JP2010229304A - Phenol resin, process for producing the same, epoxy resin composition including the resin, and cured article thereof - Google Patents

Phenol resin, process for producing the same, epoxy resin composition including the resin, and cured article thereof Download PDF

Info

Publication number
JP2010229304A
JP2010229304A JP2009078884A JP2009078884A JP2010229304A JP 2010229304 A JP2010229304 A JP 2010229304A JP 2009078884 A JP2009078884 A JP 2009078884A JP 2009078884 A JP2009078884 A JP 2009078884A JP 2010229304 A JP2010229304 A JP 2010229304A
Authority
JP
Japan
Prior art keywords
phenol
resin
phenol resin
epoxy resin
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009078884A
Other languages
Japanese (ja)
Other versions
JP5476762B2 (en
Inventor
Shinji Okamoto
慎司 岡本
Noriyuki Mitani
紀幸 三谷
Shintaro Yokonuma
伸太郎 横沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2009078884A priority Critical patent/JP5476762B2/en
Publication of JP2010229304A publication Critical patent/JP2010229304A/en
Application granted granted Critical
Publication of JP5476762B2 publication Critical patent/JP5476762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phenol resin which exhibits good curing performance with an epoxy resin and produces a cured article having heat resistance and containing a tetrakisphenol ethane skeleton with lower melting viscosity compared with the conventional phenol resin containing a tetrakisphenol ethane skeleton. <P>SOLUTION: The problem is solved by the process for producing a phenol resin which includes reacting phenols, dialdehydes, and a crosslinked compound containing formaldehyde, and the phenol resin obtained by the process. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、各種バインダー、コーティング材、積層材、成形材料等に有用な低溶融粘度であるフェノール樹脂、その製造方法およびそれを用いたエポキシ樹脂用硬化剤、硬化物に関するものである。
本発明のフェノール樹脂は半導体封止材用、プリント基板層間絶縁材用などのエポキシ樹脂用硬化剤として使用される他に、エポキシ化フェノール樹脂用の原料としても使用することができる。
The present invention relates to a phenol resin having a low melt viscosity useful for various binders, coating materials, laminated materials, molding materials, and the like, a production method thereof, a curing agent for epoxy resin using the same, and a cured product.
The phenolic resin of the present invention can be used as a raw material for an epoxidized phenolic resin in addition to being used as a curing agent for an epoxy resin such as for a semiconductor encapsulating material and a printed circuit board interlayer insulating material.

従来、フェノール類とジアルデヒド類からなるフェノール樹脂をエポキシ樹脂硬化剤として用いた場合、エポキシ樹脂との硬化性において良好な硬化性を示し、且つ、その硬化物が耐熱性、耐湿性が優れていることから、エポキシ樹脂用硬化剤として多く用いられてきた。(特許文献1参照)   Conventionally, when a phenol resin consisting of phenols and dialdehydes is used as an epoxy resin curing agent, it exhibits good curability with respect to curing with an epoxy resin, and the cured product has excellent heat resistance and moisture resistance. Therefore, it has been widely used as a curing agent for epoxy resins. (See Patent Document 1)

しかしながら、これらジアルデヒド類を使用したフェノール樹脂には、溶融粘度が高くなるという問題点がある。例えば、グリオキザールを使用した場合、結晶性が強く、融点の高いテトラキスフェノールエタン骨格を取るために過剰フェノールを多く添加しても溶融粘度が低下しない。
この対策として、反応を途中で停止させ、結晶性が無くなるほどの低分子成分を多く持たせることで溶融粘度を低下させることができるが、低分子成分が多いためにガラス転移温度や機械特性が十分でないという問題点が生じる。(特許文献2参照)
However, the phenol resin using these dialdehydes has a problem that the melt viscosity becomes high. For example, when glyoxal is used, the melt viscosity does not decrease even if a large amount of excess phenol is added to obtain a tetrakisphenolethane skeleton having a strong crystallinity and a high melting point.
As a countermeasure, melt viscosity can be lowered by stopping the reaction in the middle and having a large amount of low-molecular components so that there is no crystallinity. However, since there are many low-molecular components, the glass transition temperature and mechanical properties are low. The problem is not enough. (See Patent Document 2)

溶融粘度が高いと、種々の用途に使用する場合において、流動性が低い為に高温を必要とするなど作業性に問題がある。また、半導体封止材用途では充填不良等の成型性に不具合が発生する恐れがある。
そこでより低溶融粘度で取り扱いに相応しいテトラキスフェノールエタン骨格を含有するフェノール樹脂が強く要望されている。
When the melt viscosity is high, there is a problem in workability such as requiring high temperature due to low fluidity when used in various applications. In addition, there is a risk that defects may occur in moldability such as poor filling in semiconductor encapsulant applications.
Accordingly, there is a strong demand for a phenol resin containing a tetrakisphenol ethane skeleton having a lower melt viscosity and suitable for handling.

特許2747930号公報Japanese Patent No. 2747930 特開2001−48959号公報JP 2001-48959 A

本発明の目的は、エポキシ樹脂との硬化性において良好な硬化性を示し、且つその硬化物が耐熱性を有しながら、従来技術のテトラキスフェノールエタン骨格を含有するフェノール樹脂と比較し、低溶融粘度のテトラキスフェノールエタン骨格を含有するフェノール樹脂を提供することにある。   The object of the present invention is to exhibit good curability with the epoxy resin, and the cured product has low heat resistance compared to a phenol resin containing a tetrakisphenolethane skeleton of the prior art while the cured product has heat resistance. It is an object of the present invention to provide a phenol resin containing a tetrakisphenolethane skeleton having a viscosity.

本発明者は、上記目的を達成するために鋭意検討した結果、フェノール類とジアルデヒド類とメチレン架橋材を含有することにより、低溶融粘度で、エポキシ樹脂との硬化性において良好な硬化性を示し、且つその硬化物が耐熱性、機械特性に優れたフェノール樹脂が有効であることを見出し、本発明に至った。   As a result of intensive studies to achieve the above-mentioned object, the present inventor has a low melt viscosity and good curability with an epoxy resin by containing phenols, dialdehydes and a methylene crosslinking material. The present inventors have found that a phenol resin having a cured product excellent in heat resistance and mechanical properties is effective, and reached the present invention.

すなわち本発明は、下記一般式(2)で表されるフェノール類と、下記一般式(3)で表されるジアルデヒド類及びホルムアルデヒドを含有する架橋基化合物とを反応させることを特徴とするフェノール樹脂の製造方法およびそのフェノール樹脂である。   That is, the present invention is a phenol characterized by reacting a phenol represented by the following general formula (2) with a crosslinking group compound containing a dialdehyde represented by the following general formula (3) and formaldehyde. It is the manufacturing method of resin, and its phenol resin.

Figure 2010229304
Figure 2010229304

Figure 2010229304

(式中、Rはアルキレン基、又はアリール基であり、sは0〜2の整数である。また、R1は水素原子、ヒドロキシル基、炭素数1から6個のアルキル基、又はアリール基であり、pは0〜2の整数である。)
Figure 2010229304

(In the formula, R is an alkylene group or an aryl group, and s is an integer of 0 to 2. R1 is a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, or an aryl group. , P is an integer of 0-2.)

さらには、ジアルデヒド類がグリオキザール及び又はグルタルアルデヒドであるフェノール樹脂の製造方法である。
また、架橋基化合物として上記一般式(3)で示されるジアルデヒド類およびホルムアルデヒドを含有するフェノール樹脂である。
Furthermore, it is the manufacturing method of the phenol resin whose dialdehyde is glyoxal and / or glutaraldehyde.
Moreover, it is a phenol resin containing dialdehydes and formaldehyde represented by the general formula (3) as a crosslinking group compound.

