JP2010235688A - 熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法 - Google Patents

熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法 Download PDF

Info

Publication number
JP2010235688A
JP2010235688A JP2009082731A JP2009082731A JP2010235688A JP 2010235688 A JP2010235688 A JP 2010235688A JP 2009082731 A JP2009082731 A JP 2009082731A JP 2009082731 A JP2009082731 A JP 2009082731A JP 2010235688 A JP2010235688 A JP 2010235688A
Authority
JP
Japan
Prior art keywords
thermally expandable
expandable microcapsule
monomer
weight
conjugated diene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009082731A
Other languages
English (en)
Other versions
JP5543721B2 (ja
Inventor
Masami Sumitani
昌美 住谷
Hiroshi Yamauchi
博史 山内
Hiroyuki Morita
弘幸 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2009082731A priority Critical patent/JP5543721B2/ja
Publication of JP2010235688A publication Critical patent/JP2010235688A/ja
Application granted granted Critical
Publication of JP5543721B2 publication Critical patent/JP5543721B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】 本発明は、優れた耐熱性を有し、高い発泡倍率を実現できる熱膨張性マイクロカプセルを提供することを目的とする。また、本発明は、該熱膨張性マイクロカプセルの製造方法を提供することを目的とする。
【解決手段】 樹脂からなるシェルに、コア剤として揮発性膨張剤が内包された熱膨張性マイクロカプセルであって、上記シェルは、ニトリル系モノマー及び共役ジエン重合性化合物を含有するモノマー組成物を重合して得られる重合体からなり、前記モノマー組成物は、前記共役ジエン重合性化合物を0.1〜20重量%含有する熱膨張性マイクロカプセル。
【選択図】 なし

