JP5372866B2 - Eddy current flaw detection method and eddy current flaw detection system - Google Patents

Eddy current flaw detection method and eddy current flaw detection system Download PDF

Info

Publication number
JP5372866B2
JP5372866B2 JP2010171308A JP2010171308A JP5372866B2 JP 5372866 B2 JP5372866 B2 JP 5372866B2 JP 2010171308 A JP2010171308 A JP 2010171308A JP 2010171308 A JP2010171308 A JP 2010171308A JP 5372866 B2 JP5372866 B2 JP 5372866B2
Authority
JP
Japan
Prior art keywords
amplitude value
eddy current
flaw detection
current flaw
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010171308A
Other languages
Japanese (ja)
Other versions
JP2012032249A (en
Inventor
将史 成重
亮 西水
正浩 小池
嘉治 阿部
豊彦 津下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2010171308A priority Critical patent/JP5372866B2/en
Publication of JP2012032249A publication Critical patent/JP2012032249A/en
Application granted granted Critical
Publication of JP5372866B2 publication Critical patent/JP5372866B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は渦電流探傷方法及び渦電流探傷システムに関する。   The present invention relates to an eddy current flaw detection method and an eddy current flaw detection system.

熱交換器伝熱管の渦電流探傷は、プローブを挿入して引抜きながら欠陥信号の有無を確認する。その確認方法は、欠陥サイズと信号振幅値との関係を予め試験的に把握し、検出目標の欠陥サイズに対応するしきい値と観測信号の振幅値を比較評価する方法が知られている。例えば、特許文献1では、探傷信号から基準信号を差し引く減算処理により得られた差分信号をしきい値処理して傷の有無を判定する。特許文献1の実施形態4には、プローブにマルチコイルプローブを採用した例も記載されている。一般的に、マルチコイルプローブは複数個のコイルを筐体外周に配列した構造で、複数のチャンネル(CH)をもつ。各チャンネルは管全周の一部分を検出範囲とし、複数チャンネルで相互補完して管全周を検査する。   In the eddy current flaw detection of the heat exchanger heat transfer tube, the presence or absence of a defect signal is confirmed while inserting and extracting the probe. As a confirmation method, there is known a method in which the relationship between the defect size and the signal amplitude value is grasped experimentally in advance, and the threshold value corresponding to the defect size of the detection target and the amplitude value of the observation signal are compared and evaluated. For example, in Patent Document 1, the difference signal obtained by subtracting the reference signal from the flaw detection signal is subjected to threshold processing to determine the presence / absence of a flaw. Embodiment 4 of Patent Document 1 also describes an example in which a multi-coil probe is adopted as a probe. In general, a multi-coil probe has a structure in which a plurality of coils are arranged on the outer periphery of a casing, and has a plurality of channels (CH). Each channel uses a part of the entire circumference of the tube as a detection range, and a plurality of channels complement each other to inspect the entire circumference of the tube.

特開2001−296279号公報JP 2001-296279 A

しかしながら、各チャンネルの感度には分布があり、複数のチャンネルを組み合わせても、そのチャンネル間で感度の低い部分が存在する。伝熱管検査において、欠陥の周方向位置は不明であるため、欠陥と各チャンネルの位置関係を考慮して、しきい値判定することが求められていた。   However, the sensitivity of each channel has a distribution, and even if a plurality of channels are combined, there is a portion with low sensitivity between the channels. In the heat transfer tube inspection, since the circumferential position of the defect is unknown, it is required to determine the threshold value in consideration of the positional relationship between the defect and each channel.

そこで、本発明の目的は、観測信号から欠陥サイズを推定する精度を高めて検査の信頼性を向上することにある。   Therefore, an object of the present invention is to improve the reliability of inspection by increasing the accuracy of estimating a defect size from an observation signal.