本発明のフェノール樹脂は、高い耐熱性を有し、分子内にさらにメチレン架橋基を含有する構造としたことにより、エポキシ樹脂との硬化性において良好な硬化性も示し、耐熱性、機械特性を有しながら、従来技術のテトラキスフェノールエタン骨格を有するフェノール樹脂より低溶融粘度である。
また、該樹脂の用途としては、エポキシ樹脂硬化剤の他に、エポキシ樹脂として利用できる。
The phenolic resin of the present invention has high heat resistance and has a structure containing a methylene crosslinking group in the molecule, so that it exhibits good curability in curability with epoxy resin, and has heat resistance and mechanical properties. While having a lower melt viscosity than a phenolic resin having a tetrakisphenolethane skeleton of the prior art.
In addition to the epoxy resin curing agent, the resin can be used as an epoxy resin.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のフェノール樹脂は、下記一般式(2)で示されるフェノール類と、下記一般式(3)で示されるジアルデヒド類、及びホルムアルデヒドと反応させることによって得られる。   The phenol resin of this invention is obtained by making it react with the phenols shown by following General formula (2), the dialdehyde shown by following General formula (3), and formaldehyde.

Figure 2010229304
Figure 2010229304

Figure 2010229304
(式中、Rはアルキレン基、又はアリール基であり、sは0〜2の整数である。また、R1は水素原子、ヒドロキシル基、炭素数1から6個のアルキル基、又はアリール基であり、pは0〜2の整数である。)
Figure 2010229304
(In the formula, R is an alkylene group or an aryl group, and s is an integer of 0 to 2. R1 is a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, or an aryl group. , P is an integer of 0-2.)

本発明で使用するフェノール類は、一般式(2)で記載のとおり、ベンゼン環に1個以上の水酸基を有する化合物である。該フェノール類としては、例えば、置換または非置換のフェノール、ナフトール、ビスフェノールが挙げられ、式(1)におけるR、R、およびRで示される置換基としては、水酸基、炭素原子数1〜10の直鎖又は分岐状アルキル基、置換又は非置換のアリール基などが挙げられる。これらの置換基はR及びRにおいては1〜3個置換されていても良い。具体的に例示すると、フェノール;クレゾール、エチルフェノール、n−プロピルフェノール、オクチルフェノール、ノニルフェノール、フェニルフェノールなど、一置換フェノール類;キシレノール、メチルプロピルフェノール、ジプロピルフェノール、ジブチルフェノール、グアヤコール、グエトールなど、二置換フェノール類;トリメチルフェノールに代表される三置換フェノール類;ナフトール、メチルナフトールなどナフトール類;ビスフェノール、ビスフェノールA、ビスフェノールFなどのビスフェノール類、レゾルシン、カテコール、ハイドロキノンなどの2価フェノールなどが挙げられる。これらのフェノール類は、単独もしくは2種以上を混合して使用しても何ら問題はない。好ましいフェノール類としては、該フェノール類の反応性からして、無置換のフェノールおよびメタ位置換の炭素原子数1〜4の直鎖又は分岐状のアルキルフェノールであり、より好ましくは、フェノールおよびm−クレゾールである。 The phenols used in the present invention are compounds having one or more hydroxyl groups on the benzene ring as described in the general formula (2). Examples of the phenols, for example, a substituted or unsubstituted phenol, naphthol, bisphenol, and examples of the substituent represented by R 1, R 2, and R 3 in the formula (1), a hydroxyl group, carbon atoms 1 -10 linear or branched alkyl groups, substituted or unsubstituted aryl groups, and the like. One to three of these substituents may be substituted in R 1 and R 2 . Specific examples include: phenol; cresol, ethylphenol, n-propylphenol, octylphenol, nonylphenol, phenylphenol, monosubstituted phenols; xylenol, methylpropylphenol, dipropylphenol, dibutylphenol, guaiacol, guetol, etc. Substituted phenols; trisubstituted phenols typified by trimethylphenol; naphthols such as naphthol and methylnaphthol; bisphenols such as bisphenol, bisphenol A, and bisphenol F; and dihydric phenols such as resorcin, catechol, and hydroquinone. These phenols may be used alone or in combination of two or more. Preferred phenols are unsubstituted phenol and meta-substituted linear or branched alkylphenols having 1 to 4 carbon atoms in view of the reactivity of the phenols, and more preferably phenol and m- Cresol.

本発明で使用するジアルデヒド類としては一般式(3)で示され、具体的にはグリオキザール、グルタルアルデヒド、テレフタルアルデヒド等が挙げられる。これらジアルデヒド類は単独もしくは2種以上を混合して使用しても何ら問題はないが、入手の容易さからグリオキザールが好ましい。   The dialdehyde used in the present invention is represented by the general formula (3), and specific examples include glyoxal, glutaraldehyde, terephthalaldehyde and the like. These dialdehydes may be used alone or in combination of two or more, but there is no problem, but glyoxal is preferred because of its availability.

本発明で使用するメチレン架橋材としては、ホルムアルデヒドが好適に挙げられる。さらにホルムアルデヒドの形態としては、特に制限はないが、ホルムアルデヒド水溶液、及びパラホルムアルデヒド、トリオキサンなど酸存在下で分解してホルムアルデヒドとなる重合物を用いることもできる。好ましくは、取り扱いの容易なホルムアルデヒド水溶液であり、市販品の42%ホルムアルデヒド水溶液をそのまま使用できる。   Preferable examples of the methylene crosslinking material used in the present invention include formaldehyde. Furthermore, the form of formaldehyde is not particularly limited, but a formaldehyde aqueous solution and a polymer that decomposes in the presence of an acid such as paraformaldehyde and trioxane to formaldehyde can also be used. A formaldehyde aqueous solution that is easy to handle is preferable, and a commercially available 42% formaldehyde aqueous solution can be used as it is.

本発明の合成触媒としては、有機酸である蓚酸、蟻酸、酢酸、および硫酸、p−トルエンスルホン酸、硫酸ジエチルのようなフリーデルクラフト型触媒の存在下において縮重合させて合成することができる。   The synthesis catalyst of the present invention can be synthesized by condensation polymerization in the presence of organic acids such as oxalic acid, formic acid, acetic acid, and Friedel-Craft type catalysts such as sulfuric acid, p-toluenesulfonic acid, and diethyl sulfate. .

本発明のフェノール樹脂の具体的な製造条件は以下のとおりである。n倍モルのジアルデヒド類に対し、m倍モルのメチレン架橋材をフェノール類と同時に添加して一段の縮合反応で行うことができる。あるいは、添加順序をずらしても何ら問題はない。
これらの場合に、ジアルデヒド類nモルに対するメチレン架橋材(ホルムアルデヒド)の使用量mモルの使用比率は、特に制限はないが、m/nの値は0.1倍モル以上であればよい。好ましくは0.2〜10である。さらに好ましくは0.3〜5、より好ましくは0.5〜3である。0.1より少ない場合は低粘度化が達成できず、10以上であればガラス転移温度が低下する問題が発生する場合がある。
Specific production conditions for the phenolic resin of the present invention are as follows. It is possible to carry out by a one-stage condensation reaction by adding m-fold moles of methylene crosslinking material simultaneously with phenols to n-fold moles of dialdehydes. Alternatively, there is no problem even if the addition order is shifted.
In these cases, the use ratio of mmol of methylene crosslinking material (formaldehyde) to nmol of dialdehyde is not particularly limited, but the value of m / n may be 0.1 times mol or more. Preferably it is 0.2-10. More preferably, it is 0.3-5, More preferably, it is 0.5-3. If it is less than 0.1, viscosity reduction cannot be achieved, and if it is 10 or more, a problem that the glass transition temperature decreases may occur.

使用するフェノール類は、ジアルデヒド類nモルとメチレン架橋剤(ホルムアルデヒド)mモルの合計(n+m)モルに対して、特に制限はないが、3〜20倍モルが好ましい。さらに好ましくは4〜10倍モルである。3倍モルより少ない場合は、架橋が進み、溶融粘度が高く流動性が低下し、本発明の目的に合うフェノール樹脂が安定的に得られない場合もある。あまりに多すぎる場合は耐熱性の指標となるガラス転位温度が低下する恐れがある。   The phenol to be used is not particularly limited with respect to the total (n + m) mol of n mol of dialdehyde and m mol of methylene crosslinking agent (formaldehyde), but 3 to 20 times mol is preferable. More preferably, it is 4-10 times mole. When the amount is less than 3 moles, crosslinking proceeds, the melt viscosity is high, the fluidity is lowered, and a phenol resin that meets the object of the present invention may not be stably obtained. If it is too much, the glass transition temperature, which is an index of heat resistance, may decrease.