Description

本発明は、優れた耐熱性を有し、高い発泡倍率を実現できる熱膨張性マイクロカプセルに関する。また、本発明は、該熱膨張性マイクロカプセルの製造方法に関する。
熱膨張性マイクロカプセルは、意匠性付与剤や軽量化剤として幅広い用途に使用されており、発泡インク、壁紙をはじめとした軽量化を目的とした塗料等にも利用されている。
このような熱膨張性マイクロカプセルとしては、熱可塑性シェルポリマーの中に、シェルポリマーの軟化点以下の温度でガス状になる揮発性膨張剤が内包されているものが広く知られており、例えば、特許文献1には、低沸点の脂肪族炭化水素等の揮発性膨張剤をモノマーと混合した油性混合液を、油溶性重合触媒とともに分散剤を含有する水系分散媒体中に攪拌しながら添加し懸濁重合を行うことにより、揮発性膨張剤を内包する熱膨張性マイクロカプセルを製造する方法が開示されている。
しかしながら、この方法によって得られた熱膨張性マイクロカプセルは、80〜130℃程度の比較的低温では、揮発性膨張剤のガス化によって熱膨張させることができるものの、高温又は長時間加熱すると、膨張したマイクロカプセルからガスが抜けることによって発泡倍率が低下するという問題があった。また、熱膨張性マイクロカプセルの耐熱性や強度の問題から、いわゆる「へたり」と呼ばれる現象が生じ、高温時に潰れてしまうことがあった。
一方、特許文献2には、ニトリル系モノマー80重量%以上、非ニトリル系モノマー20重量%以下および架橋剤0.1〜1重量%含有する成分から得られるポリマーを用いて、該ポリマーの軟化点以下の温度でガス状になる揮発性膨張剤をマイクロカプセル化した熱膨張性マイクロカプセルが開示されている。
このような熱膨張性マイクロカプセルは、ニトリル含有モノマーを用いることで、ガス抜けの問題はある程度解消されるものの、耐熱性は低く、溶融混練工程において、熱膨張性マイクロカプセルの耐熱性や強度の問題から、へたりが発生していた。また、非ニトリル系モノマーとしては、メタクリル酸メチル、メタクリル酸エチル、アクリル酸メチル等を用いているが、このような非ニトリル系モノマーとニトリル系モノマーとを併用した場合であっても、発泡倍率については依然として不充分であった。
また、特許文献3には、重合性二重結合を2個以上有する重合性単量体と、ガラス転移温度の高い単独重合体を形成し得る単量体とを必須とする共重合体を殻とし、この共重合体の軟化点以下の温度でガス状になる揮発性膨張剤を内包する、熱膨張性マイクロカプセルが開示されている。このような熱膨張性マイクロカプセルは、殻部分のガラス転移温度を高くすることで、耐熱性は向上するものの、ガス抜けの問題は解消されておらず、発泡倍率が低いものとなっていた。
特公昭42−26524号公報 特開平9−19635号公報 特開平5−285376号公報
本発明は、優れた耐熱性を有し、高い発泡倍率を実現できる熱膨張性マイクロカプセルを提供することを目的とする。また、本発明は、該熱膨張性マイクロカプセルの製造方法を提供することを目的とする。
本発明は、樹脂からなるシェルに、コア剤として揮発性膨張剤が内包された熱膨張性マイクロカプセルであって、上記シェルは、ニトリル系モノマー及び共役ジエン重合性化合物を含有するモノマー組成物を重合して得られる重合体からなり、前記モノマー組成物は、前記共役ジエン重合性化合物を0.1〜20重量%含有する熱膨張性マイクロカプセルである。
以下に本発明を詳述する。
本発明の熱膨張性マイクロカプセルを構成するシェルは、ニトリル系モノマー及び共役ジエン重合性化合物を含有するモノマー組成物を重合させてなる重合体からなる。以下、上記ニトリル系モノマーをニトリル系モノマー(I)ともいう。
上記ニトリル系モノマー(I)としては、例えば、アクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エトキシアクリロニトリル、フマロニトリル、又は、これらの混合物等が挙げられる。これらのなかでは、アクリロニトリル及びメタクリロニトリルが特に好ましい。
上記ニトリル系モノマー(I)を含有することで、シェルのガスバリア性を向上させることができる。
上記モノマー組成物中のニトリル系モノマー(I)の含有量の好ましい下限は30重量%、好ましい上限は90重量%である。上記モノマー組成物中のニトリル系モノマー(I)の含有量が30重量%未満であると、シェルのガスバリア性が低くなるため発泡倍率が低下することがある。上記モノマー組成物中のニトリル系モノマー(I)の含有量が90重量%を超えると、耐熱性が上がってこないことがある。上記モノマー組成物中のニトリル系モノマー(I)の含有量のより好ましい下限は40重量%、より好ましい上限は80重量%である。
