JP2010232226A - 不揮発性記憶装置及びその製造方法 - Google Patents

不揮発性記憶装置及びその製造方法 Download PDF

Info

Publication number
JP2010232226A
JP2010232226A JP2009075252A JP2009075252A JP2010232226A JP 2010232226 A JP2010232226 A JP 2010232226A JP 2009075252 A JP2009075252 A JP 2009075252A JP 2009075252 A JP2009075252 A JP 2009075252A JP 2010232226 A JP2010232226 A JP 2010232226A
Authority
JP
Japan
Prior art keywords
electrode
lower electrode
memory device
upper electrode
nonvolatile memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009075252A
Other languages
English (en)
Other versions
JP4756079B2 (ja
Inventor
Hiroyuki Fukumizu
裕之 福水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009075252A priority Critical patent/JP4756079B2/ja
Priority to US12/726,720 priority patent/US8258494B2/en
Publication of JP2010232226A publication Critical patent/JP2010232226A/ja
Application granted granted Critical
Publication of JP4756079B2 publication Critical patent/JP4756079B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels

Landscapes

  • Semiconductor Memories (AREA)

Abstract

【課題】集積度が高く、配線の密着性を向上した高信頼性の不揮発性記憶装置及びその製造方法を提供する。
【解決手段】第1の方向に延在する下側電極130と、下側電極130の上方に位置し、第1の方向と交差する第2の方向に延在する上側電極230と、下側電極130と上側電極230との間に設けられた金属酸化物や相変化材料を用いた記憶部300と、を備える。下側電極130及び上側電極230の少なくともいずれかは、順テーパの側壁を有する第1の電極110、210と、絶縁層150、250を介して第1の電極110と実質的に同じ平面内で隣接し、逆テーパの側壁を有する第2の電極120、220と、を有する。
【選択図】図1

