JP2010230337A - Data collection device - Google Patents

Data collection device Download PDF

Info

Publication number
JP2010230337A
JP2010230337A JP2009075395A JP2009075395A JP2010230337A JP 2010230337 A JP2010230337 A JP 2010230337A JP 2009075395 A JP2009075395 A JP 2009075395A JP 2009075395 A JP2009075395 A JP 2009075395A JP 2010230337 A JP2010230337 A JP 2010230337A
Authority
JP
Japan
Prior art keywords
metal member
state data
reference position
surface layer
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009075395A
Other languages
Japanese (ja)
Inventor
Masahiko Kuroki
雅彦 黒木
Takatoshi Nishizawa
孝壽 西沢
Takahiro Endo
崇宏 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2009075395A priority Critical patent/JP2010230337A/en
Publication of JP2010230337A publication Critical patent/JP2010230337A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a data collection device with a simple device configuration capable of inexpensively collecting state data on a metal member in association with the positions of respective portions of the metal member. <P>SOLUTION: An ultrasonic probe 11 is used for detecting surface part signals of at least two portions of a specific domain of a metal member surface. The part signals detected by the ultrasonic probe are stored in advance in a reference position storage 12 as a reference position in the specific domain of the member surface. Surface part signals and state data on respective portions of the specific domain of the member surface are detected by a state detector 13. By a verification unit 14, a surface part signal corresponding to the part signal of the reference position stored in the reference position storage 12 is associated with the reference position among the part signals on the respective portions in the specific domain of the member surface detected by the state detector 13 while position information is allocated to the specific domain on the metal member surface on the basis of the reference position. The state data are stored in a state data storage 15 in association with the position information in the specific domain on the member surface allocated by the verification unit 14. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金属部材の各箇所の位置に対応付けて金属部材の状態データを収集するデータ収集装置に関する。   The present invention relates to a data collection device that collects state data of a metal member in association with the position of each part of the metal member.

発電プラントの配管においては、エロージョン、コロージョンなどの内部減肉が生じる場合がある。そのため、多くの場合は超音波を用いた定点肉厚測定が行われており、その測定点を決めるために、配管外面への罫書き作業等の付帯作業が必要となっている。   In the piping of a power plant, internal thinning such as erosion and corrosion may occur. Therefore, in many cases, fixed-point thickness measurement using ultrasonic waves is performed, and in order to determine the measurement point, ancillary work such as ruled work on the pipe outer surface is required.

例えば、大径配管の非破壊検査においては、大径配管の表面に探傷用走査線を罫書きし、その罫書きされた探傷用走査線を頼りに探傷プローブを配管に接触させ、測定器の表示装置に表示された画面上の探傷波形を確認しながら探傷する。そして、検査対象物にきずや減肉部があった場合には、その箇所で詳細な探傷波形を記録し、記録した探傷波形に基づききずや減肉部の定量的及び定性的な評価を行う。   For example, in non-destructive inspection of large-diameter pipes, a flaw detection scanning line is marked on the surface of the large-diameter pipe, and the flaw detection probe is brought into contact with the pipe using the marked flaw detection scanning line. The flaw detection is performed while checking the flaw detection waveform on the screen displayed on the display device. If there is a flaw or a thinned portion in the inspection object, a detailed flaw detection waveform is recorded at that location, and a quantitative and qualitative evaluation of the flaw or the thinned portion is performed based on the recorded flaw detection waveform. .

この場合、付帯作業として、配管外面上に肉厚測定点を決めるための罫書き作業が必要となり、前回測定位置とのずれや記録用紙への誤記入などのヒューマンエラーが起きる可能性がある。   In this case, as ancillary work, a ruled line work for determining the thickness measurement point on the outer surface of the pipe is necessary, and there is a possibility that a human error such as a deviation from the previous measurement position or an erroneous entry on the recording sheet may occur.

そこで、予め定めた固定点を基準点として検査対象物の画像データ及び検査対象物上を探傷走査した探傷部の走査軌跡データをセンサ部で計測し、画像処理部は計測した画像データに基づいて検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを演算し、座標補正部は記憶部に記憶された過去の検査対象物の3次元形状データとの座標のずれを補正し、現在の検査対象物の3次元形状データを過去の検査対象物の3次元形状データの座標に一致させ、表示装置に過去の探傷部の走査軌跡データを案内表示し、複雑な形状をした検査対象物の探傷を時間をおいて行う場合であっても作業性及び再現性を向上させたものがある(例えば、特許文献1参照)。   Therefore, the image data of the inspection object and the scanning trajectory data of the flaw detection part scanned on the inspection object are measured by the sensor unit using the predetermined fixed point as a reference point, and the image processing unit is based on the measured image data. The three-dimensional shape data of the inspection object and the scanning trajectory data of the flaw detection unit on the three-dimensional shape data are calculated, and the coordinate correction unit coordinates with the three-dimensional shape data of the past inspection object stored in the storage unit Is corrected, the 3D shape data of the current inspection object is made to coincide with the coordinates of the 3D shape data of the past inspection object, and the scanning trajectory data of the past flaw detection part is guided and displayed on the display device. Even when the inspection object having a simple shape is flawed for a while, there is one in which workability and reproducibility are improved (for example, see Patent Document 1).