本発明において、上記モノマー組成物は、共役ジエン重合性化合物を含有する。
上記共役ジエン重合性化合物を含有することで、熱膨張性マイクロカプセルを構成するシェルの高温加熱時における分子間距離が大きいものとなり、高い発泡倍率を実現することができる。また、高温又は長時間加熱した場合における耐熱性を向上させることができ、熱膨張性マイクロカプセルに「へたり」が生じて、高温時に潰れてしまうことを防止することができる。
本明細書において、「共役ジエン重合性化合物」とは、1つの単結合によって二重結合が隔てられ、共役したジエンを有する重合性の化合物をいう。以下、上記共役ジエン重合性化合物を共役ジエン重合性化合物(II)ともいう。なお、「共役ジエン重合性化合物」は、共役ジエンを有し、かつ、重合可能な化合物であれば特に限定されず、共役ジエンモノマーのほか、共役ジエンを有する重合可能なポリマーについても、共役ジエン重合性化合物に含まれる。
上記共役ジエン重合性化合物(II)としては、例えば、ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチル−1,3−ブタジエン等が挙げられる。なかでもブタジエン、イソプレン、ポリブタジエンが好適に用いられる。これらの共役ジエン重合性化合物は、単独で用いてもよく、2種以上を併用してもよい。
上記モノマー組成物における上記共役ジエン重合性化合物(II)の含有量は、上記モノマー組成物中の全モノマー成分に対して、0.1〜20重量%である。上記含有量が0.1重量%未満であると、充分な発泡倍率が得られない。上記含有量が20重量%を超えると、得られるシェルのガスバリア性が不充分となる。含有量の好ましい下限は0.5重量%、好ましい上限は10重量%である。
上記モノマー組成物は、更にカルボキシル基を有し、炭素数が3〜8のラジカル重合性不飽和カルボン酸モノマー(III)を含有することが好ましい。
上記カルボキシル基を有し、炭素数が3〜8のラジカル重合性不飽和カルボン酸モノマー(III)としては、例えば、イオン架橋させるための遊離カルボキシル基を分子当たり1個以上持つものを用いることができ、具体的には例えば、アクリル酸、メタクリル酸、エタクリル酸、クロトン酸、ケイ皮酸等の不飽和モノカルボン酸、マレイン酸、イタコン酸、フマル酸、シトラコン酸、クロロマレイン酸等の不飽和ジカルボン酸やその無水物又はマレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノブチル、フマル酸モノメチル、フマル酸モノエチル、イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノブチル等の不飽和ジカルボン酸のモノエステルやその誘導体が挙げられ、これらは単独で用いてもよく、2種以上を併用してもよい。これらのなかでは、特にアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸が好ましい。
上記モノマー組成物中における、上記カルボキシル基を有し、炭素数3〜8のラジカル重合性不飽和カルボン酸モノマー(III)の含有量の好ましい下限は10重量%、好ましい上限は50重量%である。上記ラジカル重合性不飽和カルボン酸モノマー(III)の含有量が10重量%未満であると、最大発泡温度が180℃以下となることがあり、上記ラジカル重合性不飽和カルボン酸モノマー(III)の含有量が50重量%を超えると、最大発泡温度は向上するものの、発泡倍率が低下する。上記ラジカル重合性不飽和カルボン酸モノマー(III)の含有量のより好ましい下限は10重量%、より好ましい上限は40重量%である。
上記モノマー組成物中には、上記ニトリル系モノマー(I)、共役ジエン重合性化合物(II)、ラジカル重合性不飽和カルボン酸モノマー(III)等に加えて、これら以外の他のモノマー(IV)を添加してもよい。上記他のモノマー(IV)としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、ジシクロペンテニルアクリレート等のアクリル酸エステル類、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、イソボルニルメタクリレート等のメタクリル酸エステル類、塩化ビニル、塩化ビニリデン、酢酸ビニル、スチレン等のビニルモノマー等が挙げられる。これら他のモノマーは、熱膨張性マイクロカプセルに必要な特性に応じて適宜選択されて使用され得るが、これらのなかでメタクリル酸メチル、メタクリル酸エチル、アクリル酸メチル等が好適に用いられる。シェルを構成する全モノマー中の他のモノマー(IV)の含有量は10重量%未満が好ましい。上記他のモノマー(IV)の含有量が10重量%を超えると、セル壁のガスバリア性が低下し、熱膨張性が悪化しやすいので好ましくない。