Description

本発明は、不揮発性記憶装置及びその製造方法に関する。
不揮発性記憶装置として多用されているフラッシュメモリは、集積度の向上に対して限界があるとされている。フラッシュメモリより高集積度の、いわゆる4Fの素子面積が可能な不揮発性記憶装置として、例えば電気抵抗が可変の記憶部を2枚の電極に挟んだ構成の、クロスポイント型不揮発性記憶装置が注目されている(特許文献1)。
すなわち、リソグラフィによる最小パターン線幅をFとすると、配線の幅がFで、配線間の間隔がFとなるため、一般的なクロスポイント型不揮発性記憶装置においては、1つの記憶セルの素子面積は4Fとなる。
クロスポイント型不揮発性記憶装置において、さらに集積度を向上させることが期待されている。
また、集積度を上げた場合、配線が細くなり、配線の基板に対する密着性が弱くなり、信頼性が低下する問題もある。
特開2007−184419号公報
本発明の目的は、集積度が高く、配線の密着性を向上した高信頼性の不揮発性記憶装置及びその製造方法を提供することにある。
本発明の一態様によれば、第1の方向に延在する下側電極と、前記下側電極の上方に位置し、前記第1の方向と交差する第2の方向に延在する上側電極と、前記下側電極と前記上側電極との間に設けられた記憶部と、を備え、前記下側電極及び前記上側電極の少なくともいずれかは、順テーパの側壁を有する第1の電極と、絶縁層を介して前記第1の電極と実質的に同じ平面内で隣接し、逆テーパの側壁を有する第2の電極と、を有することを特徴とする不揮発性記憶装置が提供される。
また、本発明の他の一態様によれば、第1の方向に延在する下側電極と、前記下側電極の上方に位置し、前記第1の方向と交差する第2の方向に延在する上側電極と、前記下側電極と前記上側電極との間に設けられた記憶部と、を有する不揮発性記憶装置の製造法であって、前記下側電極及び前記上側電極の少なくともいずれかを製造する工程は、並列配置された複数の帯状の第1の電極を形成する工程と、前記複数の第1の電極の側面に絶縁層を形成する工程と、隣接する前記絶縁層の間に導電体を充填して第2の電極を形成する工程と、を含むことを特徴とする不揮発性記憶装置の製造方法が提供される。
また、本発明の他の一態様によれば、第1の方向に延在する下側電極と、前記下側電極の上方に位置し、前記第1の方向と交差する第2の方向に延在する上側電極と、前記下側電極と前記上側電極との間に設けられた記憶部と、を有する不揮発性記憶装置の製造法であって、前記下側電極及び前記上側電極の少なくともいずれかを製造する工程は、並列配置された複数の帯状の犠牲層を形成する工程と、前記複数の犠牲層の側面に絶縁層を形成する工程と、前記複数の犠牲層を除去する工程と、隣接する前記絶縁層の間に導電体を充填する工程と、を含むことを特徴とする不揮発性記憶装置の製造方法が提供される。
本発明によれば、集積度が高く、配線の密着性を向上した高信頼性の不揮発性記憶装置及びその製造方法が提供される。
本発明の第1の実施形態に係る不揮発性記憶装置の構成を例示する模式断面図である。 本発明の第1の実施形態に係る不揮発性記憶装置の構成を例示する模式図である。 本発明の第1の実施形態に係る不揮発性記憶装置の製造方法を例示するフローチャート図である。 本発明の第1の実施形態に係る不揮発性記憶装置の製造方法を例示する工程順の模式的断面図である。 本発明の第1の実施形態に係る不揮発性記憶装置の別の製造方法を例示するフローチャート図である。 本発明の第1の実施形態に係る不揮発性記憶装置の別の製造方法を例示する工程順の模式的断面図である。 本発明の第2の実施形態に係る不揮発性記憶装置の構成を例示する模式断面図である。 本発明の第2の実施形態に係る別の不揮発性記憶装置の構成を例示する模式断面図である。
以下、本発明の実施の形態について図面を参照して詳細に説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比係数などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比係数が異なって表される場合もある。
また、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1の実施の形態)
図1は、本発明の第1の実施形態に係る不揮発性記憶装置の構成を例示する模式断面図である。
図2は、本発明の第1の実施形態に係る不揮発性記憶装置の構成を例示する模式図である。
図2(a)、(b)は、本発明の第1の実施形態に係る不揮発性記憶装置の構成を例示する、それぞれ、模式的斜視図及び模式的透過平面図である。図1(a)は、図2のA−A’線断面図、図1(b)は、図2のB−B’線断面図である。
図1及び図2に表したように、本発明の第1の実施形態に係る不揮発性記憶装置10は、基板105の主面106の上に設けられた下側電極130と、下側電極130の上方に位置し、下側電極130と対向して設けられた上側電極230と、下側電極130と上側電極230の間に設けられた記憶部300と、を備えている。
本具体例では、下側電極130の延在方向と、上側電極230の延在方向とは、互いに実質的に直交している。ただし、本発明はこれには限定されない。すなわち、これら電極は必ずしも互いに直交している必要はなく、電極どうしが3次元的に交差する(非平行の)関係であれば良い。
ここで、下側電極130の延在方向をX軸方向とし、上側電極230の延在方向をY軸方向とする。そして、X軸とY軸とに直交する軸をZ軸とする。
そして、下側電極130は、第1の下側電極110(第1の電極)と、第2の下側電極120(第2の電極)とを有し、第1の下側電極110と第2の下側電極120との間には、スペーサ絶縁層150(絶縁層)が設けられている。
一方、上側電極230は、第1の上側電極210(第1の電極)と第2の上側電極220(第2の電極)とを有し、第1の上側電極210と第2の上側電極220との間には、スペーサ絶縁層250(絶縁層)が設けられている。
基板105には、例えばシリコン基板を用いることができ、このシリコン基板の上には、不揮発性記憶装置を駆動する駆動回路を設けることもできる。
また、記憶部300としては、例えば、NiO、TiO、CoO、TaO、MnO、WO、Al、FeO、HfO、ZnMn、ZnFe、ZnCo、ZnCr、ZnAl、CuCoO、CuAlO、NiWO4、NiTiO、CoAl、MnAl、ZnNiTiO、及び、PrCa1−xMnOなどを用いることができる。
