JP2010229471A - Material for thermal barrier coating, thermal barrier coating, turbine member, and gas turbine - Google Patents

Material for thermal barrier coating, thermal barrier coating, turbine member, and gas turbine Download PDF

Info

Publication number
JP2010229471A
JP2010229471A JP2009077204A JP2009077204A JP2010229471A JP 2010229471 A JP2010229471 A JP 2010229471A JP 2009077204 A JP2009077204 A JP 2009077204A JP 2009077204 A JP2009077204 A JP 2009077204A JP 2010229471 A JP2010229471 A JP 2010229471A
Authority
JP
Japan
Prior art keywords
barrier coating
thermal barrier
thermal
mass
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009077204A
Other languages
Japanese (ja)
Other versions
JP5610698B2 (en
Inventor
Taiji Torigoe
泰治 鳥越
Ichiro Nagano
一郎 永野
Ikuo Okada
郁生 岡田
Keizo Tsukagoshi
敬三 塚越
Koji Takahashi
孝二 高橋
Yoshifumi Okajima
芳史 岡嶋
Nobumoto Kasumi
総司 霞
Eisaku Ito
栄作 伊藤
Kazutaka Mori
一剛 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009077204A priority Critical patent/JP5610698B2/en
Publication of JP2010229471A publication Critical patent/JP2010229471A/en
Application granted granted Critical
Publication of JP5610698B2 publication Critical patent/JP5610698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material for a thermal barrier coating having more excellent high temperature stability than a YSZ and high toughness; to provide the thermal barrier coating having a ceramic layer formed by using the material for the thermal barrier coating and having excellent durability; to provide a turbine member provided with the thermal barrier coating and to provide a gas turbine. <P>SOLUTION: In the thermal barrier coating including a metal bonding layer 12 on a heat resistant alloy substrate 11 and a ceramic layer 13 formed on the metal bonding layer 12, the material for the thermal barrier coating is characterized in that the ceramic layer 13 mainly has ZrO<SB>2</SB>containing Ta<SB>2</SB>O<SB>5</SB>and Y<SB>2</SB>O<SB>3</SB>as a stabilizer and a Y<SB>2</SB>O<SB>3</SB>content is 10 to 30 mass%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、耐久性に優れる遮熱コーティング用材料に係り、特に遮熱コーティングのトップコートとして用いられるセラミックス層に関する。   The present invention relates to a thermal barrier coating material having excellent durability, and more particularly to a ceramic layer used as a top coat of the thermal barrier coating.

近年、省エネルギー対策の一つとして、火力発電の熱効率を高めることが検討されている。発電用ガスタービンの発電効率を向上させるためには、ガス入口温度を上昇させることが有効であり、その温度は1500℃程度とされる場合もある。そして、このように発電装置の高温化を実現するためには、ガスタービンを構成する静翼や動翼、あるいは燃焼器の壁材などを耐熱部材で構成する必要がある。しかし、タービン翼の材料は耐熱金属であるが、それでもこのような高温には耐えられないために、この耐熱金属の基材上に金属結合層を介して溶射等の成膜方法によって酸化物セラミックスからなるセラミックス層を積層した遮熱コーティング(Thermal Barrier Coating,TBC)を形成して、耐熱金属基材を高温から保護することが行われている。セラミックス層としてはZrO系の材料、特にYで部分安定化又は完全安定化したZrOであるYSZ(イットリア安定化ジルコニア)が、セラミックス材料の中では比較的低い熱伝導率と比較的高い熱膨張率を有しているためによく用いられている。 In recent years, increasing the thermal efficiency of thermal power generation has been studied as one of the energy saving measures. In order to improve the power generation efficiency of the power generation gas turbine, it is effective to raise the gas inlet temperature, and the temperature may be about 1500 ° C. in some cases. And in order to implement | achieve high temperature of an electric power generating apparatus in this way, it is necessary to comprise the stationary blade and moving blade which comprise a gas turbine, or the wall material of a combustor with a heat-resistant member. However, although the material of the turbine blade is a refractory metal, it still cannot withstand such a high temperature. Therefore, the oxide ceramics is formed on the base material of the refractory metal by a film forming method such as thermal spraying through a metal bonding layer. Thermal barrier coating (Thermal Barrier Coating, TBC) formed by laminating ceramic layers made of is used to protect a refractory metal substrate from high temperatures. Comparison material ZrO 2 system as the ceramic layer, in particular Y 2 O 3 in partially stabilized or fully stabilized a ZrO 2 YSZ (yttria-stabilized zirconia) is a relatively low thermal conductivity in the ceramic material It is often used because of its high coefficient of thermal expansion.