上記モノマー組成物は、更に金属カチオン塩を含有してもよい。
上記金属カチオン塩を含有することで、上記ラジカル重合性不飽和カルボン酸モノマー(II)のカルボキシル基との間でイオン架橋が起こることから、架橋効率が上がり、耐熱性を高くすることが可能となる。その結果、高温領域において長時間破裂、収縮の起こらない熱膨張性マイクロカプセルとすることが可能となる。また、高温領域においてもシェルの弾性率が低下しにくいことから、強い剪断力が加えられる混練成形、カレンダー成形、押出成形、射出成形等の成形加工を行う場合であっても、熱膨張性マイクロカプセルの破裂、収縮が起こることがない。
また、共有結合でなくイオン架橋が起こることによって、熱膨張性マイクロカプセルの粒子形状が真球に近くなり、歪みが生じにくくなる。これは、イオン結合による架橋が、共有結合による架橋に比べて結合力が弱いため、重合中のモノマーからポリマーへ転化時において、熱膨張性マイクロカプセルの体積が収縮する際に均一に収縮が生じることが原因と考えられる。
上記金属カチオン塩の金属カチオンとしては、上記ラジカル重合性不飽和カルボン酸モノマー(III)と反応してイオン架橋させる金属カチオンであれば、特に限定されず、例えば、Na、K、Li、Zn、Mg、Ca、Ba、Sr、Mn、Al、Ti、Ru、Fe、Ni、Cu、Cs、Sn、Cr、Pb等のイオンが挙げられる。これらのなかでは、2〜3価の金属カチオンであるCa、Zn、Alのイオンが好ましく、特にZnのイオンが好適である。これらの金属カチオン塩は、単独で用いても良く、2種以上を併用してもよい。
上記モノマー組成物中における、上記金属カチオン塩の含有量の好ましい下限は0.1重量%、好ましい上限が10重量%である。上記金属カチオン塩の含有量が0.1重量%未満であると、耐熱性に効果が得られないことがあり、上記金属カチオン塩の含有量が10重量%を超えると、発泡倍率が著しく悪くなることがある。上記金属カチオン塩の含有量のより好ましい下限は0.5重量%、より好ましい上限は5重量%である。
上記モノマー組成物中には、上記モノマーを重合させるため、重合開始剤を含有させる。
上記重合開始剤としては、例えば、過酸化ジアルキル、過酸化ジアシル、パーオキシエステル、パーオキシジカーボネート、アゾ化合物等が好適に用いられる。具体例には、例えば、メチルエチルパーオキサイド、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド等の過酸化ジアルキル、イソブチルパーオキサイド、ベンゾイルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド等の過酸化ジアシル、t−ブチルパーオキシピバレート、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、1−シクロヘキシル−1−メチルエチルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、クミルパーオキシネオデカノエート、(α、α−ビス−ネオデカノイルパーオキシ)ジイソプロピルベンゼン等のパーオキシエステル、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−n−プロピル−オキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ(2−エチルエチルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチルパーオキシ)ジカーボネート等のパーオキシジカーボネート、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、1,1’−アゾビス(1−シクロヘキサンカルボニトリル)等のアゾ化合物等が挙げられる。
上記シェルを構成する重合体の重量平均分子量の好ましい下限は10万、好ましい上限は200万である。重量平均分子量が10万未満であると、シェルの強度が低下することがあり、重量平均分子量が200万を超えると、シェルの強度が高くなりすぎ、発泡倍率が低下することがある。