また、記憶部300には、上記の各種の金属酸化物にドーパントを添加したものを用いても良い。
ただし、本発明は、これに限らず、記憶部300には、印加される電界及び通電される電流の少なくともいずれかによって抵抗が変化する任意の材料を用いることができる。また、記憶部300には、印加される電界及び通電される電流の少なくともいずれかによって相状態が変化し、この相状態の変化に伴って抵抗が変化するいわゆる相変化材料を用いても良い。このように、相変化に伴って抵抗が変化する材料も抵抗変化材料とする。
下側電極130(第1の下側電極110及び第2の下側電極120)、及び、上側電極230(第1の上側電極210及び第2の上側電極220)には、例えば、タングステン、タングステンシリサイド、タングステンナイトライド等を用いることができる。
また、スペーサ絶縁層150には、例えば、電気抵抗の高い酸化珪素や窒化珪素等を用いることができる。
なお、下側電極130をビット線(BL)とし、上側電極230をワード線(WL)とすることができる。ただし、下側電極130をワード線(WL)とし、上側電極230をビット線(BL)としても良い。
不揮発性記憶装置10において、下側電極130に与える電位と上側電極230に与える電位の組み合わせによって、各記憶部300に印加される電圧が変化し、その時の記憶部300の特性によって、情報を記憶することができる。この時、記憶部300に印加される電圧の極性に方向性を持たせるために、例えば整流特性を有する整流素子部320を設けることができる。整流素子部320には、例えば、PINダイオードやMIM(Metal-Insulator-Metal)素子などの整流特性を有する素子を用いることができる。
なお、図1、図2では、整流素子部320が、下側電極130と記憶部300との間に設けられている例を示しているが、整流素子部320は、上側電極230と記憶部300との間に設けても良い。また、整流素子部320は、下側電極130と上側電極230とが対向する領域以外の領域に設けても良い。
また、不揮発性記憶装置10において、下側電極130と整流素子部320との間、整流素子部320と記憶部300との間、記憶部300と上側電極230との間のそれぞれに、図示しないバリアメタル層を設けることもできる。バリアメタル層としては、チタン(Ti)、窒化チタン(TiN)等を用いることができる。
なお、下側電極130と上側電極230との間に設けられた記憶部300及び整流素子部320は、これらの電極が3次元的に交差する領域ごとにパターニングされている。そして、記憶部300の周辺には、素子間分離絶縁膜180が設けられている。なお、記憶部300及び整流素子部320は、XY平面で切断した時の断面が長方形の直方体の形状の他、例えば断面が五角形以上の多角形の形状や、例えば断面が円形の円柱の形状等を有することができる。
本実施形態に係る不揮発性記憶装置10において、後述するように、第2の下側電極120は、第1の下側電極110の側壁にスペーサ絶縁層150を形成し、そのスペーサ絶縁層150の間に導電膜を埋め込むことにより形成されている。
これにより、第1の下側電極110及び第2の下側電極120を有する下側電極130の配設ピッチは、最小パターン線幅Fとすることができる。
同様に、第2の上側電極220は、第1の上側電極210の側壁にスペーサ絶縁層250を形成し、そのスペーサ絶縁層250の間に導電膜を埋め込むことにより形成されている。
これにより、第1の上側電極210及び第2の上側電極220を有する上側電極230の配設ピッチは、最小パターン線幅Fとすることができる。
これにより、本実施形態に係る不揮発性記憶装置10においては、1つの記憶セルの実効的な素子面積は実質的にFとなり、4Fよりも集積度の高い不揮発性記憶装置を提供することができる。
本具体例では、下側電極130と上側電極230との両方において、上記のスペーサ絶縁層を適用し、下側電極130と上側電極230のそれぞれの幅をFに近い値に設定しているが、本発明はこれに限らず、下側電極130と上側電極230との少なくともいずれかに上記のスペーサ絶縁層を適用しても良い。下側電極130と上側電極230とのいずれか一方に上記のスペーサ絶縁層を適用した場合は、1つの記憶セルの素子面積は実質的に2Fとなり、この場合も、4Fよりも集積度の高い不揮発性記憶装置を提供することができる。
以下では、下側電極130と上側電極230との両方において、上記のスペーサ絶縁層を適用する場合として説明する。また、上側電極230における第1の上側電極210と第2の上側電極220とは、下側電極130における第1の下側電極110と第2の下側電極120と、それぞれ同様の構成とすることができるので、以下では、下側電極130における第1の下側電極110及び第2の下側電極120について主に説明する。
第1の下側電極110の線幅をL1、第1の下側電極110の配設ピッチをP、スペーサ絶縁層の厚さをtとすると、第2の下側電極120の線幅L2は、P−L1−2tとなる。すなわち、第2の下側電極120の線幅L2は、第1の下側電極110どうしの間の間隔(P−L1)より、スペーサ絶縁層150の厚さの2倍分だけ細くなる。これを考慮して、第1の下側電極110の線幅を、リソグラフィによる最小パターン線幅Fから、スリミングプロセスによって、F−tとしておくと、第2の下側電極120の線幅L2は、P−F−tとなる。ここで、第1の下側電極110の配設ピッチPは、実質的に2Fであるので、第2の下側電極120の線幅L2は、F−tとなり、第1の下側電極110の線幅と第2の下側電極120の線幅とを等しくすることができる。
同様に、第1の上側電極210の線幅と第2の上側電極220の線幅とを等しくすることができる。
また、第1の下側電極110の線幅L1と、第2の下側電極120の線幅L2と、が異なる場合には、周辺回路を制御することによって、第1の下側電極110と第2の下側電極120に与える電圧(セット電圧及びリセット電圧の少なくともいずれかの電圧)を変えることにより、第1の下側電極110と第2の下側電極120の駆動条件を変えることによって、補正することができる。
同様に、第1の上側電極210の線幅と、第2の上側電極220の線幅と、が異なる場合には、第1の上側電極210に印加される電圧と第2の上側電極220に印加される電圧とを異ならせることができる。