特開2007−240342号公報JP 2007-240342 A

しかし、特許文献1では、探傷部の走査軌跡データを計測するセンサ部が必要であり、また、そのセンサ部で計測した画像データに基づいて、検査対象物の3次元形状データ及びその3次元形状データ上での探傷部の走査軌跡データを演算する演算処理装置が必要となる。従って、装置が複雑で高価なものとなる。   However, in Patent Document 1, a sensor unit that measures the scanning trajectory data of the flaw detection unit is necessary, and based on the image data measured by the sensor unit, the three-dimensional shape data of the inspection object and the three-dimensional shape thereof An arithmetic processing device for calculating the scanning trajectory data of the flaw detection portion on the data is required. Therefore, the apparatus becomes complicated and expensive.

本発明の目的は、装置構成が簡単でしかも安価に、金属部材の状態データを金属部材の各箇所の位置に対応付けて収集できるデータ収集装置を提供することである。   An object of the present invention is to provide a data collection device that can collect the state data of a metal member in association with the position of each location of the metal member with a simple apparatus configuration and at a low cost.

請求項1の発明に係わるデータ収集装置は、金属部材表面の特定領域の少なくとも2箇所の表層部信号を検出する超音波探触子と、前記超音波探触子で検出された表層部信号を金属部材表面の特定領域の基準位置として記憶する基準位置記憶部と、前記金属部材表面の特定領域の各箇所の表層部信号と状態データとを検出する状態検出部と、前記状態検出部で検出された前記金属部材表面の特定領域の各箇所の表層部信号のうち前記基準位置記憶部に記憶された基準位置の表層部信号に該当する表層部信号を基準位置に対応付けるとともにその基準位置を基準にして前記金属部材表面の特定領域に位置情報を割り付ける照合部と、前記照合部で割り付けられた前記金属部材表面の特定領域の位置情報に対応付けて前記状態データを記憶する状態データ記憶部とを備えたことを特徴とする。   A data collection device according to the invention of claim 1 is an ultrasonic probe for detecting at least two surface layer signals in a specific region on the surface of a metal member, and a surface layer signal detected by the ultrasonic probe. A reference position storage unit that stores a reference position of a specific region on the surface of the metal member, a state detection unit that detects a surface layer signal and state data of each part of the specific region on the surface of the metal member, and detection by the state detection unit Of the surface layer signal of each part of the specific region on the surface of the metal member, the surface layer signal corresponding to the surface layer signal of the reference position stored in the reference position storage unit is associated with the reference position and the reference position is referred to A state in which the state data is stored in association with the position information of the specific area on the surface of the metal member assigned by the collating unit, the collating unit that assigns the position information to the specific area on the surface of the metal member. Characterized by comprising a data storage unit.

請求項2の発明に係わるデータ収集装置は、請求項1の発明において、前記基準位置は、前記状態データを収集する箇所として予め定められた複数箇所の定点であることを特徴とする。   According to a second aspect of the present invention, there is provided the data collecting apparatus according to the first aspect, wherein the reference position is a plurality of fixed points that are predetermined as the places where the state data is collected.

請求項3の発明に係わるデータ収集装置は、請求項1または2の発明において、前記状態検出部は、前記金属部材表面の特定領域を縦方向または横方向に走査して前記表層部信号と前記状態データとを検出することを特徴とする。   According to a third aspect of the present invention, there is provided the data collection device according to the first or second aspect, wherein the state detection unit scans a specific area on the surface of the metal member in a vertical direction or a horizontal direction, It is characterized by detecting status data.

請求項4の発明に係わるデータ収集装置は、請求項1乃至3のいずれか1項の発明において、前記状態データ記憶部は、同一の金属部材表面の特定領域について、時系列の複数の前記状態データを記憶することを特徴とする。   According to a fourth aspect of the present invention, there is provided the data collection device according to any one of the first to third aspects, wherein the state data storage section includes a plurality of states in time series for a specific region on the same metal member surface. It is characterized by storing data.