上記モノマー組成物には、更に必要に応じて、安定剤、紫外線吸収剤、酸化防止剤、帯電防止剤、難燃剤、色剤等を含有していてもよい。
本発明の熱膨張性マイクロカプセルは、熱機械分析で測定した最大変位量(Dmax)の好ましい下限が300μmである。300μm未満であると、発泡倍率が低下し、所望の発泡性能が得られない。好ましい下限は400μmである。
なお、上記最大変位量は、所定量の熱膨張性マイクロカプセルを常温から加熱しながらその径を測定したときに、所定量全体の熱膨張性マイクロカプセルの径が最大となるときの値をいう。
本発明の熱膨張性マイクロカプセルは、最大発泡温度(Tmax)の好ましい下限が200℃である。200℃未満であると、耐熱性が低くなることから、高温領域や成形加工時において、熱膨張性マイクロカプセルが破裂、収縮することがある。より好ましい下限は210℃である。
本発明の熱膨張性マイクロカプセルは、発泡開始温度(Ts)の好ましい上限が180℃である。180℃を超えると特に射出成形の場合、発泡倍率が上がらないことがある。より好ましい下限は130℃、好ましい上限は160℃である。
なお、本明細書において、最大発泡温度は、熱膨張性マイクロカプセルを常温から加熱しながらその径を測定したときに、熱膨張性マイクロカプセルが最大変位量となったときにおける温度を意味する。
本発明の熱膨張性マイクロカプセルは、上記シェルにコア剤として揮発性膨張剤が内包されている。
上記揮発性膨張剤は、シェルを構成するポリマーの軟化点以下の温度でガス状になる物質であり、低沸点有機溶剤が好適である。
上記揮発性膨張剤としては、例えば、エタン、エチレン、プロパン、プロペン、n−ブタン、イソブタン、ブテン、イソブテン、n−ペンタン、イソペンタン、ネオペンタン、n−へキサン、ヘプタン、石油エーテル等の低分子量炭化水素、CClF、CCl、CClF、CClF−CClF等のクロロフルオロカーボン、テトラメチルシラン、トリメチルエチルシラン、トリメチルイソプロピルシラン、トリメチル−n−プロピルシラン等のテトラアルキルシラン等が挙げられる。なかでも、イソブタン、n−ブタン、n−ペンタン、イソペンタン、n−へキサン、石油エーテル、及び、これらの混合物が好ましい。これらの揮発性膨張剤は単独で用いてもよく、2種以上を併用してもよい。
本発明の熱膨張性マイクロカプセルでは、上述した揮発性膨張剤のなかでも、炭素数が5以下の低沸点炭化水素を用いることが好ましい。このような炭化水素を用いることにより、発泡倍率が高く、速やかに発泡を開始する熱膨張性マイクロカプセルとすることができる。
また、揮発性膨張剤として、加熱により熱分解してガス状になる熱分解型化合物を用いることとしてもよい。
本発明の熱膨張性マイクロカプセルにおいて、コア剤として用いる揮発性膨張剤の含有量の好ましい下限は10重量%、好ましい上限は25重量%である。
上記シェルの厚みはコア剤の含有量によって変化するが、コア剤の含有量を減らして、シェルが厚くなり過ぎると発泡性能が低下し、コア剤の含有量を多くすると、シェルの強度が低下する。上記コア剤の含有量を10〜25重量%とした場合、熱膨張性マイクロカプセルのへたり防止と発泡性能向上とを両立させることが可能となる。
本発明の熱膨張性マイクロカプセルの体積平均粒子径の好ましい下限は5μm、好ましい上限は100μmである。上記体積平均粒子径が5μm未満であると、得られる成形体の気泡が小さすぎるため、成形体の軽量化が不充分となることがあり、100μmを超えると、得られる成形体の気泡が大きくなりすぎるため、強度等の面で問題となることがある。より好ましい下限は10μm、より好ましい上限は40μmである。
本発明の熱膨張性マイクロカプセルを製造する方法としては特に限定されないが、例えば、水性媒体を調製する工程、ニトリル系モノマー、共役ジエン重合性化合物及び揮発性膨張剤を含有する油性混合液を水性媒体中に分散させる工程、並びに、前記重合性モノマーを重合させる工程を行うことにより製造することができる。
本発明の熱膨張性マイクロカプセルを製造する場合、最初に水性媒体を調製する工程を行う。具体例には例えば、重合反応容器に、水と分散安定剤、必要に応じて補助安定剤を加えることにより、分散安定剤を含有する水性分散媒体を調製する。また、必要に応じて、亜硝酸アルカリ金属塩、塩化第一スズ、塩化第二スズ、重クロム酸カリウム等を添加してもよい。