これにより、本実施形態に係る不揮発性記憶装置10においては、第1の下側電極110の線幅L1と、第2の下側電極120の線幅L2とが異なる場合においても、第1の上側電極210の線幅と、第2の上側電極220の線幅と、が異なる場合においても、それを補正して、安定した特性が得られる。
なお、図1に例示した不揮発性記憶装置10においては、第1の下側電極110及び第2の下側電極120の幅よりもスペーサ絶縁層150の幅が狭い例であり、これにより、第1の下側電極110及び第2の下側電極120の幅が広くでき、下側電極130の配線抵抗を低くすることができる。同様に、第1の上側電極210及び第2の上側電極220の幅よりもスペーサ絶縁層250の幅が狭く、これにより、第1の上側電極210及び第2の上側電極220の幅が広くでき、上側電極230の配線抵抗を低くすることができる。
第1の下側電極110及び第2の下側電極120の側壁は、後述するように、製造上、傾斜を有するテーパ形状となる。
すなわち、第1の下側電極110の断面形状は、上辺が下辺より短い台形である。そして、第2の下側電極120の断面形状は、上辺が下辺より長い台形である。
すなわち、第1の下側電極110は、順テーパの側壁を有しており、第2の下側電極120は、スペーサ絶縁層150を介して第1の下側電極110と実質的に同じ平面内で隣接し、逆テーパの側壁を有している。
なお、上記において、第2の下側電極120が順テーパを有し、第1の下側電極110は、スペーサ絶縁層150を介して第2の下側電極120と実質的に同じ平面内で隣接し、逆テーパを有しても良い。
これにより、第1の下側電極110と第2の下側電極120とは、それぞれ、順テーパ状と逆テーパ状の断面形状を有することができ、第1の下側電極110と第2の下側電極120とが垂直の断面形状を有している時よりも、第1の下側電極110と第2の下側電極120とが、スペーサ絶縁層150と接触する面積が大きくなる。
これにより、第1、第2の下側電極110、120の線幅が細くなり、基板105の主面106との密着性が低下したとしても、第1、第2の下側電極110、120とは、スペーサ絶縁層150を介して、実質的に同じ平面内で横に接触しており、基板105の主面106に平行な面内での密着力が高まる。これによって、第1、第2の下側電極110、120の線幅が細くなった場合でも、第1、第2の下側電極110、120は、強固に基板105に密着することができ、これら電極の形成以降の不揮発性記憶装置10の製造工程中も安定して基板に密着し、さらに、製品完成後の信頼性、耐久性も向上する。
そして、不揮発性記憶装置10においては、上側電極230も、下側電極130と同様に、順テーパの側壁を有する第1の上側電極210(第1の電極)と、スペーサ絶縁層250を介して第1の上側電極210と実質的に同じ平面内で隣接し、逆テーパの側壁を有する第2の上側電極220(第2の電極)と、を有する。これにより、第1、第2の上側電極210、220は、強固に記憶部300(または整流素子部320)に密着することができ、不揮発性記憶装置10の製造工程中も安定して互いに密着し、さらに、製品完成後の信頼性、耐久性も向上する。
なお、本具体例では、下側電極130と上側電極230との両方において、順テーパと逆テーパとを有する第1及び第2の電極の構成を適用しているが、本発明はこれに限らず、下側電極130と上側電極230とのいずれかに、上記の順テーパと逆テーパとを有する第1及び第2の電極の構成を適用しても良い。
以下、不揮発性記憶装置10の製造方法の一例について説明する。
図3は、本発明の第1の実施形態に係る不揮発性記憶装置の製造方法を例示するフローチャート図である。
図3に表したように、本実施形態に係る不揮発性記憶装置の製造方法においては、まず、並列並置された複数の帯状の第1の電極(第1の下側電極110)を形成する(ステップS110)。
次に、複数の第1の電極(第1の下側電極110)の側面にスペーサ絶縁層150を形成する(ステップS120)。
そして、隣接するスペーサ絶縁層150の間に導電体を充填して第2の電極(第2の下側電極120)を形成する(ステップS130)。すなわち、第2の電極(第2の下側電極120)を、第1の電極(第1の下側電極110)に対して自己整合的に形成する。
このように、第2の下側電極120を、ダマシンプロセスにより自己整合的に、第1の下側電極110の間、すなわち、スペーサ絶縁層150の間に形成する。これにより、リソグラフィによる最小パターン線幅に対応する密度に対して、実質的に2倍の密度で、第1、第2の下側電極110、120を形成できる。
以下、具体的に説明する。
図4は、本発明の第1の実施形態に係る不揮発性記憶装置の製造方法を例示する工程順の模式的断面図である。
まず、図4(a)に表したように、基板105の主面106の上に、導電膜を形成した後、リソグラフィとドライエッチングにより、第1の下側電極110を形成する。この時、第1の下側電極110の線幅はリソグラフィによって加工可能な最小の線幅とすることができる。
なお、この導電膜の形成には例えばスパッタ法を用いることができる。ただし、これに限らず、任意の方法を用いることができる。
そして、第1の下側電極110の側壁は、一般にテーパ形状となる。
上記の導電膜の膜厚(高さ)が薄い場合や、第1の下側電極110の幅が太い場合、すなわち、第1の下側電極110をYZ平面で切断した時の断面のアスペクト比が低い場合は、第1の下側電極110の側壁は、主面106に対して垂直に近い。しかしながら、不揮発性記憶装置の記憶密度を高めると供に配線抵抗の上昇を抑制するためには、導電膜の膜厚(高さ)は厚くされ、また、加工精度の点からも第1の下側電極110の幅は狭くなる。すなわち、第1の下側電極110の断面のアスペクト比は高くされる。この場合には、ドライエッチングによる垂直加工が困難になり、第1の下側電極110の側壁は、主面106に対して傾斜し、側壁はテーパ形状になる。
そして、図4(b)に表したように、第1の下側電極110と基板105の主面106の上に、例えば、減圧CVD(Chemical Vapor Etching)によって、スペーサ絶縁層150となるシリコン窒化膜159を形成する。なお、本発明は上記に制限されず、スペーサ絶縁層150となる膜としては、シリコン窒化膜159の他、シリコン酸化膜等を用いることができ、また、成膜方法も減圧CVD以外の方法を用いることができる。