本発明は、伝熱管の長さ方向における任意位置の最大振幅値(S1)と、最大振幅値(S1)を検出するチャンネルに隣接するチャンネルが検出する振幅値(S2>S3)の中で大きい振幅値(S2)を取得し、最大振幅値(S1)及び隣接振幅値(S2)の振幅比(S2/S1)から補正係数(A)を決定し、補正振幅値(AS1)としきい値を比較して欠陥サイズを算出することを特徴とする。 In the present invention, the maximum amplitude value (S 1 ) at an arbitrary position in the length direction of the heat transfer tube and the amplitude value detected by a channel adjacent to the channel detecting the maximum amplitude value (S 1 ) (S 2 > S 3 ). A large amplitude value (S 2 ) is obtained, a correction coefficient (A) is determined from the amplitude ratio (S 2 / S 1 ) of the maximum amplitude value (S 1 ) and the adjacent amplitude value (S 2 ), and correction is performed. The defect size is calculated by comparing the amplitude value (AS 1 ) with a threshold value.

本発明によれば、観測信号から欠陥サイズを推定する精度を高めて検査の信頼性を向上できる。   According to the present invention, it is possible to improve the accuracy of the inspection by increasing the accuracy of estimating the defect size from the observation signal.

マルチコイルプローブでの渦電流探傷の信号処理を表すフローチャートである。It is a flowchart showing the signal processing of eddy current flaw detection with a multi-coil probe. 渦電流探傷システムの構成を表すブロック図である。It is a block diagram showing the structure of an eddy current flaw detection system. 熱交換器の管配列を表す画面の模式図である。It is a schematic diagram of the screen showing the tube arrangement | sequence of a heat exchanger. 伝熱管の長さ方向位置を示す図である。It is a figure which shows the length direction position of a heat exchanger tube. マルチコイルプローブの構造を表す模式図である。It is a schematic diagram showing the structure of a multi-coil probe. マルチコイルプローブの断面を表す図である。It is a figure showing the cross section of a multi-coil probe. 補正係数を算出するための補正図の一例である。It is an example of the correction figure for calculating a correction coefficient. マルチコイルプローブの感度分布の一例である。It is an example of the sensitivity distribution of a multi-coil probe. 校正試験体の一例である。It is an example of a calibration test body. 欠陥サイズを算出するための推定線図の一例である。It is an example of an estimated diagram for calculating a defect size. 肉厚の50%t深さの外面模擬欠陥の探傷画像の一例である。It is an example of a flaw detection image of an outer surface simulated defect having a thickness of 50% t. 肉厚の50%t深さの外面模擬欠陥の信号波形の一例である。It is an example of the signal waveform of the external surface simulation defect of thickness 50% t depth.

本実施例に係るマルチコイルプローブでの渦電流探傷の信号処理フローを図1に示す。図2は渦電流探傷システムの構成を表すブロック図である。渦電流探傷システム20は、モニタ21,コンピュータ22,渦電流探傷器23,挿入・引抜機24,マルチコイルプローブ25で構成される。   FIG. 1 shows a signal processing flow of eddy current flaw detection in the multi-coil probe according to the present embodiment. FIG. 2 is a block diagram showing the configuration of the eddy current flaw detection system. The eddy current flaw detection system 20 includes a monitor 21, a computer 22, an eddy current flaw detector 23, an insertion / extraction machine 24, and a multi-coil probe 25.

図1の信号処理フローにおいて、コンピュータ22は、挿入・引抜機24からの位置データ及び渦電流探傷器23からの探傷データを処理する。モニタ21は、コンピュータ22からのデータを表示し、操作を行うための装置である。   In the signal processing flow of FIG. 1, the computer 22 processes the position data from the insertion / extraction machine 24 and the flaw detection data from the eddy current flaw detector 23. The monitor 21 is a device for displaying data from the computer 22 and performing operations.