上記分散安定剤としては、例えば、シリカ、リン酸カルシウム、水酸化マグネシウム、水酸化アルミニウム、水酸化第二鉄、硫酸バリウム、硫酸カルシウム、硫酸ナトリウム、シュウ酸カルシウム、炭酸カルシウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム等が挙げられる。
上記分散安定剤の添加量は特に限定されず、分散安定剤の種類、熱膨張性マイクロカプセルの粒子径等により適宜決定されるが、モノマー100重量部に対して、好ましい下限が0.1重量部、好ましい上限が20重量部である。
上記補助安定剤としては、例えば、ジエタノールアミンと脂肪族ジカルボン酸との縮合生成物、尿素とホルムアルデヒドとの縮合生成物、ポリビニルピロリドン、ポリエチレンオキサイド、ポリエチレンイミン、テトラメチルアンモニウムヒドロキシド、ゼラチン、メチルセルロース、ポリビニルアルコール、ジオクチルスルホサクシネート、ソルビタンエステル、各種乳化剤等が挙げられる。
また、上記分散安定剤と補助安定剤との組み合わせとしては特に限定されず、例えば、コロイダルシリカと縮合生成物との組み合わせ、コロイダルシリカと水溶性窒素含有化合物との組み合わせ、水酸化マグネシウム又はリン酸カルシウムと乳化剤との組み合わせ等が挙げられる。これらの中では、コロイダルシリカと縮合生成物との組み合わせが好ましい。
更に、上記縮合生成物としては、ジエタノールアミンと脂肪族ジカルボン酸との縮合生成物が好ましく、特にジエタノールアミンとアジピン酸との縮合物やジエタノールアミンとイタコン酸との縮合生成物が好ましい。
上記水溶性窒素含有化合物としては、例えば、ポリビニルピロリドン、ポリエチレンイミン、ポリオキシエチレンアルキルアミン、ポリジメチルアミノエチルメタクリレートやポリジメチルアミノエチルアクリレートに代表されるポリジアルキルアミノアルキル(メタ)アクリレート、ポリジメチルアミノプロピルアクリルアミドやポリジメチルアミノプロピルメタクリルアミドに代表されるポリジアルキルアミノアルキル(メタ)アクリルアミド、ポリアクリルアミド、ポリカチオン性アクリルアミド、ポリアミンサルフォン、ポリアリルアミン等が挙げられる。これらのなかでは、ポリビニルピロリドンが好適に用いられる。
上記コロイダルシリカの添加量は、熱膨張性マイクロカプセルの粒子径により適宜決定されるが、モノマー100重量部に対して、好ましい下限が1重量部、好ましい上限が20重量部である。更に好ましい下限は2重量部、更に好ましい上限は10重量部である。また、上記縮合生成物又は水溶性窒素含有化合物の量についても熱膨張性マイクロカプセルの粒子径により適宜決定されるが、モノマー100重量部に対して、好ましい下限が0.05重量部、好ましい上限が2重量部である。
上記分散安定剤及び補助安定剤に加えて、更に塩化ナトリウム、硫酸ナトリウム等の無機塩を添加してもよい。無機塩を添加することで、より均一な粒子形状を有する熱膨張性マイクロカプセルが得ることができる。上記無機塩の添加量は、通常、モノマー100重量部に対して0〜100重量部が好ましい。
上記分散安定剤を含有する水性分散媒体は、分散安定剤や補助安定剤を脱イオン水に配合して調製され、この際の水相のpHは、使用する分散安定剤や補助安定剤の種類によって適宜決められる。例えば、分散安定剤としてコロイダルシリカ等のシリカを使用する場合は、酸性媒体で重合がおこなわれ、水性媒体を酸性にするには、必要に応じて塩酸等の酸を加えて系のpHが3〜4に調製される。一方、水酸化マグネシウム又はリン酸カルシウムを使用する場合は、アルカリ性媒体の中で重合させる。
次いで、熱膨張性マイクロカプセルを製造する方法では、ニトリル系モノマー、共役ジエン重合性化合物及び揮発性膨張剤を含有する油性混合液を水性媒体中に分散させる工程を行う。この工程ではニトリル系モノマー、共役ジエン重合性化合物及び揮発性膨張剤を別々に水性分散媒体に添加して、水性分散媒体中で油性混合液を調製してもよいが、通常は、予めニトリル系モノマー、揮発性膨張剤を混合した後、共役ジエン重合性化合物を添加し油性混合液としてから、水性分散媒体に添加する。この際、油性混合液と水性分散媒体とを予め別々の容器で調製しておき、別の容器で攪拌しながら混合することにより油性混合液を水性分散媒体に分散させた後、重合反応容器に添加しても良い。なお、上記ニトリル系モノマー(I)以外にも、カルボキシル基を有し、炭素数が3〜8のラジカル重合性不飽和カルボン酸モノマー(III)、重合性モノマー(IV)等を用いてもよい。