そして、図4(c)に表したように、例えば、ドライエッチングにより、第1の下側電極110の上、及び、第1の下側電極110の間の基板105の主面106の上、のシリコン窒化膜159を除去し、これにより、第1の下側電極110の側面にスペーサ絶縁層150を形成する。この時、スペーサ絶縁層150の側壁は、第1の下側電極110の側壁に沿って、テーパ形状となる。
そして、図4(d)に表したように、例えば、CVD法によって、第2の下側電極120となる導電膜129を成膜する。この時、スペーサ絶縁層150の側壁がテーパ形状であるので、スペーサ絶縁層150どうしの間の空間への導電膜129の埋め込み性は良好である。
そして、図4(e)に表したように、例えば、化学機械研磨(CMP:Chemical Mechanical Polishing)法によって、導電膜129を研磨して平坦化し、第2の下側電極120を、第1の下側電極110に対して自己整合的に得ることができる。
これにより、順テーパの側壁を有する第1の下側電極110と、スペーサ絶縁層150を介して前記第1の下側電極110と実質的に同じ平面内で隣接し、逆テーパの側壁を有する第2の下側電極120を形成することができる。
なお、図4(a)に関して説明した工程において、例えば、レジスト露光条件やエッチング条件を制御することにより、第1の下側電極110に順テーパの側壁を持たせることができ、これによって、スペーサ絶縁層150の側壁にさらに大きな角度のテーパ形状を形成することもできる。
そして、この後、整流素子部320及び記憶部300を形成する。そして、上側電極230の第1の上側電極210及び第2の上側電極220を形成する。
これにより、図1、図2に示した不揮発性記憶装置10を形成することができる。
このように、第2の下側電極120及び第2の上側電極220を、スペーサ絶縁層150及びスペーサ絶縁層250を介して第1の下側電極110及び第1の上側電極210の間に埋め込むダマシンプロセスにより、自己整合的に形成することで、リソグラフィによる最小パターン線幅に対応する密度の実質的に4倍の密度で、下側電極130及び上側電極230を形成できる。これにより、不揮発性記憶装置10は、1つの記憶セルの素子面積は実質的にFとなり、4Fよりも集積度の高い不揮発性記憶装置を提供することができる。
また、第1、第2の下側電極110、120は、スペーサ絶縁層150を介して、実質的に同じ平面内で接触し、強固に基板105に密着することができ、信頼性、耐久性も向上する。そして、第1、第2の上側電極210、220は、スペーサ絶縁層250を介して、実質的に同じ平面内で接触し、強固に記憶部300または整流素子部320に密着することができ、信頼性、耐久性も向上する。
なお、既に説明したように、第1の下側電極110をリソグラフィで加工可能な最小線幅Fで形成した場合、埋め込みによるダマシンプロセスで形成した第2の下側電極120の線幅と、第1の下側電極110の線幅と、がスペーサ絶縁層150の層厚の2倍分異なる。これに対しては、図4(a)に例示した第1の下側電極110を形成する際に、リソグラフィやドライエッチング時に、例えば、レジストマスクの露光時の露光量やエッチング条件を制御するスリミングプロセスを施すことにより、第1の下側電極110をFよりも細くすることで、第1の下側電極110と第2の下側電極120の線幅を等しくすることができる。
なお、上記においては、エッチング加工の際に、レジストマスクをマスクにして加工が行われているが、ハードマスクや多層レジストマスクを用いて加工を行っても良い。すなわち、特に配線の幅(ピッチ)を小さくした場合等においては、例えばSiO等のハードマスクや多層レジストマスクが用いられる。この時、ハードマスクや多層レジストマスクの加工時にスリミングを実施することにより、第1の下側電極110と第2の下側電極120の線幅を等しくすることができる。
そして、同様にスリミングプロセスによって、第1の上側電極210をFよりも細くすることで、第1の上側電極210と第2の上側電極220の線幅を等しくすることができる。
なお、上記において、下側電極130と上側電極230との間に設けられた記憶部300(及び整流素子部320)は、これらの電極が3次元的に交差する領域ごとにパターニングされている。この記憶部300(及び整流素子部320)を形成する際に用いられるリソグラフィには、上記のようなスペーサ絶縁層が適用される下側電極130及び上側電極230を形成する際に用いられるリソグラフィよりも精度が高い方法を用いることが望ましい。
すなわち、下側電極130及び上側電極230の形成においては、図4に例示した製造方法により、その工程におけるリソグラフィによる最小パターン線幅Fのピッチで下側電極130及び上側電極230が形成される。この時、記憶部300は、下側電極130及び上側電極230の線幅と同等以下の幅、すなわち、最小線幅F程度以下の幅で加工されることが必要である。すなわち、記憶部300を形成する際に用いられるリソグラフィには、下側電極130及び上側電極230を形成する際に用いられるリソグラフィにおいて実現できる線幅よりも細い線幅を実現できる方法を採用することが望ましい。
例えば、下側電極130及び上側電極230の加工に、最小線幅が70nm程度の乾式露光法を用い場合には、記憶部300の加工には、例えば、最小線幅が40nm程度の液浸露光法や、最小線幅が20nm程度のEUV(Extreme Ultra-Violet:極端紫外)法や、最小線幅が5nm程度のナノインプリント法を採用することができる。
また、例えば、下側電極130及び上側電極230の加工に、最小線幅が40nm程度の液浸露光法を用いる場合には、記憶部300の加工には、例えば、最小線幅が20nm程度のEUV法や、最小線幅が5nm程度のナノインプリント法を採用することができる。
また、例えば、下側電極130及び上側電極230の加工に、最小線幅が20nm程度以下のEUV法を用いる場合には、記憶部300の加工には、例えば、最小線幅が5nm程度のナノインプリント法を採用することができる。
すなわち、本実施形態に係る不揮発性記憶装置10及びその製造方法においては、記憶部300の形成に用いられるリソグラフィ法よりも、最小線幅が大きいリソグラフ法を用いつつ、目的とする線幅を有する下側電極130及び上側電極230を実現できる。
もし、記憶部300、下側電極130及び上側電極230の全てに必要とされる線幅に対応するフォトリソグラフィを用いると、製造コストが非常に高くなる。これに対し、本実施形態においては、下側電極130及び上側電極230の形成のフォトリソグラフィの線幅の要求を緩和でき、目的とする線幅を有する不揮発性記憶装置を低コストで実現できる。