請求項5の発明に係わるデータ収集装置は、請求項4の発明において、前記状態データ記憶部に記憶された時系列の状態データを比較して状態データの経年変化を求める状態データ評価部を備えたことを特徴とする。   According to a fifth aspect of the present invention, there is provided a data collecting apparatus according to the fourth aspect of the invention, further comprising a state data evaluation unit that compares time-series state data stored in the state data storage unit to obtain a secular change of the state data. It is characterized by that.

請求項6の発明に係わるデータ収集装置は、請求項1乃至5のいずれか1項の発明において、前記状態検出部は超音波探触子であり、前記状態データは、金属部材の肉厚、きずの有無、きずの大きさであることを特徴とする。   According to a sixth aspect of the present invention, in the data collection device according to any one of the first to fifth aspects, the state detection unit is an ultrasonic probe, and the state data includes a thickness of a metal member, It is characterized by the presence or absence of scratches and the size of the scratches.

請求項7の発明に係わるデータ収集装置は、請求項1乃至5のいずれか1項の発明において、前記金属部材は、配管であることを特徴とする。   A data collection device according to a seventh aspect of the present invention is the data collection device according to any one of the first to fifth aspects, wherein the metal member is a pipe.

本発明によれば、金属部材表面の特定領域の少なくとも2箇所の表層部信号を超音波探触子で検出し、超音波探触子で検出された表層部信号を金属部材表面の特定領域の基準位置として基準位置記憶部に記憶し、照合部は、基準位置記憶部に記憶された基準位置を基準として金属部材表面の特定領域に位置情報を割り付け、状態検出部で検出された状態データを割り付けた位置情報に対応させて状態データ記憶部に記憶するので、金属部材の状態データは金属部材表面の特定領域の位置情報に対応付けて収集できる。   According to the present invention, at least two surface layer signals in a specific region on the surface of the metal member are detected by the ultrasonic probe, and the surface layer signal detected by the ultrasonic probe is detected in the specific region on the metal member surface. The reference position is stored in the reference position storage unit as a reference position, and the collation unit assigns position information to a specific area on the surface of the metal member based on the reference position stored in the reference position storage unit, and the state data detected by the state detection unit Since it is stored in the state data storage unit in association with the allocated position information, the state data of the metal member can be collected in association with the position information of the specific area on the surface of the metal member.

従って、例えば、配管の探傷の場合には、配管の表面上に状態データの測定の定点を決めるための罫書き作業が不要となり、前回の測定位置とのずれや記録用紙への誤記入などのヒューマンエラーを防止できる。これにより、状態データの測定位置の精度が向上することから、同一位置の時系列の状態データとの比較により厳密な減肉速度の把握が可能となり、的確な配管の肉厚管理が可能となる。   Therefore, for example, in the case of flaw detection on a pipe, there is no need to make a ruled line for determining a fixed point for measurement of state data on the surface of the pipe, such as deviation from the previous measurement position or incorrect entry on a recording sheet. Human error can be prevented. As a result, the accuracy of the measurement position of the status data is improved, so it becomes possible to grasp the strict thickness reduction speed by comparing with the time-series status data at the same position, and it is possible to accurately manage the thickness of the pipe. .

本発明の第1の実施の形態に係わるデータ収集装置の構成図。1 is a configuration diagram of a data collection device according to a first embodiment of the present invention. 本発明の第1の実施の形態における基準位置記憶部に記憶された表層部信号の説明図。Explanatory drawing of the surface layer part signal memorize | stored in the reference | standard position memory | storage part in the 1st Embodiment of this invention. 本発明の第1の実施の形態における照合部での位置情報の割り付けの一例の説明図。Explanatory drawing of an example of allocation of the positional information in the collation part in the 1st Embodiment of this invention. 本発明の第1の実施の形態における照合部での位置情報の割り付けの他の一例の説明図。Explanatory drawing of another example of allocation of the positional information in the collation part in the 1st Embodiment of this invention. 本発明の第1の実施の形態に係わるデータ収集装置での状態データ収集の工程を示すフローチャート。The flowchart which shows the process of state data collection in the data collection device concerning the 1st Embodiment of this invention. 本発明の第2の実施の形態に係わるデータ収集装置の構成図。The block diagram of the data collection device concerning the 2nd Embodiment of this invention.