また、上記ニトリル系モノマーを重合するために、重合開始剤が使用されるが、上記重合開始剤は、予め上記油性混合液に添加してもよく、水性分散媒体と油性混合液とを重合反応容器内で攪拌混合した後に添加してもよい。
上記油性混合液を水性分散媒体中に所定の粒子径で乳化分散させる方法としては、ホモミキサー(例えば、特殊機化工業社製)等により攪拌する方法や、ラインミキサーやエレメント式静止型分散器等の静止型分散装置を通過させる方法等が挙げられる。
なお、上記静止型分散装置には水系分散媒体と重合性組成物を別々に供給してもよいし、予め混合、攪拌した分散液を供給してもよい。
本発明の熱膨張性マイクロカプセルは、上述した工程を経て得られた分散液を、例えば、加熱することによりニトリル系モノマー及び共役ジエン重合性化合物を重合させる工程を行うことにより、製造することができる。このような方法により製造された熱膨張性マイクロカプセルは、発泡倍率が高く、耐熱性に優れ、高温領域や成形加工時においても破裂、収縮することがない。
本発明の熱膨張性マイクロカプセルを用いて得られる発泡成形体は、高外観品質が得られ、独立気泡が均一に形成されており、軽量性、断熱性、耐衝撃性、剛性等に優れるものとなり、住宅用建材、自動車用部材、靴底等の用途に好適に用いることができる。
本発明によれば、優れた耐熱性を有し、高い発泡倍率を実現できる熱膨張性マイクロカプセルを提供できる。また、本発明は、該熱膨張性マイクロカプセルの製造方法を提供できる。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
(実施例1)
(熱膨張性マイクロカプセルの作製)
重合反応容器に、水1kgと、分散安定剤としてコロイダルシリカATを20000ppm及びポリビニルピロリドンを1850ppm、Zn(OH)を25000ppm投入し、水性分散媒体を調製した。次いで、ニトリル系モノマー(アクリロニトリル、メタクリロニトリル)、コア剤(n−ペンタン)、ポリブタジエン(重量平均分子量2500)及び重合開始剤(アゾビスイソブチロニトリル)を表1に示す組成で含有する油性混合液を調製し、得られた油性混合液を水溶性分散媒体に添加することにより、分散液を調製した。得られた分散液をホモジナイザーで攪拌混合し、窒素置換した加圧重合器(20L)内へ仕込み、加圧(0.3MPa)し、60℃で20時間反応させることにより、反応生成物を調製した。得られた反応生成物について、ろ過と水洗を繰り返した後、乾燥して熱膨張性マイクロカプセルを得た。
(比較例1)
エチレンオキサイド変性ビスフェノールAジアクリレートを添加しなかった以外は実施例1と同様にして熱膨張性マイクロカプセルを得た。
(比較例2)
エチレンオキサイド変性ビスフェノールAジアクリレートに代えて、表1に示すエチレングリコールジアクリレートを用いた以外は実施例1と同様にして熱膨張性マイクロカプセルを得た。
(比較例3)
エチレンオキサイド変性ビスフェノールAジアクリレートに代えて、表1に示すジビニルベンゼンを用いた以外は実施例1と同様にして熱膨張性マイクロカプセルを得た。
(評価)
実施例1、比較例1〜3で得られた熱膨張性マイクロカプセルについて、下記の評価を行った。結果を表1に示した。
(1)発泡倍率
得られた熱膨張性マイクロカプセルを約0.1g計量し、10mLのメスシリンダーに入れた。その後、150℃に加熱したオーブンに5分間投入し、メスシリンダー内で膨張した熱膨張性マイクロカプセルの容積を測定した。5mL以上である場合を○、1mL以上5mL未満である場合を△、1mL未満である場合を×とした。
(2)耐熱性(へたり)
上記(1)で測定した試料を更に200℃に加熱したオーブンに10分間投入し、メスシリンダー内の粒子の容積(H)を測定し、(1)で測定した容積(L)に対する比(H/L)を算出した。H/Lが0.5以上である場合を○、H/Lが0.1以上0.5未満である場合を△、H/Lが0.1未満である場合を×とした。
Figure 2010235688
表1に示すように、実施例1で得られた熱膨張性マイクロカプセルは、発泡倍率が高いことから、良好な発泡性能を有することがわかる。また、実施例1で得られた熱膨張性マイクロカプセルは、へたりが生じず高い耐熱性を有していることがわかる。
これに対して、比較例1〜3で得られた熱膨張性マイクロカプセルは、発泡倍率が低く、へたりが発生していることがわかる。
本発明によれば、優れた耐熱性を有し、高い発泡倍率を実現可能な熱膨張性マイクロカプセルを提供できる。また、本発明によれば、該熱膨張性マイクロカプセルの製造方法を提供できる。