図5は、本発明の第1の実施形態に係る不揮発性記憶装置の別の製造方法を例示するフローチャート図である。
図5に表したように、本実施形態に係る不揮発性記憶装置の製造方法においては、まず、並列並置された複数の帯状の犠牲層を形成する(ステップS210)。
次に、複数の犠牲層の側面にスペーサ絶縁層150を形成する(ステップS220)。 そして、複数の犠牲層を除去する(ステップS230)。
そして、隣接する前記スペーサ絶縁層の間に導電体を充填する(ステップS240)。 これにより、スペーサ絶縁層に対して自己整合的に、例えば第1の下側電極110及び第2の下側電極120が形成できる。
この場合も、犠牲層をリソグラフィによる最小パターン線幅で形成し、リソグラフィによる最小パターン線幅に対応する密度に対して、実質的に2倍の密度で、第1、第2の下側電極110、120を形成できる。
以下、具体的に説明する。
図6は、本発明の第1の実施形態に係る不揮発性記憶装置の別の製造方法を例示する工程順の模式的断面図である。
まず、図6(a)に表したように、基板105の主面106の上に、膜の形成とリソグラフィとドライエッチングにより、犠牲層109を形成する。この時、犠牲層109の線幅はリソグラフィによって加工可能な最小の線幅とすることができる。犠牲層109には、後述するスペーサ絶縁層150に対して高い選択比を有する任意の材料を用いることができる。
そして、図6(b)に表したように、犠牲層109と基板105の主面106の上に、例えば、減圧CVDによって、スペーサ絶縁層150となるシリコン窒化膜159を形成する。
そして、図6(c)に表したように、犠牲層109を除去する。この除去には、任意のドライエッチング及び任意のウエットエッチングを用いることができる。
そして、図6(d)に表したように、例えば、CVD法によって、スペーサ絶縁層150及び基板105の上に導電膜を成膜し、隣接するスペーサ絶縁層150の間に導電体109aを充填する。
そして、図6(e)に表したように、例えば、化学機械研磨法によって、導電膜を研磨して平坦化し、これにより、第1の下側電極110及び第2の下側電極120を、スペーサ絶縁層150に対して自己整合的に形成できる。
そして、この後、整流素子部320及び記憶部300を形成し、そして、上側電極230の第1の上側電極210及び第2の上側電極220を、同様にして形成する。
これにより本実施形態に係る別の不揮発性記憶装置を形成することができる。
なお、この方法においても、犠牲層109の側壁は、小さいテーパ角(垂直に近い)ではあるものの、順テーパにすることができる。これにより、第1の電極及び第2の電極とは、例えば、それぞれ、小さい角度の順テーパの側壁と、小さい角度の逆テーパの側壁と、をそれぞれ有することができる。
すなわち、本実施形態に係る別の不揮発性記憶装置において、下側電極130及び上側電極230の少なくともいずれかは、順テーパの側壁を有する第1の電極と、スペーサ絶縁層250を介して第1の電極と実質的に同じ平面内で隣接し、逆テーパの側壁を有する第2の電極と、を有することができる。
(第2の実施の形態)
図7は、本発明の第2の実施形態に係る不揮発性記憶装置の構成を例示する模式断面図である。
図7に表したように、第2の実施形態に係る不揮発性記憶装置20においては、記憶部300の幅は、第1の電極及び第2の電極の幅よりも狭い。
すなわち、記憶部300のY軸方向の幅は、例えば第1の下側電極110のY軸方向の幅よりも狭く、第2の下側電極120のY軸方向の幅よりも狭い。これにより、下側電極130の上に記憶部300を形成する例えばフォトリソグラフィの合わせ精度に余裕ができ、製造し易くなる。
なお、記憶部300のX軸方向の幅は、例えば上側電極210のX軸方向の幅よりも狭く、第2の上側電極220のX軸方向の幅よりも狭くしても良い。これによっても、記憶部300と下側電極130との合わせ精度が緩和される。
図8は、本発明の第2の実施形態に係る不揮発性記憶装置の別の構成を例示する模式断面図である。
図8に表したように、第2の実施形態に係る不揮発性記憶装置30においては、下側電極130のスペーサ絶縁層150の幅が、第1の下側電極110及び第2の下側電極120の幅と実質的に同じである。また、上側電極230のスペーサ絶縁層250の幅が、第1の上側電極及び第2の上側電極220の幅と実質的に同じである。なお、この場合も、下側電極130及び上側電極230のそれぞれの配設ピッチは、最小パターン線幅Fとすることができる。これにより、下側電極130と記憶部300との間の合わせ精度、及び記憶部300と上側電極230との間の合わせ精度が緩和し、製造し易くなる。
そして、図8に例示したように、スペーサ絶縁層150(250)の幅が、第1の電極及び第2の電極の幅と実質的に同じである不揮発性記憶装置30において、さらに、記憶部300の幅を、第1の電極(第1の下側電極110、第1の上側電極210)及び第2の電極(第2の下側電極120、第2の上側電極220)の幅よりも狭くすることができ、これにより、さらに合わせ精度が緩和され、製造し易くできる。
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、不揮発性記憶装置とその製造方法を構成する各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
その他、本発明の実施の形態として上述した不揮発性記憶装置とその製造方法を基にして、当業者が適宜設計変更して実施し得る全ての不揮発性記憶装置とその製造方法も、本発明の要旨を包含する限り、本発明の範囲に属する。
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
10、20、30 不揮発性記憶装置
105 基板
106 主面
109 犠牲層
109a 導電体
110 第1の下側電極(第1の電極)
119 第1の導電膜
120 第2の下側電極(第2の電極)
129 導電膜
130 下側電極
150 スペーサ絶縁層(絶縁層)
159 シリコン窒化膜
180 素子間分離絶縁膜
210 第1の上側電極(第1の電極)
220 第2の上側電極(第2の電極)
230 上側電極
250 スペーサ絶縁層(絶縁層)
300 記憶部
320 整流素子部