本発明のフェノール樹脂の製造方法において、原料であるフェノール類、ジアルデヒド類、メチレン架橋剤の使用量をコントロールすることで所望の150℃における溶融粘度を達成することができる。   In the method for producing a phenol resin of the present invention, the desired melt viscosity at 150 ° C. can be achieved by controlling the amounts of phenols, dialdehydes, and methylene crosslinking agents that are raw materials.

本発明で使用する合成触媒の使用量は、フェノール類の使用量に対し、0.001〜0.5重量部、好ましくは0.001〜0.2重量部、さらに好ましくは0.001〜0.1重量部の範囲で好適に使用される。使用量が少ない場合反応速度が遅く、使用量が多すぎる場合は反応が急激に進行して反応をコントロールすることが不可能になる等の問題が生じる。   The amount of the synthetic catalyst used in the present invention is 0.001 to 0.5 parts by weight, preferably 0.001 to 0.2 parts by weight, more preferably 0.001 to 0, based on the amount of phenols used. It is preferably used in the range of 1 part by weight. When the amount used is small, the reaction rate is slow, and when the amount used is too large, the reaction proceeds rapidly and it becomes impossible to control the reaction.

また、上記で述べたフェノール類とジアルデヒド類とメチレン架橋材の添加順序に制限は無い。すなわち同時に添加して一段の縮合反応で行うこともでき、予め酸触媒下でフェノール類とジアルデヒド類とを縮合反応させ、次いでメチレン架橋材を添加配合して縮合させる2段の縮合反応で製造することもできる。また予め、酸触媒下でフェノール類とメチレン架橋材とを縮合反応させ、次いでジアルデヒド類を添加配合して縮合させる2段の縮合反応で製造することもできる。   Moreover, there is no restriction | limiting in the addition order of phenols mentioned above, dialdehydes, and a methylene crosslinking material. In other words, it can be added at the same time and can be carried out in a one-stage condensation reaction. It is produced in a two-stage condensation reaction in which phenols and dialdehydes are preliminarily condensed under an acid catalyst, and then methylene cross-linking material is added and condensed. You can also Alternatively, it can be produced by a two-stage condensation reaction in which a phenol and a methylene crosslinking material are subjected to a condensation reaction in advance under an acid catalyst, and then a dialdehyde is added and blended.

このような製造条件下で反応して得られる樹脂の形態としては、一般式(1)で示される構成成分のフェノール樹脂と想定している。   As a form of the resin obtained by reacting under such production conditions, it is assumed that it is a phenol resin as a constituent component represented by the general formula (1).

Figure 2010229304
Figure 2010229304

式中、Rはアルキレン基、又はアリール基であり、sは0〜2の整数である。また、R1、R2及びR3は同一でも異なっていてもよく、それぞれ、水素原子、ヒドロキシル基、炭素数1から6個のアルキル基、又はアリール基であり、p、q、rはそれぞれ0〜2の整数である。また、mおよびnは、正の数値を表す。   In formula, R is an alkylene group or an aryl group, and s is an integer of 0-2. R1, R2 and R3 may be the same or different and are each a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms or an aryl group, and p, q and r are each 0-2. Is an integer. M and n represent positive numerical values.

本発明のフェノール樹脂は、150℃における溶融粘度が30〜4000mPa・sが好ましく、さらに好ましくは50〜3000mPa・sである。溶融粘度が30mPa・s以下の場合は作業性が悪化、或いは耐熱性の指標となるガラス転位温度が低下する恐れがあり、4000mPa・s以上の場合は溶融粘度が高く流動性が低下し、充填不良等の成型不良が発生する恐れがある。   The phenol resin of the present invention preferably has a melt viscosity at 150 ° C. of 30 to 4000 mPa · s, more preferably 50 to 3000 mPa · s. When the melt viscosity is 30 mPa · s or less, the workability is deteriorated, or the glass transition temperature, which is an index of heat resistance, may be lowered. When it is 4000 mPa · s or more, the melt viscosity is high and the fluidity is lowered. There is a possibility that molding defects such as defects may occur.

本発明で得られるフェノール樹脂は、そのままエポキシ樹脂の硬化剤としてバインダー、コーティング材、積層材、成形材料等の用途に使用することもできるし、エピクロルヒドリンと反応させることによりエポキシ樹脂とすることもできる。さらにはこれらを用いた硬化物とすることもできる。   The phenol resin obtained in the present invention can be used as it is as an epoxy resin curing agent for binders, coating materials, laminates, molding materials and the like, or can be made into an epoxy resin by reacting with epichlorohydrin. . Furthermore, it can also be set as the hardened | cured material using these.

本発明の低溶融粘度フェノール樹脂をエポキシ樹脂用硬化剤として使用する場合には、該フェノール樹脂とエポキシ樹脂及び硬化促進剤を混合し、100℃〜250℃温度範囲で硬化させることにより得られる。   When using the low melt viscosity phenol resin of this invention as a hardening | curing agent for epoxy resins, this phenol resin, an epoxy resin, and a hardening accelerator are mixed, and it is obtained by making it harden | cure in a 100 to 250 degreeC temperature range.

エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂などのグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ハロゲン化エポキシ樹脂など分子中にエポキシ基を2個以上有するエポキシ樹脂が挙げられる。これらエポキシ樹脂は
単独もしくは2種以上を混合して使用しても何ら問題ない。
好ましいエポキシ樹脂としては、クレゾールノボラック型エポキシ樹脂およびビフェニル型エポキシ樹脂が挙げられる。
Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, triphenolmethane type epoxy resin, biphenyl type epoxy resin and the like glycidyl ether type epoxy resin, glycidyl Examples thereof include an epoxy resin having two or more epoxy groups in the molecule, such as an ester type epoxy resin, a glycidylamine type epoxy resin, and a halogenated epoxy resin. These epoxy resins may be used alone or in combination of two or more.
Preferred epoxy resins include cresol novolac type epoxy resins and biphenyl type epoxy resins.

硬化促進剤としては、エポキシ樹脂をフェノール樹脂で硬化させる為の公知の硬化促進剤を用いることができる。例えば、有機ホスフィン化合物及びそのボロン塩、3級アミン、4級アンモニウム塩、イミダゾール類及びのテトラフェニルボロン塩などを挙げることができるが、この中でも硬化性や耐湿性の面からトリフェニルホスフィンが好ましい。また、より高流動性する為には、加熱処理にて活性が発現する熱潜在性の硬化促進剤が好ましく、テトラフェニルホスフォニウム・テトラフェニルボレートなどのテトラフェニルホスフォニウム誘導体が好ましい。   As a hardening accelerator, the well-known hardening accelerator for hardening an epoxy resin with a phenol resin can be used. For example, organic phosphine compounds and boron salts thereof, tertiary amines, quaternary ammonium salts, tetraphenyl boron salts of imidazoles and the like can be mentioned, among which triphenylphosphine is preferable from the viewpoint of curability and moisture resistance. . In order to achieve higher fluidity, a heat-latent curing accelerator that exhibits activity upon heat treatment is preferred, and tetraphenylphosphonium derivatives such as tetraphenylphosphonium and tetraphenylborate are preferred.