Claims (2)

  1. 樹脂からなるシェルに、コア剤として揮発性膨張剤が内包された熱膨張性マイクロカプセルであって、上記シェルは、ニトリル系モノマー及び共役ジエン重合性化合物を含有するモノマー組成物を重合して得られる重合体からなり、前記モノマー組成物は、前記共役ジエン重合性化合物を0.1〜20重量%含有することを特徴とする熱膨張性マイクロカプセル。
  2. 請求項1記載の熱膨張性マイクロカプセルを製造する方法であって、水性媒体を調製する工程、ニトリル系モノマー、共役ジエン重合性化合物及び揮発性膨張剤を含有する油性混合液を水性媒体中に分散させる工程、並びに、前記ニトリル系モノマー及び共役ジエン重合性化合物を重合させる工程を有することを特徴とする熱膨張性マイクロカプセルの製造方法。
JP2009082731A 2009-03-30 2009-03-30 熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法 Active JP5543721B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009082731A JP5543721B2 (ja) 2009-03-30 2009-03-30 熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082731A JP5543721B2 (ja) 2009-03-30 2009-03-30 熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法

Publications (2)

Publication Number Publication Date
JP2010235688A true JP2010235688A (ja) 2010-10-21
JP5543721B2 JP5543721B2 (ja) 2014-07-09

Family

ID=43090328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082731A Active JP5543721B2 (ja) 2009-03-30 2009-03-30 熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法

Country Status (1)

Country Link
JP (1) JP5543721B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068890A (ja) * 2009-06-09 2011-04-07 Matsumoto Yushi Seiyaku Co Ltd 熱膨張性微小球、その製造方法および用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286534A (ja) * 1986-06-04 1987-12-12 Matsumoto Yushi Seiyaku Kk 熱膨張性マイクロカプセルの製造法
JPS6415131A (en) * 1987-07-07 1989-01-19 Nippon Petrochemicals Co Ltd Microcapsule

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286534A (ja) * 1986-06-04 1987-12-12 Matsumoto Yushi Seiyaku Kk 熱膨張性マイクロカプセルの製造法
JPS6415131A (en) * 1987-07-07 1989-01-19 Nippon Petrochemicals Co Ltd Microcapsule

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068890A (ja) * 2009-06-09 2011-04-07 Matsumoto Yushi Seiyaku Co Ltd 熱膨張性微小球、その製造方法および用途
JP4677058B2 (ja) * 2009-06-09 2011-04-27 松本油脂製薬株式会社 熱膨張性微小球、その製造方法および用途

Also Published As

Publication number Publication date
JP5543721B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5898954B2 (ja) 熱膨張性マイクロカプセル、熱膨張性マイクロカプセルの製造方法、発泡性マスターバッチ及び発泡成形体
JP5204368B2 (ja) 熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法
JP5898953B2 (ja) 熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法
WO2010052972A1 (ja) 熱膨張性マイクロカプセル及び発泡成形体
JP5255200B2 (ja) 熱膨張性マイクロカプセル及び発泡成形体
JP2009221429A (ja) 熱膨張性マイクロカプセル及び発泡成形体
JP5497978B2 (ja) 熱膨張性マイクロカプセル及び発泡成形体
JP5204369B2 (ja) 熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法
JP6441653B2 (ja) 熱膨張性マイクロカプセル及びスタンパブルシート成形体
JP6370219B2 (ja) 熱膨張性マイクロカプセル及び発泡成形体
JP2010229341A (ja) 熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法
JP5588141B2 (ja) 熱膨張性マイクロカプセルの製造方法
JP5543721B2 (ja) 熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法
JP2014237840A (ja) 熱膨張性マイクロカプセル及び発泡成形体
JP5596877B1 (ja) 熱膨張性マイクロカプセル及び発泡成形体
JP5766418B2 (ja) 熱膨張性マイクロカプセルの製造方法
JP5438528B2 (ja) 発泡粒子の製造方法
JP5839789B2 (ja) 熱膨張性マイクロカプセルの製造方法
JP2011195777A (ja) 熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法
JP7431904B2 (ja) 熱膨張性マイクロカプセル
JP2011168749A (ja) 熱膨張性マイクロカプセルの製造方法
JP2013075278A (ja) 熱膨張性マイクロカプセルの製造方法
JP2010202805A (ja) 熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法
JP5845036B2 (ja) 熱膨張性マイクロカプセルの製造方法
JP2013053275A (ja) 熱膨張性マイクロカプセルの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140509

R151 Written notification of patent or utility model registration

Ref document number: 5543721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250