Claims (5)

  1. 第1の方向に延在する下側電極と、
    前記下側電極の上方に位置し、前記第1の方向と交差する第2の方向に延在する上側電極と、
    前記下側電極と前記上側電極との間に設けられた記憶部と、
    を備え、
    前記下側電極及び前記上側電極の少なくともいずれかは、順テーパの側壁を有する第1の電極と、絶縁層を介して前記第1の電極と実質的に同じ平面内で隣接し、逆テーパの側壁を有する第2の電極と、を有することを特徴とする不揮発性記憶装置。
  2. 前記記憶部の幅は、前記第1の電極及び前記第2の電極の幅よりも狭いことを特徴とする請求項1記載の不揮発性記憶装置。
  3. 前記第1の電極の幅と前記第2の電極の幅とが異なり、前記第1の電極に印加される電圧と前記第2の電極に印加される電圧とが異なることを特徴とする請求項1または2に記載の不揮発性記憶装置。
  4. 第1の方向に延在する下側電極と、前記下側電極の上方に位置し、前記第1の方向と交差する第2の方向に延在する上側電極と、前記下側電極と前記上側電極との間に設けられた記憶部と、を有する不揮発性記憶装置の製造法であって、
    前記下側電極及び前記上側電極の少なくともいずれかを製造する工程は、
    並列配置された複数の帯状の第1の電極を形成する工程と、
    前記複数の第1の電極の側面に絶縁層を形成する工程と、
    隣接する前記絶縁層の間に導電体を充填して第2の電極を形成する工程と、
    を含むことを特徴とする不揮発性記憶装置の製造方法。
  5. 第1の方向に延在する下側電極と、前記下側電極の上方に位置し、前記第1の方向と交差する第2の方向に延在する上側電極と、前記下側電極と前記上側電極との間に設けられた記憶部と、を有する不揮発性記憶装置の製造法であって、
    前記下側電極及び前記上側電極の少なくともいずれかを製造する工程は、
    並列配置された複数の帯状の犠牲層を形成する工程と、
    前記複数の犠牲層の側面に絶縁層を形成する工程と、
    前記複数の犠牲層を除去する工程と、
    隣接する前記絶縁層の間に導電体を充填する工程と、
    を含むことを特徴とする不揮発性記憶装置の製造方法。
JP2009075252A 2009-03-25 2009-03-25 不揮発性記憶装置及びその製造方法 Active JP4756079B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009075252A JP4756079B2 (ja) 2009-03-25 2009-03-25 不揮発性記憶装置及びその製造方法
US12/726,720 US8258494B2 (en) 2009-03-25 2010-03-18 Nonvolatile memory device and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009075252A JP4756079B2 (ja) 2009-03-25 2009-03-25 不揮発性記憶装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2010232226A true JP2010232226A (ja) 2010-10-14
JP4756079B2 JP4756079B2 (ja) 2011-08-24