以下、本発明の実施の形態を説明する。図1は本発明の第1の実施の形態に係わるデータ収集装置の構成図である。超音波探触子11は、金属部材の特定領域の状態データを測定するにあたり、その金属部材表面の特定領域の少なくとも2箇所の表層部信号を検出するものであり、例えば垂直探触子が用いられる。超音波探触子11で検出された表層部信号は、金属部材表面の特定領域の基準位置として基準位置記憶部12に記憶される。   Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of a data collection apparatus according to the first embodiment of the present invention. The ultrasonic probe 11 detects at least two surface layer signals of a specific region on the surface of the metal member when measuring state data of the specific region of the metal member. For example, a vertical probe is used. It is done. The surface layer signal detected by the ultrasonic probe 11 is stored in the reference position storage unit 12 as the reference position of the specific area on the surface of the metal member.

図2は基準位置記憶部12に記憶された表層部信号の説明図である。図2では、金属部材の特定領域S1の3箇所で表層部信号を検出した場合を示しており、検出位置での表層部信号を基準位置P1、P2、P3として記憶する。金属部材の特定領域S1は、例えば配管外面の検査対象領域であり、表層部信号を検出する検出位置は、配管の外部から目視で基準位置として位置決めし易い箇所を定点として予め選定する。図2の基準位置P1、P2、P3での表層部信号はその箇所特有のユニークな信号であり、基準位置P1、P2、P3の位置情報を予めxy座標上で決めておく。   FIG. 2 is an explanatory diagram of the surface layer signal stored in the reference position storage unit 12. FIG. 2 shows a case where surface layer signals are detected at three locations in the specific region S1 of the metal member, and the surface layer signals at the detection positions are stored as reference positions P1, P2, and P3. The specific region S1 of the metal member is, for example, a region to be inspected on the outer surface of the pipe, and the detection position for detecting the surface layer signal is selected in advance as a fixed point where it can be easily positioned as the reference position from the outside of the pipe. The surface layer signal at the reference positions P1, P2, and P3 in FIG. 2 is a unique signal unique to the part, and position information of the reference positions P1, P2, and P3 is determined in advance on the xy coordinates.

状態検出部13は、金属部材表面の特定領域の各箇所の表層部信号と状態データとを検出するものであり、例えば、状態検出部13が金属部材の状態データとして探傷データを検出する超音波探触子である場合には、金属部材表面から超音波を発信し反射波を受信して配管内部を探傷する斜角探触子やフェイズドアレイ探触子などである。この場合、状態検出部13である超音波探触子は、金属部材の肉厚、きずの有無、きずの大きさなどを状態データとして検出することになる。   The state detection unit 13 detects a surface layer signal and state data at each location in a specific area on the surface of the metal member. For example, the state detection unit 13 detects ultrasonic data as state data of the metal member. In the case of a probe, an oblique angle probe or a phased array probe that transmits ultrasonic waves from the surface of a metal member and receives reflected waves to detect flaws inside the pipe. In this case, the ultrasonic probe as the state detection unit 13 detects the thickness of the metal member, the presence / absence of a flaw, the size of the flaw, and the like as the state data.

ここで、超音波探触子が斜角探触子である場合には、斜角探触子と垂直探触子とを組み合わせた探触子とする。これは、斜角探触子で金属部材のきずを検出し、垂直探触子で金属部材表面の表層部信号を検出するためである。超音波探触子がフェイズドアレイ探触子である場合には、垂直探触子を設ける必要はない。これは、フェイズドアレイ探触子は複数の振動子を順番に振動して所定角度の超音波を発信する機能を有しているので、垂直方向の超音波を発信して金属部材表面の表層部信号を検出できるからである。   Here, when the ultrasonic probe is an oblique probe, the probe is a combination of an oblique probe and a vertical probe. This is because a flaw of the metal member is detected by the oblique angle probe, and a surface layer signal on the surface of the metal member is detected by the vertical probe. When the ultrasonic probe is a phased array probe, it is not necessary to provide a vertical probe. This is because the phased array probe has a function of transmitting ultrasonic waves at a predetermined angle by vibrating a plurality of transducers in order, so that the surface layer portion on the surface of the metal member is transmitted by transmitting ultrasonic waves in the vertical direction. This is because the signal can be detected.

状態検出部13で検出された金属部材表面の表層部信号と状態データとは、照合部14に入力される。照合部14では、状態検出部13で検出された金属部材表面の特定領域の各箇所の表層部信号のうち、基準位置記憶部12に記憶された基準位置の表層部信号に該当する表層部信号を基準位置に対応付けるとともに、その基準位置を基準にして金属部材表面の特定領域に位置情報を割り付ける。   The surface layer signal and the state data on the surface of the metal member detected by the state detection unit 13 are input to the verification unit 14. In the collation unit 14, the surface layer signal corresponding to the surface layer signal of the reference position stored in the reference position storage unit 12 among the surface layer signals of each part of the specific region on the surface of the metal member detected by the state detection unit 13. Is associated with a reference position, and position information is assigned to a specific area on the surface of the metal member based on the reference position.