ガスタービンの種類によっては、タービンの入口温度が1500℃を越える温度に上昇することが考えられている。また、近年環境対策の関係から、より熱効率の高いガスタービンの開発が進められており、タービンの入口温度が1700℃にも達すると考えられ、タービン翼の表面温度は1300℃もの高温になることが予想される。上記YSZからなるセラミックス層を備えた遮熱コーティング材によりガスタービンの動翼や静翼などを被覆した場合、1500℃を超える過酷な運転条件の下ではガスタービンの運転中に上記セラミックス層の一部が剥離し、耐熱性が損なわれるおそれがあった。また、YSZは1200℃を超える温度で脱安定化現象が生じ、耐久性が大幅に低減してしまう。   Depending on the type of gas turbine, it is considered that the inlet temperature of the turbine rises to a temperature exceeding 1500 ° C. In recent years, gas turbines with higher thermal efficiency have been developed due to environmental measures, and it is considered that the inlet temperature of the turbine will reach 1700 ° C, and the surface temperature of the turbine blades will be as high as 1300 ° C. Is expected. In the case where a moving blade or a stationary blade of a gas turbine is coated with a thermal barrier coating material provided with the ceramic layer made of YSZ, the ceramic layer is one of the ceramic layers during the operation of the gas turbine under severe operating conditions exceeding 1500 ° C. There was a possibility that the part peeled off and the heat resistance was impaired. Further, YSZ undergoes a destabilization phenomenon at a temperature exceeding 1200 ° C., and the durability is greatly reduced.

高温環境下での結晶安定性に優れ、高い熱耐久性を有する遮熱コーティングとして、例えば、Yb添加ZrO(特許文献1)、Dy添加ZrO(特許文献2)、Er添加ZrO(特許文献3)、SmYbZrO(特許文献4)が開発されている。また、耐熱性を向上させるために、HfO添加ZrO(特許文献5)が開発されている。 As a thermal barrier coating having excellent crystal stability under high temperature environment and high thermal durability, for example, Yb 2 O 3 added ZrO 2 (Patent Document 1), Dy 2 O 3 added ZrO 2 (Patent Document 2), Er 2 O 3 -added ZrO 2 (Patent Document 3) and SmYbZrO 7 (Patent Document 4) have been developed. In order to improve heat resistance, HfO 2 -added ZrO 2 (Patent Document 5) has been developed.

特開2003−160852号公報(請求項1、段落[0006]、[0027]〜[0030])JP 2003-160852 A (Claim 1, paragraphs [0006], [0027] to [0030]) 特開2001−348655号公報(請求項4及び5、段落[0010]〜[0011]、[0015])JP 2001-348655 A (claims 4 and 5, paragraphs [0010] to [0011], [0015]) 特開2003−129210号公報(請求項1、段落[0013]、[0015])JP2003-129210A (Claim 1, paragraphs [0013] and [0015]) 特開2007−270245号公報(請求項2、段落[0028]〜[0029]JP 2007-270245 A (Claim 2, paragraphs [0028] to [0029] 特開2004−270032号公報(請求項2、段落[0017])JP 2004-270032 A (claim 2, paragraph [0017])

本発明は、YSZよりも高温安定性に優れ高靭性を有する遮熱コーティング用材料を提供することを目的とする。また、該遮熱コーティング用材料を用いて形成されたセラミックス層を有する熱サイクル耐久性に優れた遮熱コーティング、並びに、該遮熱コーティングを備えるタービン用部材及びガスタービンを提供することを目的とする。   It is an object of the present invention to provide a thermal barrier coating material having excellent high temperature stability and high toughness than YSZ. Another object of the present invention is to provide a thermal barrier coating having a ceramic layer formed by using the thermal barrier coating material and excellent in thermal cycle durability, and a turbine member and a gas turbine including the thermal barrier coating. To do.

本発明の遮熱コーティング用材料は、安定化剤としてTa及びYを含有するZrOを主とし、前記Yの含有量が、10質量%以上30質量%以下とされることを特徴とする。
上記発明において、前記Taの含有量が、20質量%以上30質量%以下とされることが好ましい。
The thermal barrier coating material of the present invention is mainly composed of ZrO 2 containing Ta 2 O 5 and Y 2 O 3 as stabilizers, and the content of Y 2 O 3 is 10% by mass or more and 30% by mass or less. It is said that it is said.
In the above invention, the content of the Ta 2 O 5 is preferably set to more than 20 wt% 30 wt% or less.

上記組成の遮熱コーティング用材料は、Taを所定量以上添加することにより、1400℃を超える高温でも、単斜晶が析出せず靭性が高い正方晶が安定となる。すなわち、高温での結晶安定性に優れる。このため、高い熱サイクル耐久性を有する遮熱コーティングを得ることができる。また、本発明の遮熱コーティング用材料は、従来のYSZ(Y:8質量%)よりもY添加量が多く、Taも添加されているために、熱伝導率が低下する。 In the thermal barrier coating material having the above composition, when a predetermined amount or more of Ta is added, even at a high temperature exceeding 1400 ° C., a monoclinic crystal does not precipitate and a tetragonal crystal having high toughness becomes stable. That is, the crystal stability at high temperature is excellent. For this reason, a thermal barrier coating having high thermal cycle durability can be obtained. In addition, the thermal barrier coating material of the present invention has a larger amount of Y 2 O 3 added than conventional YSZ (Y 2 O 3 : 8 mass%), and Ta 2 O 5 is also added. The rate drops.