図1において、モニタ21上の管配列図から検査対象管を選択し(S101)、マルチコイルプローブでの探傷データを取得して画像表示する(S102)。探傷データはマルチコイルプローブの位置に対する信号振幅値であり、複数チャンネル(CH)のデータを持つ。信号処理範囲を選択して(S103)、信号処理する位置(i)を指定する(S104)。位置(i)において最大の振幅値を持つCH(j)を探索し、その振幅値(i,j)をS1とする(S105)。隣接CH(j−1)の振幅値(i,j−1)と隣接CH(j+1)の振幅値(i,j+1)を比較して、大きい値をS2とする(S106)。S2/S1と補正係数との関係から補正係数Aを決定して、補正振幅値AS1を算出する(S107)。事前にしきい値(Sth)を設定しておき、補正振幅値AS1と比較する(S108)。補正振幅値がしきい値より小さい(AS1<Sth)場合、欠陥サイズをゼロとする(S201)。補正振幅値がしきい値より大きい(AS1>Sth)場合、AS1の値で推定線図から欠陥サイズを算出して保存する(S202)。選択範囲の信号処理を完了したかを確認する(S109)。完了でなければ、(S104)へ戻って次の位置(i+1)で信号処理を実施する。完了であれば、位置に対する欠陥サイズのグラフを表示する(S110)。選択範囲内の信号処理全体で(S202)の処理過程があれば欠陥有とし、なければ欠陥無として管配列図の検査対象管に明示する(S111)。 In FIG. 1, a tube to be inspected is selected from the tube arrangement diagram on the monitor 21 (S101), flaw detection data with a multi-coil probe is acquired, and an image is displayed (S102). The flaw detection data is a signal amplitude value with respect to the position of the multi-coil probe, and has data of a plurality of channels (CH). A signal processing range is selected (S103), and a position (i) for signal processing is designated (S104). A search is made for CH (j) having the maximum amplitude value at the position (i), and the amplitude value (i, j) is set to S 1 (S105). By comparing adjacent CH amplitude value of (j-1) (i, j-1) amplitude values of adjacent CH (j + 1) (i , j + 1), a large value to S 2 (S106). A correction coefficient A is determined from the relationship between S 2 / S 1 and the correction coefficient, and a correction amplitude value AS 1 is calculated (S107). A threshold value (S th ) is set in advance and compared with the corrected amplitude value AS 1 (S108). When the correction amplitude value is smaller than the threshold value (AS 1 <S th ), the defect size is set to zero (S201). If the corrected amplitude value is larger than the threshold value (AS 1 > S th ), the defect size is calculated from the estimated diagram with the value of AS 1 and stored (S202). It is confirmed whether the signal processing of the selected range is completed (S109). If not completed, the process returns to (S104) to perform signal processing at the next position (i + 1). If completed, a graph of the defect size with respect to the position is displayed (S110). If there is a processing step (S202) in the entire signal processing within the selected range, it is determined that there is a defect, and if there is no defect, it is clearly indicated on the inspection target tube in the tube arrangement diagram (S111).

次に、図1の信号処理フローを項目ごとに詳細説明する。   Next, the signal processing flow of FIG. 1 will be described in detail for each item.

S101は、熱交換器に対応する管配列(図3(a))をモニタ21に表示し、装置使用者は検査対象管32と同一管をモニタ表示上で選択する。探傷データは管表示31に対応して保存され、信号処理結果は管表示31上に明示される。   In S101, the tube arrangement (FIG. 3A) corresponding to the heat exchanger is displayed on the monitor 21, and the apparatus user selects the same tube as the inspection target tube 32 on the monitor display. The flaw detection data is stored corresponding to the tube display 31, and the signal processing result is clearly shown on the tube display 31.

S102において、渦電流探傷システム20で探傷データを取得する。探傷方法は、マルチコイルプローブ25を管内に挿入し、挿入・引抜機24で走査する。マルチコイルプローブ25の伝熱管長さ方向における位置を、エンコーダ値や挿入・引抜機の送り量或いは時間参照により取得する。図3(b)は、伝熱管長さ方向における位置(i)を示す。その位置に対応して、渦電流探傷器23よりX振幅値とY振幅値を取得する。探傷データは、各チャンネルのX振幅値やY振幅値或いは全振幅値(2乗平均値)として、マルチコイルプローブの伝熱管長さ方向位置に対して画像(Cスコープ)表示される。   In S102, flaw detection data is acquired by the eddy current flaw detection system 20. In the flaw detection method, the multi-coil probe 25 is inserted into the tube and scanned by the insertion / extraction machine 24. The position of the multi-coil probe 25 in the heat transfer tube length direction is acquired by referring to the encoder value, the feed amount of the insertion / extraction machine, or the time. FIG. 3B shows the position (i) in the heat transfer tube length direction. Corresponding to the position, the X amplitude value and the Y amplitude value are acquired from the eddy current flaw detector 23. The flaw detection data is displayed as an image (C scope) with respect to the heat transfer tube length direction position of the multi-coil probe as the X amplitude value, Y amplitude value, or total amplitude value (root mean square value) of each channel.