図3は、照合部14での位置情報の割り付けの一例の説明図であり、図3(a)は状態検出部13で検出された金属部材表面の特定領域の各箇所の表層部信号の一例の説明図、図3(b)は図3(a)の表層信号に位置情報を割り付けた場合の説明図である。   FIG. 3 is an explanatory diagram of an example of allocation of position information in the collation unit 14, and FIG. 3A is an example of a surface layer signal at each location in a specific region on the surface of the metal member detected by the state detection unit 13. FIG. 3B is an explanatory diagram when position information is assigned to the surface layer signal of FIG.

状態検出部13は、金属部材表面の特定領域S1を走査して表層部信号と状態データとを検出する。この場合、状態検出部13を金属部材表面上でランダムに走査してもよいが、金属部材表面の特定領域S1を縦方向または横方向に走査することが望ましい。これは、入力順に表層部信号を並べておいた方が表層部信号に位置情報を割り付ける際に、その処理を容易に行えるからである。   The state detector 13 scans the specific area S1 on the surface of the metal member and detects a surface layer signal and state data. In this case, the state detection unit 13 may be randomly scanned on the surface of the metal member, but it is desirable to scan the specific area S1 on the surface of the metal member in the vertical direction or the horizontal direction. This is because the arrangement of the surface layer signals in the order of input facilitates the processing when assigning the position information to the surface layer signals.

いま、金属部材表面の特定領域S1を縦方向または横方向に走査して、図3(a)に示す金属部材表面の特定領域S1の各箇所の表層部信号が得られたとする。図3(a)の○及び□は状態検出部13の走査により検出した表層部信号であり、□は基準位置P1、P2、P3の表層部信号である。照合部14では、図3(a)の表層部信号の中から、図2に示した基準位置P1、P2、P3の表層部信号に一致する表層部信号を検索する。そして、図3(b)に示すように、一致する表層部信号□に対して図2に示した基準位置P1、P2、P3を割り付ける。これにより、基準位置P1、P2、P3の位置情報が決められた後に、残りの表層部信号○の位置情報を割り付ける。   Now, it is assumed that the surface area signal of each part of the specific region S1 on the metal member surface shown in FIG. 3A is obtained by scanning the specific region S1 on the metal member surface in the vertical direction or the horizontal direction. In FIG. 3A, ◯ and □ are surface layer signals detected by scanning of the state detection unit 13, and □ are surface layer signals at the reference positions P1, P2, and P3. The matching unit 14 searches the surface layer signal in FIG. 3A for a surface layer signal that matches the surface layer signals at the reference positions P1, P2, and P3 shown in FIG. Then, as shown in FIG. 3B, the reference positions P1, P2, and P3 shown in FIG. 2 are assigned to the matching surface layer signal □. Thus, after the position information of the reference positions P1, P2, and P3 is determined, the position information of the remaining surface layer signal ◯ is assigned.

従って、図4に示すように、検査対象である配管の金属部材表面の特定領域S1と、実際に状態検出部13の走査した特定領域S1’とがずれている場合であっても、図2に示した基準位置P1、P2、P3に対応した位置情報を、状態検出部13の走査により検出した表層部信号○に割り付けることができる。   Therefore, as shown in FIG. 4, even if the specific area S1 on the surface of the metal member of the pipe to be inspected is shifted from the specific area S1 ′ actually scanned by the state detection unit 13, FIG. The position information corresponding to the reference positions P1, P2, and P3 shown in (1) can be assigned to the surface layer signal ◯ detected by the scanning of the state detection unit 13.

照合部14は、金属部材表面の特定領域S1の位置情報に対応付けて状態データを状態データ記憶部15に出力する。状態データ記憶部15では、照合部14で割り付けられた金属部材表面の特定領域の位置情報に対応付けられた状態データを記憶する。また、同一の金属部材表面の特定領域S1について、過去に計測された状態データについても併せて記憶する。これにより、同一の金属部材表面の特定領域について、時系列の複数の状態データを記憶することになる。   The collation unit 14 outputs state data to the state data storage unit 15 in association with the position information of the specific region S1 on the surface of the metal member. The state data storage unit 15 stores the state data associated with the position information of the specific area on the surface of the metal member assigned by the collation unit 14. In addition, the state data measured in the past is also stored for the specific region S1 on the surface of the same metal member. Thus, a plurality of time-series state data are stored for specific regions on the same metal member surface.

状態データ記憶部15に記憶された金属部材表面の特定領域の位置情報に対応付けられた状態データは、必要に応じて出力装置16に出力される。これにより、検査員は状態データを確認できる。特に、時系列の複数の状態データを比較参照することにより、状態データの時系列的な変化を把握できる。   The state data associated with the position information of the specific area on the surface of the metal member stored in the state data storage unit 15 is output to the output device 16 as necessary. Thereby, the inspector can confirm the state data. In particular, it is possible to grasp time-series changes in state data by comparing and referring to a plurality of time-series state data.

図5は、本発明の第1の実施の形態に係わるデータ収集装置での状態データ収集の工程を示すフローチャートである。まず、金属部材表面の特定領域S1の基準位置の表層部信号を超音波探触子11で検出し(S1)、検出した表層部信号を基準位置として基準位置記憶部12に記憶する(S2)。次に、金属部材表面の特定領域S1の各箇所の表層部信号と状態データとを状態検出部13で検出する(S3)。そして、金属部材の特定領域S1に位置情報を照合部14で割り付け(S4)、割り付けられた位置情報に対応付けて状態データを状態データ記憶部15に記憶する(S5)。   FIG. 5 is a flowchart showing a state data collection process in the data collection apparatus according to the first embodiment of the present invention. First, the surface layer signal at the reference position of the specific region S1 on the surface of the metal member is detected by the ultrasonic probe 11 (S1), and the detected surface layer signal is stored in the reference position storage unit 12 as the reference position (S2). . Next, the state detection unit 13 detects the surface layer signal and the state data of each part of the specific region S1 on the surface of the metal member (S3). Then, position information is assigned to the specific region S1 of the metal member by the collation unit 14 (S4), and state data is stored in the state data storage unit 15 in association with the assigned position information (S5).

以上の説明では、状態検出部13は超音波探触子であり、状態データとして、金属部材の肉厚、きずの有無、きずの大きさを検出する場合について説明したが、振動計で振動データを検出するようにしてもよいし、応力歪み計で応力歪みを検出するようにしてもよい。さらには、硬度計で硬度を、温度計で温度を検出するようにしてもよい。   In the above description, the state detection unit 13 is an ultrasonic probe, and the case where the thickness of a metal member, the presence / absence of a flaw, and the size of a flaw is detected as the state data has been described. May be detected, or stress strain may be detected by a stress strain meter. Furthermore, the hardness may be detected with a hardness meter, and the temperature may be detected with a thermometer.

第1の実施の形態によれば、超音波探触子11からの超音波による表層部近傍に起因する表層部信号を状態データ測定時の定点測定の位置情報として使用するので、金属部材表面の特定領域S1の各箇所の位置情報を正確に特定できる。また、基準位置を基準として金属部材表面の特定領域に位置情報を割り付け、状態検出部13で検出された状態データを割り付けた位置情報に対応させて状態データ記憶部15に記憶するので、金属部材の状態データは金属部材表面の特定領域S1の位置情報に対応付けて収集できる。   According to the first embodiment, since the surface layer signal resulting from the vicinity of the surface layer portion by the ultrasonic wave from the ultrasonic probe 11 is used as the position information of the fixed point measurement at the time of the state data measurement, The position information of each part of the specific area S1 can be accurately specified. Further, the position information is assigned to a specific area on the surface of the metal member with the reference position as a reference, and the state data detected by the state detection unit 13 is stored in the state data storage unit 15 in association with the assigned position information. The state data can be collected in association with the position information of the specific region S1 on the surface of the metal member.

これにより、例えば、発電所の定期点検時などの配管の肉厚測定において、肉厚測定範囲を全面探傷する際に、配管の表層部近傍の超音波信号も合わせて取得し、基準位置として採取している表層部信号と全面探傷して採取した表層部信号とを突き合わせて、整合した位置での肉厚値データを記録できる。この肉厚測定を繰り返すことにより、毎回同じ位置での肉厚測定値を得ることができる。   As a result, for example, when measuring the wall thickness of the entire surface of a pipe thickness measurement during a periodic inspection of a power plant, the ultrasonic signal near the surface layer of the pipe is also acquired and collected as a reference position. The thickness value data at the aligned position can be recorded by matching the surface layer signal that has been detected and the surface layer signal collected by flaw detection. By repeating this thickness measurement, a thickness measurement value at the same position can be obtained each time.