添加量が10質量%未満の場合、靭性が低い斜方晶である化合物相(YTaO)が析出する。そのため、遮熱コーティングの熱サイクル耐久性が大幅に低下する。また、Yが15質量%を超えると、正方晶の他に靭性の低い立方晶が安定となるため、遮熱コーティングの熱サイクル耐久性が低下する。Yが15質量%を超える組成で正方晶を得るためにはTa添加量を相対的に増加させる必要があるが、Taの過剰添加により正方晶以外の化合物相(YTaO)が生じるために、遮熱コーティングの熱サイクル耐久性が低下する。
Ta添加量が20質量%未満の場合、立方晶が析出して、遮熱コーティングの熱サイクル耐久性が低下する。また、Ta添加量が30質量%を超えると、化合物相が析出するために、遮熱コーティングの耐久性が低下する。
When the amount of Y 2 O 3 added is less than 10% by mass, a compound phase (YTaO 4 ) that is orthorhombic with low toughness is precipitated. Therefore, the thermal cycle durability of the thermal barrier coating is greatly reduced. On the other hand, when Y 2 O 3 exceeds 15% by mass, cubic crystals having low toughness in addition to tetragonal crystals become stable, so that the thermal cycle durability of the thermal barrier coating is lowered. For Y 2 O 3 to obtain a tetragonal a composition of greater than 15 wt%, it is necessary to relatively increase the Ta 2 O 5 amount, but a compound phase other than the Akira Masakata by excessive addition of Ta 2 O 5 Since (YTaO 4 ) is generated, the thermal cycle durability of the thermal barrier coating is lowered.
When the amount of Ta 2 O 5 added is less than 20% by mass, cubic crystals are precipitated and the thermal cycle durability of the thermal barrier coating is lowered. On the other hand, if the amount of Ta 2 O 5 added exceeds 30% by mass, the compound phase is precipitated, and the durability of the thermal barrier coating is lowered.

上記発明において、HfOを0.1質量%以上3質量%以下の割合で更に含有することが好ましい。
HfはZrと同族元素であるため、HfOとZrOとは性質が類似するが、融点はHfOの方が高い。HfOを0.1質量%以上含有することにより、遮熱コーティング用材料の融点を上昇させることができる。これにより、遮熱コーティングを高温で長時間保持することに伴う焼結現象を抑制することができ、熱遮蔽性及び熱サイクル耐久性の低下を防止することができる。しかし、HfOは高価であるために、製造コストを考慮すると多量添加は不適切である。そのため、含有量の上限は3質量%とされる。
In the above invention, preferably further contains a HfO 2 at a ratio of less than 3 wt% 0.1 wt%.
Since Hf is a similar element to Zr, HfO 2 and ZrO 2 have similar properties, but HfO 2 has a higher melting point. By containing 0.1% by mass or more of HfO 2 , the melting point of the thermal barrier coating material can be increased. Thereby, the sintering phenomenon accompanying holding a thermal barrier coating for a long time at high temperature can be suppressed, and the fall of heat shielding property and thermal cycle durability can be prevented. However, since HfO 2 is expensive, it is inappropriate to add a large amount in consideration of the manufacturing cost. Therefore, the upper limit of the content is 3% by mass.

本発明の遮熱コーティングは、耐熱合金基材上に、金属結合層と、該金属結合層上に形成され、上記の遮熱コーティング用材料からなるセラミックス層とを備えることを特徴とする。   The thermal barrier coating of the present invention comprises a metal bond layer on a heat resistant alloy substrate and a ceramic layer formed on the metal bond layer and made of the above-described thermal barrier coating material.

上記遮熱コーティング用材料からなるセラミックス層は、高温結晶安定性に優れ高い靭性を有する。そのため、熱サイクル耐久性に優れる遮熱コーティングとなる。   The ceramic layer made of the thermal barrier coating material has excellent high temperature crystal stability and high toughness. Therefore, it becomes a thermal barrier coating excellent in thermal cycle durability.

また、本発明は、上記遮熱コーティングを備えるタービン部材、及び、該タービン部材を備えたガスタービンを提供する。係る構成のタービン部材は、優れた高温安定性及び耐久性を有する。   Moreover, this invention provides the turbine member provided with the said thermal barrier coating, and the gas turbine provided with this turbine member. The turbine member having such a configuration has excellent high-temperature stability and durability.

上記組成の遮熱コーティング用材料は、高温での結晶安定性に優れ高い靭性を有するために、熱サイクル耐久性に優れる遮熱コーティングとすることができる。また、HfOを含有することにより、遮熱コーティングを高温で長時間保持することによる焼結現象を抑制して、熱遮蔽性及び熱サイクル耐久性の低下を防止することができる。この結果、タービン部材の高温安定性及び耐久性を向上させることができる。 Since the thermal barrier coating material having the above composition has excellent crystal stability at high temperatures and high toughness, it can be used as a thermal barrier coating having excellent thermal cycle durability. Further, by containing HfO 2 , it is possible to suppress a sintering phenomenon caused by holding the thermal barrier coating at a high temperature for a long time, and to prevent a decrease in thermal shielding properties and thermal cycle durability. As a result, the high temperature stability and durability of the turbine member can be improved.