S103において、装置使用者は、画像表示上で2本のカーソル等により開始位置及び終了位置を選択する。或いは、既定の位置に自動的に設定される方法でも良い。目的の範囲に開始位置と終了位置が選択されれば良い。   In S103, the apparatus user selects a start position and an end position with two cursors or the like on the image display. Alternatively, a method of automatically setting to a predetermined position may be used. The start position and the end position may be selected within the target range.

S104において、選択範囲の中で信号処理する位置(i)を指定する。通常、選択範囲の開始位置(i=0)を最初に指定する。   In S104, the position (i) for signal processing in the selection range is designated. Usually, the starting position (i = 0) of the selection range is designated first.

S105において、位置(i=0)で最大振幅値を持つCH(j)を探索する。振幅値はX振幅値やY振幅値或いは全振幅値である。最大振幅値(i,j)をS1として保存する。 In S105, a search is made for CH (j) having the maximum amplitude value at the position (i = 0). The amplitude value is an X amplitude value, a Y amplitude value, or a total amplitude value. Maximum amplitude value (i, j) is stored as S 1.

S106において、隣接CH(j−1)の振幅(i,j−1)と隣接CH(j+1)の振幅値(i,j+1)を取得して比較し、大きい値をS2として保存する。 In S106, compared to obtain the amplitude (i, j-1) amplitude values of adjacent CH (j + 1) (i , j + 1) adjacent CH (j-1), stores a larger value as S 2.

S107において、S2/S1の値を算出して補正図から補正係数Aを決定する。補正図は理論的な感度分布を基にチャンネル間での感度比を表し、マルチコイルプローブによって異なる。例えば、図4のマルチコイルプローブの場合では、補正図は図5となる。図4(a)において、マルチコイルプローブは、筐体41の外周面に励磁コイル42と検出コイル43を45度ピッチで交互に配置する。励磁コイル42と検出コイル43は同一構造である、両者のチャンネル位置の角度をずらして連結されている。図4(b)は、検出コイルのAA断面図である。検出コイル43を図示の配置とした場合、単一チャンネルでの感度分布は図6の実線で表される。角度をずらしたチャンネルの感度分布は図6の点線で表される。チャンネル相互は不感部分を補完するが、最大感度の70%程度の低感度な部分が現れる。そこで、ある位置での2つのチャンネルの感度をS1とS2(<S1)として、その感度比(S2/S1)の値から最大感度S0に補正する補正係数Aを導入する。図5において、S2/S1=0の場合、S1はS0に相当し、補正係数AはA=1である。S2/S1=1の場合、S1をS0相当に補正するため、補正係数AはA=1.4である。0<(S2/S1)<1の場合も、S1をS0相当に補正するため、1<A<1.4の範囲で補正係数を算出する。上記ではS0,S1,S2を感度として表記したが、実際には感度を振幅値に対応させて補正係数Aを算出する。補正係数Aと最大振幅値S1との積算から補正振幅値AS1を求め、次ステップのしきい値判定に利用する。 In S107, the value of S 2 / S 1 is calculated and the correction coefficient A is determined from the correction diagram. The correction diagram represents the sensitivity ratio between channels based on the theoretical sensitivity distribution, and varies depending on the multi-coil probe. For example, in the case of the multi-coil probe shown in FIG. 4, the correction diagram is shown in FIG. 4A, in the multi-coil probe, excitation coils 42 and detection coils 43 are alternately arranged on the outer peripheral surface of a casing 41 at a 45-degree pitch. The excitation coil 42 and the detection coil 43 have the same structure, and are connected with their channel positions shifted in angle. FIG. 4B is a sectional view taken along line AA of the detection coil. When the detection coils 43 are arranged as shown, the sensitivity distribution in a single channel is represented by a solid line in FIG. The sensitivity distribution of the channel with the angle shifted is represented by a dotted line in FIG. Each channel complements the insensitive part, but a low sensitivity part of about 70% of the maximum sensitivity appears. Therefore, the sensitivity of two channels at a certain position is set as S 1 and S 2 (<S 1 ), and a correction coefficient A for correcting the sensitivity from the value of the sensitivity ratio (S 2 / S 1 ) to the maximum sensitivity S 0 is introduced. . In FIG. 5, when S 2 / S 1 = 0, S 1 corresponds to S 0 and the correction coefficient A is A = 1. When S 2 / S 1 = 1, the correction coefficient A is A = 1.4 in order to correct S 1 to be equivalent to S 0 . Even in the case of 0 <(S 2 / S 1 ) <1, in order to correct S 1 to be equivalent to S 0 , the correction coefficient is calculated in the range of 1 <A <1.4. In the above description, S 0 , S 1 , and S 2 are expressed as sensitivities, but actually, the correction coefficient A is calculated by associating the sensitivity with amplitude values. A correction amplitude value AS 1 is obtained from the integration of the correction coefficient A and the maximum amplitude value S 1 and used for threshold determination in the next step.