次に、本発明の第2の実施の形態を説明する。図6は本発明の第2の実施の形態に係わるデータ収集装置の構成図である。この第2の実施の形態は、図1に示した第1の実施の形態に対し、状態データ記憶部15に記憶された時系列の状態データを比較して状態データの経年変化を求める状態データ評価部17を追加して設けたものである。図1と同一要素には同一符号を付し重複する説明は省略する。   Next, a second embodiment of the present invention will be described. FIG. 6 is a configuration diagram of a data collection apparatus according to the second embodiment of the present invention. In the second embodiment, the state data for obtaining the secular change of the state data by comparing the time series state data stored in the state data storage unit 15 with respect to the first embodiment shown in FIG. An evaluation unit 17 is additionally provided. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

状態データ評価部17は、状態データ記憶部15から金属部材表面の時系列の状態データを入力する。例えば、金属部材表面の同じ位置での前々回に測定した状態データ、前回測定した状態データ、今回測定した状態データを入力し、その位置での状態データの変化を求める。状態データ評価部17で求めた同一位置での状態データの変化は、必要に応じて出力装置16に出力される。これにより、その金属部材の部位の経年変化を評価することができる。   The state data evaluation unit 17 inputs time-series state data of the metal member surface from the state data storage unit 15. For example, the state data measured two times before at the same position on the surface of the metal member, the state data measured last time, and the state data measured this time are input, and the change of the state data at that position is obtained. The change in the state data at the same position obtained by the state data evaluation unit 17 is output to the output device 16 as necessary. Thereby, the secular change of the site | part of the metal member can be evaluated.

第2の実施の形態によれば、同一位置の時系列の状態データとの比較により厳密な経年変化の把握が可能となる。例えば、金属部材が配管である場合には、厳密な減肉速度の把握が可能となり的確な配管の肉厚管理が可能となる。   According to the second embodiment, a precise secular change can be grasped by comparison with time-series state data at the same position. For example, in the case where the metal member is a pipe, it is possible to accurately grasp the thinning rate and to accurately manage the thickness of the pipe.

11…超音波探触子、12…基準位置記憶部、13…状態検出部、14…照合部、15…状態データ記憶部、16…出力装置、17…状態データ評価部 DESCRIPTION OF SYMBOLS 11 ... Ultrasonic probe, 12 ... Reference | standard position memory | storage part, 13 ... State detection part, 14 ... Collation part, 15 ... State data storage part, 16 ... Output device, 17 ... State data evaluation part

Claims (7)

金属部材表面の特定領域の少なくとも2箇所の表層部信号を検出する超音波探触子と、
前記超音波探触子で検出された表層部信号を金属部材表面の特定領域の基準位置として記憶する基準位置記憶部と、
前記金属部材表面の特定領域の各箇所の表層部信号と状態データとを検出する状態検出部と、
前記状態検出部で検出された前記金属部材表面の特定領域の各箇所の表層部信号のうち前記基準位置記憶部に記憶された基準位置の表層部信号に該当する表層部信号を基準位置に対応付けるとともにその基準位置を基準にして前記金属部材表面の特定領域に位置情報を割り付ける照合部と、
前記照合部で割り付けられた前記金属部材表面の特定領域の位置情報に対応付けて前記状態データを記憶する状態データ記憶部とを備えたことを特徴とするデータ収集装置。
An ultrasonic probe for detecting at least two surface layer signals in a specific region on the surface of the metal member;
A reference position storage unit that stores a surface layer signal detected by the ultrasonic probe as a reference position of a specific region on the surface of the metal member;
A state detection unit for detecting a surface layer signal and state data of each part of the specific region on the surface of the metal member;
The surface layer signal corresponding to the surface layer signal of the reference position stored in the reference position storage unit among the surface layer signals of each part of the specific region on the surface of the metal member detected by the state detection unit is associated with the reference position. And a collation unit that assigns position information to a specific area on the surface of the metal member with reference to the reference position;
A data collection device comprising: a state data storage unit that stores the state data in association with position information of a specific area on the surface of the metal member assigned by the collation unit.
前記基準位置は、前記状態データを収集する箇所として予め定められた複数箇所の定点であることを特徴とする請求項1に記載のデータ収集装置。   The data collection device according to claim 1, wherein the reference position is a fixed point at a plurality of locations that are predetermined as locations where the state data is collected. 前記状態検出部は、前記金属部材表面の特定領域を縦方向または横方向に走査して前記表層部信号と前記状態データとを検出することを特徴とする請求項1または2に記載のデータ収集装置。   The data collection according to claim 1, wherein the state detection unit detects the surface layer signal and the state data by scanning a specific region on the surface of the metal member in a vertical direction or a horizontal direction. apparatus. 前記状態データ記憶部は、同一の金属部材表面の特定領域について、時系列の複数の前記状態データを記憶することを特徴とする請求項1乃至3のいずれか1項に記載のデータ収集装置。   4. The data collection device according to claim 1, wherein the state data storage unit stores a plurality of state data in a time series for a specific region on the same metal member surface. 5. 前記状態データ記憶部に記憶された時系列の状態データを比較して状態データの経年変化を求める状態データ評価部を備えたことを特徴とする請求項4記載のデータ収集装置。   5. The data collection device according to claim 4, further comprising a state data evaluation unit that compares time-series state data stored in the state data storage unit to obtain a secular change of the state data. 前記状態検出部は超音波探触子であり、前記状態データは、金属部材の肉厚、きずの有無、きずの大きさであることを特徴とする請求項1乃至5のいずれか一記載のデータ収集装置。   The said state detection part is an ultrasonic probe, The said state data are the thickness of a metal member, the presence or absence of a flaw, and the magnitude | size of a flaw, The Claim 1 characterized by the above-mentioned. Data collection device. 前記金属部材は、配管であることを特徴とする請求項1乃至6のいずれか1項に記載のデータ収集装置。   The data collection device according to claim 1, wherein the metal member is a pipe.
JP2009075395A 2009-03-26 2009-03-26 Data collection device Pending JP2010230337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009075395A JP2010230337A (en) 2009-03-26 2009-03-26 Data collection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009075395A JP2010230337A (en) 2009-03-26 2009-03-26 Data collection device

Publications (1)

Publication Number Publication Date
JP2010230337A true JP2010230337A (en) 2010-10-14

Family

ID=43046327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009075395A Pending JP2010230337A (en) 2009-03-26 2009-03-26 Data collection device

Country Status (1)

Country Link
JP (1) JP2010230337A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198501A (en) * 2016-04-26 2017-11-02 三菱重工業株式会社 Ultrasonic flaw detection method, ultrasonic flaw detection device, ultrasonic flaw detection program and recording medium
WO2018092352A1 (en) * 2016-11-21 2018-05-24 三菱重工業株式会社 Pressing force measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198501A (en) * 2016-04-26 2017-11-02 三菱重工業株式会社 Ultrasonic flaw detection method, ultrasonic flaw detection device, ultrasonic flaw detection program and recording medium
WO2018092352A1 (en) * 2016-11-21 2018-05-24 三菱重工業株式会社 Pressing force measurement method
US11079290B2 (en) 2016-11-21 2021-08-03 Mitsubishi Heavy Industries, Ltd. Contact force measurement method

Similar Documents

Publication Publication Date Title
US7324910B2 (en) Sensor array for navigation on surfaces
JP5604738B2 (en) Progress crack detection method, apparatus and program
JP2009036516A (en) Nondestructive inspection device using guide wave and nondestructive inspection method
JP6290718B2 (en) Ultrasonic inspection apparatus and ultrasonic inspection method
JP2007240342A (en) Flaw inspection apparatus and method
KR20130080086A (en) The correction method for beam focal point of phased ultrasonic transducer with curved wedge
JP2011027571A (en) Piping thickness reduction inspection apparatus and piping thickness reduction inspection method
JP5156707B2 (en) Ultrasonic inspection method and apparatus
JP2014163805A (en) Ultrasonic inspection method and device
JP6356579B2 (en) Eddy current flaw detector and eddy current flaw detection method
JP2010230337A (en) Data collection device
JP2007322350A (en) Ultrasonic flaw detector and method
JP3713007B2 (en) Ultrasonic inspection equipment
JP5091461B2 (en) Ultrasonic flaw detector, method and program thereof
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
JP5372866B2 (en) Eddy current flaw detection method and eddy current flaw detection system
JP4738243B2 (en) Ultrasonic flaw detection system
JP2019138700A (en) Welded part flaw detector and method for detecting flaw
JP5150302B2 (en) Ultrasonic inspection data evaluation apparatus and ultrasonic inspection data evaluation method
JP6000158B2 (en) Flaw detection apparatus and flaw detection method
JPH08189918A (en) Ultrasonic flaw detector
JP5750066B2 (en) Non-destructive inspection method using guided waves
JP2013002822A (en) Nondestructive check method and nondestructive check apparatus
JP6203514B2 (en) Ultrasonic diagnostic apparatus and control program therefor
JP2002162390A (en) Method and device for ultrasonic wave inspection