本発明の遮熱コーティング用材料を適用したタービン部材の断面の模式図である。It is a schematic diagram of the cross section of the turbine member to which the material for thermal barrier coating of this invention is applied.

以下、本発明の実施形態を説明する。
図1は、本実施形態に係る遮熱コーティング用材料を適用したタービン部材の断面の模式図である。タービン動翼などの耐熱合金基材11上に、遮熱コーティングとして金属結合層12及びセラミックス層13が順に形成される。
Embodiments of the present invention will be described below.
FIG. 1 is a schematic cross-sectional view of a turbine member to which a thermal barrier coating material according to this embodiment is applied. A metal bonding layer 12 and a ceramic layer 13 are sequentially formed as a thermal barrier coating on a heat-resistant alloy substrate 11 such as a turbine rotor blade.

金属結合層12は、MCrAlY合金(Mは、Ni,Co,Fe等の金属元素またはこれらのうち2種類以上の組合せを示す)などとされる。   The metal bonding layer 12 is an MCrAlY alloy (M represents a metal element such as Ni, Co, Fe, or a combination of two or more of these).

本実施形態に係るセラミックス層を構成する遮熱コーティング用材料は、安定化剤としてTa及びYを含有するZrOを主として含む。Yの含有量は、10質量%以上30質量%以下とされる。Taの含有量は、好ましくは20質量%以上30質量%以下とされる。
本実施形態の遮熱コーティング用材料は、1500℃程度まで高靭性の正方晶が安定に存在する。そのため、熱サイクル耐久性に優れる遮熱コーティングとすることができる。また、熱伝導率の低いセラミックス層とすることができる。
The thermal barrier coating material constituting the ceramic layer according to the present embodiment mainly contains ZrO 2 containing Ta 2 O 5 and Y 2 O 3 as stabilizers. The content of Y 2 O 3 is 10% by mass or more and 30% by mass or less. The content of Ta 2 O 5 is preferably 20% by mass or more and 30% by mass or less.
In the thermal barrier coating material of this embodiment, tetragonal crystals with high toughness are stably present up to about 1500 ° C. Therefore, it can be set as the thermal barrier coating excellent in thermal cycle durability. Moreover, it can be set as the ceramic layer with low heat conductivity.

本実施形態の遮熱コーティング用材料は、HfOを0.1質量%以上3質量%以下の割合で含有しても良い。HfOの融点はZrOの融点よりも高いため、HfOを0.1質量%以上含有すると、遮熱コーティング用材料の融点が上昇する。セラミックス層は、熱遮蔽性を高めるとともに、ヤング率を低下させて遮熱コーティングの熱サイクル耐久性を向上させることを目的として、通常10%程度の気孔が導入される。融点が低い遮熱コーティング用材料で形成したセラミックス層は、高温で長時間保持すると、焼結により気孔が減少するために、熱遮蔽性及び熱サイクル耐久性が低下する。セラミックス層を融点の高い遮熱コーティング用材料とすることにより、焼結による気孔率低下を抑制することができる。 The thermal barrier coating material of this embodiment may contain HfO 2 at a ratio of 0.1% by mass to 3% by mass. Since the melting point of HfO 2 is higher than that of ZrO 2 , when HfO 2 is contained in an amount of 0.1% by mass or more, the melting point of the thermal barrier coating material increases. The ceramic layer usually has about 10% of pores introduced for the purpose of improving the heat shielding property and reducing the Young's modulus to improve the thermal cycle durability of the thermal barrier coating. When a ceramic layer formed of a thermal barrier coating material having a low melting point is held at a high temperature for a long time, the pores are reduced by sintering, so that the thermal shielding and thermal cycle durability are lowered. By using the ceramic layer as a thermal barrier coating material having a high melting point, a decrease in porosity due to sintering can be suppressed.

上記セラミックス層13は、大気圧プラズマ溶射、電子ビーム物理蒸着などによって製膜される。大気圧プラズマ溶射を適用する場合、本実施形態の遮熱コーティング用材料は、スプレードライ法などにより溶射粉末とされる。   The ceramic layer 13 is formed by atmospheric pressure plasma spraying, electron beam physical vapor deposition, or the like. When atmospheric pressure plasma spraying is applied, the thermal barrier coating material of the present embodiment is made into a thermal spray powder by a spray drying method or the like.

以下、実施例により本実施形態の遮熱コーティング用材料及び遮熱コーティング材を詳細に説明する。
(実施例)
表1に示す各組成の焼結体を、常圧焼結法にて焼結温度1500℃、焼結時間4時間として作製した。原料粉末にはTa、Y、ZrO、HfOを用いた。
各組成の焼結体の破壊靭性値を、JIS R 1607に基づいて測定した。
Hereinafter, the thermal barrier coating material and thermal barrier coating material of the present embodiment will be described in detail by way of examples.
(Example)
Sintered bodies of the respective compositions shown in Table 1 were produced by a normal pressure sintering method with a sintering temperature of 1500 ° C. and a sintering time of 4 hours. Ta 2 O 5 , Y 2 O 3 , ZrO 2 , and HfO 2 were used as the raw material powder.
The fracture toughness value of the sintered body of each composition was measured based on JIS R 1607.

スプレードライ法を用いて、特許第3825231号と同様の工程にて、粒径10〜125μmの表1に示す各組成の溶射粉末を製造した。上記溶射粉末を用いて、以下の方法により遮熱コーティングを形成した試験片を作製した。   Using the spray drying method, sprayed powders having the respective compositions shown in Table 1 having a particle size of 10 to 125 μm were manufactured in the same process as in Japanese Patent No. 3825231. A test piece on which a thermal barrier coating was formed by the following method was prepared using the sprayed powder.

厚さ5mmの合金金属基材(商標名:IN−738LC、化学組成:Ni−16Cr−8.5Co−1.75Mo−2.6W−1.75Ta−0.9Nb−3.4Ti−3.4Al(質量%))上に、低圧プラズマ溶射法にて膜厚100μmの金属結合層を形成した。金属結合層の組成は、Ni:32質量%、Cr:21質量%、Al:8質量%、Y:0.5質量%、Co:残部、とした。   Alloy metal substrate having a thickness of 5 mm (trade name: IN-738LC, chemical composition: Ni-16Cr-8.5Co-1.75Mo-2.6W-1.75Ta-0.9Nb-3.4Ti-3.4Al (Mass%)) A metal bonding layer having a thickness of 100 μm was formed by low-pressure plasma spraying. The composition of the metal bonding layer was Ni: 32% by mass, Cr: 21% by mass, Al: 8% by mass, Y: 0.5% by mass, and Co: the balance.

大気圧プラズマ溶射により上記溶射粉末を金属結合層上に溶射製膜し、膜厚0.5mmの溶射皮膜(セラミックス層)を形成した。溶射には、スルザーメテコ社製溶射ガン(F4ガン)を使用した。溶射条件は、溶射電流:600(A)、溶射距離:150(mm)、粉末供給量:60(g/min)、Ar/H量:35/7.4(l/min)とした。溶射皮膜の気孔率は、10%であった。なお、気孔率は、精密に研磨された遮熱コーティング断面を、光学顕微鏡(倍率100倍)を用いて任意の5視野(観察長さ約3mm)を撮影した顕微鏡写真から、画像処理法を用いて皮膜中に占める気孔の割合として算出した。 The above-mentioned sprayed powder was sprayed onto the metal bonding layer by atmospheric pressure plasma spraying to form a sprayed coating (ceramic layer) having a thickness of 0.5 mm. For spraying, a spray gun (F4 gun) manufactured by Sulzer Metco was used. The spraying conditions were as follows: spraying current: 600 (A), spraying distance: 150 (mm), powder supply amount: 60 (g / min), Ar / H 2 amount: 35 / 7.4 (l / min). The porosity of the sprayed coating was 10%. The porosity is determined by using an image processing method from a micrograph obtained by photographing an arbitrary five fields of view (observation length of about 3 mm) using an optical microscope (100 times magnification) with a precisely polished thermal barrier coating cross section. And calculated as a ratio of pores in the film.

上記工程にて作製した試験片について、溶射皮膜の熱伝導率を、JIS R 1611で規定されるレーザフラッシュ法により測定した。
試験片の熱サイクル耐久性を、特許第4031631号公報に記載のレーザ熱サイクル試験により測定した。試験条件は、遮熱コーティングの最高表面加熱温度:1400℃、最高界面温度:950℃、加熱時間3分、冷却時間3分とし、セラミックス層剥離までの熱サイクル数を計測した。
1300℃、1000時間の加熱処理前後それぞれの溶射皮膜の構成相を、粉末X線回折により同定した。また、1300℃、1000時間の加熱処理後の溶射皮膜気孔率を、上述の方法により測定した。
About the test piece produced at the said process, the thermal conductivity of the sprayed coating was measured by the laser flash method prescribed | regulated by JISR1611.
The thermal cycle durability of the test piece was measured by a laser thermal cycle test described in Japanese Patent No. 4031631. The test conditions were the maximum surface heating temperature of the thermal barrier coating: 1400 ° C., maximum interface temperature: 950 ° C., heating time 3 minutes, cooling time 3 minutes, and the number of thermal cycles until the ceramic layer was peeled was measured.
The constituent phases of each thermal spray coating before and after heat treatment at 1300 ° C. for 1000 hours were identified by powder X-ray diffraction. Moreover, the thermal spray coating porosity after 1300 degreeC and 1000-hour heat processing was measured by the above-mentioned method.

(比較例)
:8質量%を添加したZrOを用い、常圧焼結法にて焼結温度1500℃、焼結時間 4 時間の条件で焼結体を作製した。また、実施例と同様にして、比較例の組成の遮熱コーティング用材料を溶射製膜し、試験片を作製した。
実施例と同様にして、焼結体の破壊靭性値、溶射皮膜の熱伝導率、構成相、加熱処理後の気孔率、試験片の熱サイクル耐久性を測定した。
(Comparative example)
Using ZrO 2 added with Y 2 O 3 : 8% by mass, a sintered body was produced by a normal pressure sintering method under a sintering temperature of 1500 ° C. and a sintering time of 4 hours. Further, in the same manner as in the example, a thermal barrier coating material having the composition of the comparative example was formed by thermal spraying to produce a test piece.
In the same manner as in the examples, the fracture toughness value of the sintered body, the thermal conductivity of the thermal spray coating, the constituent phase, the porosity after the heat treatment, and the thermal cycle durability of the test piece were measured.

表1に、実施例及び比較例の組成と、焼結体及び溶射皮膜の特性を示す。

Figure 2010229471
Table 1 shows the compositions of the examples and comparative examples, and the characteristics of the sintered body and the sprayed coating.
Figure 2010229471

比較例の組成では、溶射皮膜の構成相が準安定正方晶であり、焼結体は比較的高い破壊靭性値を示した。しかし、加熱処理後の溶射皮膜の構成相は、立方晶と単斜晶との混合相に変化した。このため、試験片の熱サイクル耐久性は低かった。また、加熱処理により、溶射皮膜の気孔率が10%から7%まで減少した。   In the composition of the comparative example, the constituent phase of the sprayed coating was metastable tetragonal, and the sintered body exhibited a relatively high fracture toughness value. However, the constituent phase of the thermal spray coating after the heat treatment changed to a mixed phase of cubic and monoclinic. For this reason, the thermal cycle durability of the test piece was low. Moreover, the porosity of the thermal spray coating decreased from 10% to 7% by the heat treatment.

試料番号2〜4(Y:10〜15質量%)では、焼結体で高い破壊靭性が得られた。加熱処理前後での溶射皮膜の構成相は、いずれも正方晶であった。このため、試料番号2〜4の試験片では、比較例の試験片よりも高い熱サイクル耐久性が得られた。また、試料番号2〜4の溶射皮膜の熱伝導率は、比較例の溶射皮膜より低下した。
一方、Y量が少ない試料番号1では、正方晶と斜方晶(YTaO)とが混在した相となった。Y量が多い試料番号5では、正方晶と立方晶とが混在した相となった。このため、試料番号1及び5の試験片は、低い熱サイクル耐久性を示した。
In sample numbers 2 to 4 (Y 2 O 3 : 10 to 15% by mass), high fracture toughness was obtained in the sintered body. The constituent phases of the thermal spray coating before and after the heat treatment were all tetragonal. For this reason, in the test pieces of sample numbers 2 to 4, higher thermal cycle durability was obtained than the test pieces of the comparative examples. Moreover, the thermal conductivity of the thermal spray coating of the sample numbers 2-4 fell from the thermal spray coating of the comparative example.
On the other hand, Sample No. 1 with a small amount of Y 2 O 3 was a phase in which tetragonal crystals and orthorhombic crystals (YTaO 4 ) were mixed. Sample No. 5 with a large amount of Y 2 O 3 was a phase in which tetragonal crystals and cubic crystals were mixed. For this reason, the test pieces of sample numbers 1 and 5 showed low thermal cycle durability.

試料番号3,7,8(Ta:20〜30質量%)では、焼結体で高い破壊靭性が得られた。加熱処理前後での溶射皮膜の構成相は、いずれも正方晶であった。このため、試料番号3,7,8の試験片では、比較例の試験片よりも高い熱サイクル耐久性が得られた。また、試料番号3,7,8の溶射皮膜の熱伝導率は、比較例の溶射皮膜より低下した。
一方、Ta量が少ない(相対的にYが多い)試料番号6では正方晶と立方晶とが混在した相となり、Ta量が多い(相対的にYが少ない)試料番号9では正方晶と斜方晶(YTaO)とが混在した相となった。このため、試料番号6及び9の試験片は、低い熱サイクル耐久性となった。
In sample numbers 3, 7, and 8 (Ta 2 O 5 : 20 to 30% by mass), high fracture toughness was obtained in the sintered body. The constituent phases of the thermal spray coating before and after the heat treatment were all tetragonal. For this reason, in the test pieces of sample numbers 3, 7, and 8, higher thermal cycle durability was obtained than the test piece of the comparative example. Moreover, the thermal conductivity of the thermal spray coating of sample numbers 3, 7, and 8 was lower than that of the thermal spray coating of the comparative example.
On the other hand, Sample No. 6 having a small amount of Ta 2 O 5 (relatively large amount of Y 2 O 3 ) has a phase in which tetragonal crystals and cubic crystals are mixed, and has a large amount of Ta 2 O 5 (relatively Y 2 O). 3 is small) tetragonal and orthorhombic crystals sample No. 9 (YTaO 4) and became mixed phase. For this reason, the test pieces of sample numbers 6 and 9 had low thermal cycle durability.

HfO含有量が少ない試料番号10では、加熱処理により、気孔率が10%から8%に低下した。HfO含有量が1質量%以上の試験片では、加熱処理後の気孔率が9.7〜9.8%であった。また、試料番号10の試験片は、HfO含有量が1質量%以上の試験片よりも、熱サイクル耐久性が低かった。この結果は、試料番号10の試験片ではHfO添加量が少ないために、遮熱コーティング用材料の融点が十分に上昇しなかったことを示している。 In sample number 10 having a low HfO 2 content, the porosity decreased from 10% to 8% by the heat treatment. In the test piece having a HfO 2 content of 1% by mass or more, the porosity after the heat treatment was 9.7 to 9.8%. Moreover, the test piece of sample number 10 had lower thermal cycle durability than the test piece having an HfO 2 content of 1% by mass or more. This result shows that the melting point of the thermal barrier coating material did not rise sufficiently due to the small amount of HfO 2 added to the test piece of sample number 10.

表1に示すように、特にY:Ta=1:2となる試料番号3,11〜13では、熱サイクル数が1000回を超え、非常に高い熱サイクル耐久性が得られた。 As shown in Table 1, the sample numbers 3 , 11 to 13 in which Y 2 O 3 : Ta 2 O 5 = 1: 2 in particular has a thermal cycle number exceeding 1000 times and a very high thermal cycle durability is obtained. It was.

11 耐熱合金基材
12 金属結合層
13 セラミックス層
11 Heat-resistant alloy base material 12 Metal bonding layer 13 Ceramic layer

Claims (6)

安定化剤としてTa及びYを含有するZrOを主とし、
前記Yの含有量が、10質量%以上30質量%以下とされることを特徴とする遮熱コーティング用材料。
Mainly ZrO 2 containing Ta 2 O 5 and Y 2 O 3 as a stabilizer,
Wherein Y 2 O 3 content is, material for thermal barrier coating, characterized in that it is 10 mass% to 30 mass%.
前記Taの含有量が、20質量%以上30質量%以下とされることを特徴とする請求項1に記載の遮熱コーティング用材料。 2. The thermal barrier coating material according to claim 1, wherein a content of the Ta 2 O 5 is 20% by mass or more and 30% by mass or less. HfOを0.1質量%以上3質量%以下の割合で更に含むことを特徴とする請求項1または請求項2に記載の遮熱コーティング用材料。 The thermal barrier coating material according to claim 1, further comprising HfO 2 at a ratio of 0.1% by mass to 3% by mass. 耐熱合金基材上に、金属結合層と、該金属結合層上に形成され、請求項1乃至請求項3に記載の遮熱コーティング用材料からなるセラミックス層とを備えることを特徴とする遮熱コーティング。   A heat shield comprising: a metal bond layer on a heat-resistant alloy substrate; and a ceramic layer formed on the metal bond layer and made of the thermal barrier coating material according to claim 1. coating. 請求項4に記載の遮熱コーティングを備えるタービン部材。   A turbine member comprising the thermal barrier coating according to claim 4. 請求項5に記載のタービン部材を備えるガスタービン。   A gas turbine comprising the turbine member according to claim 5.
JP2009077204A 2009-03-26 2009-03-26 Thermal barrier coating material, thermal barrier coating, turbine component and gas turbine Active JP5610698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009077204A JP5610698B2 (en) 2009-03-26 2009-03-26 Thermal barrier coating material, thermal barrier coating, turbine component and gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009077204A JP5610698B2 (en) 2009-03-26 2009-03-26 Thermal barrier coating material, thermal barrier coating, turbine component and gas turbine

Publications (2)

Publication Number Publication Date
JP2010229471A true JP2010229471A (en) 2010-10-14
JP5610698B2 JP5610698B2 (en) 2014-10-22

Family

ID=43045555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009077204A Active JP5610698B2 (en) 2009-03-26 2009-03-26 Thermal barrier coating material, thermal barrier coating, turbine component and gas turbine

Country Status (1)

Country Link
JP (1) JP5610698B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014234553A (en) * 2013-06-05 2014-12-15 一般財団法人ファインセラミックスセンター Material for thermal barrier coating
JP2015501375A (en) * 2011-10-13 2015-01-15 ゼネラル・エレクトリック・カンパニイ Thermal barrier coating system and method therefor
JP2015504480A (en) * 2011-11-10 2015-02-12 アルストム テクノロジー リミテッドALSTOM Technology Ltd High temperature thermal barrier coating
US9023486B2 (en) 2011-10-13 2015-05-05 General Electric Company Thermal barrier coating systems and processes therefor
JP2015089968A (en) * 2013-11-07 2015-05-11 一般財団法人ファインセラミックスセンター Heat shielding structure
US10221103B2 (en) 2015-12-15 2019-03-05 Hyundai Motor Company Porous ceramic composite particle and method for preparing the same
CN113773075A (en) * 2021-09-22 2021-12-10 湘潭大学 CMAS erosion resistant zirconium-tantalum thermal barrier coating material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264084A (en) * 1998-03-16 1999-09-28 Toshiba Corp Heat resistant member and its production
JP2005061400A (en) * 2003-08-14 2005-03-10 General Electric Co <Ge> Thermal barrier coating for reduced sintering and increased impact resistance, and process of making same
JP2006283759A (en) * 2005-03-31 2006-10-19 General Electric Co <Ge> Turbine constituent and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264084A (en) * 1998-03-16 1999-09-28 Toshiba Corp Heat resistant member and its production
JP2005061400A (en) * 2003-08-14 2005-03-10 General Electric Co <Ge> Thermal barrier coating for reduced sintering and increased impact resistance, and process of making same
JP2006283759A (en) * 2005-03-31 2006-10-19 General Electric Co <Ge> Turbine constituent and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015501375A (en) * 2011-10-13 2015-01-15 ゼネラル・エレクトリック・カンパニイ Thermal barrier coating system and method therefor
US9023486B2 (en) 2011-10-13 2015-05-05 General Electric Company Thermal barrier coating systems and processes therefor
US9034479B2 (en) 2011-10-13 2015-05-19 General Electric Company Thermal barrier coating systems and processes therefor
JP2015504480A (en) * 2011-11-10 2015-02-12 アルストム テクノロジー リミテッドALSTOM Technology Ltd High temperature thermal barrier coating
JP2014234553A (en) * 2013-06-05 2014-12-15 一般財団法人ファインセラミックスセンター Material for thermal barrier coating
JP2015089968A (en) * 2013-11-07 2015-05-11 一般財団法人ファインセラミックスセンター Heat shielding structure
US10221103B2 (en) 2015-12-15 2019-03-05 Hyundai Motor Company Porous ceramic composite particle and method for preparing the same
CN113773075A (en) * 2021-09-22 2021-12-10 湘潭大学 CMAS erosion resistant zirconium-tantalum thermal barrier coating material and preparation method thereof
CN113773075B (en) * 2021-09-22 2023-08-18 湘潭大学 CMAS erosion resistant zirconium-tantalum thermal barrier coating material and preparation method thereof

Also Published As

Publication number Publication date
JP5610698B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5610698B2 (en) Thermal barrier coating material, thermal barrier coating, turbine component and gas turbine
EP1953267B1 (en) Thermal barrier coatings with low thermal conductivity comprising lanthanide sesquioxides
JP5602156B2 (en) Method for manufacturing thermal barrier coating, turbine member provided with thermal barrier coating, and gas turbine
JP5622399B2 (en) Thermal barrier coating, turbine member equipped with the same, and gas turbine
JP2010235415A (en) Material for thermal barrier coating, thermal barrier coating, turbine member, and gas turbine and method for producing material for thermal barrier coating
JP2007270245A (en) Thermal shield coating member and manufacturing method therefor, and thermal shield coating member, gas turbine and sintered body
EP2767525B1 (en) Ceramic powders and methods therefor
JP4612955B2 (en) Thermal insulation
JP2003160852A (en) Thermal insulating coating material, manufacturing method therefor, turbine member and gas turbine
JP5285486B2 (en) Thermal barrier coating material, thermal barrier coating, turbine component and gas turbine
JP2008196040A (en) Heat resistant member
US20160010471A1 (en) Coating systems and methods therefor
JP2009228018A (en) Heat-shielding coating material, turbine member and gas turbine provided with the same, and method for manufacturing heat-shielding coating material
JP2003342751A (en) Heat resistant structural member and production method therefor
JP2024501158A (en) Thermally stable thermal barrier coating exhibits improved thermal conductivity and erosion resistance
JP6499271B2 (en) Thermal barrier coating and power generation system
JP2010242223A (en) Thermal barrier coating member, production method therefor, thermal barrier coating material, gas turbine, and sintered compact
JP2005163185A (en) Gas turbine, thermal barrier coating material, its production method, and turbine member
JP5320352B2 (en) Thermal barrier coating member and manufacturing method thereof, thermal barrier coating material, gas turbine, and sintered body
JP5164250B2 (en) Thermal barrier coating member and manufacturing method thereof
JP2019151927A (en) Thermal barrier coating material and article
JP6173778B2 (en) Thermal barrier coating materials
JP2012021191A (en) Bond coat layer, thermal spray powder therefor, high-temperature resistant member with bond coat layer, and method for manufacturing the same
JP2003313652A (en) Ceramic film for heat shielding, ceramic-coated member coated with the film and its manufacturing method
WO2014184906A1 (en) Heat shield coating member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140902

R151 Written notification of patent or utility model registration

Ref document number: 5610698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350