Family

ID=42783102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009075252A Active JP4756079B2 (ja) 2009-03-25 2009-03-25 不揮発性記憶装置及びその製造方法

Country Status (2)

Country Link
US (1) US8258494B2 (ja)
JP (1) JP4756079B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058691A (ja) * 2011-09-09 2013-03-28 Renesas Electronics Corp 不揮発性半導体記憶装置及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280578A (zh) * 2011-08-22 2011-12-14 东北师范大学 基于非晶多元金属氧化物的柔性电阻式非易失性存储器
US9847481B2 (en) 2015-10-27 2017-12-19 Taiwan Semiconductor Manufacturing Co., Ltd. Metal landing on top electrode of RRAM

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031953A (ja) * 2002-06-21 2004-01-29 Hewlett-Packard Development Co Lp メモリ構造
JP2005522045A (ja) * 2002-04-04 2005-07-21 株式会社東芝 相変化メモリ装置
WO2007102341A1 (ja) * 2006-03-09 2007-09-13 Matsushita Electric Industrial Co., Ltd. 抵抗変化型素子、半導体装置、およびその製造方法
WO2008047530A1 (en) * 2006-10-16 2008-04-24 Panasonic Corporation Non-volatile storage device and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335906B2 (en) * 2003-04-03 2008-02-26 Kabushiki Kaisha Toshiba Phase change memory device
JP2007184419A (ja) 2006-01-06 2007-07-19 Sharp Corp 不揮発性メモリ装置
JP5056096B2 (ja) 2007-03-22 2012-10-24 パナソニック株式会社 不揮発性半導体記憶装置およびその製造方法
KR101317755B1 (ko) * 2007-03-23 2013-10-11 삼성전자주식회사 문턱 스위칭 특성을 지니는 저항체를 포함하는 비휘발성메모리 소자, 이를 포함하는 메모리 어레이 및 그 제조방법
US7906392B2 (en) * 2008-01-15 2011-03-15 Sandisk 3D Llc Pillar devices and methods of making thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522045A (ja) * 2002-04-04 2005-07-21 株式会社東芝 相変化メモリ装置
JP2004031953A (ja) * 2002-06-21 2004-01-29 Hewlett-Packard Development Co Lp メモリ構造
WO2007102341A1 (ja) * 2006-03-09 2007-09-13 Matsushita Electric Industrial Co., Ltd. 抵抗変化型素子、半導体装置、およびその製造方法
WO2008047530A1 (en) * 2006-10-16 2008-04-24 Panasonic Corporation Non-volatile storage device and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058691A (ja) * 2011-09-09 2013-03-28 Renesas Electronics Corp 不揮発性半導体記憶装置及びその製造方法

Also Published As

Publication number Publication date
JP4756079B2 (ja) 2011-08-24
US8258494B2 (en) 2012-09-04
US20100244248A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
TWI595484B (zh) 非揮發性記憶體裝置
US8115586B2 (en) Variable resistance element, and its manufacturing method
JP5079927B2 (ja) 不揮発性メモリ装置の製造方法、不揮発性メモリ素子、および不揮発性メモリ装置
US8999809B2 (en) Method for fabricating resistive random access memory
US20090272960A1 (en) Non-Volatile Resistive Oxide Memory Cells, and Methods Of Forming Non-Volatile Resistive Oxide Memory Cells
US20100270527A1 (en) Phase-change memory device and method of manufacturing the phase-change memory device
CN106252505A (zh) Rram器件和方法
JP2009218259A (ja) 不揮発性記憶装置及びその製造方法
US9716223B1 (en) RRAM device and method for manufacturing the same
KR20200140993A (ko) 배리어층을 갖는 rram
KR101009334B1 (ko) 저항성 메모리 소자 및 그 제조 방법
US9257484B2 (en) Non-volatile memory device and method of manufacturing the same
US11114614B2 (en) Process for fabricating resistive memory cells
US9142512B2 (en) Semiconductor memory device having a wiring in which a step is provided
JP4756079B2 (ja) 不揮発性記憶装置及びその製造方法
JP2009283681A (ja) 不揮発性記憶装置及びその製造方法
JP5580126B2 (ja) 不揮発性記憶装置及びその製造方法
JP2009283486A (ja) 不揮発性記憶装置及びその製造方法
US20110175053A1 (en) Nonvolatile memory device and method for manufacturing the same
JP2016082107A (ja) 記憶装置及びその製造方法
JP5338236B2 (ja) 不揮発性記憶素子およびその製造方法、並びにその不揮発性記憶素子を用いた不揮発性記憶装置およびその製造方法
JP2014150234A (ja) 不揮発性記憶装置およびその製造方法
JP2014146776A (ja) 不揮発性記憶装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4756079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350