S108において、しきい値Sthと補正振幅値AS1を比較する。AS1<Sthの場合、S201に進んで位置(i)での欠陥サイズをゼロとする。AS1≧Sthの場合、S202に進んで位置(i)での欠陥サイズを推定線図から算出する。推定線図は欠陥サイズと最大振幅値との関係を表している。例えば、図7の校正試験体71では図8の関係が得られる。探傷前に校正試験体71の模擬欠陥72でデータを取得し、データ補間をして推定線図を得る。補正振幅値AS1の値に対応する欠陥サイズを推定線図から算出する。 In S108, it is compared with a threshold S th correction amplitude value AS 1. When AS 1 <S th , the process proceeds to S201 where the defect size at position (i) is set to zero. When AS 1 ≧ S th , the process proceeds to S202, and the defect size at the position (i) is calculated from the estimated diagram. The estimated diagram represents the relationship between the defect size and the maximum amplitude value. For example, the relationship of FIG. 8 is obtained in the calibration specimen 71 of FIG. Before flaw detection, data is acquired with the simulated defect 72 of the calibration specimen 71, and data interpolation is performed to obtain an estimated diagram. A defect size corresponding to the value of the correction amplitude value AS 1 is calculated from the estimated diagram.

S109において、選択範囲の信号処理を完了したか確認する。未完了であれば、位置(i)を位置(i+1)にしてS104から再度信号処理を実施する。完了であれば、次ステップを実施する。   In S109, it is confirmed whether the signal processing of the selected range is completed. If incomplete, position (i) is set to position (i + 1) and signal processing is performed again from S104. If complete, perform the next step.

S110において、選択範囲の位置に対して欠陥サイズをプロットして表示する。   In S110, the defect size is plotted and displayed with respect to the position of the selected range.

S111において、選択範囲内の信号処理全体で(S202)の処理過程があれば欠陥有とし、なければ欠陥無として管配列図の検査対象管に明示する。   In S111, if there is a processing step (S202) in the entire signal processing within the selected range, it is determined to be defective, and if there is no defect, it is clearly indicated in the inspection target tube of the tube arrangement diagram.

