnetic circuit in a direction orthogonal to the parallel arrangement direction to increase the magnetic field strength at the both ends.
JP2009087337A 2009-03-31 2009-03-31 Sputtering method Active JP5363166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009087337A JP5363166B2 (en) 2009-03-31 2009-03-31 Sputtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087337A JP5363166B2 (en) 2009-03-31 2009-03-31 Sputtering method

Publications (2)

Publication Number Publication Date
JP2010236051A true JP2010236051A (en) 2010-10-21
JP5363166B2 JP5363166B2 (en) 2013-12-11

Family

ID=43090653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087337A Active JP5363166B2 (en) 2009-03-31 2009-03-31 Sputtering method

Country Status (1)

Country Link
JP (1) JP5363166B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184479A (en) * 2011-03-07 2012-09-27 Ulvac Japan Ltd Sputtering apparatus and sputtering method
JP2020143356A (en) * 2019-03-08 2020-09-10 株式会社アルバック Sputtering apparatus and sputtering method
JP2020176304A (en) * 2019-04-19 2020-10-29 株式会社アルバック Sputtering apparatus
KR20240028482A (en) 2021-10-26 2024-03-05 가부시키가이샤 알박 tabernacle method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375368A (en) * 1989-08-18 1991-03-29 Fuji Photo Film Co Ltd Sputtering device
JP2000129436A (en) * 1998-08-19 2000-05-09 Asahi Glass Co Ltd Inline type sputtering device and sputtering method
JP2005290550A (en) * 2004-03-11 2005-10-20 Ulvac Japan Ltd Sputtering apparatus
JP2007186725A (en) * 2006-01-11 2007-07-26 Ulvac Japan Ltd Sputtering method and sputtering apparatus
JP2008069408A (en) * 2006-09-14 2008-03-27 Ulvac Japan Ltd Thin film deposition method and thin film deposition apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375368A (en) * 1989-08-18 1991-03-29 Fuji Photo Film Co Ltd Sputtering device
JP2000129436A (en) * 1998-08-19 2000-05-09 Asahi Glass Co Ltd Inline type sputtering device and sputtering method
JP2005290550A (en) * 2004-03-11 2005-10-20 Ulvac Japan Ltd Sputtering apparatus
JP2007186725A (en) * 2006-01-11 2007-07-26 Ulvac Japan Ltd Sputtering method and sputtering apparatus
JP2008069408A (en) * 2006-09-14 2008-03-27 Ulvac Japan Ltd Thin film deposition method and thin film deposition apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184479A (en) * 2011-03-07 2012-09-27 Ulvac Japan Ltd Sputtering apparatus and sputtering method
JP2020143356A (en) * 2019-03-08 2020-09-10 株式会社アルバック Sputtering apparatus and sputtering method
JP2020176304A (en) * 2019-04-19 2020-10-29 株式会社アルバック Sputtering apparatus
KR20240028482A (en) 2021-10-26 2024-03-05 가부시키가이샤 알박 tabernacle method

Also Published As

Publication number Publication date
JP5363166B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
US8506771B2 (en) Bipolar pulsed power supply and power supply apparatus having plurality of bipolar pulsed power supplies connected in parallel with each other
TWI377263B (en)
US8221594B2 (en) Magnetron sputtering apparatus and magnetron sputtering method
JP4922581B2 (en) Sputtering apparatus and sputtering method
JP5363166B2 (en) Sputtering method
JP2008274366A (en) Sputtering system and sputtering method
TW201827634A (en) Sputter deposition source, sputter deposition apparatus having the same, and method of depositing a layer on a substrate
US20110180394A1 (en) Sputtering method and sputtering apparatus
JP2010007162A (en) Power supply unit
KR20170064527A (en) Magnet unit for magnetron sputter electrode and sputtering apparutus
TWI381062B (en) A target assembly, and a sputtering apparatus provided with the target assembly
US20090114154A1 (en) Plasma treatment apparatus
JP2004115841A (en) Magnetron sputtering electrode, film deposition system, and film deposition method
JP2008115446A (en) Sputtering apparatus and sputtering method
TWI393797B (en) Sputtering electrodes and sputtering devices with sputtering electrodes
JP5322235B2 (en) Sputtering method
JP2012201910A (en) Magnetron sputtering electrode and sputtering apparatus
KR100200009B1 (en) Method of fabricating ito transparent conducting films
JP2005226091A (en) Sputtering method and sputtering system
CN102312206B (en) Sputtering method
TWI519663B (en) Sputtering method
TWI665324B (en) Sputter deposition source, sputter deposition apparatus and method of operating a sputter deposition source
JP4999602B2 (en) Deposition equipment
JP4713853B2 (en) Magnetron cathode electrode and sputtering method using magnetron cathode electrode
KR20120002062A (en) Sputtering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130905

R150 Certificate of patent or registration of utility model

Ref document number: 5363166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250