本発明のフェノール樹脂をエピクロルヒドリンと反応させてエポキシ樹脂とする方法については、例えば、該フェノール樹脂に過剰のエピクロルヒドリンを加え、水酸化ナトリウムや水酸化カリウム等のアルカリ金属水酸化物の存在下に50〜150℃、好ましくは60〜120℃の範囲で1〜10時間程度反応させる方法が挙げられる。この場合、エピクロルヒドリンの使用量は、該フェノール樹脂の水酸基当量に対して2〜15倍モル、好ましくは2〜10倍モルである。また、使用するアルカリ金属水酸化物の使用量は、該フェノール樹脂の水酸基当量に対して0.8〜1.2倍モル、好ましくは0.9〜1.1倍モルである。   Regarding the method of reacting the phenolic resin of the present invention with epichlorohydrin to form an epoxy resin, for example, an excess of epichlorohydrin is added to the phenolic resin, and in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide. The method of making it react for about 1 to 10 hours in -150 degreeC, Preferably it is the range of 60-120 degreeC. In this case, the usage-amount of epichlorohydrin is 2-15 times mole with respect to the hydroxyl equivalent of this phenol resin, Preferably it is 2-10 times mole. Moreover, the usage-amount of the alkali metal hydroxide to be used is 0.8-1.2 times mole with respect to the hydroxyl equivalent of this phenol resin, Preferably it is 0.9-1.1 times mole.

反応後の後処理については、反応終了後、過剰のエピクロルヒドリンを蒸留除去し、残留物をメチルイソブチルケトン等の有機溶剤に溶解し、ろ過し水洗して無機塩を除去し、次いで有機溶剤を留去することにより、目的とするエポキシ樹脂を得ることができる。   Regarding post-treatment after the reaction, excess epichlorohydrin is distilled off after completion of the reaction, the residue is dissolved in an organic solvent such as methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the organic solvent is distilled off. By leaving, the target epoxy resin can be obtained.

このようにして得られたエポキシ樹脂と該フェノール樹脂を硬化剤として新たなエポキシ樹脂組成物とすることができる。   A new epoxy resin composition can be obtained using the epoxy resin thus obtained and the phenol resin as a curing agent.

得られたエポキシ樹脂組成物には、必要に応じて、無機充填材、離型剤、着色剤、カップリング剤、難燃剤等を添加または予め反応して用いることができる。特に半導体封止用途に使用する場合、無機充填材の添加は必須となる。このような無機充填材の例として、非晶性シリカ、結晶性シリカ、アルミナ、珪酸カルシウム、炭酸カルシウム、タルク、マイカ、硫酸バリウムなどをあげることができるが、特に非晶性シリカ、結晶性シリカなどが好ましい。また、これら添加剤の配合割合は公知の半導体封しようエポキシ樹脂組成物における割合と同様でよい。   The obtained epoxy resin composition can be used by adding or reacting in advance with an inorganic filler, a release agent, a colorant, a coupling agent, a flame retardant, or the like, if necessary. In particular, when used for semiconductor sealing applications, addition of an inorganic filler is essential. Examples of such inorganic fillers include amorphous silica, crystalline silica, alumina, calcium silicate, calcium carbonate, talc, mica, barium sulfate, etc., and particularly amorphous silica and crystalline silica. Etc. are preferable. Moreover, the compounding ratio of these additives may be the same as the ratio in a known semiconductor sealing epoxy resin composition.

以下に実施例を挙げて、本発明を具体的に説明する。尚、本発明はこれら実施例に限定されるものではない。
また、本発明におけるフェノール樹脂の評価方法を示す。
The present invention will be specifically described below with reference to examples. The present invention is not limited to these examples.
Moreover, the evaluation method of the phenol resin in this invention is shown.

(1)150℃溶融粘度:ICI溶融粘度計を用い、150℃でのフェノール樹脂の溶融粘度を測定した。
ICI粘度の測定方法は以下の通り。
ICIコーンプレート粘度計 MODEL CV−1S TOA工業(株)
ICIコーンプレート温度を150℃に設定し、試料を所定量、秤量する。
プレート部に秤量した樹脂を置き、上部よりコーンで押さえつけ、90sec放置する。コーンを回転させて、そのトルク値をICI粘度として読み取る。
(2)軟化点:JIS K 6910に準拠した環球法軟化点測定を実施した。
(3)水酸基当量:JIS K 0070に準拠した水酸基当量測定を実施した。
(1) 150 ° C. melt viscosity: The melt viscosity of a phenol resin at 150 ° C. was measured using an ICI melt viscometer.
The measuring method of ICI viscosity is as follows.
ICI Cone Plate Viscometer MODEL CV-1S TOA Industrial Co., Ltd.
The ICI cone plate temperature is set to 150 ° C., and a predetermined amount of the sample is weighed.
Place the weighed resin on the plate, press it with a cone from the top, and leave it for 90 seconds. The cone is rotated and its torque value is read as ICI viscosity.
(2) Softening point: Ring and ball softening point measurement based on JIS K 6910 was performed.
(3) Hydroxyl equivalent: Hydroxyl equivalent measurement based on JIS K 0070 was performed.

以下に詳細な実施例を示す。 Detailed examples are shown below.

実施例1(ホルムアルデヒド(F)後添加)
攪拌装置、コンデンサ、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール752.00g(8.00モル)、40%グリオキザール水溶液97.30g(0.68モル)、パラトルエンスルホン酸1.67gを仕込み、120℃で4時間反応させた。その後42%ホルマリン水溶液31.77g(0.45モル)を添加し、100℃で3時間反応させた。反応終了後中和し、水洗を3回行った。油層を分離し、減圧蒸留によって未反応フェノールを留去することによって214gのフェノールノボラック樹脂を得た。
得られたフェノールノボラック樹脂の軟化点は116℃、150℃でのICI粘度は3100mPa・s、水酸基当量は120g/eqであった。
Example 1 (addition after formaldehyde (F))
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, phenol 752.00 g (8.00 mol), 40% aqueous glyoxal solution 97.30 g (0.68 mol), paratoluenesulfonic acid 1. 67 g was charged and reacted at 120 ° C. for 4 hours. Thereafter, 31.77 g (0.45 mol) of 42% formalin aqueous solution was added and reacted at 100 ° C. for 3 hours. After completion of the reaction, the reaction mixture was neutralized and washed with water three times. The oil layer was separated and 214 g of phenol novolac resin was obtained by distilling off unreacted phenol by distillation under reduced pressure.
The obtained phenol novolac resin had a softening point of 116 ° C., an ICI viscosity of 3100 mPa · s at 150 ° C., and a hydroxyl group equivalent of 120 g / eq.

実施例2(グリオキザール(G)後添加)
攪拌装置、コンデンサ、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール752.00g(8.00モル)、42%ホルマリン水溶液31.77g(0.45モル)、パラトルエンスルホン酸1.67gを仕込み、100℃で3時間反応させた。その後40%グリオキザール水溶液97.30g(0.68モル)を添加し、120℃で4時間反応させた。反応終了後中和し、水洗を3回行った。油層を分離し、減圧蒸留によって未反応フェノールを留去することによって210gのフェノールノボラック樹脂を得た。
得られたフェノールノボラック樹脂の軟化点は119℃、150℃でのICI粘度は3100mPa・s、水酸基当量は120g/eqであった。
Example 2 (Glyoxal (G) post-addition)
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, phenol 752.00 g (8.00 mol), 42% formalin aqueous solution 31.77 g (0.45 mol), paratoluenesulfonic acid 1. 67 g was charged and reacted at 100 ° C. for 3 hours. Thereafter, 97.30 g (0.68 mol) of a 40% aqueous glyoxal solution was added and reacted at 120 ° C. for 4 hours. After completion of the reaction, the reaction mixture was neutralized and washed with water three times. The oil layer was separated, and unreacted phenol was removed by distillation under reduced pressure to obtain 210 g of phenol novolac resin.
The obtained phenol novolac resin had a softening point of 119 ° C., an ICI viscosity at 150 ° C. of 3100 mPa · s, and a hydroxyl group equivalent of 120 g / eq.

実施例3(グリオキザールおよびホルムアルデヒド一括添加)
攪拌装置、コンデンサ、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール752.00g(8.00モル)、40%グリオキザール水溶液97.30g(0.68モル)、42%ホルマリン水溶液31.77g(0.45モル)、パラトルエンスルホン酸1.67gを仕込み、100℃で3時間反応させた後、120℃で4時間反応させた。反応終了後中和し、水洗を3回行った。油層を分離し、減圧蒸留によって未反応フェノールを留去することによって190gのフェノールノボラック樹脂を得た。
得られたフェノールノボラック樹脂の軟化点は120℃、150℃でのICI粘度は3900mPa・s、水酸基当量は120g/eqであった。
Example 3 (glyoxal and formaldehyde batch addition)
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, phenol 752.00 g (8.00 mol), 40% glyoxal aqueous solution 97.30 g (0.68 mol), 42% formalin aqueous solution 31. 77 g (0.45 mol) and 1.67 g of paratoluenesulfonic acid were charged, reacted at 100 ° C. for 3 hours, and then reacted at 120 ° C. for 4 hours. After completion of the reaction, the reaction mixture was neutralized and washed with water three times. The oil layer was separated, and unreacted phenol was distilled off by distillation under reduced pressure to obtain 190 g of phenol novolac resin.
The obtained phenol novolac resin had a softening point of 120 ° C., an ICI viscosity of 3900 mPa · s at 150 ° C., and a hydroxyl group equivalent of 120 g / eq.

実施例4(F後添加)
攪拌装置、コンデンサ、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール752.00g(8.00モル)、40%グリオキザール水溶液64.87g(0.45モル)、パラトルエンスルホン酸1.64gを仕込み、120℃で4時間反応させた。その後42%ホルマリン水溶液47.65g(0.68モル)を添加し、100℃で3時間反応させた。反応終了後中和し、水洗を3回行った。油層を分離し、減圧蒸留によって未反応フェノールを留去することによって180gのフェノールノボラック樹脂を得た。
得られたフェノールノボラック樹脂の軟化点は95℃、150℃でのICI粘度は330mPa・s、水酸基当量は116g/eqであった。
Example 4 (addition after F)
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, phenol 752.00 g (8.00 mol), 40% glyoxal aqueous solution 64.87 g (0.45 mol), paratoluenesulfonic acid 1. 64 g was charged and reacted at 120 ° C. for 4 hours. Thereafter, 47.65 g (0.68 mol) of a 42% formalin aqueous solution was added and reacted at 100 ° C. for 3 hours. After completion of the reaction, the reaction mixture was neutralized and washed with water three times. The oil layer was separated, and unreacted phenol was removed by distillation under reduced pressure to obtain 180 g of phenol novolac resin.
The obtained phenol novolak resin had a softening point of 95 ° C., an ICI viscosity at 150 ° C. of 330 mPa · s, and a hydroxyl group equivalent of 116 g / eq.

実施例5(F後添加)
攪拌装置、コンデンサ、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール752.00g(8.00モル)、40%グリオキザール水溶液91.49g(0.63モル)、パラトルエンスルホン酸1.65gを仕込み、120℃で4時間反応させた。その後42%ホルマリン水溶液35.41g(0.50モル)を添加し、100℃で3時間反応させた。反応終了後中和し、水洗を3回行った。油層を分離し、減圧蒸留によって未反応フェノールを留去することによって185gのフェノールノボラック樹脂を得た。
得られたフェノールノボラック樹脂の軟化点は110℃、150℃でのICI粘度は2300mPa・s、水酸基当量は119g/eqであった。
Example 5 (post-F addition)
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, 752.00 g (8.00 mol) of phenol, 91.49 g (0.63 mol) of 40% aqueous glyoxal solution, paratoluenesulfonic acid 1. 65 g was charged and reacted at 120 ° C. for 4 hours. Thereafter, 35.41 g (0.50 mol) of a 42% formalin aqueous solution was added and reacted at 100 ° C. for 3 hours. After completion of the reaction, the reaction mixture was neutralized and washed with water three times. The oil layer was separated, and unreacted phenol was distilled off by distillation under reduced pressure to obtain 185 g of a phenol novolac resin.
The obtained phenol novolac resin had a softening point of 110 ° C., an ICI viscosity of 2300 mPa · s at 150 ° C., and a hydroxyl group equivalent of 119 g / eq.

実施例6(F後添加)
攪拌装置、コンデンサ、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール752.00g(8.00モル)、40%グリオキザール水溶液129.73g(0.90モル)、パラトルエンスルホン酸1.70gを仕込み、120℃で4時間反応させた。その後42%ホルマリン水溶液15.88g(0.23モル)を添加し、100℃で3時間反応させた。反応終了後中和し、水洗を3回行った。油層を分離し、減圧蒸留によって未反応フェノールを留去することによって227gのフェノールノボラック樹脂を得た。
得られたフェノールノボラック樹脂の軟化点は136℃、150℃でのICI粘度は>4000mPa・s、水酸基当量は127g/eqであった。
Example 6 (post-F addition)
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, 752.00 g (8.00 mol) of phenol, 129.73 g (0.90 mol) of 40% aqueous glyoxal solution, 1. 70 g was charged and reacted at 120 ° C. for 4 hours. Thereafter, 15.88 g (0.23 mol) of a 42% formalin aqueous solution was added and reacted at 100 ° C. for 3 hours. After completion of the reaction, the reaction mixture was neutralized and washed with water three times. The oil layer was separated, and unreacted phenol was distilled off by distillation under reduced pressure to obtain 227 g of a phenol novolac resin.
The obtained phenol novolac resin had a softening point of 136 ° C., an ICI viscosity of> 4000 mPa · s at 150 ° C., and a hydroxyl group equivalent of 127 g / eq.

実施例7(F後添加)
攪拌装置、コンデンサ、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール752.00g(8.00モル)、40%グリオキザール水溶液32.43g(0.23モル)、パラトルエンスルホン酸1.60gを仕込み、120℃で4時間反応させた。その後42%ホルマリン水溶液63.54g(0.90モル)を添加し、100℃で3時間反応させた。反応終了後中和し、水洗を3回行った。油層を分離し、減圧蒸留によって未反応フェノールを留去することによって195gのフェノールノボラック樹脂を得た。
得られたフェノールノボラック樹脂の軟化点は68℃、150℃でのICI粘度は40mPa・s、水酸基当量は114g/eqであった。
Example 7 (post-F addition)
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, phenol 752.00 g (8.00 mol), 40% aqueous glyoxal solution 32.43 g (0.23 mol), paratoluenesulfonic acid 1. 60 g was charged and reacted at 120 ° C. for 4 hours. Thereafter, 63.54 g (0.90 mol) of a 42% formalin aqueous solution was added and reacted at 100 ° C. for 3 hours. After completion of the reaction, the reaction mixture was neutralized and washed with water three times. The oil layer was separated, and unreacted phenol was removed by distillation under reduced pressure to obtain 195 g of a phenol novolac resin.
The obtained phenol novolac resin had a softening point of 68 ° C., an ICI viscosity at 150 ° C. of 40 mPa · s, and a hydroxyl group equivalent of 114 g / eq.

実施例8(F後添加)
攪拌装置、コンデンサ、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール752.00g(8.00モル)、40%グリオキザール水溶液129.73g(0.90モル)、パラトルエンスルホン酸1.85gを仕込み、120℃で4時間反応させた。その後42%ホルマリン水溶液96.58g(1.35モル)を添加し、100℃で3時間反応させた。反応終了後中和し、水洗を3回行った。油層を分離し、減圧蒸留によって未反応フェノールを留去することによって366gのフェノールノボラック樹脂を得た。
得られたフェノールノボラック樹脂の軟化点は111℃、150℃でのICI粘度は1550mPa・s、水酸基当量は113g/eqであった。
Example 8 (post-F addition)
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, 752.00 g (8.00 mol) of phenol, 129.73 g (0.90 mol) of 40% aqueous glyoxal solution, 1. 85 g was charged and reacted at 120 ° C. for 4 hours. Thereafter, 96.58 g (1.35 mol) of a 42% formalin aqueous solution was added and reacted at 100 ° C. for 3 hours. After completion of the reaction, the reaction mixture was neutralized and washed with water three times. The oil layer was separated, and unreacted phenol was removed by distillation under reduced pressure to obtain 366 g of phenol novolac resin.
The obtained phenol novolac resin had a softening point of 111 ° C., an ICI viscosity at 150 ° C. of 1550 mPa · s, and a hydroxyl group equivalent of 113 g / eq.

実施例9(F後添加)
攪拌装置、コンデンサ、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール1128.00g(12.00モル)、40%グリオキザール水溶液48.65g(0.34モル)、パラトルエンスルホン酸2.29gを仕込み、120℃で4時間反応させた。その後42%ホルマリン水溶液36.22g(0.51モル)を添加し、100℃で3時間反応させた。反応終了後中和し、水洗を3回行った。油層を分離し、減圧蒸留によって未反応フェノールを留去することによって123gのフェノールノボラック樹脂を得た。
得られたフェノールノボラック樹脂の軟化点は84℃、150℃でのICI粘度は190mPa・s、水酸基当量は111g/eqであった。
Example 9 (post-F addition)
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, 11128.00 g (12.00 mol) of phenol, 48.65 g (0.34 mol) of 40% aqueous glyoxal solution, and paratoluenesulfonic acid 2. 29 g was charged and reacted at 120 ° C. for 4 hours. Thereafter, 36.22 g (0.51 mol) of a 42% formalin aqueous solution was added and reacted at 100 ° C. for 3 hours. After completion of the reaction, the reaction mixture was neutralized and washed with water three times. The oil layer was separated, and unreacted phenol was distilled off by distillation under reduced pressure to obtain 123 g of phenol novolac resin.
The obtained phenol novolac resin had a softening point of 84 ° C., an ICI viscosity at 150 ° C. of 190 mPa · s, and a hydroxyl group equivalent of 111 g / eq.

比較例1
攪拌装置、コンデンサ、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール752.00g(8.00モル)、40%グリオキザール水溶液162.16g(1.13モル)、パラトルエンスルホン酸1.72gを仕込み、120℃で4時間反応させた。反応終了後中和し、水洗を3回行った。油層を分離し、減圧蒸留によって未反応フェノールを留去することによって228gのフェノールノボラック樹脂を得た。
得られたフェノールノボラック樹脂の軟化点は161℃、ICI粘度は>4000mPa・s、水酸基当量は125g/eqであった。
Comparative Example 1
In a glass reaction kettle equipped with a stirrer, a condenser and a nitrogen gas introduction tube, 752.00 g (8.00 mol) of phenol, 162.16 g (1.13 mol) of 40% aqueous glyoxal solution, 1. 72 g was charged and reacted at 120 ° C. for 4 hours. After completion of the reaction, the reaction mixture was neutralized and washed with water three times. The oil layer was separated and unreacted phenol was distilled off by distillation under reduced pressure to obtain 228 g of phenol novolac resin.
The obtained phenol novolac resin had a softening point of 161 ° C., an ICI viscosity of> 4000 mPa · s, and a hydroxyl group equivalent of 125 g / eq.

比較例2
攪拌装置、コンデンサ、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール800.00g(8.51モル)、40%グリオキザール水溶液87.52g(0.61モル)、パラトルエンスルホン酸1.84gを仕込み、120℃で4時間反応させた。反応終了後中和し、水洗を3回行った。油層を分離し、減圧蒸留によって未反応フェノールを留去することによって100gのフェノールノボラック樹脂を得た。
得られたフェノールノボラック樹脂は結晶の粒が目視でき、軟化点は157℃、ICI粘度は>4000mPa・sであった。
Comparative Example 2
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, 800.00 g (8.51 mol) of phenol, 87.52 g (0.61 mol) of 40% aqueous glyoxal solution, 1. 84 g was charged and reacted at 120 ° C. for 4 hours. After completion of the reaction, the reaction mixture was neutralized and washed with water three times. The oil layer was separated and 100 g of phenol novolac resin was obtained by distilling off unreacted phenol by distillation under reduced pressure.
The obtained phenol novolac resin had crystal grains visible, the softening point was 157 ° C., and the ICI viscosity was> 4000 mPa · s.

比較例3
攪拌装置、コンデンサ、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール1891.00g(20.12モル)、40%グリオキザール水溶液144.76g(1.01モル)、パラトルエンスルホン酸4.35gを仕込み、120℃で4時間反応させた。反応終了後中和し、水洗を3回行った。油層を分離し、減圧蒸留によって未反応フェノールを留去することによって150gのフェノールノボラック樹脂を得た。
得られたフェノールノボラック樹脂は結晶の粒が目視でき、軟化点は150℃、ICI粘度は>4000mPa・sであった。
Comparative Example 3
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, 1891.00 g (20.12 mol) of phenol, 144.76 g (1.01 mol) of 40% aqueous glyoxal solution, paratoluenesulfonic acid, 4. 35 g was charged and reacted at 120 ° C. for 4 hours. After completion of the reaction, the reaction mixture was neutralized and washed with water three times. The oil layer was separated, and 150 g of phenol novolac resin was obtained by distilling off unreacted phenol by distillation under reduced pressure.
The obtained phenol novolac resin had crystal grains visible, the softening point was 150 ° C., and the ICI viscosity was> 4000 mPa · s.

比較例4
攪拌装置、コンデンサ、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール752.00g(8.00モル)、42%ホルマリン水溶液79.42g(1.13モル)、パラトルエンスルホン酸1.57gを仕込み、100℃で3時間反応させた。反応終了後中和し、水洗を3回行った。油層を分離し、減圧蒸留によって未反応フェノールを留去することによって151gのフェノールノボラック樹脂を得た。
得られたフェノールノボラック樹脂は常温で半固形の樹脂であり、ICI粘度は12mPa・s、水酸基当量は104g/eqであった。
Comparative Example 4
In a glass reaction kettle equipped with a stirrer, a condenser and a nitrogen gas introduction tube, phenol 752.00 g (8.00 mol), 42% formalin aqueous solution 79.42 g (1.13 mol), paratoluenesulfonic acid 1. 57 g was charged and reacted at 100 ° C. for 3 hours. After completion of the reaction, the reaction mixture was neutralized and washed with water three times. The oil layer was separated, and unreacted phenol was distilled off by distillation under reduced pressure to obtain 151 g of phenol novolak resin.
The obtained phenol novolac resin was a semisolid resin at room temperature, and had an ICI viscosity of 12 mPa · s and a hydroxyl group equivalent of 104 g / eq.

比較例5
攪拌装置、コンデンサ、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール752.00g(8.00モル)、42%ホルマリン水溶液388.57g(5.44モル)、蓚酸0.90gを仕込み、100℃で8時間反応させた。反応終了後、減圧蒸留によって未反応フェノールを留去することによって641gのフェノールノボラック樹脂を得た。
得られたフェノールノボラック樹脂の軟化点は95℃、ICI粘度は670mPa・s、水酸基当量は107g/eqであった。
Comparative Example 5
A glass reaction kettle equipped with a stirrer, condenser, and nitrogen gas inlet tube was charged with 752.00 g (8.00 mol) of phenol, 388.57 g (5.44 mol) of 42% formalin aqueous solution, and 0.90 g of oxalic acid. , And reacted at 100 ° C. for 8 hours. After completion of the reaction, 641 g of phenol novolac resin was obtained by distilling off unreacted phenol by distillation under reduced pressure.
The obtained phenol novolac resin had a softening point of 95 ° C., an ICI viscosity of 670 mPa · s, and a hydroxyl group equivalent of 107 g / eq.

実施例1〜9および比較例1〜5の合成条件ならびに各フェノール樹脂の物性値を表1にまとめて示した。 The synthesis conditions of Examples 1 to 9 and Comparative Examples 1 to 5 and the physical property values of each phenol resin are shown in Table 1.

Figure 2010229304
Figure 2010229304

表1に示した条件で合成したフェノール樹脂を硬化剤として使用した場合、対するエポキシ樹脂は、JER(株)製YX−4000(エポキシ当量186g/eq)のテトラメチルビフェノール型エポキシ樹脂であり、硬化促進剤としてトリフェニルホスフィン(TPPと略記することもある。)を使用した。 When the phenol resin synthesized under the conditions shown in Table 1 is used as a curing agent, the epoxy resin is a tetramethylbiphenol type epoxy resin of YX-4000 (epoxy equivalent 186 g / eq) manufactured by JER Co., Ltd. Triphenylphosphine (sometimes abbreviated as TPP) was used as an accelerator.

本発明のフェノール樹脂及び上記エポキシ樹脂を、フェノール水酸基当量とエポキシ当量比が1:1となるように配合し、TPP触媒を仕込んだ。これらを150℃に加熱して溶融混合し、真空脱泡した後に180℃の金型(厚さ4mm)に注型し、180℃、5時間で硬化させた後、さらに200℃、8時間かけて硬化して成形体を試作した。
得られた成形体(硬化物)の各種物性の試験方法は以下の通り。
The phenol resin of the present invention and the epoxy resin were blended so that the phenol hydroxyl group equivalent and the epoxy equivalent ratio were 1: 1, and a TPP catalyst was charged. These were heated to 150 ° C, melted and mixed, vacuum degassed, cast into a 180 ° C mold (thickness 4 mm), cured at 180 ° C for 5 hours, and then further 200 ° C for 8 hours. After curing, a molded product was produced.
Test methods for various physical properties of the obtained molded body (cured product) are as follows.

(4)吸水率:24時間煮沸法(縦50mm×横50mm×厚さ4mmの成形体)
(5)Tg:TMA法(Thermal Mechanical Analysis、熱機械分析法)(昇温速度5℃/分)
(6)機械強度:JIS K 7171に準じて測定
(7)ゲルタイム
上記フェノール樹脂と上記エポキシ樹脂を1:1の当量になるように試験管に仕込み、さらにTPPを試験管に仕込む。
温度を175℃に設定したゲルタイマー(東芝時間計 SFO−304M)に試験管を設置し、SUS攪拌棒を使い、1秒間に1回転で攪拌する。
はじめは粘度が低く液状であるが、一定時間経過すると、樹脂の粘度が急激に上昇し、ゲル状となる。この時間をゲルタイムとする。この時間が速いほど、硬化性が良好という指標になる。
(4) Water absorption: 24 hours boiling method (molded body of 50 mm length x 50 mm width x 4 mm thickness)
(5) Tg: TMA method (Thermal Mechanical Analysis, thermomechanical analysis method) (heating rate 5 ° C./min)
(6) Mechanical strength: Measured according to JIS K 7171 (7) Gel time Charge the phenol resin and the epoxy resin into a test tube so as to have an equivalent of 1: 1, and further charge TPP into the test tube.
A test tube is installed in a gel timer (Toshiba hour meter SFO-304M) set at a temperature of 175 ° C., and stirred using a SUS stir bar at one rotation.
Initially, the viscosity is low and liquid, but after a certain period of time, the viscosity of the resin rapidly increases and becomes a gel. This time is defined as gel time. The faster this time, the better the curability.

配合割合と硬化特性を表2にまとめて示した。   The blending ratio and curing characteristics are summarized in Table 2.

Figure 2010229304
Figure 2010229304

表2から分かるように、実施例1〜9で得られたフェノール樹脂は、高ガラス転移温度且つ低弾性率性を保持したまま低粘度化または低軟化点化を達成している。
また、実施例1〜3により、原料の添加順序による物性の差はほとんど無いことも分かった。比較例1は高ガラス転移温度を達成しているが軟化点が非常に高い。比較例4,5については軟化点、粘度は比較的良好であるが、ガラス転移温度や弾性率といった特性が損なわれていることが分かる。また、比較例2、3については著しい結晶化のため硬化物作成が不可能であった。
As can be seen from Table 2, the phenol resins obtained in Examples 1 to 9 achieve a low viscosity or a low softening point while maintaining a high glass transition temperature and a low elastic modulus.
Moreover, it turned out that there is almost no difference in the physical property by the addition order of a raw material by Examples 1-3. Comparative Example 1 achieves a high glass transition temperature but has a very high softening point. In Comparative Examples 4 and 5, the softening point and the viscosity are relatively good, but it is understood that characteristics such as the glass transition temperature and the elastic modulus are impaired. In Comparative Examples 2 and 3, it was impossible to produce a cured product due to remarkable crystallization.

このように本発明で得られたテトラキスフェノールエタン骨格を含有するフェノール樹脂は、高ガラス転移温度を保持したまま低粘度化、低軟化点化を達成することが可能であり、封止材用途等の電子材料として利用できる。   As described above, the phenol resin containing the tetrakisphenolethane skeleton obtained in the present invention can achieve low viscosity and low softening point while maintaining a high glass transition temperature. It can be used as an electronic material.

Claims (11)

下記一般式(2)で表されるフェノール類と、下記一般式(3)で表されるジアルデヒド類及びホルムアルデヒドを含有する架橋基化合物とを反応させることを特徴とするフェノール樹脂の製造方法。
Figure 2010229304

Figure 2010229304

(式中、Rはアルキレン基、又はアリール基であり、sは0〜2の整数である。また、R1は水素原子、ヒドロキシル基、炭素数1から6個のアルキル基、又はアリール基であり、pは0〜2の整数である。)
A method for producing a phenol resin, comprising reacting a phenol represented by the following general formula (2) with a crosslinking group compound containing a dialdehyde represented by the following general formula (3) and formaldehyde.
Figure 2010229304

Figure 2010229304

(In the formula, R is an alkylene group or an aryl group, and s is an integer of 0 to 2. R1 is a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, or an aryl group. , P is an integer of 0-2.)
一般式(3)のジアルデヒド類がグリオキザール及び又はグルタルアルデヒドである請求項1記載のフェノール樹脂の製造方法。   The method for producing a phenol resin according to claim 1, wherein the dialdehyde of the general formula (3) is glyoxal and / or glutaraldehyde. 一般式(3)のジアルデヒド類nモルに対するホルムアルデヒドmモルの割合比率m/nの値が0.1以上である請求項1記載のフェノール樹脂の製造方法。 The method for producing a phenol resin according to claim 1, wherein the ratio m / n of the ratio of mol of formaldehyde to n mol of dialdehydes of the general formula (3) is 0.1 or more. フェノール類と架橋基化合物である一般式(3)のジアルデヒド類およびホルムアルデヒドの添加順序が、同時かもしくは分割反応である請求項1〜3のいずれか1項に記載のフェノール樹脂の製造方法。 The method for producing a phenol resin according to any one of claims 1 to 3, wherein the addition order of the dialdehydes of the general formula (3) and the formaldehyde, which are phenols and a crosslinking group compound, is simultaneous or a division reaction. 請求項1〜4のいずれか1項に記載の製造方法で得られたフェノール樹脂とエポキシ樹脂とを含むエポキシ樹脂組成物。 The epoxy resin composition containing the phenol resin and epoxy resin which were obtained with the manufacturing method of any one of Claims 1-4. 請求項5に記載のエポキシ樹脂組成物を含む硬化物。 Hardened | cured material containing the epoxy resin composition of Claim 5. 請求項1〜4のいずれか1項に記載の製造方法で得られたフェノール樹脂をエポキシ化したエポキシ化フェノール樹脂。 The epoxidized phenol resin which epoxidized the phenol resin obtained by the manufacturing method of any one of Claims 1-4. 請求項7記載のエポキシ化フェノール樹脂と請求項1〜4のいずれか1項に記載の製造方法で得られたフェノール樹脂とを含むエポキシ樹脂組成物。 The epoxy resin composition containing the epoxidized phenol resin of Claim 7, and the phenol resin obtained by the manufacturing method of any one of Claims 1-4. 請求項8記載のエポキシ樹脂組成物を含む硬化物。 A cured product comprising the epoxy resin composition according to claim 8. 架橋基化合物として上記一般式(3)で示されるジアルデヒド類およびホルムアルデヒドを含有するフェノール樹脂。   A phenol resin containing a dialdehyde represented by the above general formula (3) and formaldehyde as a crosslinking group compound. 150℃における溶融粘度が30〜4000mPa・sである請求項10記載のフェノール樹脂。 The phenol resin according to claim 10, wherein the melt viscosity at 150 ° C is 30 to 4000 mPa · s.
JP2009078884A 2009-03-27 2009-03-27 Phenol resin, process for producing the resin, epoxy resin composition containing the resin, and cured product thereof Active JP5476762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078884A JP5476762B2 (en) 2009-03-27 2009-03-27 Phenol resin, process for producing the resin, epoxy resin composition containing the resin, and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078884A JP5476762B2 (en) 2009-03-27 2009-03-27 Phenol resin, process for producing the resin, epoxy resin composition containing the resin, and cured product thereof

Publications (2)

Publication Number Publication Date
JP2010229304A true JP2010229304A (en) 2010-10-14
JP5476762B2 JP5476762B2 (en) 2014-04-23

Family

ID=43045415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078884A Active JP5476762B2 (en) 2009-03-27 2009-03-27 Phenol resin, process for producing the resin, epoxy resin composition containing the resin, and cured product thereof

Country Status (1)

Country Link
JP (1) JP5476762B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087247A (en) * 2010-10-21 2012-05-10 Meiwa Kasei Kk Novolak type phenolic resin and photoresist composition containing the same
JP2012118300A (en) * 2010-12-01 2012-06-21 Shin Etsu Chem Co Ltd Resist underlay film material and pattern forming method using the same
WO2015072123A1 (en) 2013-11-12 2015-05-21 Jfeケミカル株式会社 Phenolic resin composition, epoxy resin composition, and cured epoxy resin
JPWO2015060306A1 (en) * 2013-10-23 2017-03-09 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition, prepreg, and cured product thereof
JPWO2017098880A1 (en) * 2015-12-07 2017-12-07 Dic株式会社 Novolac resin and resist film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832622A (en) * 1981-08-20 1983-02-25 Sumitomo Bakelite Co Ltd Novolak type phenol resin having wide molecular weight distribution and its preparation
JPS61163915A (en) * 1985-01-16 1986-07-24 Mitsui Toatsu Chem Inc Production of solid resol phenolic resin
JPH0656949A (en) * 1992-03-27 1994-03-01 Borden Inc Dialdehyde-modified phenolic resin binder resin for sand casting core, production of said binder resin, production of casting core and mold from said binder resin
JP2747930B2 (en) * 1989-10-11 1998-05-06 油化シエルエポキシ株式会社 Epoxy resin composition for semiconductor encapsulation
JP2001048959A (en) * 1999-08-09 2001-02-20 Sumitomo Durez Co Ltd Epoxy resin curing agent
JP2006509889A (en) * 2002-12-13 2006-03-23 インドスペク ケミカル コーポレーション Softening resorcinol novolak resin and method for producing the same
JP2006213823A (en) * 2005-02-03 2006-08-17 Nippon Kayaku Co Ltd Heat-resistant epoxy resin composition
JP2009051874A (en) * 2007-08-23 2009-03-12 Ube Ind Ltd Heat resisting liquid phenol novolac resin, and producing method and cured product thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832622A (en) * 1981-08-20 1983-02-25 Sumitomo Bakelite Co Ltd Novolak type phenol resin having wide molecular weight distribution and its preparation
JPS61163915A (en) * 1985-01-16 1986-07-24 Mitsui Toatsu Chem Inc Production of solid resol phenolic resin
JP2747930B2 (en) * 1989-10-11 1998-05-06 油化シエルエポキシ株式会社 Epoxy resin composition for semiconductor encapsulation
JPH0656949A (en) * 1992-03-27 1994-03-01 Borden Inc Dialdehyde-modified phenolic resin binder resin for sand casting core, production of said binder resin, production of casting core and mold from said binder resin
JP2001048959A (en) * 1999-08-09 2001-02-20 Sumitomo Durez Co Ltd Epoxy resin curing agent
JP2006509889A (en) * 2002-12-13 2006-03-23 インドスペク ケミカル コーポレーション Softening resorcinol novolak resin and method for producing the same
JP2006213823A (en) * 2005-02-03 2006-08-17 Nippon Kayaku Co Ltd Heat-resistant epoxy resin composition
JP2009051874A (en) * 2007-08-23 2009-03-12 Ube Ind Ltd Heat resisting liquid phenol novolac resin, and producing method and cured product thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087247A (en) * 2010-10-21 2012-05-10 Meiwa Kasei Kk Novolak type phenolic resin and photoresist composition containing the same
JP2012118300A (en) * 2010-12-01 2012-06-21 Shin Etsu Chem Co Ltd Resist underlay film material and pattern forming method using the same
JPWO2015060306A1 (en) * 2013-10-23 2017-03-09 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition, prepreg, and cured product thereof
WO2015072123A1 (en) 2013-11-12 2015-05-21 Jfeケミカル株式会社 Phenolic resin composition, epoxy resin composition, and cured epoxy resin
KR20160067904A (en) 2013-11-12 2016-06-14 제이에프이 케미칼 가부시키가이샤 Phenolic resin composition, epoxy resin composition, and cured epoxy resin
EP3040377A4 (en) * 2013-11-12 2016-09-28 Jfe Chemical Corp Phenolic resin composition, epoxy resin composition, and cured epoxy resin
KR101787302B1 (en) 2013-11-12 2017-10-18 제이에프이 케미칼 가부시키가이샤 Phenolic resin composition, epoxy resin composition, and cured epoxy resin
US10351660B2 (en) 2013-11-12 2019-07-16 Jfe Chemical Corporation Phenolic resin composition, epoxy resin composition, and cured epoxy resin
JPWO2017098880A1 (en) * 2015-12-07 2017-12-07 Dic株式会社 Novolac resin and resist film

Also Published As

Publication number Publication date
JP5476762B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5104308B2 (en) Biphenylene cross-linked phenol novolac resin and its use
JP5228328B2 (en) Low melt viscosity phenol novolac resin, process for producing the same, and cured epoxy resin using the same
JP5012003B2 (en) Low melt viscosity phenol novolac resin, its production method and its use
JP5774021B2 (en) Phenol oligomer and method for producing the same
JP5413488B2 (en) Phenol novolac resin, method for producing the same, epoxy resin composition and cured product using the same
JP6605828B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5476762B2 (en) Phenol resin, process for producing the resin, epoxy resin composition containing the resin, and cured product thereof
KR20110109939A (en) Polyhydroxy resin, epoxy resin, method for manufacturing the same, epoxy resin composition and cured product using the same
WO2011013571A1 (en) Phenol compound and method for producing same
JP5876976B2 (en) Novolac resin and thermosetting resin composition
JP6476527B2 (en) Liquid polyvalent hydroxy resin, production method thereof, curing agent for epoxy resin, epoxy resin composition, cured product thereof and epoxy resin
TWI478955B (en) Epoxy resin composition, manufacturing method for the same, and cured article thereof
JP2016089072A (en) Phenolic resin, epoxy resin, epoxy resin composition and cured products thereof
JP4188022B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
JP5139914B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
TWI522385B (en) An epoxy resin, an epoxy resin composition, and a cured product thereof
JP5268404B2 (en) Phenol polymer, its production method and its use
WO2014010559A1 (en) Epoxy resin, epoxy resin composition, method for curing same, and cured product thereof
JP4184109B2 (en) Curing agent for epoxy resin and epoxy resin composition
JP2823455B2 (en) New epoxy resin and method for producing the same
JPH11158255A (en) Novel polyhydroxy compound, novel epoxy resin, their production, and epoxy resin composition and cured article prepared by using them
JP3986025B2 (en) Epoxy resin composition and semiconductor sealing material
JP5515583B2 (en) Phenolic resin, epoxy resin and cured epoxy resin
JPH09255758A (en) New epoxy resin, its intermediate, production thereof, epoxy resin composition made using the same, and cured item thereof
JP2000204141A (en) Polyhydric hydroxy resin, epoxy resin, epoxy resin composition including them and its cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5476762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250