このように、伝熱管の長さ方向における任意位置の最大振幅値(S1)と、その最大振幅値(S1)を検出するチャンネルCH(j)に隣接するチャンネルCH(j−1),CH(j+1)が検出する振幅値(S2>S3)の中で大きい振幅値(S2)を取得し、前記最大振幅値(S1)及び隣接振幅値(S2)の振幅比(S2/S1)から補正係数(A)を決定し、補正振幅値(AS1)としきい値Sthを比較して欠陥サイズを算出することにより、チャンネル間で感度の低い部分も補正振幅値を使用することが可能である。補正振幅値であれば、欠陥と各チャンネルの位置関係を考慮して、しきい値判定することが可能である。従って、観測信号から欠陥サイズを推定する精度を高めて検査の信頼性を向上可能である。 Thus, the maximum amplitude value of an arbitrary position in the length direction of the heat transfer tube (S 1) and the channel CH (j-1) adjacent to the channel CH (j) for detecting the maximum amplitude value (S 1), A large amplitude value (S 2 ) among amplitude values (S 2 > S 3 ) detected by CH (j + 1) is acquired, and an amplitude ratio (A 2 ) between the maximum amplitude value (S 1 ) and the adjacent amplitude value (S 2 ) ( The correction coefficient (A) is determined from S 2 / S 1 ), and the correction amplitude value (AS 1 ) is compared with the threshold value S th to calculate the defect size. A value can be used. If it is a correction amplitude value, it is possible to determine the threshold value in consideration of the positional relationship between the defect and each channel. Therefore, it is possible to increase the accuracy of estimating the defect size from the observation signal and improve the reliability of the inspection.

本実施例に係るマルチコイルプローブでの渦電流探傷における信号処理の効果を確認する。渦電流探傷システム20において、マルチコイルプローブ25を渦電流探傷器23にケーブルで接続し、励磁或いは検出の電気信号を送受信する。渦電流探傷器23をコンピュータ22にケーブルで接続して、探傷条件や探傷信号の入出力を電気的に送受信する。挿入・引抜機24はケーブルを介してマルチコイルプローブ25の挿入・引抜を実施するとともに、位置の参照信号をコンピュータ22へ送信する。前記渦電流探傷システムは一般的な機器で実現可能である。マルチコイルプローブ25は図4のコイル配置であり、チャンネル位置を22.5度ずらして連結される。   The effect of signal processing in eddy current flaw detection with the multi-coil probe according to the present embodiment will be confirmed. In the eddy current flaw detection system 20, the multi-coil probe 25 is connected to the eddy current flaw detector 23 with a cable, and an electric signal for excitation or detection is transmitted and received. The eddy current flaw detector 23 is connected to the computer 22 with a cable to electrically transmit / receive flaw detection conditions and flaw detection signals. The insertion / extraction machine 24 inserts / extracts the multi-coil probe 25 via a cable and transmits a position reference signal to the computer 22. The eddy current flaw detection system can be realized by general equipment. The multi-coil probe 25 has the coil arrangement of FIG. 4 and is connected with the channel position shifted by 22.5 degrees.

図9は渦電流探傷システム20での探傷画像であり、図10は振幅値S1及び振幅値S2に対応するチャンネル(CH1とCH2)の信号波形である。肉厚の50%t深さの外面割れに対してS1=1.4VとS2=1.4Vで検出し、S2/S1=1であった。図5の補正図から、補正係数AはA=1.4であり、補正振幅値AS1はAS1=2.0Vである。ここで、しきい値を肉厚の20%t深さの外面割れに相当する振幅Sth=0.2Vとすると、図8の推定線図を利用して欠陥サイズは深さ50%相当と算出される。これにより、欠陥サイズの推定精度を高めて検査の信頼性を向上できる。 Figure 9 is a flaw detection image of an eddy current flaw detection system 20, FIG. 10 is a signal waveform of the channel (CH1 and CH2) corresponding to the amplitude value S 1 and the amplitude value S 2. An outer surface crack having a thickness of 50% t was detected at S 1 = 1.4 V and S 2 = 1.4 V, and S 2 / S 1 = 1. From the correction diagram of FIG. 5, the correction coefficient A is A = 1.4, and the correction amplitude value AS 1 is AS 1 = 2.0V. Here, assuming that the threshold value is an amplitude S th = 0.2 V corresponding to an outer surface crack with a depth of 20% of the thickness, the defect size is equivalent to a depth of 50% using the estimated diagram of FIG. Calculated. Thereby, the estimation accuracy of the defect size can be improved and the reliability of the inspection can be improved.

20 渦電流探傷システム
21 モニタ
22 コンピュータ
23 渦電流探傷器
24 挿入・引抜機
25 マルチコイルプローブ
31 管表示
32 検査対象管
41 筐体
42 励磁コイル
43 検出コイル
71 校正試験体
72 模擬欠陥
20 Eddy current flaw detection system 21 Monitor 22 Computer 23 Eddy current flaw detector 24 Insertion / extraction machine 25 Multi-coil probe 31 Tube display 32 Tube to be inspected 41 Case 42 Excitation coil 43 Detection coil 71 Calibration specimen 72 Simulated defect

Claims (4)

マルチコイルプローブを用いて伝熱管を探傷する渦電流探傷方法において、前記伝熱管の長さ方向における任意位置の最大振幅値(S1)と、前記最大振幅値(S1)を検出するチャンネルに隣接するチャンネルが検出する振幅値(S2>S3)の中で大きい振幅値(S2)を取得し、前記最大振幅値(S1)及び隣接振幅値(S2)の振幅比(S2/S1)から補正係数(A)を決定し、補正振幅値(AS1)としきい値を比較して欠陥サイズを算出することを特徴とする渦電流探傷方法。 In eddy current testing method for testing a heat transfer tube using the multi-coil probe, the maximum amplitude value of an arbitrary position (S 1) in the length direction of the heat transfer tube, the channel for detecting the maximum amplitude value (S 1) A large amplitude value (S 2 ) is acquired from amplitude values (S 2 > S 3 ) detected by adjacent channels, and an amplitude ratio (S) between the maximum amplitude value (S 1 ) and the adjacent amplitude value (S 2 ). 2 / S 1 ), a correction coefficient (A) is determined, and the defect size is calculated by comparing the correction amplitude value (AS 1 ) with a threshold value. 請求項1の渦電流探傷方法において、マルチコイルプローブの管周方向の感度特性を少なくとも2つのチャンネルの振幅比で代表させて補正したことを特徴とする渦電流探傷方法。   2. The eddy current flaw detection method according to claim 1, wherein the sensitivity characteristic in the tube circumferential direction of the multi-coil probe is corrected by representing the amplitude ratio of at least two channels. マルチコイルプローブを用いて伝熱管を探傷する渦電流探傷システムにおいて、
前記伝熱管の長さ方向における任意位置の最大振幅値(S1)と、前記最大振幅値(S1)を検出するチャンネルに隣接するチャンネルが検出する振幅値(S2>S3)の中で大きい振幅値(S2)を取得し、前記最大振幅値(S1)及び隣接振幅値(S2)の振幅比(S2/S1)から補正係数(A)を決定し、補正振幅値(AS1)としきい値を比較して欠陥サイズを算出するコンピュータを備えることを特徴とする渦電流探傷システム。
In an eddy current flaw detection system that flaws a heat transfer tube using a multi-coil probe,
Among the maximum amplitude value (S 1 ) at an arbitrary position in the length direction of the heat transfer tube and the amplitude value (S 2 > S 3 ) detected by a channel adjacent to the channel detecting the maximum amplitude value (S 1 ) To obtain a large amplitude value (S 2 ), determine a correction coefficient (A) from the amplitude ratio (S 2 / S 1 ) of the maximum amplitude value (S 1 ) and the adjacent amplitude value (S 2 ), and correct the amplitude An eddy current flaw detection system comprising a computer that calculates a defect size by comparing a value (AS 1 ) with a threshold value.
請求項3の渦電流探傷システムにおいて、マルチコイルプローブの管周方向の感度特性を少なくとも2つのチャンネルの振幅比で代表させて補正したことを特徴とする渦電流探傷システム。   4. The eddy current flaw detection system according to claim 3, wherein the sensitivity characteristics in the tube circumferential direction of the multi-coil probe are corrected by representing the amplitude ratio of at least two channels.
JP2010171308A 2010-07-30 2010-07-30 Eddy current flaw detection method and eddy current flaw detection system Expired - Fee Related JP5372866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010171308A JP5372866B2 (en) 2010-07-30 2010-07-30 Eddy current flaw detection method and eddy current flaw detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010171308A JP5372866B2 (en) 2010-07-30 2010-07-30 Eddy current flaw detection method and eddy current flaw detection system

Publications (2)

Publication Number Publication Date
JP2012032249A JP2012032249A (en) 2012-02-16
JP5372866B2 true JP5372866B2 (en) 2013-12-18

Family

ID=45845837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171308A Expired - Fee Related JP5372866B2 (en) 2010-07-30 2010-07-30 Eddy current flaw detection method and eddy current flaw detection system

Country Status (1)

Country Link
JP (1) JP5372866B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6472314B2 (en) * 2015-04-17 2019-02-20 日立Geニュークリア・エナジー株式会社 Eddy current flaw detector and eddy current flaw detection method
JP6472334B2 (en) * 2015-06-03 2019-02-20 日立Geニュークリア・エナジー株式会社 Eddy current inspection device
KR102052849B1 (en) * 2019-03-14 2019-12-04 에디웍스(주) APPARATUS FOR DETECTING RAIL DEFECT BY USING MULTI-CHANNEL EDDY CURRENT SENSOR AND Sensor calibrating METHOD THEREOF AND RAIL DEFECT DETECTING METHOD

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2666301B2 (en) * 1987-11-04 1997-10-22 日本鋼管株式会社 Magnetic flaw detection
JPH06148143A (en) * 1992-11-04 1994-05-27 Genshiryoku Eng:Kk Eddy current flaw detecting probe
JPH06294775A (en) * 1993-04-12 1994-10-21 Nippon Steel Corp Detector and detecting apparatus for nonoriented defect

Also Published As

Publication number Publication date
JP2012032249A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
US20210010975A1 (en) Eddy current array probe and method for lift-off compensation during operation without known lift references
JP5406468B2 (en) Automatic lift-off compensation for pulsed eddy current inspection.
JP5194131B2 (en) Component inspection method and apparatus using omnidirectional eddy current probe
JP6472334B2 (en) Eddy current inspection device
EP3324180B1 (en) Defect measurement method and testing probe
JP2011133268A (en) Flaw detection device and method
JP5372866B2 (en) Eddy current flaw detection method and eddy current flaw detection system
JP5905285B2 (en) Inspection position detection method, inspection method, and inspection apparatus
KR20190106305A (en) Contrast test specimens for measuring defects in tube expansion using eddy current test and method for measuring defects using the same
US9243883B2 (en) Apparatus and method for conducting and real-time application of EC probe calibration
JP5364643B2 (en) Eddy current flaw detection method and contrast specimen used therefor
KR101226465B1 (en) Non destructive inspection apparatus and its method for measurement of accumulated oxide scale
JP6740077B2 (en) CALIBRATION DEVICE FOR NON-DESTRUCTIVE INSPECTION MEASUREMENT SYSTEM AND NON-DESTRUCTIVE INSPECTION MEASUREMENT METHOD
JP6288640B2 (en) Eddy current flaw detection probe, eddy current flaw detection apparatus, and eddy current flaw detection method
JP2009293981A (en) Inspection method using guide wave
KR20150047272A (en) Apparatus and method for defect detection
WO2023037664A1 (en) Scale thickness measuring method
KR200448416Y1 (en) Calibration Standard for Array Eddy Current Testing Probe
JP6007923B2 (en) Thinning detection device
JP2010230337A (en) Data collection device
JP5800696B2 (en) Remote field eddy current flaw detection system and remote field eddy current flaw detection method
JP2007085873A (en) Flaw detector
CN111458403B (en) Array eddy current detection method and system
JP2018066593A (en) Damage inspection system, damage inspection method, and program
JP5750066B2 (en) Non-destructive inspection method using guided waves

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees