JP6173778B2 - Thermal barrier coating materials - Google Patents
Thermal barrier coating materials Download PDFInfo
- Publication number
- JP6173778B2 JP6173778B2 JP2013119271A JP2013119271A JP6173778B2 JP 6173778 B2 JP6173778 B2 JP 6173778B2 JP 2013119271 A JP2013119271 A JP 2013119271A JP 2013119271 A JP2013119271 A JP 2013119271A JP 6173778 B2 JP6173778 B2 JP 6173778B2
- Authority
- JP
- Japan
- Prior art keywords
- barrier coating
- thermal barrier
- compound
- mol
- coating material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
- Coating By Spraying Or Casting (AREA)
Description
本発明は、低熱伝導性及び耐久性に優れる皮膜等の形成に用いられる遮熱コーティング用材料に関する。 The present invention relates to a thermal barrier coating material used for forming a film having excellent low thermal conductivity and durability.
従来、発電用ガスタービンエンジン、航空機用ジェットエンジン等において、その燃焼ガスが高温であるために、動翼、静翼、燃焼器等の高温部品の表面には、遮熱コーティング(Thermal Barrier Coating:TBC)といわれる皮膜が施されている。そして、遮熱コーティングの表面において、耐食性、耐酸化性、耐熱性等を備えるものとなっている。この皮膜の形成には、イットリア安定化ジルコニアを含む材料が広く用いられているものの、近年、このイットリア安定化ジルコニアより低い熱伝導率を与える材料の探索が行われてきた。 2. Description of the Related Art Conventionally, in a gas turbine engine for power generation, an aircraft jet engine, and the like, since the combustion gas is high temperature, a thermal barrier coating (Thermal Barrier Coating) is applied to the surface of a high-temperature component such as a moving blade, a stationary blade, or a combustor. A coating referred to as TBC) is applied. The surface of the thermal barrier coating is provided with corrosion resistance, oxidation resistance, heat resistance, and the like. Although materials containing yttria-stabilized zirconia are widely used for the formation of this film, in recent years, a search has been made for materials that give lower thermal conductivity than yttria-stabilized zirconia.
特許文献1には、A2B2O7で表されるパイロクロール構造を有する化合物(La2Zr2O7等)を含む皮膜を有する金属物体が開示されている。
特許文献2には、希土類安定化ジルコニア及び希土類安定化ジルコニア−ハフニアに、酸化ランタンを0.1〜10mol%添加したセラミックスからなる遮熱層を有する遮熱コーティング部材が開示されている。
特許文献3には、Ln3Nb1−xTaxO7(0≦x≦1、LnはSc、Y及びランタノイドからなる群より選択される1種又は2種以上の原子)で表される化合物を主として含む遮熱コーティング用材料が開示されている。
特許文献4には、Ln1−xMxO1.5+x(0.13≦x≦0.24、LnはSc、Y及びランタノイドからなる群より選択される1種又は2種以上の原子、MはTa又はNb)で表される化合物を主として含む遮熱コーティング用材料が開示されている。
また、特許文献5には、Lnx+y−3xyTixTaxZr(1−3x)(1−y)O2+1.5xy−0.5y(0.05≦x≦0.25、0≦y≦0.15、Lnは、Y、Sm、Yb及びNdからなる群より選択される1種又は2種以上の原子)を主として含む遮熱コーティング用材料が開示されている。
In Patent Document 3, it is represented by Ln 3 Nb 1-x Ta x O 7 (0 ≦ x ≦ 1, Ln is one or more atoms selected from the group consisting of Sc, Y and lanthanoid). A thermal barrier coating material mainly comprising a compound is disclosed.
In
Further, Patent Document 5, Ln x + y-3xy Ti x Ta x Zr (1-3x) (1-y)
遮熱コーティング材料を含む高温構造材料において、昇温又は降温の際に相変態(相転移)を生ずる化合物を含むことは、温度変化により体積変化を引き起こし、皮膜等の割れをもたらすこととなる。そこで、遮熱コーティング材料としては、特に、25℃〜1,000℃の範囲において、イットリア安定化ジルコニアより低い熱伝導率を有し、相変態が発生しにくい材料が求められている。
本発明の目的は、低熱伝導性に優れるとともに、25℃〜1,200℃の範囲における昇温又は降温により相変態が発生しにくく、相変態に伴う体積変化による変形、破断等が抑制されて耐久性に優れた皮膜等の形成に用いられる遮熱コーティング用材料、及び、この材料を用いて形成された皮膜を備える物品(複合物)を提供することである。
In a high-temperature structural material including a thermal barrier coating material, inclusion of a compound that causes a phase transformation (phase transition) at the time of temperature increase or decrease causes a volume change due to the temperature change and causes cracking of the film or the like. Therefore, as a thermal barrier coating material, a material having a lower thermal conductivity than yttria-stabilized zirconia and hardly causing phase transformation is required particularly in the range of 25 ° C. to 1,000 ° C.
The object of the present invention is excellent in low thermal conductivity, and hardly causes phase transformation due to temperature rise or fall in the range of 25 ° C. to 1,200 ° C., and deformation, breakage, etc. due to volume change accompanying phase transformation are suppressed. It is to provide a thermal barrier coating material used for forming a film having excellent durability, and an article (composite) provided with a film formed using this material.
本発明は、以下に示される。
1.下記一般式(1)で表される化合物、及び、下記一般式(2)で表される化合物から選ばれた少なくとも1種の化合物を含む遮熱コーティング用材料。
Y1−xLaxTa3O9 (1)
(式中、xは、0.15〜0.30である。)
Y1+yTa3−3yZr3yO9 (2)
(式中、yは、0.05〜0.10である。)
2.上記1に記載の遮熱コーティング用材料を含む皮膜を備える物品。
The present invention is shown below.
1. A thermal barrier coating material comprising at least one compound selected from a compound represented by the following general formula (1) and a compound represented by the following general formula (2).
Y 1-x La x Ta 3 O 9 (1)
(In the formula, x is 0.15 to 0.30 .)
Y 1 + y Ta 3-3y Zr 3y O 9 (2)
(In the formula, y is 0.05 to 0.10.)
2. An article comprising a coating containing the thermal barrier coating material according to 1 above.
本発明の遮熱コーティング用材料は、25℃〜1,000℃の範囲における熱伝導率が2.0W/(m・K)未満といった、低熱伝導性に優れる皮膜等の形成に好適である。また、上記一般式(1)及び(2)で表される化合物は、いずれも、25℃〜1,200℃の範囲における昇温又は降温により相変態が発生しにくく、融点が1,700℃以上と高く、熱的に安定である。従って、本発明の遮熱コーティング用材料を用いて、基体の表面に皮膜を形成すると、上記一般式(1)及び(2)で表される化合物の融点以下の温度において、割れ、基体からの剥離等の発生が抑制され、耐久性(形状保持性)に優れる。このような性質を利用して、本発明の遮熱コーティング用材料を用いて、金属、合金、耐熱性酸化物等からなる部材の表面に形成した皮膜を有する物品(複合物)は、構造的に安定である。
本発明の物品は、好ましくは、基体と、その表面に、直接、又は、中間層を介して、遮熱コーティング材料を用いて形成された皮膜(遮熱コーティング)とを備える構成であり、1,400℃〜1,700℃程度の温度で、低熱伝導性、耐食性、耐酸化性、耐熱性、断熱性等における長寿命化の求められる用途に好適である。
The thermal barrier coating material of the present invention is suitable for forming a film having excellent low thermal conductivity such as a thermal conductivity of less than 2.0 W / (m · K) in the range of 25 ° C. to 1,000 ° C. The compounds represented by the above general formulas (1) and (2) are less likely to undergo phase transformation due to temperature rise or fall in the range of 25 ° C. to 1,200 ° C., and the melting point is 1,700 ° C. It is high as above and is thermally stable. Therefore, when a film is formed on the surface of the substrate using the thermal barrier coating material of the present invention, cracking occurs from the substrate at temperatures below the melting point of the compounds represented by the general formulas (1) and (2). Generation | occurrence | production of peeling etc. is suppressed and it is excellent in durability (shape retention property). An article (composite) having a film formed on the surface of a member made of a metal, an alloy, a heat-resistant oxide, etc. using the thermal barrier coating material of the present invention by utilizing such properties is structurally Is stable.
The article of the present invention preferably comprises a substrate and a film (thermal barrier coating) formed on the surface thereof directly or via an intermediate layer using a thermal barrier coating material. , 400 ° C to 1,700 ° C, and suitable for applications requiring long life in low thermal conductivity, corrosion resistance, oxidation resistance, heat resistance, heat insulation, and the like.
本発明の遮熱コーティング用材料は、下記一般式(1)で表される化合物、及び、下記一般式(2)で表される化合物から選ばれた少なくとも1種の化合物を含むことを特徴とする。
Y1−xLaxTa3O9 (1)
(式中、xは、0.15〜0.30である。)
Y1+yTa3−3yZr3yO9 (2)
(式中、yは、0.05〜0.10である。)
The thermal barrier coating material of the present invention comprises a compound represented by the following general formula (1) and at least one compound selected from the compounds represented by the following general formula (2): To do.
Y 1-x La x Ta 3 O 9 (1)
(In the formula, x is 0.15 to 0.30 .)
Y 1 + y Ta 3-3y Zr 3y O 9 (2)
(In the formula, y is 0.05 to 0.10.)
上記一般式(1)及び(2)で表される化合物は、カチオン欠損型の欠陥ペロブスカイト型複合酸化物(以下、「複合酸化物」ともいう。)であり、図1に示すような構造を有する。この構造は、A3B3O9で表されるペロブスカイト構造から、2/3のAイオン(図1における×印)が欠損した構造である。
上記一般式(1)で表される化合物は、AサイトにY原子及びLa原子が、BサイトにTa原子が入った構造を有する。一方、上記一般式(2)で表される化合物は、Aサイト及び×印にY原子が、BサイトにTa原子及びZr原子が入った構造を有する。
The compounds represented by the general formulas (1) and (2) are cation deficient defect perovskite complex oxides (hereinafter also referred to as “composite oxides”), and have a structure as shown in FIG. Have. This structure is a structure in which 2/3 of the A ions (marked with x in FIG. 1) are missing from the perovskite structure represented by A 3 B 3 O 9 .
The compound represented by the general formula (1) has a structure in which a Y atom and a La atom are contained in the A site, and a Ta atom is contained in the B site. On the other hand, the compound represented by the general formula (2) has a structure in which a Y atom is contained in the A site and x mark, and a Ta atom and a Zr atom are contained in the B site.
上記一般式(1)において、xは、0.15〜0.30であり、好ましくは0.18〜0.30、より好ましくは0.20〜0.30、特に好ましくは0.20〜0.30である。
また、上記一般式(2)において、yは、0.05〜0.10であり、好ましくは0.06〜0.09、より好ましくは0.07〜0.08、特に好ましくは0.08である。
x及びyが上記範囲にあることにより、上記複合化合物は、25℃〜1,200℃の範囲における昇温又は降温により相変態が発生しにくく、相変態に伴う体積変化が抑制される。これにより、上記化合物を含む本発明の遮熱コーティング材料を用いて、皮膜等を形成した場合に、特に、上記範囲の温度において、体積変化に伴う変形、破断等の不具合を抑制することができる。上記一般式(1)において、xが0.15未満の化合物の場合、斜方晶系から正方晶系への相変態(相転移)があり、皮膜の耐久性が劣ることとなる。一方、xが0.50より大きい化合物の場合、平均熱膨張係数が小さくなる傾向にある。
尚、相変態は、例えば、熱機械分析装置等を用い、空気、酸素ガス、アルゴンガス等の雰囲気中、昇温及び降温を一定速度として、25℃〜1,200℃の範囲において、化合物の加熱及び冷却を行い、寸法変化を観測して線膨張率の挙動により確認することができる。
In the above general formula (1), x is 0.15 to 0.30 , preferably 0.18 to 0.30 , more preferably 0.20 to 0.30 , and particularly preferably 0.20 to 0. .30.
In the general formula (2), y is 0.05 to 0.10, preferably 0.06 to 0.09, more preferably 0.07 to 0.08, and particularly preferably 0.08. It is.
When x and y are in the above range, the composite compound is unlikely to undergo phase transformation due to temperature rise or temperature fall in the range of 25 ° C. to 1,200 ° C., and volume change associated with phase transformation is suppressed. As a result, when a film or the like is formed using the thermal barrier coating material of the present invention containing the above compound, it is possible to suppress inconveniences such as deformation and breakage due to volume change, particularly at a temperature in the above range. . In the general formula (1), when x is less than 0.15, there is an orthorhombic to tetragonal phase transformation (phase transition), resulting in poor durability of the film. On the other hand, in the case of a compound where x is greater than 0.50, the average thermal expansion coefficient tends to be small.
In addition, the phase transformation is performed using, for example, a thermomechanical analyzer or the like in an atmosphere of air, oxygen gas, argon gas, etc., in a temperature range of 25 ° C. to 1,200 ° C. with a constant temperature increase and decrease. Heating and cooling can be performed, and the dimensional change can be observed and confirmed by the behavior of the linear expansion coefficient.
上記一般式(1)及び(2)で表される複合酸化物の融点は、通常、1,700℃以上であり、JIS R1611に準じて、レーザーフラッシュ法により測定される熱伝導度(測定温度:25℃〜1,000℃)が、好ましくは2.0W/(m・K)未満、より好ましくは1.8W/(m・K)未満である。
本発明の遮熱コーティング用材料がこれらの構造を有する複合酸化物を含むことにより、低熱伝導性及び耐久性に優れた皮膜を得ることができる。
The melting point of the composite oxide represented by the general formulas (1) and (2) is usually 1,700 ° C. or higher, and the thermal conductivity (measurement temperature) measured by the laser flash method in accordance with JIS R1611. : 25 ° C. to 1,000 ° C.) is preferably less than 2.0 W / (m · K), more preferably less than 1.8 W / (m · K).
When the thermal barrier coating material of the present invention contains a complex oxide having these structures, a film having excellent low thermal conductivity and durability can be obtained.
本発明の遮熱コーティング用材料に含有される上記複合酸化物は、1種のみであってよいし、2種以上であってもよい。
本発明の遮熱コーティング用材料は、上記複合酸化物のみからなることが好ましい。
The composite oxide contained in the thermal barrier coating material of the present invention may be only one type or two or more types.
The thermal barrier coating material of the present invention preferably comprises only the above complex oxide.
本発明の遮熱コーティング用材料を、電子ビーム物理気相堆積(EB−PVD)、プラズマ溶射、真空プラズマ溶射、フレーム溶射、高速溶射、焼結等の方法に供することにより、所望の材料からなる基体等の表面に、安定な皮膜を形成することができる。 The thermal barrier coating material of the present invention is made of a desired material by being subjected to methods such as electron beam physical vapor deposition (EB-PVD), plasma spraying, vacuum plasma spraying, flame spraying, high-speed spraying, and sintering. A stable film can be formed on the surface of a substrate or the like.
上記一般式(1)で表される複合酸化物の製造方法は、Y元素を含む化合物(以下、「化合物(m1)」という。)と、La元素を含む化合物(以下、「化合物(m2)」という。)と、Ta元素を含む化合物(以下、「化合物(m3)」という。)とを、各原子のモル比が所定の割合となるように配合し、これを熱処理する方法が一般的である。
上記一般式(2)で表される複合酸化物の製造方法もまた、Y元素を含む化合物(以下、「化合物(m1)」という。)と、Ta元素を含む化合物(以下、「化合物(m3)」という。)と、Zr元素を含む化合物(以下、「化合物(m4)」という。)とを、各原子のモル比が所定の割合となるように配合し、これを熱処理する方法が一般的である。
上記のいずれの場合も、更に、より均質な複合酸化物を得るために、例えば、尿素を含む混合物とした後、これを熱処理する方法もある。
The method for producing the composite oxide represented by the general formula (1) includes a compound containing a Y element (hereinafter referred to as “compound (m1)”) and a compound containing a La element (hereinafter referred to as “compound (m2)”). And a compound containing Ta element (hereinafter referred to as “compound (m3)”) in such a manner that the molar ratio of each atom is a predetermined ratio, and this is heat treated. It is.
The method for producing the composite oxide represented by the general formula (2) also includes a compound containing a Y element (hereinafter referred to as “compound (m1)”) and a compound containing a Ta element (hereinafter referred to as “compound (m3)”. ) ") And a compound containing a Zr element (hereinafter referred to as" compound (m4) ") are generally blended so that the molar ratio of each atom is a predetermined ratio, and this is heat treated. Is.
In any of the above cases, in order to obtain a more homogeneous composite oxide, for example, there is also a method of heat-treating a mixture containing urea.
上記化合物(m1)、化合物(m2)、化合物(m3)及び化合物(m4)としては、酸化物、水酸化物、硫酸塩、炭酸塩、硝酸塩、リン酸塩、ハロゲン化物等を用いることができる。これらのうち、組成がより均一な複合酸化物を得る場合には、水溶性化合物が好ましいが、水不溶性化合物を用いることもできる。 As the compound (m1), the compound (m2), the compound (m3), and the compound (m4), oxides, hydroxides, sulfates, carbonates, nitrates, phosphates, halides, and the like can be used. . Among these, when obtaining a complex oxide having a more uniform composition, a water-soluble compound is preferable, but a water-insoluble compound can also be used.
上記一般式(1)及び(2)で表される複合酸化物の好ましい製造方法を説明する。 A preferred method for producing the composite oxide represented by the general formulas (1) and (2) will be described.
上記一般式(1)で表される複合酸化物の場合、初めに、Y原子及びLa原子の合計量と、Ta原子とのモル比が1:3となるように配合した、化合物(m1)、化合物(m2)及び化合物(m3)と、尿素とを含む水溶液又は水分散液(懸濁液)からなる混合液を調製する。この混合液に含まれる化合物(m1)、化合物(m2)、化合物(m3)及び尿素の濃度は、それぞれ、好ましくは0.02〜0.1mol/l、0.02〜0.1mol/l、0.02〜0.1mol/l及び2〜10mol/l、より好ましくは0.02〜0.05mol/l、0.02〜0.05mol/l、0.02〜0.05mol/l及び2〜5mol/lである。
また、上記一般式(2)で表される複合酸化物の場合、初めに、Y原子、Ta原子及びZr原子の電荷バランスが保持されるように配合した、化合物(m1)、化合物(m3)及び化合物(m4)と、尿素とを含む水溶液又は水分散液(懸濁液)からなる混合液を調製する。この混合液に含まれる化合物(m1)、化合物(m3)、化合物(m4)及び尿素の濃度は、それぞれ、好ましくは0.02〜0.1mol/l、0.02〜0.1mol/l、0.02〜0.1mol/l及び2〜10mol/l、より好ましくは0.02〜0.05mol/l、0.02〜0.05mol/l、0.02〜0.05mol/l及び2〜5mol/lである。
以下、同じ操作により、上記一般式(1)及び(2)で表される複合酸化物が製造される。
In the case of the composite oxide represented by the general formula (1), first, the compound (m1) compounded so that the molar ratio of the total amount of Y atoms and La atoms to Ta atoms is 1: 3 Then, a mixed solution composed of an aqueous solution or an aqueous dispersion (suspension) containing the compound (m2) and the compound (m3) and urea is prepared. The concentrations of the compound (m1), the compound (m2), the compound (m3) and the urea contained in this mixed solution are preferably 0.02 to 0.1 mol / l, 0.02 to 0.1 mol / l, 0.02-0.1 mol / l and 2-10 mol / l, more preferably 0.02-0.05 mol / l, 0.02-0.05 mol / l, 0.02-0.05 mol / l and 2 ~ 5 mol / l.
In the case of the composite oxide represented by the general formula (2), first, the compound (m1) and the compound (m3) are blended so that the charge balance of Y atom, Ta atom and Zr atom is maintained. And a mixed solution composed of an aqueous solution or aqueous dispersion (suspension) containing the compound (m4) and urea. The concentrations of the compound (m1), the compound (m3), the compound (m4) and the urea contained in this mixed solution are preferably 0.02 to 0.1 mol / l, 0.02 to 0.1 mol / l, 0.02-0.1 mol / l and 2-10 mol / l, more preferably 0.02-0.05 mol / l, 0.02-0.05 mol / l, 0.02-0.05 mol / l and 2 ~ 5 mol / l.
Hereinafter, the composite oxide represented by the general formulas (1) and (2) is manufactured by the same operation.
次に、上記混合液を、還流冷却下、80℃〜95℃の温度で加熱して尿素加水分解反応を行う。反応時間は、通常、10〜20時間である。
その後、反応系に含まれる反応生成物の形態によって、必要に応じて、遠心分離等を行い、反応生成物を回収する。そして、水、アルコール等を用いて洗浄し、乾燥させ、必要に応じて、粉砕することにより、第1前駆化合物からなる粉体を得る。
次に、第1前駆化合物からなる粉体を整粒し、必要に応じて、プレス成形等に供して、板状、塊状等の成形物を作製する。そして、この成形物を、酸素ガスを含む雰囲気下、1,200℃〜1,500℃の温度で、1〜3時間程度の熱処理(仮焼)を行い、第2前駆化合物からなる仮焼物を得る。
その後、得られた仮焼物を、必要に応じて、粉砕、整粒する。そして、必要に応じて、プレス成形等に供して、板状、塊状等の成形物を作製し、この成形物を、酸素ガスを含む雰囲気下、1,400℃〜1,700℃の温度で、1〜3時間程度の熱処理を行い、上記複合酸化物を得る。
Next, the mixed liquid is heated at a temperature of 80 ° C. to 95 ° C. under reflux cooling to perform a urea hydrolysis reaction. The reaction time is usually 10 to 20 hours.
Thereafter, depending on the form of the reaction product contained in the reaction system, centrifugation or the like is performed as necessary to collect the reaction product. And it wash | cleans using water, alcohol, etc., it is made to dry, and the powder which consists of a 1st precursor compound is obtained by grind | pulverizing as needed.
Next, the powder composed of the first precursor compound is sized and, if necessary, subjected to press molding or the like to produce a molded product such as a plate or lump. And this molded product is heat-treated (calcination) for about 1 to 3 hours at a temperature of 1,200 ° C. to 1,500 ° C. in an atmosphere containing oxygen gas, and a calcined product made of the second precursor compound is obtained. obtain.
Thereafter, the obtained calcined product is pulverized and sized as necessary. Then, if necessary, it is subjected to press molding or the like to produce a molded product such as a plate or a lump, and this molded product is subjected to a temperature of 1,400 ° C. to 1,700 ° C. in an atmosphere containing oxygen gas. Then, heat treatment is performed for about 1 to 3 hours to obtain the composite oxide.
本発明の遮熱コーティング用材料を用いて、金属、合金等の材料からなる基体の表面に、直接、又は、間接的に、遮熱コーティング(皮膜)を形成し、一体化された物品(遮熱コーティング付き物品)、即ち、複合物を得ることができる。 Using the thermal barrier coating material of the present invention, a thermal barrier coating (film) is formed directly or indirectly on the surface of a substrate made of a material such as a metal or an alloy, and an integrated article (shield) is formed. Thermally coated articles), ie composites can be obtained.
遮熱コーティング(皮膜)の形成方法は、上記例示した方法等とすることができる。また、遮熱コーティング(皮膜)の厚さは、目的、用途等に応じて、適宜、選択され、低熱伝導性、耐食性、耐酸化性、耐熱性、断熱性等の観点から、下限値は、通常、300μmである。 The method for forming the thermal barrier coating (film) may be the method exemplified above. In addition, the thickness of the thermal barrier coating (film) is appropriately selected according to the purpose, application, etc. From the viewpoint of low thermal conductivity, corrosion resistance, oxidation resistance, heat resistance, heat insulation, etc., the lower limit is Usually, it is 300 μm.
以下に、実施例を挙げ、本発明を更に詳細に説明するが、本発明の主旨を超えない限り、本発明は、かかる実施例に限定されるものではない。尚、下記において、部及び%は、特に断らない限り、質量基準である。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples as long as the gist of the present invention is not exceeded. In the following, “part” and “%” are based on mass unless otherwise specified.
比較例1(Y0.90La0.10Ta3O9を含む遮熱コーティング用材料の製造)
フッ素樹脂製の反応器に収容した蒸留水900グラムに、純度99.99%以上のY(NO3)3・6H2O粉末(関東化学社製)9グラム(0.023モル)と、純度99.99%以上のLa(NO3)3・6H2O粉末(関東化学社製)1グラム(0.002モル)と、を入れて、室温(25℃)で1時間撹拌し、無色透明の水溶液を得た。次いで、この水溶液に、尿素90グラム(3モル)を投入し、室温(25℃)で1時間撹拌した。その後、得られた無色透明の水溶液に、純度99.9%以上のTa2O5粉末(レアメタリック社製)17グラム(0.038モル)を投入し、室温(25℃)で7時間撹拌し、懸濁液を得た。
次に、懸濁液を加熱して95℃とし、還流冷却しながら、攪拌下、反応(尿素加水分解反応)させた(反応時間:15時間)。その後、得られた反応液を、25℃、4,800rpmで30分間遠心分離し、下層のゲルを回収した。このゲルを、大量の蒸留水に投入し、十分に撹拌したところで、上記と同じ条件で遠心分離し、下層のゲルを回収した。そして、このゲルを、大量のイソプロピルアルコールに投入し、十分に撹拌したところで、上記と同じ条件で遠心分離し、沈殿物を回収した。
その後、沈殿物を、大気雰囲気中、120℃で24時間加熱し、乾燥粉末とした。次いで、この乾燥粉末をふるい(100メッシュ)にかけて、微粉末を回収した。そして、この微粉末を、プレス成形(圧力5MPa)に供し、円板形状の成形体を作製した。その後、この成形体を、大気雰囲気中、1,400℃で1時間熱処理(仮焼)し、仮焼成形体を得た。得られた仮焼成形体を、室温(25℃)で、乳鉢により乾式粉砕した。
次いで、乾式粉砕物をふるい(100メッシュ)にかけて、微粉末を回収した。そして、この微粉末を、プレス成形(圧力25MPa)に供し、更に、冷間等方静水圧加圧(荷重2.5トン)を行って、円板形状の成形体を作製した。その後、この成形体を大気雰囲気中、1,650℃で1時間熱処理した。得られた焼成体を、室温(25℃)で、乳鉢により乾式粉砕し、そのX線回折測定を行ったところ、焼成体は、実質的にY0.90La0.10Ta3O9からなる単斜晶系であることが分かった(図2(A)参照)。また、焼成体を目視観察したところ、1,650℃における高温熱処理により、溶融等を伴っていないことを確認した。密度ρは6.83g/cm3であった。
上記のようにして得られた焼成体を、そのまま遮熱コーティング用材料とした。
Comparative Example 1 (Production of thermal barrier coating material containing Y 0.90 La 0.10 Ta 3 O 9 )
Distilled water 900 g were housed in a fluororesin-made reactor, with a purity of 99.99% or more Y (NO 3) 3 · 6H 2 O powder (manufactured by Kanto Chemical Co., Inc.) 9 g (0.023 mol), purity and 99.99% of La (NO 3) 3 · 6H 2 O powder (manufactured by Kanto Chemical Co., Inc.) 1 g (0.002 mol), put, stirred for 1 hour at room temperature (25 ° C.), colorless and transparent An aqueous solution of was obtained. Next, 90 g (3 mol) of urea was added to this aqueous solution, and the mixture was stirred at room temperature (25 ° C.) for 1 hour. Thereafter, 17 g (0.038 mol) of Ta 2 O 5 powder (manufactured by Rare Metallic) having a purity of 99.9% or more was added to the obtained colorless and transparent aqueous solution and stirred at room temperature (25 ° C.) for 7 hours. To obtain a suspension.
Next, the suspension was heated to 95 ° C. and reacted (urea hydrolysis reaction) with stirring while cooling under reflux (reaction time: 15 hours). Thereafter, the obtained reaction solution was centrifuged at 25 ° C. and 4,800 rpm for 30 minutes to recover the lower layer gel. When this gel was poured into a large amount of distilled water and sufficiently stirred, it was centrifuged under the same conditions as above to recover the lower layer gel. The gel was poured into a large amount of isopropyl alcohol, and when sufficiently stirred, the gel was centrifuged under the same conditions as described above to collect the precipitate.
Thereafter, the precipitate was heated in an air atmosphere at 120 ° C. for 24 hours to obtain a dry powder. The dried powder was then sieved (100 mesh) to collect a fine powder. And this fine powder was used for press molding (pressure 5MPa), and the disk-shaped molded object was produced. Then, this molded object was heat-processed (calcination) for 1 hour at 1,400 degreeC in air | atmosphere atmosphere, and the temporary baking molded object was obtained. The obtained calcined shape was dry-ground with a mortar at room temperature (25 ° C.).
Next, the dry pulverized product was sieved (100 mesh) to collect a fine powder. The fine powder was subjected to press molding (pressure 25 MPa), and further subjected to cold isostatic pressing (load 2.5 tons) to produce a disk-shaped molded body. Thereafter, the compact was heat-treated at 1,650 ° C. for 1 hour in an air atmosphere. The obtained fired body was dry pulverized with a mortar at room temperature (25 ° C.) and subjected to X-ray diffraction measurement. As a result, the fired body was substantially made of Y 0.90 La 0.10 Ta 3 O 9. It was found that it is a monoclinic system (see FIG. 2A). Moreover, when the fired body was visually observed, it was confirmed that it was not melted by high-temperature heat treatment at 1,650 ° C. The density ρ was 6.83 g / cm 3 .
The fired body obtained as described above was directly used as a thermal barrier coating material.
更に、上記焼成体を、レーザーフラッシュ法(JIS R1611に準拠)に供して、25℃、200℃、400℃、600℃、800℃及び1,000℃における熱伝導率を測定した。尚、固体の熱伝導率は、測定試料の気孔の影響を受けやすく、気孔を有すると、低めの値となることが知られている。そこで、緻密質の熱伝導率を得るために、下記式(10)に示される補正式(C. Wan, et al., Acta Mater., 58, 6166-6172 (2010))の利用が好ましいといわれている。
k’/k=1−4/3φ (10)
(k’:測定された熱伝導率、k:緻密質の熱伝導率、φ:気孔率)
上記の各温度における熱伝導率は、上記式(10)による、補正されたkとして、図4に示した。図4には、比較のために、M. R. Winter, et al., J. Am. Ceram. Soc., 90, 533-540 (2007)から引用した、イットリア安定化ジルコニア(YSZ)のデータも掲載した。
Further, the fired body was subjected to a laser flash method (based on JIS R1611), and the thermal conductivity at 25 ° C., 200 ° C., 400 ° C., 600 ° C., 800 ° C. and 1,000 ° C. was measured. It is known that the thermal conductivity of a solid is easily affected by the pores of the measurement sample, and has a lower value if it has pores. Therefore, in order to obtain a dense thermal conductivity, it is preferable to use the correction formula (C. Wan, et al., Acta Mater., 58, 6166-6172 (2010)) shown in the following formula (10). It is said.
k ′ / k = 1−4 / 3φ (10)
(K ′: measured thermal conductivity, k: dense thermal conductivity, φ: porosity)
The thermal conductivity at each temperature is shown in FIG. 4 as k corrected by the above equation (10). For comparison, FIG. 4 also shows yttria-stabilized zirconia (YSZ) data cited from MR Winter, et al., J. Am. Ceram. Soc., 90, 533-540 (2007). .
また、リガク社製熱機械分析装置「TMA8310」(型式名)を用い、大気中、昇温速度及び降温速度を毎分10℃として、25℃〜1,200℃の範囲において、焼成体の加熱及び冷却を行い、圧縮荷重法(荷重:98mN)により寸法変化を測定し、線膨張率を算出した。その結果を図5に示す。また、上記温度範囲における線膨張係数は、9.61×10−6/℃であった。 In addition, using a thermomechanical analyzer “TMA8310” (model name) manufactured by Rigaku Corporation, heating the fired body in the range of 25 ° C. to 1,200 ° C. in the air at a heating rate and a cooling rate of 10 ° C. per minute. Then, the dimensional change was measured by the compression load method (load: 98 mN), and the linear expansion coefficient was calculated. The result is shown in FIG. Moreover, the linear expansion coefficient in the said temperature range was 9.61 * 10 < -6 > / degreeC.
実施例1(Y0.80La0.20Ta3O9を含む遮熱コーティング用材料の製造)
Y(NO3)3・6H2O粉末、La(NO3)3・6H2O粉末、尿素、及び、Ta2O5粉末の使用量を、それぞれ、8グラム(0.02モル)、2グラム(0.004モル)、90グラム(3モル)、及び、17グラム(0.038モル)とした以外は、比較例1と同様にして、焼成体を作製した。次いで、X線回折測定により、焼成体は、実質的にY0.80La0.20Ta3O9からなる正方晶系であることが分かった(図2(B)参照)。また、焼成体を目視観察したところ、1,650℃における高温熱処理により、溶融等を伴っていないことを確認した。密度ρは7.30g/cm3であった。
その後、比較例1と同様にして、熱伝導率及び線膨張率を求めた。その結果を図4及び図6に示す。また、25℃〜1,200℃の範囲における線膨張係数は、8.43×10−6/℃であった。
Example 1 (Production of thermal barrier coating material containing Y 0.80 La 0.20 Ta 3 O 9 )
The amount of Y (NO 3 ) 3 · 6H 2 O powder, La (NO 3 ) 3 · 6H 2 O powder, urea, and Ta 2 O 5 powder was 8 grams (0.02 mol), 2 A fired body was produced in the same manner as in Comparative Example 1, except that the amount was changed to Gram (0.004 mol), 90 g (3 mol), and 17 g (0.038 mol). Next, X-ray diffraction measurement revealed that the fired body was a tetragonal system substantially composed of Y 0.80 La 0.20 Ta 3 O 9 (see FIG. 2B). Moreover, when the fired body was visually observed, it was confirmed that it was not melted by high-temperature heat treatment at 1,650 ° C. The density ρ was 7.30 g / cm 3 .
Thereafter, in the same manner as in Comparative Example 1, the thermal conductivity and the linear expansion coefficient were obtained. The results are shown in FIGS. Moreover, the linear expansion coefficient in the range of 25 degreeC-1,200 degreeC was 8.43 * 10 < -6 > / degreeC.
実施例2(Y0.70La0.30Ta3O9を含む遮熱コーティング用材料の製造)
Y(NO3)3・6H2O粉末、La(NO3)3・6H2O粉末、尿素、及び、Ta2O5粉末の使用量を、それぞれ、7グラム(0.018モル)、3グラム(0.007モル)、90グラム(3モル)、及び、17グラム(0.038モル)とした以外は、比較例1と同様にして、焼成体を作製した。次いで、X線回折測定により、焼成体は、実質的にY0.70La0.30Ta3O9からなる正方晶系であることが分かった(図2(C)参照)。また、焼成体を目視観察したところ、1,650℃における高温熱処理により、溶融等を伴っていないことを確認した。密度ρは7.37g/cm3であった。
その後、比較例1と同様にして、熱伝導率及び線膨張率を求めた。その結果を図4及び図7に示す。また、25℃〜1,200℃の範囲における線膨張係数は、7.86×10−6/℃であった。
Example 2 (Production of thermal barrier coating material containing Y 0.70 La 0.30 Ta 3 O 9 )
The amount of Y (NO 3 ) 3 · 6H 2 O powder, La (NO 3 ) 3 · 6H 2 O powder, urea, and Ta 2 O 5 powder was 7 grams (0.018 mol), 3 A fired body was produced in the same manner as in Comparative Example 1 except that it was changed to Gram (0.007 mol), 90 g (3 mol), and 17 g (0.038 mol). Next, X-ray diffraction measurement revealed that the fired body was a tetragonal system substantially composed of Y 0.70 La 0.30 Ta 3 O 9 (see FIG. 2C). Moreover, when the fired body was visually observed, it was confirmed that it was not melted by high-temperature heat treatment at 1,650 ° C. The density ρ was 7.37 g / cm 3 .
Thereafter, in the same manner as in Comparative Example 1, the thermal conductivity and the linear expansion coefficient were obtained. The results are shown in FIGS. Moreover, the linear expansion coefficient in the range of 25 degreeC-1,200 degreeC was 7.86 * 10 < -6 > / degreeC.
実施例3(Y1.08Ta2.76Zr0.24O9を含む遮熱コーティング用材料の製造)
フッ素樹脂製の反応器に収容した蒸留水900グラムに、純度99.99%以上のY(NO3)3・6H2O粉末(関東化学社製)10グラム(0.025モル)と、純度99.95%以上のZrCl2O・8H2O粉末(関東化学社製)3グラム(0.007モル)と、を入れて、室温(25℃)で1時間撹拌し、無色透明の水溶液を得た。次いで、この水溶液に、尿素90グラム(3モル)を投入し、室温(25℃)で1時間撹拌した。その後、得られた無色透明の水溶液に、純度99.9%以上のTa2O5粉末(レアメタリック社製)12グラム(0.026モル)を投入し、室温(25℃)で7時間撹拌し、懸濁液を得た。
次に、懸濁液を加熱して95℃とし、還流冷却しながら、攪拌下、反応(尿素加水分解反応)させた(反応時間:15時間)。その後、得られた反応液を、25℃、4,800rpmで30分間遠心分離し、下層のゲルを回収した。このゲルを、大量の蒸留水に投入し、十分に撹拌したところで、上記と同じ条件で遠心分離し、下層のゲルを回収した。そして、このゲルを、大量のイソプロピルアルコールに投入し、十分に撹拌したところで、上記と同じ条件で遠心分離し、沈殿物を回収した。
その後、沈殿物を、大気雰囲気中、120℃で24時間加熱し、乾燥粉末とした。次いで、この乾燥粉末をふるい(100メッシュ)にかけて、微粉末を回収した。そして、この微粉末を、プレス成形(圧力5MPa)に供し、円板形状の成形体を作製した。その後、この成形体を、大気雰囲気中、1,400℃で1時間熱処理(仮焼)し、仮焼成形体を得た。得られた仮焼成形体を、室温(25℃)で、乳鉢により乾式粉砕した。
次いで、乾式粉砕物をふるい(100メッシュ)にかけて、微粉末を回収した。そして、この微粉末を、プレス成形(圧力25MPa)に供し、更に、冷間等方静水圧加圧(荷重2.5トン)を行って、円板形状の成形体を作製した。その後、この成形体を大気雰囲気中、1,650℃で1時間熱処理した。得られた焼成体を、室温(25℃)で、乳鉢により乾式粉砕し、そのX線回折測定を行ったところ、焼成体は、実質的にY1.08Ta2.76Zr0.24O9からなる正方晶系であることが分かった(図3参照)。また、焼成体を目視観察したところ、1,650℃における高温熱処理により、溶融等を伴っていないことを確認した。密度ρは7.25g/cm3であった。
上記のようにして得られた焼成体を、そのまま遮熱コーティング用材料とした。
その後、比較例1と同様にして、熱伝導率及び線膨張率を求めた。その結果を図4及び図8に示す。また、25℃〜1,200℃の範囲における線膨張係数は、8.87×10−6/℃であった。
Example 3 (Production of thermal barrier coating material containing Y 1.08 Ta 2.76 Zr 0.24 O 9 )
Distilled water 900 g were housed in a fluororesin-made reactor, with a purity of 99.99% or more Y (NO 3) (manufactured by Kanto Chemical Co., Inc.) 3 · 6H 2 O powder 10 grams (0.025 mol), purity 3 g (0.007 mol) of 99.95% or more of ZrCl 2 O.8H 2 O powder (manufactured by Kanto Chemical Co., Inc.) was added and stirred at room temperature (25 ° C.) for 1 hour to give a colorless and transparent aqueous solution. Obtained. Next, 90 g (3 mol) of urea was added to this aqueous solution, and the mixture was stirred at room temperature (25 ° C.) for 1 hour. Thereafter, 12 g (0.026 mol) of Ta 2 O 5 powder (manufactured by Rare Metallic) having a purity of 99.9% or more was added to the obtained colorless and transparent aqueous solution and stirred at room temperature (25 ° C.) for 7 hours. To obtain a suspension.
Next, the suspension was heated to 95 ° C. and reacted (urea hydrolysis reaction) with stirring while cooling under reflux (reaction time: 15 hours). Thereafter, the obtained reaction solution was centrifuged at 25 ° C. and 4,800 rpm for 30 minutes to recover the lower layer gel. When this gel was poured into a large amount of distilled water and sufficiently stirred, it was centrifuged under the same conditions as above to recover the lower layer gel. The gel was poured into a large amount of isopropyl alcohol, and when sufficiently stirred, the gel was centrifuged under the same conditions as described above to collect the precipitate.
Thereafter, the precipitate was heated in an air atmosphere at 120 ° C. for 24 hours to obtain a dry powder. The dried powder was then sieved (100 mesh) to collect a fine powder. And this fine powder was used for press molding (pressure 5MPa), and the disk-shaped molded object was produced. Then, this molded object was heat-processed (calcination) for 1 hour at 1,400 degreeC in air | atmosphere atmosphere, and the temporary baking molded object was obtained. The obtained calcined shape was dry-ground with a mortar at room temperature (25 ° C.).
Next, the dry pulverized product was sieved (100 mesh) to collect a fine powder. The fine powder was subjected to press molding (pressure 25 MPa), and further subjected to cold isostatic pressing (load 2.5 tons) to produce a disk-shaped molded body. Thereafter, the compact was heat-treated at 1,650 ° C. for 1 hour in an air atmosphere. The obtained fired body was dry-ground with a mortar at room temperature (25 ° C.) and subjected to X-ray diffraction measurement. As a result, the fired body was substantially Y 1.08 Ta 2.76 Zr 0.24 O. 9 was found to be tetragonal (see FIG. 3). Moreover, when the fired body was visually observed, it was confirmed that it was not melted by high-temperature heat treatment at 1,650 ° C. The density ρ was 7.25 g / cm 3 .
The fired body obtained as described above was directly used as a thermal barrier coating material.
Thereafter, in the same manner as in Comparative Example 1, the thermal conductivity and the linear expansion coefficient were obtained. The results are shown in FIGS. Moreover, the linear expansion coefficient in the range of 25 degreeC-1,200 degreeC was 8.87 * 10 < -6 > / degreeC.
図4〜図8から明らかなように、比較例1は、本発明に係る一般式(1)及び(2)で表される化合物を含む遮熱コーティング材料を用いた実施例1〜3と同様に、25℃〜1,200℃の範囲において、イットリア安定化ジルコニア(YSZ)の熱伝導率よりも低く、遮熱性に優れることが分かる。しかしながら、比較例1に係る遮熱コーティング材料では、斜方晶系−正方晶系の相変態が確認された(図5)のに対し、実施例1〜3に係る遮熱コーティング材料では、相変態が確認されなかった(図6〜図8)。即ち、実施例1〜3に係る遮熱コーティング材料は、25℃〜1,200℃の範囲において、体積変化に伴う変形、破断等が抑制されて耐久性に優れた皮膜等の形成に好適であることが分かる。 As is clear from FIGS. 4 to 8, Comparative Example 1 is the same as Examples 1 to 3 using the thermal barrier coating material containing the compounds represented by the general formulas (1) and (2) according to the present invention. In addition, in the range of 25 ° C. to 1,200 ° C., the thermal conductivity of yttria-stabilized zirconia (YSZ) is lower and it can be seen that the heat shielding property is excellent. However, in the thermal barrier coating material according to Comparative Example 1, an orthorhombic-tetragonal phase transformation was confirmed (FIG. 5), whereas in the thermal barrier coating material according to Examples 1 to 3, the phase transformation was confirmed. The transformation was not confirmed (FIGS. 6 to 8). That is, the thermal barrier coating material according to Examples 1 to 3 is suitable for forming a film having excellent durability by suppressing deformation, breakage, and the like accompanying volume change in the range of 25 ° C. to 1,200 ° C. I understand that there is.
本発明の遮熱コーティング用材料によれば、低熱伝導性及び耐久性に優れる皮膜を、従来、公知の溶射等の方法により、金属、合金等からなる部材又はその表面に配された層(中間層用の層)の表面に効率よく形成することができる。そして、この構成は、航空機用ジェットエンジンにおける燃焼器、発電用ガスタービンにおける高温部品、その他、各種プラントにおける高温部品等への適用に好適である。 According to the thermal barrier coating material of the present invention, a film having excellent low thermal conductivity and durability is conventionally formed by a known method such as thermal spraying, or a layer (intermediate layer) disposed on the surface of a member made of metal, an alloy, or the like. Can be efficiently formed on the surface of the layer. This configuration is suitable for application to a combustor in an aircraft jet engine, a high-temperature component in a power generation gas turbine, and other high-temperature components in various plants.
Claims (2)
Y1−xLaxTa3O9 (1)
(式中、xは、0.15〜0.30である。)
Y1+yTa3−3yZr3yO9 (2)
(式中、yは、0.05〜0.10である。) A thermal barrier coating material comprising at least one compound selected from a compound represented by the following general formula (1) and a compound represented by the following general formula (2).
Y 1-x La x Ta 3 O 9 (1)
(In the formula, x is 0.15 to 0.30 .)
Y 1 + y Ta 3-3y Zr 3y O 9 (2)
(In the formula, y is 0.05 to 0.10.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013119271A JP6173778B2 (en) | 2013-06-05 | 2013-06-05 | Thermal barrier coating materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013119271A JP6173778B2 (en) | 2013-06-05 | 2013-06-05 | Thermal barrier coating materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014234553A JP2014234553A (en) | 2014-12-15 |
JP6173778B2 true JP6173778B2 (en) | 2017-08-02 |
Family
ID=52137478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013119271A Active JP6173778B2 (en) | 2013-06-05 | 2013-06-05 | Thermal barrier coating materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6173778B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019151927A (en) * | 2018-03-02 | 2019-09-12 | 一般財団法人ファインセラミックスセンター | Thermal barrier coating material and article |
EP3848481A4 (en) * | 2018-09-03 | 2022-06-08 | Japan Fine Ceramics Center | Thermal barrier coating material, and article |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6117560A (en) * | 1996-12-12 | 2000-09-12 | United Technologies Corporation | Thermal barrier coating systems and materials |
JP4481027B2 (en) * | 2003-02-17 | 2010-06-16 | 財団法人ファインセラミックスセンター | Thermal barrier coating member and manufacturing method thereof |
JP2005154885A (en) * | 2003-03-26 | 2005-06-16 | Mitsubishi Heavy Ind Ltd | Material for thermal barrier coating |
US20050129869A1 (en) * | 2003-12-12 | 2005-06-16 | General Electric Company | Article protected by a thermal barrier coating having a group 2 or 3/group 5 stabilization-composition-enriched surface |
JP4511987B2 (en) * | 2005-04-20 | 2010-07-28 | 三菱重工業株式会社 | Thermal barrier coating material |
JP2009221551A (en) * | 2008-03-17 | 2009-10-01 | Mitsubishi Heavy Ind Ltd | Thermal barrier coating material |
JP2009191297A (en) * | 2008-02-12 | 2009-08-27 | Mitsubishi Heavy Ind Ltd | Thermal barrier coating material |
EP2186919B1 (en) * | 2008-02-12 | 2013-06-26 | Mitsubishi Heavy Industries, Ltd. | Heat-shielding coating material |
JP5610698B2 (en) * | 2009-03-26 | 2014-10-22 | 三菱重工業株式会社 | Thermal barrier coating material, thermal barrier coating, turbine component and gas turbine |
JP2010235415A (en) * | 2009-03-31 | 2010-10-21 | Mitsubishi Heavy Ind Ltd | Material for thermal barrier coating, thermal barrier coating, turbine member, and gas turbine and method for producing material for thermal barrier coating |
KR20140102203A (en) * | 2011-11-10 | 2014-08-21 | 알스톰 테크놀러지 리미티드 | High temperature thermal barrier coating |
JP6092615B2 (en) * | 2012-12-26 | 2017-03-08 | 一般財団法人ファインセラミックスセンター | Thermal barrier coating materials |
-
2013
- 2013-06-05 JP JP2013119271A patent/JP6173778B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014234553A (en) | 2014-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Structural evolution and thermophysical properties of (SmxGd1− x) 2Zr2O7 (0≤ x≤ 1.0) ceramics | |
Liu et al. | Influence of ytterbium-and samarium-oxides codoping on structure and thermal conductivity of zirconate ceramics | |
JP4511987B2 (en) | Thermal barrier coating material | |
US20060246226A1 (en) | Thermal barrier coating material | |
EP2186919B1 (en) | Heat-shielding coating material | |
Hong-song et al. | Influence of Gd2O3 addition on thermophysical properties of La2Ce2O7 ceramics for thermal barrier coatings | |
JP6200169B2 (en) | Method for producing lithium ion conductive oxide | |
JPWO2016129588A1 (en) | COATING MEMBER, COATING MATERIAL, AND METHOD FOR PRODUCING COATING MEMBER | |
Wang et al. | Phase stability, thermo-physical properties and thermal cycling behavior of plasma-sprayed CTZ, CTZ/YSZ thermal barrier coatings | |
JP2005501174A (en) | Thermal insulation layer for high temperature based on La2Zr2O7 | |
Xiang et al. | Synthesis kinetics and thermophysical properties of La2 (Zr0. 7Ce0. 3) 2O7 ceramic for thermal barrier coatings | |
JP2010235415A (en) | Material for thermal barrier coating, thermal barrier coating, turbine member, and gas turbine and method for producing material for thermal barrier coating | |
JP5117372B2 (en) | Insulating material and its manufacturing method and application | |
Hongsong et al. | Preparation and thermophysical properties of fluorite-type samarium–dysprosium–cerium oxides | |
JP5610698B2 (en) | Thermal barrier coating material, thermal barrier coating, turbine component and gas turbine | |
JP6092615B2 (en) | Thermal barrier coating materials | |
CN108439977B (en) | High-temperature low-thermal-conductivity hafnium oxide-based thermal barrier coating material and preparation method thereof | |
JP7061099B2 (en) | Materials and articles for thermal barrier coating | |
Xu et al. | Infrared radiation and thermal cyclic performance of a high-entropy rare-earth hexaaluminate coating prepared by atmospheric plasma spraying | |
Xu et al. | Composition, structure evolution and cyclic oxidation behavior of La2 (Zr0. 7Ce0. 3) 2O7 EB-PVD TBCs | |
Dudnik et al. | Thermal barrier coatings based on ZrO 2 solid solutions | |
JP6173778B2 (en) | Thermal barrier coating materials | |
JP5285486B2 (en) | Thermal barrier coating material, thermal barrier coating, turbine component and gas turbine | |
JP2009191297A (en) | Thermal barrier coating material | |
JP2019151927A (en) | Thermal barrier coating material and article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160519 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170403 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170627 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170705 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6173778 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |