WO2014010559A1 - Epoxy resin, epoxy resin composition, method for curing same, and cured product thereof - Google Patents

Epoxy resin, epoxy resin composition, method for curing same, and cured product thereof Download PDF

Info

Publication number
WO2014010559A1
WO2014010559A1 PCT/JP2013/068650 JP2013068650W WO2014010559A1 WO 2014010559 A1 WO2014010559 A1 WO 2014010559A1 JP 2013068650 W JP2013068650 W JP 2013068650W WO 2014010559 A1 WO2014010559 A1 WO 2014010559A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
curing
temperature
cured product
Prior art date
Application number
PCT/JP2013/068650
Other languages
French (fr)
Japanese (ja)
Inventor
大神 浩一郎
健 廣田
山田 尚史
秀安 朝蔭
梶 正史
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to JP2014524798A priority Critical patent/JPWO2014010559A1/en
Publication of WO2014010559A1 publication Critical patent/WO2014010559A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/063Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an epoxy resin, an epoxy resin composition, a curing method thereof, and a cured product, which are excellent in heat resistance, thermal decomposition stability and fluidity, and excellent for sealing.
  • Epoxy resins have been used in a wide range of industrial applications, but their required performance has become increasingly sophisticated in recent years. Under such circumstances, in power devices that have been developed in recent years, further improvement in the power density of the devices is required. As a result, the temperature of the chip surface during operation reaches 250 ° C. It is desired to develop a sealing material that can withstand temperature.
  • Patent Document 1 discloses a tetraphenylethane type epoxy resin and many epoxy resin compositions. An epoxy resin composition containing a polyhydric phenol resin curing agent as an essential component is shown, and an epoxy resin cured product having excellent heat resistance is disclosed.
  • Patent Document 2 discloses an epoxy resin composition excellent in heat resistance and a cured product using a tetraphenylethane type epoxy resin and an acid anhydride curing agent. However, even when the tetraphenylethane type epoxy resin is used in this way, only a cured product having a glass transition temperature of about 230 ° C.
  • the glass transition temperature which is an indicator of heat resistance
  • the decomposition start temperature at high temperature use is important, and materials with a high decomposition start temperature as well as the glass transition temperature are required. It has been.
  • the object of the present invention is to provide high heat resistance, high temperature and long-term thermal decomposition stability, and excellent fluidity in applications such as lamination, molding, casting, and adhesion, sealing of electrical and electronic components, circuit boards, etc.
  • An object of the present invention is to provide a cured epoxy resin useful as a material.
  • the present invention relates to an epoxy resin represented by the following general formula (2).
  • R independently represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms
  • G represents a glycidyl group.
  • N is a repeating number, but n is 1 or more of a multimer of 10% or more.
  • This epoxy resin is preferably an epoxy resin represented by the general formula (2), and preferably contains 10% or more of a multimer having n of 1 or more.
  • R independently represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms
  • G represents a glycidyl group
  • n represents a repeating number.
  • this invention relates to the epoxy resin composition characterized by containing said epoxy resin, a phenol type hardening
  • the curing catalyst is preferably at least one selected from imidazoles, organic phosphines, or amines, and the epoxy resin composition was further measured by DSC at a temperature rising rate of 10 ° C./min. In some cases, it is preferable to exhibit a curing performance in which the heat generation peak top is 150 ° C. or higher.
  • the present invention also includes a method for curing the epoxy resin composition, wherein the epoxy resin composition is molded at 100 ° C. to 200 ° C. and then post-cured at 200 ° C. to 300 ° C., and the curing conditions of the curing method It relates to a cured epoxy resin obtained by curing with 1.
  • This cured epoxy resin is suitable for a semiconductor encapsulant.
  • this invention relates to the semiconductor device characterized by sealing the semiconductor element with the said epoxy resin hardened
  • an epoxy resin cured product can be obtained.
  • This cured product is excellent in terms of high heat resistance, high-temperature and long-term thermal decomposition stability, high fluidity, and the like. And can be suitably used for applications such as sealing of electric / electronic parts and circuit board materials.
  • the epoxy resin of the present invention is represented by the above general formula (2) and can be produced by reacting a polyvalent hydroxy compound represented by the above general formula (1) with epichlorohydrin. And this polyhydric hydroxy compound can be manufactured by making phenol and glyoxal react.
  • R independently represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • R is a hydrogen atom or alkyl having 1 to 4 carbon atoms.
  • The% of n is an area% measured by gel permeation chromatography (GPC), and the area% of a multimeric component having an n of 1 or more is preferably 10% or more.
  • the amount of the phenol compound used relative to the glyoxal is limited, and the amount of glyoxal used is 0.02 to 0.2 mol, preferably 0.04 to 0.00. 1 mole.
  • the polyvalent hydroxy compound used as a raw material for the epoxy resin containing a multimer of the present invention has an area% of a multimeric component having an n of 1 or more of 10% or more. This adjusts the molar ratio of the phenol compound and glyoxal. Thus, the desired multimer content can be obtained.
  • this reaction is carried out in the presence of a known acid catalyst such as an inorganic acid or an organic acid.
  • a known acid catalyst such as an inorganic acid or an organic acid.
  • an acid catalyst include mineral acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as formic acid, oxalic acid, trifluoroacetic acid, and p-toluenesulfonic acid, zinc chloride, aluminum chloride, iron chloride,
  • Lewis acids such as boron trifluoride and solid acids such as activated clay, silica-alumina, and zeolite.
  • This reaction is usually carried out at 10 to 250 ° C. for 1 to 20 hours.
  • a solvent during the reaction for example, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methyl cellosolve, ethyl cellosolve, diglyme and triglyme, and aromatic compounds such as benzene, toluene, chlorobenzene and dichlorobenzene It is good to use.
  • ethyl cellosolve, diglyme and triglyme are preferable from the viewpoint of solubility.
  • the obtained polyvalent hydroxy resin may be removed by a method such as distillation under reduced pressure, washing with water or reprecipitation in a poor solvent, but as a raw material for the epoxidation reaction while leaving the solvent. It may be used.
  • n 0 components in a multimeric mixture represented by the general formula (2).
  • the epoxy resin of the present invention contains a multimeric component bonded with a methine chain, so the principle is not clear, but it is expected that the crosslinks will be relatively dense, and as a result, the thermal decomposition stability is excellent. It is considered a thing.
  • n is a number in the range of 0 to 10
  • n 0, and the average (number average) of n is preferably in the range of 0.1 to 4. Since n inherits n of the polyvalent hydroxy compound used as a raw material almost as it is, adjustment of n is made by adjusting n of the polyvalent hydroxy compound.
  • the epoxy resin of the present invention can be produced by reacting the polyvalent hydroxy resin with epichlorohydrin.
  • This reaction can be performed in the same manner as a normal epoxidation reaction.
  • the reaction is carried out at 50 to 150 ° C., preferably 60 to 120 ° C. for 1 to 10 hours in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide.
  • the amount of the alkali metal hydroxide used is 0.8 to 1.2 mol, preferably 0.9 to 1.0 mol, based on 1 mol of the hydroxyl group in the polyvalent hydroxy compound.
  • Epichlorohydrin is used in excess with respect to the hydroxyl group in the polyvalent hydroxy resin, but is usually 1.5 to 15 mol, preferably 2 to 8 mol, based on 1 mol of the hydroxyl group in the polyvalent hydroxy compound. After completion of the reaction, excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene, methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the solvent is distilled off to give a general formula.
  • the epoxy resin represented by (2) can be obtained.
  • the viscosity and softening point of the epoxy resin can be easily adjusted by changing the molar ratio of the phenolic compound and glyoxal when synthesizing the polyvalent hydroxy resin that is the raw material of the epoxy resin.
  • the viscosity at 150 ° C. is preferably 3.0 Pa ⁇ s or less, more preferably 1.0 Pa ⁇ s or less, and still more preferably 0.5 Pa ⁇ s or less.
  • the softening point shall be 130 degrees C or less.
  • the epoxy resin composition of the present invention includes the epoxy resin of the present invention, a curing agent, a curing catalyst, and an inorganic filler.
  • the epoxy resin of the present invention is an epoxy resin obtained by reacting an epoxy resin represented by the general formula (2) or a polyvalent hydroxy compound represented by the general formula (1) with epichlorohydrin.
  • a phenolic curing agent is used as a curing agent to be blended in the epoxy resin composition.
  • polyhydric phenols are preferably used as curing agents. Below, the specific example of a hardening
  • polyhydric phenols examples include divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, hydroquinone, resorcin, catechol, biphenols, naphthalenediols, and tris- (4-hydroxyphenyl).
  • divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, hydroquinone, resorcin, catechol, biphenols, naphthalenediols, and tris- (4-hydroxyphenyl).
  • Trivalent or higher typified by methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, o-cresol novolak, naphthol novolak, dicyclopentadiene type phenol resin, phenol aralkyl resin, etc. There are phenols.
  • phenols, naphthols, or divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4 ′ -biphenol, 2,2 ′ -biphenol, hydroquinone, resorcin, catechol, naphthalene diols, etc.
  • the blending amount of the soot curing agent is blended in consideration of the equivalent balance between the epoxy group in the epoxy resin and the hydroxyl group of the polyhydric phenol.
  • the equivalent ratio of epoxy resin and curing agent is usually in the range of 0.2 to 5.0, preferably in the range of 0.5 to 2.0, more preferably in the range of 0.8 to 1.5. It is. If it is larger or smaller than this, the curability of the epoxy resin composition is lowered, and the heat resistance, mechanical strength and the like of the cured product are lowered.
  • the curing agent component as the curing agent component, another type of curing agent may be blended in addition to the aromatic hydroxy compound.
  • the epoxy resin in this case include dicyandiamide, acid anhydrides, aromatic and aliphatic amines.
  • one or more of these curing agents can be mixed and used.
  • the amount of the curing agent other than the phenol-based curing agent is preferably 50 wt% or less of the total curing agent.
  • epoxy resin component another type of epoxy resin may be blended in addition to the epoxy resin represented by the general formula (2).
  • epoxy resin in this case, all ordinary epoxy resins having two or more epoxy groups in the molecule can be used. Examples include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4 ′ -biphenol, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl, resorcin, naphthalenediols Trivalent or more epoxides of divalent phenols such as tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, o-cresol novolak, etc.
  • the amount of the epoxy resin represented by the general formula (2) is in the range of 5 to 100 wt%, preferably 60 to 100 wt% in the entire epoxy resin. It is good that it is.
  • silica powder such as spherical or crushed fused silica, crystalline silica, alumina powder, glass powder, or mica, talc, calcium carbonate, alumina, hydrated alumina, boron nitride, aluminum nitride,
  • examples thereof include silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, magnesium oxide, and the preferable blending amount when used for a semiconductor sealing material is 70% by weight or more, and more preferably 80% by weight or more.
  • soot curing catalyst it is preferable to use a curing catalyst (high temperature active catalyst) having an active site in a high temperature region in the epoxy resin composition for the purpose of promoting curing and improving fluidity during molding.
  • the content of the soot curing catalyst is in the range of 0.2 to 5 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • the amount is preferably 0.5 to 3 parts by weight, more preferably 0.5 to 2.5 parts by weight. If it is smaller than this, the curability will be lowered, and conversely if it is larger than this, the fluidity improving effect at the time of molding will not be sufficiently exhibited.
  • the DSC exothermic peak temperature of the epoxy resin composition using a high temperature active catalyst is 150 ° C. or higher, preferably 155 ° C. or higher, more preferably 165 ° C. or higher.
  • This DSC exothermic peak temperature is a temperature showing a maximum exothermic peak when an epoxy resin composition containing a high temperature active catalyst as a curing catalyst is subjected to DSC measurement under a temperature rising rate of 10 ° C./min.
  • Examples of the curing catalyst or the high temperature active catalyst include imidazoles, organic phosphines, amines and the like.
  • Examples of imidazoles include 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-heptadecylimidazole, and 2,4-diamino-6- [2′-dimethyl.
  • organic phosphines such as diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine include tris- (2,6-dimethoxyphenyl) phosphine, tri-p-tolylphosphine,
  • amines such as tris (p-chlorophenyl) phosphine and tris (p-methoxyphenyl) phosphine include 1,8-diazabicyclo.
  • phenol novolak salt of (5,4,0) undecene-7 The addition amount is usually in the range of 0.2 to 5 parts by weight with respect to 100 parts by weight of the epoxy resin
  • the curing conditions by using a high-temperature active catalyst having a specific active temperature region as a curing catalyst, it is possible to suppress a decrease in fluidity. Further, regarding the curing conditions, particularly when the epoxy resin of the present invention is used. In addition, it has been found that the curing conditions at high temperature greatly affect the glass transition temperature.
  • the resin composition of the present invention may further include a release agent such as carnauba wax or OP wax, a coupling agent such as 4-aminopropylethoxysilane or ⁇ -glycidoxypropyltrimethoxysilane, carbon black, if necessary. And the like, flame retardants such as antimony trioxide, and lubricants such as calcium stearate.
  • a release agent such as carnauba wax or OP wax
  • a coupling agent such as 4-aminopropylethoxysilane or ⁇ -glycidoxypropyltrimethoxysilane, carbon black, if necessary.
  • flame retardants such as antimony trioxide
  • lubricants such as calcium stearate.
  • an oligomer or a polymer compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene resin, indene-coumarone resin, phenoxy resin, etc. is used as another modifier. You may mix
  • the addition amount is usually in the range of 2 to 30 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • the epoxy resin composition of the present invention may contain additives such as pigments, retardants, thixotropic agents, coupling agents, fluidity improvers, and antioxidants.
  • soot pigment examples include organic or inorganic extender pigments and scaly pigments.
  • examples of the thixotropic agent include silicon-based, castor oil-based, aliphatic amide wax, polyethylene oxide wax, and organic bentonite.
  • the epoxy resin composition of the present invention is made into a varnish in which an organic solvent is dissolved, and then impregnated into a fibrous material such as glass cloth, aramid nonwoven fabric, polyester nonwoven fabric such as liquid crystal polymer, and the like, and then the solvent is removed. It can be. Moreover, it can be set as a laminated body by apply
  • any method may be used for preparing the epoxy resin composition of the present invention as long as various raw materials can be uniformly dispersed and mixed.
  • raw materials of a predetermined blending amount are sufficiently mixed by a mixer or the like. Then, a method of melt-kneading with a mixing roll, an extruder or the like, cooling, and pulverizing can be mentioned.
  • the epoxy resin composition of the present invention and its cured product are particularly suitable for sealing semiconductor devices.
  • the cured product of the present invention can be obtained by thermally curing the epoxy resin composition.
  • methods such as transfer molding, press molding, cast molding, injection molding, and extrusion molding are applied, but from the viewpoint of mass productivity. Transfer molding is preferred.
  • the curing method of the epoxy resin composition of the present invention is 100 ° C. to 200 ° C., preferably 120 ° C. to 190 ° C., more preferably 150 to 180 ° C., and then 200 ° C. to 300 ° C., preferably 220 ° C. to 280 ° C. More preferably, it is produced by post-curing at 230 to 270 ° C., and a cured product excellent in terms of high heat resistance, high-temperature long-term thermal decomposition stability, high fluidity and the like can be obtained.
  • the molding time is preferably 1 to 60 minutes, more preferably 1 to 10 minutes. If the molding time is long, the productivity will be poor, and if it is too short, it will be difficult to release.
  • the post cure time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 8 hours, and particularly preferably 2 hours to 6 hours.
  • the post-cure time is short, curing does not proceed sufficiently, and sufficient characteristics such as heat resistance and mechanical properties cannot be obtained. Moreover, productivity will fall when it exceeds 10 hours.
  • the curing reaction proceeds even in a high post-cure temperature region where a general epoxy resin composition cannot react, and has a very high heat resistance, heat decomposition resistance, mechanical properties, etc. You can get things.
  • Synthesis example 2 A 5 L 4-neck flask was charged with 500 g of the phenol resin obtained in Synthesis Example 1, 377 g of diethylene glycol dimethyl ether, and 2511 g of epichlorohydrin, and the temperature was raised to 60 ° C. Subsequently, 48.2 g of a 49% aqueous potassium hydroxide solution was added dropwise over 2 hours to perform a preliminary reaction, and 298.9 g of a 49% aqueous sodium hydroxide solution was added dropwise over 3.5 hours at 63 ° C. under reduced pressure.
  • the water refluxed during the dropwise addition and epichlorohydrin were separated in a separation tank, the epichlorohydrin was returned to the reaction vessel, and water was removed from the system to react. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin was distilled off to obtain 660 g of epoxy resin (epoxy resin A).
  • the epoxy equivalent of the obtained resin was 182.0 g / eq.
  • the melt viscosity at 150 ° C. was 0.35 Pa ⁇ s.
  • Synthesis example 3 A 3 L 4-neck flask was charged with 1000 g of phenol, 232 g of 40 wt% aqueous glyoxal solution and 125 g of acetone, and 187.5 g of 95 wt% sulfuric acid was added dropwise over 2 hours. Thereafter, the reaction was carried out at 40 ° C. for 12 hours, and after completion of the reaction, the mixture was cooled to 15 ° C. and neutralized. Subsequently, 632 g of acetone was added, and the precipitate was filtered off.
  • the mixture was washed with a mixed solution of acetone and water, charged with 1400 g of methanol, dissolved by heating under reflux for about 1 hour, and then filtered while hot to remove neutralized salts.
  • the obtained methanol solution was added with 564 g of water under stirring, and then distilled under reduced pressure to distill off methanol. Thereafter, the mixture was stirred overnight at 15 ° C., separated by filtration, and dried under reduced pressure at about 130 ° C. to obtain 227 g of tetrakisphenolethane as white crystals.
  • Synthesis example 4 A 5 L 4-neck flask was charged with 500 g of the phenol resin obtained in Synthesis Example 3, 434 g of diethylene glycol dimethyl ether, and 2896 g of epichlorohydrin, and the temperature was raised to 60 ° C. Subsequently, 55.5 g of 49% aqueous potassium hydroxide solution was added dropwise over 2 hours to perform a preliminary reaction, and then 344.6 g of 49% aqueous sodium hydroxide solution was added dropwise over 3.5 hours at 63 ° C. under reduced pressure. The water refluxed during the dropwise addition and epichlorohydrin were separated in a separation tank, the epichlorohydrin was returned to the reaction vessel, and water was removed from the system to react.
  • Synthesis Example 6 A 5 L 4-neck flask was charged with 500 g of the phenol resin obtained in Synthesis Example 5, 403 g of diethylene glycol dimethyl ether, and 2684 g of epichlorohydrin, and the temperature was raised to 60 ° C. Subsequently, after 51.5 g of 49% aqueous potassium hydroxide solution was added dropwise over 2 hours to perform a preliminary reaction, 315.3 g of 49% aqueous sodium hydroxide solution was added dropwise over 3.5 hours at 63 ° C. under reduced pressure. The water refluxed during the dropwise addition and epichlorohydrin were separated in a separation tank, epichlorohydrin was returned to the reaction vessel, and water was removed from the system to react.
  • Synthesis example 8 A 5 L 4-neck flask was charged with 125 g of the phenol resin obtained in Synthesis Example 7, 86 g of diethylene glycol dimethyl ether, and 575 g of epichlorohydrin, and the temperature was raised to 60 ° C. Subsequently, 11.0 g of 49% aqueous potassium hydroxide solution was added dropwise over 2 hours to perform a preliminary reaction, and then 67.5 g of 49% aqueous sodium hydroxide solution was added dropwise over 3.5 hours at 63 ° C. under reduced pressure. The water refluxed during the dropwise addition and epichlorohydrin were separated in a separation tank, the epichlorohydrin was returned to the reaction vessel, and water was removed from the system to react.
  • FIGS. 1, 3, 5, and 7 GPC charts of the phenol resins obtained in Synthesis Examples 1, 3, 5, and 7 are shown in FIGS. 1, 3, 5, and 7, and GPC charts of the epoxy resins obtained in Synthesis Examples 2, 4, 6, and 8 are shown. It is shown in FIGS.
  • Example 1 As an epoxy resin component, 100 g of epoxy resin A obtained in Synthesis Example 2, and as a curing agent component, phenol novolac (PSM-4324 (manufactured by Gunei Chemical Industry Co., Ltd.), OH equivalent 105, softening point: 100 ° C.) 57.5 g was used. Further, 0.7 g of curing accelerator A; 2-methylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.) was used and kneaded to obtain an epoxy resin composition. Using this epoxy resin composition, a cured product test piece was obtained at a molding temperature of 175 ° C. for 3 minutes and a post-cure temperature of 250 ° C. for 5 hours (molding condition A). It was measured. The results are shown in Table 1.
  • Example 2 A 5% weight loss temperature was measured in the same manner as in Example 1 except that 100 g of the epoxy resin E obtained in Synthesis Example 8 was used as the epoxy resin component. The results are shown in Table 1.
  • Comparative Example 1 A 5% weight loss temperature was measured in the same manner as in Example 1 except that 100 g of the epoxy resin B obtained in Synthesis Example 4 was used as the epoxy resin component. The results are shown in Table 1.
  • Comparative Example 2 A 5% weight loss temperature was measured in the same manner as in Example 1 except that 100 g of the epoxy resin D obtained in Synthesis Example 6 was used as the epoxy resin component. The results are shown in Table 1.
  • Examples 3 to 15 and Comparative Examples 3 and 4 The epoxy resins A and E obtained in the above synthesis examples, or the epoxy resin C, a curing agent, an inorganic filler, a curing accelerator (curing catalyst), and other additives are kneaded at a blending ratio shown in Tables 2 to 3. Thus, an epoxy resin composition was prepared.
  • surface shows the weight part in mixing
  • Epoxy resin C o-cresol novolac type epoxy resin (epoxy equivalent 200, softening point 65 ° C., manufactured by Nippon Steel Chemical Co., Ltd.) (Curing agent)
  • PN phenol novolak (PSM-4324, OH equivalent 105, softening point: 100 ° C., manufactured by Gunei Chemical Industry Co., Ltd.)
  • TPM Triphenolmethane (TPM-100, OH equivalent 97.5, softening point 105 ° C., manufactured by Gunei Chemical Industry Co., Ltd.) (Inorganic filler) Spherical silica (Product name: FB-8S, manufactured by Denki Kagaku Kogyo Co., Ltd.) (Curing accelerator) A; 2-methylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.) B: 2-Phenyl-4,5-dihydroxymethylimidazole (2PHZ-PW, manufactured by Shikoku Kasei Co.
  • Molding conditions A Molding temperature 175 ° C., 3 minutes. Post cure temperature 250 ° C., 5 hours B; Molding temperature 175 ° C., 3 minutes. Post cure temperature 175 ° C, 5 hours
  • Tg Glass transition point
  • 5% weight reduction temperature was determined by a TG / DTA6200 type thermomechanical measurement device manufactured by Seiko Instruments Inc. under a nitrogen atmosphere under a temperature increase rate of 10 ° C./min. 8) Flexural strength and flexural elasticity Measured at room temperature and 250 ° C. by a three-point bending test method according to JISK 6911. 9) Bending strength and elastic modulus retention rate The bending strength and bending elastic modulus at high temperatures (250 ° C) were determined with respect to the bending strength and bending elastic modulus at room temperature. A higher value indicates less change in physical properties with room temperature.

Abstract

Provided is an epoxy resin cured product that, whether used for lamination, molding, or casting, has excellent high heat resistance, high-temperature and long-term pyrolysis stability, and fluidity, and that is useful in the sealing of electrical and electronic parts, for circuit substrate materials, and the like. Provided are: an epoxy resin containing at least 10% of a polymer represented by general formula (2), wherein n is 1 or greater; an epoxy resin composition containing the epoxy resin, a phenolic curing agent, a curing catalyst, and an inorganic filler; and a cured product thereof. Here, R is a hydrogen atom or a C1-6 hydrocarbon group, and G is a glycidyl group.

Description

エポキシ樹脂、エポキシ樹脂組成物、その硬化方法及び硬化物Epoxy resin, epoxy resin composition, curing method thereof and cured product
  本発明は、耐熱性、熱分解安定性及び流動性に優れ、封止用として優れるエポキシ樹脂、エポキシ樹脂組成物、その硬化方法及び硬化物に関する。 The present invention relates to an epoxy resin, an epoxy resin composition, a curing method thereof, and a cured product, which are excellent in heat resistance, thermal decomposition stability and fluidity, and excellent for sealing.
  エポキシ樹脂は工業的に幅広い用途で使用されてきているが、その要求性能は近年ますます高度化している。この様な中で、近年開発が進められているパワーデバイスにおいては、デバイスのパワー密度の更なる向上が求められており、その結果、動作時のチップ表面の温度は250℃にも達し、その温度に耐え得る封止材料の開発が望まれている。 Epoxy resins have been used in a wide range of industrial applications, but their required performance has become increasingly sophisticated in recent years. Under such circumstances, in power devices that have been developed in recent years, further improvement in the power density of the devices is required. As a result, the temperature of the chip surface during operation reaches 250 ° C. It is desired to develop a sealing material that can withstand temperature.
  このような中、耐熱性に優れたエポキシ樹脂組成物として、テトラフェニルエタン構造を有するエポキシ樹脂を用いたものが知られており、例えば、特許文献1には、テトラフェニルエタン型エポキシ樹脂と多価フェノール樹脂硬化剤を必須成分としたエポキシ樹脂組成物が示され、耐熱性に優れたエポキシ樹脂硬化物が開示されている。また、特許文献2には、テトラフェニルエタン型エポキシ樹脂と酸無水物硬化剤を用いた耐熱性に優れたエポキシ樹脂組成物及び硬化物の開示がある。しかし、このようにテトラフェニルエタン型エポキシ樹脂を用いた場合においても、通常の成形手法では、ガラス転移温度が230℃程度の硬化物しか得られておらず、なかでもフェノール樹脂硬化剤を使用した場合においては、200℃以下のガラス転移温度の硬化物しか得られていない。そのため、250℃もの高い動作温度に耐えうる高耐熱性のパワーデバイス向け封止材料の特性を満足し得ないという問題があった。 Under such circumstances, epoxy resin compositions having a tetraphenylethane structure are known as epoxy resin compositions having excellent heat resistance. For example, Patent Document 1 discloses a tetraphenylethane type epoxy resin and many epoxy resin compositions. An epoxy resin composition containing a polyhydric phenol resin curing agent as an essential component is shown, and an epoxy resin cured product having excellent heat resistance is disclosed. Patent Document 2 discloses an epoxy resin composition excellent in heat resistance and a cured product using a tetraphenylethane type epoxy resin and an acid anhydride curing agent. However, even when the tetraphenylethane type epoxy resin is used in this way, only a cured product having a glass transition temperature of about 230 ° C. is obtained by a normal molding method, and among them, a phenol resin curing agent is used. In some cases, only a cured product having a glass transition temperature of 200 ° C. or lower is obtained. Therefore, there has been a problem that the characteristics of the sealing material for power devices with high heat resistance that can withstand an operating temperature as high as 250 ° C. cannot be satisfied.
  また、高温での実使用に耐えるには、耐熱性の指標であるガラス転移温度だけでなく、高温使用時の分解開始温度も重要であり、ガラス転移温度同様に高い分解開始温度の材料が求められている。 In addition, in order to withstand actual use at high temperatures, not only the glass transition temperature, which is an indicator of heat resistance, but also the decomposition start temperature at high temperature use is important, and materials with a high decomposition start temperature as well as the glass transition temperature are required. It has been.
特開平9-3162号公報Japanese Patent Laid-Open No. 9-3162 特開平2-219812公報JP-A-2-219812
  本発明の目的は、積層、成形、注型、接着等の用途において、高耐熱性、高温長期熱分解安定性に優れるとともに、流動性にも優れ、電気・電子部品類の封止、回路基板材料等に有用なエポキシ樹脂硬化物を提供することにある。 The object of the present invention is to provide high heat resistance, high temperature and long-term thermal decomposition stability, and excellent fluidity in applications such as lamination, molding, casting, and adhesion, sealing of electrical and electronic components, circuit boards, etc. An object of the present invention is to provide a cured epoxy resin useful as a material.
  本発明は、下記一般式(2)で表されるエポキシ樹脂に関する。
Figure JPOXMLDOC01-appb-I000003
 
(ここで、Rは独立に、水素原子又は炭素数1~6の炭化水素基を示し、Gはグリシジル基を示す。nは繰り返し数であるが、nが1以上の多量体を10%以上含む。)
The present invention relates to an epoxy resin represented by the following general formula (2).
Figure JPOXMLDOC01-appb-I000003

(Wherein, R independently represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, G represents a glycidyl group. N is a repeating number, but n is 1 or more of a multimer of 10% or more. Including)
  また、本発明は、下記一般式(1)で表され、ゲルパーミエーションクロマトグラフィーで測定した面積%においてn=1以上の成分が10%以上である多価ヒドロキシ化合物と、エピクロルヒドリンとを反応させて得られることを特徴とするエポキシ樹脂に関する。
 このエポキシ樹脂は、上記一般式(2)で表されるエポキシ樹脂であることが好ましく、nが1以上の多量体を10%以上含むことが好ましい。
Figure JPOXMLDOC01-appb-I000004
 
(ここで、Rは独立に、水素原子又は炭素数1~6の炭化水素基を示し、Gはグリシジル基を示し、nは繰り返し数を示す。)
The present invention also includes a reaction between a polyvalent hydroxy compound represented by the following general formula (1) and having a component of n = 1 or more of 10% or more in area% measured by gel permeation chromatography and epichlorohydrin. It is related with the epoxy resin characterized by being obtained.
This epoxy resin is preferably an epoxy resin represented by the general formula (2), and preferably contains 10% or more of a multimer having n of 1 or more.
Figure JPOXMLDOC01-appb-I000004

(Here, R independently represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, G represents a glycidyl group, and n represents a repeating number.)
  更に、本発明は上記のエポキシ樹脂、フェノール系硬化剤、硬化触媒及び無機充填剤を含有することを特徴とするエポキシ樹脂組成物に関する。
  ここで、硬化触媒が、イミダゾール類、有機ホスフィン類、又はアミン類から選ばれる少なくとも1種であることが好ましく、更にエポキシ樹脂組成物をDSCにて昇温速度10℃/分の条件で測定したとき、発熱ピークトップが150℃以上となる硬化性能を示すものであることが好ましい。
Furthermore, this invention relates to the epoxy resin composition characterized by containing said epoxy resin, a phenol type hardening | curing agent, a curing catalyst, and an inorganic filler.
Here, the curing catalyst is preferably at least one selected from imidazoles, organic phosphines, or amines, and the epoxy resin composition was further measured by DSC at a temperature rising rate of 10 ° C./min. In some cases, it is preferable to exhibit a curing performance in which the heat generation peak top is 150 ° C. or higher.
  また、本発明は上記のエポキシ樹脂組成物を100℃~200℃で成形後、200℃~300℃でポストキュアすることを特徴とするエポキシ樹脂組成物の硬化方法、および上記硬化方法の硬化条件で硬化して得られるエポキシ樹脂硬化物に関する。このエポキシ樹脂硬化物は、半導体封止材用に適する。更に、本発明は上記エポキシ樹脂硬化物で半導体素子を封止したことを特徴とする半導体装置に関する。 The present invention also includes a method for curing the epoxy resin composition, wherein the epoxy resin composition is molded at 100 ° C. to 200 ° C. and then post-cured at 200 ° C. to 300 ° C., and the curing conditions of the curing method It relates to a cured epoxy resin obtained by curing with 1. This cured epoxy resin is suitable for a semiconductor encapsulant. Furthermore, this invention relates to the semiconductor device characterized by sealing the semiconductor element with the said epoxy resin hardened | cured material.
  本発明のポキシ樹脂組成物を加熱硬化させれば、エポキシ樹脂硬化物とすることができ、この硬化物は、高耐熱性、高温長期熱分解安定性、高流動性等の点で優れたものを与え、電気・電子部品類の封止、回路基板材料等の用途に好適に使用することが可能である。 If the epoxy resin composition of the present invention is cured by heating, an epoxy resin cured product can be obtained. This cured product is excellent in terms of high heat resistance, high-temperature and long-term thermal decomposition stability, high fluidity, and the like. And can be suitably used for applications such as sealing of electric / electronic parts and circuit board materials.
合成例1で得られたフェノール樹脂のGPCチャートGPC chart of the phenol resin obtained in Synthesis Example 1 合成例2で得られたエポキシ樹脂のGPCチャートGPC chart of epoxy resin obtained in Synthesis Example 2 合成例3で得られたフェノール樹脂のGPCチャートGPC chart of the phenol resin obtained in Synthesis Example 3 合成例4で得られたエポキシ樹脂のGPCチャートGPC chart of epoxy resin obtained in Synthesis Example 4 合成例5で得られたフェノール樹脂のGPCチャートGPC chart of phenol resin obtained in Synthesis Example 5 合成例6で得られたエポキシ樹脂のGPCチャートGPC chart of epoxy resin obtained in Synthesis Example 6 合成例7で得られたフェノール樹脂のGPCチャートGPC chart of phenol resin obtained in Synthesis Example 7 合成例8で得られたエポキシ樹脂のGPCチャートGPC chart of epoxy resin obtained in Synthesis Example 8
  以下、本発明を詳細に説明する。
  本発明のエポキシ樹脂は、上記一般式(2)で表され、上記一般式(1)で表される多価ヒドロキシ化合物とエピクロロヒドリンとを反応させることにより製造することができる。そして、この多価ヒドロキシ化合物は、フェノールとグリオキザールとを反応させることにより製造することができる。
Hereinafter, the present invention will be described in detail.
The epoxy resin of the present invention is represented by the above general formula (2) and can be produced by reacting a polyvalent hydroxy compound represented by the above general formula (1) with epichlorohydrin. And this polyhydric hydroxy compound can be manufactured by making phenol and glyoxal react.
  一般式(1)及び一般式(2)において、同一の記号は同じ意味を有し、Rは独立に、水素原子又は炭素数1~6の炭化水素基を示す。好ましくは、Rは水素原子又は炭素数1~4のアルキルである。nは繰り返し数であり、通常はnが異なる成分の混合物であるが、0~10の成分からなることが好ましい。そして、10%以上がn=1以上の多量体であることが好ましい。このnの%は、ゲルパーミエーションクロマトグラフィー(GPC)で測定した面積%であり、nが1以上の多量体成分の面積%が10%以上であることが好ましい。 In general formula (1) and general formula (2), the same symbols have the same meaning, and R independently represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. Preferably, R is a hydrogen atom or alkyl having 1 to 4 carbon atoms. n is the number of repetitions and is usually a mixture of components with different n, but preferably consists of 0 to 10 components. 10% or more is preferably a multimer of n = 1 or more. The% of n is an area% measured by gel permeation chromatography (GPC), and the area% of a multimeric component having an n of 1 or more is preferably 10% or more.
  従来、一般的に製造されるn=0である4官能の上記多価ヒドロキシ化合物は、グリオキザールに対して大過剰のフェノール化合物を使用して得られている。フェノール化合物とグリオキザールとの反応には、グリオキザールに対するフェノール化合物の使用量が限定され、グリオキザールの使用量は、フェノール化合物1モルに対し0.02~0.2モル、好ましくは0.04~0.1モルである。グリオキザールの使用量が0.2モルより多いと多価ヒドロキシ化合物およびそれから製造されるエポキシ樹脂の軟化点が高くなって成形作業性に支障をきたし、0.02モルより少ないとn=0体の生成が多くなると共に、反応終了後に過剰のフェノールを除く量が多くなり、工業的に好ましくない。本発明の多量体を含むエポキシ樹脂の原料となる多価ヒドロキシ化合物は、nが1以上の多量体成分の面積%が10%以上であるが、これはフェノール化合物とグリオキザールのモル比を調整することで所望の多量体含有量とすることができる。 Conventionally, the above-mentioned tetrafunctional polyhydroxy compound having n = 0 which is generally produced has been obtained by using a phenol compound in a large excess with respect to glyoxal. In the reaction between the phenol compound and glyoxal, the amount of the phenol compound used relative to the glyoxal is limited, and the amount of glyoxal used is 0.02 to 0.2 mol, preferably 0.04 to 0.00. 1 mole. When the amount of glioxal used is more than 0.2 mol, the softening point of the polyvalent hydroxy compound and the epoxy resin produced therefrom is increased, which hinders the molding workability, and when it is less than 0.02 mol, n = 0. As the production increases, the amount of excess phenol after the reaction ends increases, which is not industrially preferable. The polyvalent hydroxy compound used as a raw material for the epoxy resin containing a multimer of the present invention has an area% of a multimeric component having an n of 1 or more of 10% or more. This adjusts the molar ratio of the phenol compound and glyoxal. Thus, the desired multimer content can be obtained.
  通常、この反応は、公知の無機酸、有機酸等の酸触媒の存在下に行う。このような酸触媒としては、例えば、塩酸、硫酸、燐酸等の鉱酸や、ギ酸、シュウ酸、トリフルオロ酢酸、p-トルエンスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸や、活性白土、シリカ-アルミナ、ゼオライト等の固体酸などが挙げられる。 In general, this reaction is carried out in the presence of a known acid catalyst such as an inorganic acid or an organic acid. Examples of such an acid catalyst include mineral acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as formic acid, oxalic acid, trifluoroacetic acid, and p-toluenesulfonic acid, zinc chloride, aluminum chloride, iron chloride, Examples include Lewis acids such as boron trifluoride and solid acids such as activated clay, silica-alumina, and zeolite.
  通常、この反応は10~250℃で1~20時間行う。さらに、反応の際に溶媒として、例えば、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、メチルセロソルブ、エチルセロソルブ、ジグライム、トリグライム等のアルコール類や、ベンゼン、トルエン、クロロベンゼン、ジクロロベンゼン等の芳香族化合物などを使用することがよい。特に溶解性の観点から、エチルセロソルブ、ジグライム、トリグライムが好ましい。反応終了後、得られた多価ヒドロキシ樹脂は、減圧留去、水洗又は貧溶媒中での再沈殿等の方法により溶媒を除去してもよいが、溶媒を残したままエポキシ化反応の原料として用いてもよい。 • This reaction is usually carried out at 10 to 250 ° C. for 1 to 20 hours. Further, as a solvent during the reaction, for example, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methyl cellosolve, ethyl cellosolve, diglyme and triglyme, and aromatic compounds such as benzene, toluene, chlorobenzene and dichlorobenzene It is good to use. In particular, ethyl cellosolve, diglyme and triglyme are preferable from the viewpoint of solubility. After completion of the reaction, the obtained polyvalent hydroxy resin may be removed by a method such as distillation under reduced pressure, washing with water or reprecipitation in a poor solvent, but as a raw material for the epoxidation reaction while leaving the solvent. It may be used.
  このようにして製造される多価ヒドロキシ化合物は、上記一般式(1)で表されるものであり、GPCで測定した面積%でn=1以上の成分が10%以上、好ましくは11%以上、より好ましくは12%以上である。また、多量体の比率が多くなると、これを使用して得られるエポキシ樹脂の粘度が増加し成形性が低下するため、n=1以上の成分は60%以下が好ましく、50%以下、特に40%以下が好ましい。なお、平均の繰り返し数n(数平均)は0~5であるが、n=1以上の成分を10%以上含むように調整される。そのため、nは概ね0.10以上となる。 The polyvalent hydroxy compound produced in this way is represented by the above general formula (1), and the component of n = 1 or more in area% measured by GPC is 10% or more, preferably 11% or more. More preferably, it is 12% or more. Moreover, since the viscosity of the epoxy resin obtained by using this increases when the ratio of a multimer increases and a moldability falls, the component of n = 1 or more is preferable 60% or less, 50% or less, especially 40 % Or less is preferable. The average number of repetitions n (number average) is 0 to 5, but is adjusted so as to include 10% or more of components where n = 1 or more. Therefore, n is approximately 0.10 or more.
  本発明のエポキシ樹脂は、一般式(2)で表わされる多量体混合物で主にn=0成分の4官能エポキシ化合物を主成分とするエポキシ樹脂である。n=1以上の成分を10%以上含む多価ヒドロキシ化合物を原料として用いる場合、エポキシ化工程では、未反応物が残存する場合等を除き、nの変化はないので、原料と同じnの含有率となると考えることができる。本発明のエポキシ樹脂は、メチン鎖で結合された多量体成分が含まれるため、原理は明らかではないが、相対的に架橋が密になることが予想され、その結果、熱分解安定性に優れるものと考えられる。 エ ポ キ シ The epoxy resin of the present invention is an epoxy resin mainly composed of a tetrafunctional epoxy compound having n = 0 components in a multimeric mixture represented by the general formula (2). In the case of using a polyvalent hydroxy compound containing 10% or more of n = 1 or more as a raw material, there is no change in n except in the case where an unreacted substance remains in the epoxidation step. Can be thought of as a rate. The epoxy resin of the present invention contains a multimeric component bonded with a methine chain, so the principle is not clear, but it is expected that the crosslinks will be relatively dense, and as a result, the thermal decomposition stability is excellent. It is considered a thing.
  すなわち、一般式(2)のエポキシ樹脂において、n=0(4官能)成分の割合が増加した場合、エチレン単位とフェニルグリシジルエーテル単位は1:4に限りなく近くなる。一方、より多官能成分であるn=1(7官能)及びn=2(10官能)成分の割合が高い多価ヒドロキシ化合物を用いた場合、上記比が2:7、及び3:10となり、架橋密度がより密になり、グリシジルエーテル単位が相対的に少なくなることで熱的に安定な優れた硬化物を得ることができると考えられる。また、多官能成分が増加した場合、硬化剤との反応に於いても硬化物の架橋密度が増加することで、より熱安定性に優れた硬化物となると考えられる。しかし、n=5以上成分が増加した場合、分子量が高くなるため、流動性や成形加工性に劣る傾向にある。そのような理由で、nは0~10の範囲の数であり、n=0を含み、nの平均(数平均)は0.1~4の範囲であることが好ましい。このnは、原料として使用する多価ヒドロキシ化合物のnをほぼそのまま受け継ぐので、nの調整は、多価ヒドロキシ化合物のnを調整することによりなされる。 That is, in the epoxy resin of the general formula (2), when the ratio of the n = 0 (tetrafunctional) component is increased, the ethylene unit and the phenyl glycidyl ether unit are infinitely close to 1: 4. On the other hand, when a polyvalent hydroxy compound having a higher ratio of n = 1 (7 functional) and n = 2 (10 functional) components, which are more multifunctional components, is used, the ratio is 2: 7 and 3:10, It is considered that an excellent cured product which is thermally stable can be obtained when the crosslink density becomes denser and glycidyl ether units are relatively reduced. In addition, when the polyfunctional component is increased, it is considered that the cured product having more excellent thermal stability is obtained by increasing the crosslinking density of the cured product even in the reaction with the curing agent. However, when the component increases by n = 5 or more, the molecular weight increases, so that the fluidity and molding processability tend to be inferior. For this reason, n is a number in the range of 0 to 10, preferably includes n = 0, and the average (number average) of n is preferably in the range of 0.1 to 4. Since n inherits n of the polyvalent hydroxy compound used as a raw material almost as it is, adjustment of n is made by adjusting n of the polyvalent hydroxy compound.
  本発明のエポキシ樹脂は、上記多価ヒドロキシ樹脂とエピクロルヒドリンとを反応させることにより製造することができる。この反応は、通常のエポキシ化反応と同様に行うことができる。例えば、多価ヒドロキシ樹脂を過剰のエピクロルヒドリンに溶解した後、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下に50~150℃、好ましくは60~120℃で1~10時間反応させる方法が挙げられる。この際、アルカリ金属水酸化物の使用量は、多価ヒドロキシ化合物中の水酸基1モルに対し、0.8~1.2モル、好ましくは0.9~1.0モルである。また、エピクロルヒドリンは多価ヒドロキシ樹脂中の水酸基に対して過剰に用いられるが、通常多価ヒドロキシ化合物中の水酸基1モルに対し、1.5~15モル、好ましくは2~8モルである。反応終了後、過剰のエピクロルヒドリンを留去し、残留物をトルエン、メチルイソブチルケトン等の溶剤に溶解し、濾過し、水洗して無機塩を除去し、次いで溶剤を留去することにより、一般式(2)で表されるエポキシ樹脂を得ることができる。但し、エポキシ化反応時にグリシジル基と未反応のフェノール性水酸基との反応も進行し、グリシジル基で連結された多量体も生成するので、反応条件を上記範囲に調整する必要がある。4官能のエポキシ化合物の多量体といった意味では同一であるが、結合部位が異なることにより耐熱性が大きく異なる。 The epoxy resin of the present invention can be produced by reacting the polyvalent hydroxy resin with epichlorohydrin. This reaction can be performed in the same manner as a normal epoxidation reaction. For example, after dissolving a polyvalent hydroxy resin in excess epichlorohydrin, the reaction is carried out at 50 to 150 ° C., preferably 60 to 120 ° C. for 1 to 10 hours in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide. The method of letting it be mentioned. At this time, the amount of the alkali metal hydroxide used is 0.8 to 1.2 mol, preferably 0.9 to 1.0 mol, based on 1 mol of the hydroxyl group in the polyvalent hydroxy compound. Epichlorohydrin is used in excess with respect to the hydroxyl group in the polyvalent hydroxy resin, but is usually 1.5 to 15 mol, preferably 2 to 8 mol, based on 1 mol of the hydroxyl group in the polyvalent hydroxy compound. After completion of the reaction, excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene, methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the solvent is distilled off to give a general formula. The epoxy resin represented by (2) can be obtained. However, since the reaction of the glycidyl group and the unreacted phenolic hydroxyl group also proceeds during the epoxidation reaction, and a multimer linked by the glycidyl group is generated, it is necessary to adjust the reaction conditions within the above range. Although it is the same in terms of a multimer of tetrafunctional epoxy compounds, the heat resistance is greatly different depending on the bonding site.
  また、このエポキシ樹脂の粘度及び軟化点は、エポキシ樹脂原料である多価ヒドロキシ樹脂を合成する際のフェノール化合物とグリオキザールのモル比を変えることにより容易に調整可能であるが、無機フィラー高充填化の観点より、その粘度は150℃での溶融粘度が3.0Pa・s以下とすることが好ましく、より好ましくは1.0Pa・s以下、更に好ましくは0.5Pa・s以下である。また、その軟化点は130℃以下とすることが好ましい。 The viscosity and softening point of the epoxy resin can be easily adjusted by changing the molar ratio of the phenolic compound and glyoxal when synthesizing the polyvalent hydroxy resin that is the raw material of the epoxy resin. From this viewpoint, the viscosity at 150 ° C. is preferably 3.0 Pa · s or less, more preferably 1.0 Pa · s or less, and still more preferably 0.5 Pa · s or less. Moreover, it is preferable that the softening point shall be 130 degrees C or less.
  次に、本発明のエポキシ樹脂組成物について説明する。本発明のエポキシ樹脂組成物は、上記本発明のエポキシ樹脂、硬化剤、硬化触媒及び無機充填剤を含む。ここで、本発明のエポキシ樹脂は、一般式(2)で表されるエポキシ樹脂、又は一般式(1)で表される多価ヒドロキシ化合物とエピクロルヒドリンとを反応させて得られるエポキシ樹脂である。 Next, the epoxy resin composition of the present invention will be described. The epoxy resin composition of the present invention includes the epoxy resin of the present invention, a curing agent, a curing catalyst, and an inorganic filler. Here, the epoxy resin of the present invention is an epoxy resin obtained by reacting an epoxy resin represented by the general formula (2) or a polyvalent hydroxy compound represented by the general formula (1) with epichlorohydrin.
  このエポキシ樹脂組成物に配合する硬化剤としては、フェノール系硬化剤を使用する。半導体封止材等の高い電気絶縁性が要求される分野においては、多価フェノール類を硬化剤として用いることが好ましい。以下に、硬化剤の具体例を示す。 フ ェ ノ ー ル A phenolic curing agent is used as a curing agent to be blended in the epoxy resin composition. In fields where high electrical insulation is required, such as semiconductor encapsulants, polyhydric phenols are preferably used as curing agents. Below, the specific example of a hardening | curing agent is shown.
  多価フェノール類としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、ハイドロキノン、レゾルシン、カテコール、ビフェノール類、ナフタレンジオール類等の2価のフェノール類、更にはトリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノールノボラック、o-クレゾールノボラック、ナフトールノボラック、ジシクロペンタジエン型フェノール樹脂、フェノールアラルキル樹脂等に代表される3価以上のフェノール類等がある。更にはフェノール類、ナフトール類又は、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4' -ビフェノール、2,2' -ビフェノール、ハイドロキノン、レゾルシン、カテコール、ナフタレンジオール類等の2価のフェノール類とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、p-キシリレングリコール、p-キシリレングリコールジメチルエーテル、ジビニルベンゼン、ジイソプロペニルベンゼン、ジメトキシメチルビフェニル類、ジビニルビフェニル、ジイソプロペニルビフェニル類等の架橋剤との反応により合成される多価フェノール性化合物、フェノール類とビスクロロメチルビフェニル等から得られるビフェニルアラルキル型フェノール樹脂等がある。更には、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂類、一般式(1)で示される多価ヒドロキシ化合物等が挙げられる。 Examples of the polyhydric phenols include divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, hydroquinone, resorcin, catechol, biphenols, naphthalenediols, and tris- (4-hydroxyphenyl). ) Trivalent or higher typified by methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, o-cresol novolak, naphthol novolak, dicyclopentadiene type phenol resin, phenol aralkyl resin, etc. There are phenols. Furthermore, phenols, naphthols, or divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4 ′ -biphenol, 2,2 ′ -biphenol, hydroquinone, resorcin, catechol, naphthalene diols, etc. Cross-linking of formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, p-xylylene glycol, p-xylylene glycol dimethyl ether, divinylbenzene, diisopropenylbenzene, dimethoxymethylbiphenyls, divinylbiphenyl, diisopropenylbiphenyls, etc. Polyphenolic compounds synthesized by reaction with chemicals, biphenyl aralkyl type pheno obtained from phenols and bischloromethylbiphenyl, etc. There is Le resin. Furthermore, naphthol aralkyl resins synthesized from naphthols and paraxylylene dichloride, polyvalent hydroxy compounds represented by the general formula (1), and the like can be given.
  硬化剤の配合量は、エポキシ樹脂中のエポキシ基と多価フェノール類の水酸基との当量バランスを考慮して配合する。エポキシ樹脂及び硬化剤の当量比は、通常、0.2から5.0の範囲であり、好ましくは0.5から2.0の範囲であり、さらに好ましくは0.8~1.5の範囲である。これより大きくても小さくても、エポキシ樹脂組成物の硬化性が低下するとともに、硬化物の耐熱性、力学強度等が低下する。 The blending amount of the soot curing agent is blended in consideration of the equivalent balance between the epoxy group in the epoxy resin and the hydroxyl group of the polyhydric phenol. The equivalent ratio of epoxy resin and curing agent is usually in the range of 0.2 to 5.0, preferably in the range of 0.5 to 2.0, more preferably in the range of 0.8 to 1.5. It is. If it is larger or smaller than this, the curability of the epoxy resin composition is lowered, and the heat resistance, mechanical strength and the like of the cured product are lowered.
  また、このエポキシ樹脂組成物中には、硬化剤成分として、芳香族ヒドロキシ化合物以外に別種の硬化剤を配合してもよい。この場合のエポキシ樹脂としては、例えば、ジシアンジアミド、酸無水物類、芳香族及び脂肪族アミン類等がある。この樹脂組成物には、これら硬化剤の1種又は2種以上を混合して用いることができる。しかし、フェノール系硬化剤以外の硬化剤の使用量は全硬化剤の50wt%以下とすることが好ましい。 In addition, in this epoxy resin composition, as the curing agent component, another type of curing agent may be blended in addition to the aromatic hydroxy compound. Examples of the epoxy resin in this case include dicyandiamide, acid anhydrides, aromatic and aliphatic amines. In the resin composition, one or more of these curing agents can be mixed and used. However, the amount of the curing agent other than the phenol-based curing agent is preferably 50 wt% or less of the total curing agent.
  また、このエポキシ樹脂組成物中には、エポキシ樹脂成分として、一般式(2)で表されるエポキシ樹脂以外に別種のエポキシ樹脂を配合してもよい。この場合のエポキシ樹脂としては、分子中にエポキシ基を2個以上有する通常のエポキシ樹脂はすべて使用できる。例を挙げれば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4' -ビフェノール、3,3',5,5'-テトラメチル-4,4'-ジヒドロキシビフェニル、レゾルシン、ナフタレンジオール類等の2価のフェノール類のエポキシ化物、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノールノボラック、o-クレゾールノボラック等の3価以上のフェノール類のエポキシ化物、ジシクロペンタジエンとフェノール類から得られる共縮合樹脂のエポキシ化物、クレゾール類とホルムアルデヒドとアルコキシ基置換ナフタレン類から得られる共縮合樹脂のエポキシ化物、フェノール類とパラキシリレンジクロライド等から得られるフェノールアラルキル樹脂のエポキシ化物、フェノール類とビスクロロメチルビフェニル等から得られるビフェニルアラルキル型フェノール樹脂のエポキシ化物、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂類のエポキシ化物等がある。これらのエポキシ樹脂は、1種又は2種以上を混合して用いることができる。そして、本発明のエポキシ樹脂を必須成分とする組成物の場合、一般式(2)で表されるエポキシ樹脂の配合量はエポキシ樹脂全体中、5~100wt%、好ましくは60~100wt%の範囲であることがよい。 In addition, in this epoxy resin composition, as the epoxy resin component, another type of epoxy resin may be blended in addition to the epoxy resin represented by the general formula (2). As the epoxy resin in this case, all ordinary epoxy resins having two or more epoxy groups in the molecule can be used. Examples include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4 ′ -biphenol, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl, resorcin, naphthalenediols Trivalent or more epoxides of divalent phenols such as tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, o-cresol novolak, etc. Epoxidized products of phenols, epoxidized products of cocondensation resins obtained from dicyclopentadiene and phenols, epoxidized products of cocondensation resins obtained from cresols, formaldehyde and alkoxy-substituted naphthalenes, phenols and paraxylylene dichloride Obtained from etc. E Nord aralkyl resin epoxidized product, there phenols and bis-chloromethyl biphenyl biphenyl aralkyl type phenolic resins obtained from the epoxy compound, epoxidized naphthol aralkyl resin and the like which are synthesized from naphthols and para-xylylene dichloride and the like. These epoxy resins can be used alone or in combination of two or more. In the case of the composition comprising the epoxy resin of the present invention as an essential component, the amount of the epoxy resin represented by the general formula (2) is in the range of 5 to 100 wt%, preferably 60 to 100 wt% in the entire epoxy resin. It is good that it is.
  無機充填剤としては、例えば、球状あるいは、破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、アルミナ粉末、ガラス粉末、又はマイカ、タルク、炭酸カルシウム、アルミナ、水和アルミナ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、窒化チタン、酸化亜鉛、炭化タングステン、酸化マグネシウム等が挙げられ、半導体封止材に用いる場合の好ましい配合量は70重量%以上であり、更に好ましくは80重量%以上である。 As the inorganic filler, for example, silica powder such as spherical or crushed fused silica, crystalline silica, alumina powder, glass powder, or mica, talc, calcium carbonate, alumina, hydrated alumina, boron nitride, aluminum nitride, Examples thereof include silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, magnesium oxide, and the preferable blending amount when used for a semiconductor sealing material is 70% by weight or more, and more preferably 80% by weight or more. .
  硬化触媒としては、硬化を促進させると共に、成形時の流動性を向上させる目的で、エポキシ樹脂組成物中に高温領域に活性点を持つ硬化触媒(高温活性触媒)を用いることが好ましい。 As the soot curing catalyst, it is preferable to use a curing catalyst (high temperature active catalyst) having an active site in a high temperature region in the epoxy resin composition for the purpose of promoting curing and improving fluidity during molding.
  硬化触媒の含有量は、エポキシ樹脂100重量部に対して、0.2~5重量部の範囲である。好ましくは0.5~3重量部であり、より好ましくは0.5~2.5重量部である。これより小さいと硬化性が低下し、また反対にこれより大きくなると、成形時の流動性向上効果が十分に発現されなくなる。 The content of the soot curing catalyst is in the range of 0.2 to 5 parts by weight with respect to 100 parts by weight of the epoxy resin. The amount is preferably 0.5 to 3 parts by weight, more preferably 0.5 to 2.5 parts by weight. If it is smaller than this, the curability will be lowered, and conversely if it is larger than this, the fluidity improving effect at the time of molding will not be sufficiently exhibited.
  高温活性触媒を使用したエポキシ樹脂組成物のDSC発熱ピーク温度としては、150℃以上であり、好ましくは155℃以上、より好ましくは165℃以上である。発熱ピーク温度が150℃より低いと成形時に硬化反応が進行してしまい流動性向上効果が十分に発現されない。このDSC発熱ピーク温度は、硬化触媒としての高温活性触媒を配合したエポキシ樹脂組成物を、昇温速度10℃/分の条件でDSC測定したときの、最大発熱ピークを示す温度である。 The DSC exothermic peak temperature of the epoxy resin composition using a high temperature active catalyst is 150 ° C. or higher, preferably 155 ° C. or higher, more preferably 165 ° C. or higher. When the exothermic peak temperature is lower than 150 ° C., the curing reaction proceeds at the time of molding, and the effect of improving fluidity is not sufficiently exhibited. This DSC exothermic peak temperature is a temperature showing a maximum exothermic peak when an epoxy resin composition containing a high temperature active catalyst as a curing catalyst is subjected to DSC measurement under a temperature rising rate of 10 ° C./min.
  硬化触媒又は高温活性触媒としては、例を挙げれば、イミダゾール類、有機ホスフィン類、アミン類等が挙げられる。イミダゾール類としては、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-ヘプタデシルイミダゾール、2,4-ジアミノ-6-〔2‘-ジメチルイミダゾリル-(1’)〕-エチル-s-トリアジン、2,4-ジアミノ-6-〔2‘-エチル-4’-メチルイミダゾリル-(1’)〕-エチル-s-トリアジン、2,4-ジアミノ-6-〔2‘-ウンデシルイミダゾリル-(1’)〕-エチル-s-トリアジン等、有機ホスフィン類としては、トリス-(2,6-ジメトキシフェニル)ホスフィン、トリ-p-トリルホスフィン、トリス(p-クロロフェニル)ホスフィン、トリス(p-メトキシフェニル)ホスフィン等、アミン類としては、1,8-ジアザビシクロ(5,4,0)ウンデセン-7のフェノールノボラック塩等が挙げられる。添加量としては、通常、エポキ
シ樹脂100重量部に対して、0.2~5重量部の範囲である。
Examples of the curing catalyst or the high temperature active catalyst include imidazoles, organic phosphines, amines and the like. Examples of imidazoles include 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-heptadecylimidazole, and 2,4-diamino-6- [2′-dimethyl. Imidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-ethyl-4′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4- Examples of organic phosphines such as diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine include tris- (2,6-dimethoxyphenyl) phosphine, tri-p-tolylphosphine, Examples of amines such as tris (p-chlorophenyl) phosphine and tris (p-methoxyphenyl) phosphine include 1,8-diazabicyclo. And phenol novolak salt of (5,4,0) undecene-7. The addition amount is usually in the range of 0.2 to 5 parts by weight with respect to 100 parts by weight of the epoxy resin.
  本発明では、硬化触媒として特定の活性温度領域をもつ高温活性触媒を使用することで、流動性の低下を抑制でき、さらに、硬化条件に関して、特に本発明のエポキシ樹脂を使用した場合に特異的に高温での硬化条件がガラス転移温度に大きく影響を与えることが見出された。 In the present invention, by using a high-temperature active catalyst having a specific active temperature region as a curing catalyst, it is possible to suppress a decrease in fluidity. Further, regarding the curing conditions, particularly when the epoxy resin of the present invention is used. In addition, it has been found that the curing conditions at high temperature greatly affect the glass transition temperature.
  本発明の樹脂組成物には、更に必要に応じて、カルナバワックス、OPワックス等の離型剤、4-アミノプロピルエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック等の着色剤、三酸化アンチモン等の難燃剤、ステアリン酸カルシウム等の滑剤等を使用できる。 The resin composition of the present invention may further include a release agent such as carnauba wax or OP wax, a coupling agent such as 4-aminopropylethoxysilane or γ-glycidoxypropyltrimethoxysilane, carbon black, if necessary. And the like, flame retardants such as antimony trioxide, and lubricants such as calcium stearate.
  本発明のエポキシ樹脂組成物中には、ポリエステル、ポリアミド、ポリイミド、ポリエーテル、ポリウレタン、石油樹脂、インデン樹脂、インデン・クマロン樹脂、フェノキシ樹脂等のオリゴマー又は高分子化合物を他の改質剤等として適宜配合してもよい。添加量は、通常、エポキシ樹脂100重量部に対して、2~30重量部の範囲である。 In the epoxy resin composition of the present invention, an oligomer or a polymer compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene resin, indene-coumarone resin, phenoxy resin, etc. is used as another modifier. You may mix | blend suitably. The addition amount is usually in the range of 2 to 30 parts by weight with respect to 100 parts by weight of the epoxy resin.
  また、本発明のエポキシ樹脂組成物には、顔料、難然剤、揺変性付与剤、カップリング剤、流動性向上剤、酸化防止剤等の添加剤を配合できる。 In addition, the epoxy resin composition of the present invention may contain additives such as pigments, retardants, thixotropic agents, coupling agents, fluidity improvers, and antioxidants.
  顔料としては、有機系又は、無機系の体質顔料、鱗片状顔料等がある。揺変性付与剤としては、シリコン系、ヒマシ油系、脂肪族アマイドワックス、酸化ポリエチレンワックス、有機ベントナイト系等を挙げることができる。 Examples of the soot pigment include organic or inorganic extender pigments and scaly pigments. Examples of the thixotropic agent include silicon-based, castor oil-based, aliphatic amide wax, polyethylene oxide wax, and organic bentonite.
  本発明のエポキシ樹脂組成物は、有機溶剤を溶解させたワニス状態とした後に、ガラスクロス、アラミド不織布、液晶ポリマー等のポリエステル不織布、等の繊維状物に含浸させた後に溶剤除去を行い、プリプレグとすることができる。また、場合により銅箔、ステンレス箔、ポリイミドフィルム、ポリエステルフィルム等のシート状物上に塗布することにより積層物とすることができる。 The epoxy resin composition of the present invention is made into a varnish in which an organic solvent is dissolved, and then impregnated into a fibrous material such as glass cloth, aramid nonwoven fabric, polyester nonwoven fabric such as liquid crystal polymer, and the like, and then the solvent is removed. It can be. Moreover, it can be set as a laminated body by apply | coating on sheet-like materials, such as copper foil, stainless steel foil, a polyimide film, and a polyester film depending on the case.
  本発明のエポキシ樹脂組成物の調製方法は、各種原材料を均一に分散混合できるのであればいかなる手法を用いてもよいが、一般的な方法として、所定の配合量の原材料をミキサー等によって十分混合した後、ミキシングロール、押出し機等によって溶融混練し、冷却、粉砕する方法が挙げられる。 Any method may be used for preparing the epoxy resin composition of the present invention as long as various raw materials can be uniformly dispersed and mixed. As a general method, raw materials of a predetermined blending amount are sufficiently mixed by a mixer or the like. Then, a method of melt-kneading with a mixing roll, an extruder or the like, cooling, and pulverizing can be mentioned.
  本発明のエポキシ樹脂組成物およびその硬化物は、特に半導体装置の封止用として適する。 エ ポ キ シ The epoxy resin composition of the present invention and its cured product are particularly suitable for sealing semiconductor devices.
  本発明の硬化物は、上記エポキシ樹脂組成物を熱硬化させることにより得られる。本発明のエポキシ樹脂組成物を用いて硬化物を得るためには、例えば、トランスファー成形、プレス成形、注型成形、射出成形、押出成形等の方法が適用されるが、量産性の観点からは、トランスファー成形が好ましい。 硬化 The cured product of the present invention can be obtained by thermally curing the epoxy resin composition. In order to obtain a cured product using the epoxy resin composition of the present invention, for example, methods such as transfer molding, press molding, cast molding, injection molding, and extrusion molding are applied, but from the viewpoint of mass productivity. Transfer molding is preferred.
  本発明のエポキシ樹脂組成物の硬化方法としては100℃~200℃、好ましくは120℃~190℃、より好ましくは150~180℃で成形後、200℃~300℃、好ましくは220℃~280℃、より好ましくは230~270℃でポストキュアすることにより製造され、高耐熱性、高温長期熱分解安定性及び高流動性等の点で優れた硬化物を得ることができる。
  成形時間としては1~60分が好ましく、更に1分から10分が好ましい。成形時間が長くなると生産性が悪くなり、短すぎると離型が困難となる。ポストキュア時間としては10分~10時間が好ましく、30分~8時間、特に2時間~6時間が好ましい。ポストキュア時間が短いと硬化が十分に進行せず、耐熱性や機械物性等十分な特性が得られない。また、10時間を越えると生産性が低下する。
The curing method of the epoxy resin composition of the present invention is 100 ° C. to 200 ° C., preferably 120 ° C. to 190 ° C., more preferably 150 to 180 ° C., and then 200 ° C. to 300 ° C., preferably 220 ° C. to 280 ° C. More preferably, it is produced by post-curing at 230 to 270 ° C., and a cured product excellent in terms of high heat resistance, high-temperature long-term thermal decomposition stability, high fluidity and the like can be obtained.
The molding time is preferably 1 to 60 minutes, more preferably 1 to 10 minutes. If the molding time is long, the productivity will be poor, and if it is too short, it will be difficult to release. The post cure time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 8 hours, and particularly preferably 2 hours to 6 hours. When the post-cure time is short, curing does not proceed sufficiently, and sufficient characteristics such as heat resistance and mechanical properties cannot be obtained. Moreover, productivity will fall when it exceeds 10 hours.
  本発明のエポキシ樹脂組成物では、一般的なエポキシ樹脂組成物が反応し得ない高いポストキュア温度領域においても硬化反応が進行し、非常に高い耐熱性、耐熱分解性、機械物性等を有する硬化物を得ることができる。 In the epoxy resin composition of the present invention, the curing reaction proceeds even in a high post-cure temperature region where a general epoxy resin composition cannot react, and has a very high heat resistance, heat decomposition resistance, mechanical properties, etc. You can get things.
 以下、合成例、実施例及び比較例に基づき、本発明を具体的に説明する。 Hereinafter, the present invention will be described in detail based on synthesis examples, examples, and comparative examples.
合成例1
  5Lの4口フラスコに、フェノール3500g(37.2モル)及び酸触媒としてp-トルエンスルホン酸2.36gを仕込み、50℃に昇温した。次に、50℃にて攪拌しながら40%グリオキザール水溶液360gを30分かけて滴下し、滴下終了後50℃にて30分、100℃にて2時間反応した。続いて、減圧下100℃にて脱水を行った後、100℃にて4時間反応した。反応終了後、フェノールを留去し、フェノール樹脂711gを得た。得られた樹脂の水酸基当量は119.4g/eq.であった。また、GPC測定結果より、n=0成分:71.5%、n=1以上の成分:13.2%であった。
Synthesis example 1
A 5 L 4-neck flask was charged with 3500 g (37.2 mol) of phenol and 2.36 g of p-toluenesulfonic acid as an acid catalyst, and the temperature was raised to 50 ° C. Next, while stirring at 50 ° C., 360 g of a 40% aqueous solution of glyoxal was added dropwise over 30 minutes. After completion of the addition, the reaction was carried out at 50 ° C. for 30 minutes and at 100 ° C. for 2 hours. Subsequently, dehydration was performed at 100 ° C. under reduced pressure, and the reaction was performed at 100 ° C. for 4 hours. After completion of the reaction, phenol was distilled off to obtain 711 g of phenol resin. The obtained resin had a hydroxyl equivalent weight of 119.4 g / eq. Met. From the GPC measurement results, n = 0 component: 71.5% and n = 1 or more: 13.2%.
合成例2
  5Lの4口フラスコに、合成例1にて得られたフェノール樹脂500g、ジエチレングリコールジメチルエーテル377g、エピクロルヒドリン2511gを仕込み60℃に昇温した。続いて、49%水酸化カリウム水溶液48.2gを2時間かけて滴下し予備反応を行った後、減圧下63℃にて49%水酸化ナトリウム水溶液298.9gを3.5時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離槽で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。反応終了後、濾過により生成した塩を除き、更に水洗したのちエピクロルヒドリンを留去し、エポキシ樹脂660gを得た(エポキシ樹脂A)。得られた樹脂のエポキシ当量は182.0g/eq.、150℃における溶融粘度は0.35Pa・sであった。
Synthesis example 2
A 5 L 4-neck flask was charged with 500 g of the phenol resin obtained in Synthesis Example 1, 377 g of diethylene glycol dimethyl ether, and 2511 g of epichlorohydrin, and the temperature was raised to 60 ° C. Subsequently, 48.2 g of a 49% aqueous potassium hydroxide solution was added dropwise over 2 hours to perform a preliminary reaction, and 298.9 g of a 49% aqueous sodium hydroxide solution was added dropwise over 3.5 hours at 63 ° C. under reduced pressure. The water refluxed during the dropwise addition and epichlorohydrin were separated in a separation tank, the epichlorohydrin was returned to the reaction vessel, and water was removed from the system to react. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin was distilled off to obtain 660 g of epoxy resin (epoxy resin A). The epoxy equivalent of the obtained resin was 182.0 g / eq. The melt viscosity at 150 ° C. was 0.35 Pa · s.
合成例3
 3Lの4口フラスコに、フェノール1000g及び40重量%グリオキザール水溶液232g及びアセトン125gを仕込み、95重量%硫酸187.5gを2時間かけて滴下した。その後、40℃にて12時間反応を行い、反応終了後、15℃に冷却して中和を行った。続いて、アセトン632gを加え、析出物をろ別した。さらに、アセトンと水との混合液で洗浄し、メタノール1400gを仕込み、約1時間加熱還流させて溶解させた後、熱時ろ過して中和塩を除いた。一方、得られたメタノール溶液は、かきまぜ下に水564g加えたのち、減圧蒸留してメタノールを留去した。その後、15℃で一晩かきまぜたのち、ろ過分離し、約130℃で減圧乾燥して白色結晶のテトラキスフェノールエタン227gを得た。得られた樹脂の水酸基当量は103.8g/eq.であった。また、GPC測定結果より、n=0成分:100%であった。
Synthesis example 3
A 3 L 4-neck flask was charged with 1000 g of phenol, 232 g of 40 wt% aqueous glyoxal solution and 125 g of acetone, and 187.5 g of 95 wt% sulfuric acid was added dropwise over 2 hours. Thereafter, the reaction was carried out at 40 ° C. for 12 hours, and after completion of the reaction, the mixture was cooled to 15 ° C. and neutralized. Subsequently, 632 g of acetone was added, and the precipitate was filtered off. Further, the mixture was washed with a mixed solution of acetone and water, charged with 1400 g of methanol, dissolved by heating under reflux for about 1 hour, and then filtered while hot to remove neutralized salts. On the other hand, the obtained methanol solution was added with 564 g of water under stirring, and then distilled under reduced pressure to distill off methanol. Thereafter, the mixture was stirred overnight at 15 ° C., separated by filtration, and dried under reduced pressure at about 130 ° C. to obtain 227 g of tetrakisphenolethane as white crystals. The resulting resin had a hydroxyl equivalent weight of 103.8 g / eq. Met. From the GPC measurement results, n = 0 component: 100%.
合成例4
  5Lの4口フラスコに、合成例3にて得られたフェノール樹脂500g、ジエチレングリコールジメチルエーテル434g、エピクロルヒドリン2896gを仕込み60℃に昇温した。続いて、49%水酸化カリウム水溶液55.5gを2時間かけて滴下し予備反応を行った後、減圧下63℃にて49%水酸化ナトリウム水溶液344.6gを3.5時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離槽で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。反応終了後、濾過により生成した塩を除き、更に水洗したのちエピクロルヒドリンを留去し、エポキシ樹脂693gを得た(エポキシ樹脂B)。得られた樹脂のエポキシ当量は173.0g/eq.であり、DSCにより181℃の融点を持つ結晶性樹脂であることが確認された。
Synthesis example 4
A 5 L 4-neck flask was charged with 500 g of the phenol resin obtained in Synthesis Example 3, 434 g of diethylene glycol dimethyl ether, and 2896 g of epichlorohydrin, and the temperature was raised to 60 ° C. Subsequently, 55.5 g of 49% aqueous potassium hydroxide solution was added dropwise over 2 hours to perform a preliminary reaction, and then 344.6 g of 49% aqueous sodium hydroxide solution was added dropwise over 3.5 hours at 63 ° C. under reduced pressure. The water refluxed during the dropwise addition and epichlorohydrin were separated in a separation tank, the epichlorohydrin was returned to the reaction vessel, and water was removed from the system to react. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin was distilled off to obtain 693 g of epoxy resin (epoxy resin B). The epoxy equivalent of the obtained resin was 173.0 g / eq. DSC confirmed that the crystalline resin had a melting point of 181 ° C.
合成例5
  5Lの4口フラスコに、フェノール3500g(37.2モル)及び酸触媒としてp-トルエンスルホン酸1.77gを仕込み、50℃に昇温した。次に、50℃にて攪拌しながら40%グリオキザール水溶液270gを30分かけて滴下し、滴下終了後50℃にて1時間、60℃にて2.5時間反応した。続いて、減圧下60℃にて脱水を行った後、60℃にて8.5時間反応した。反応終了後、フェノールを留去し、フェノール樹脂534gを得た。得られた樹脂の水酸基当量は112.0g/eq.であった。また、GPC測定結果より、n=0成分:79.3%、n=1以上の成分:8.6%であった。
Synthesis example 5
A 5 L 4-necked flask was charged with 3500 g (37.2 mol) of phenol and 1.77 g of p-toluenesulfonic acid as an acid catalyst, and the temperature was raised to 50 ° C. Next, 270 g of 40% aqueous glyoxal aqueous solution was added dropwise over 30 minutes while stirring at 50 ° C., and reacted at 50 ° C. for 1 hour and at 60 ° C. for 2.5 hours. Subsequently, dehydration was performed at 60 ° C. under reduced pressure, and the reaction was performed at 60 ° C. for 8.5 hours. After completion of the reaction, phenol was distilled off to obtain 534 g of phenol resin. The resulting resin had a hydroxyl equivalent weight of 112.0 g / eq. Met. From the GPC measurement results, n = 0 component: 79.3% and n = 1 or more component: 8.6%.
合成例6
  5Lの4口フラスコに、合成例5にて得られたフェノール樹脂500g、ジエチレングリコールジメチルエーテル403g、エピクロルヒドリン2684gを仕込み60℃に昇温した。続いて、49%水酸化カリウム水溶液51.5gを2時間かけて滴下し予備反応を行った後、減圧下63℃にて49%水酸化ナトリウム水溶液315.3gを3.5時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離槽で分離し、エピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。反応終了後、濾過により生成した塩を除き、更に水洗したのちエピクロルヒドリンを留去し、エポキシ樹脂675gを得た(エポキシ樹脂D)。得られた樹脂のエポキシ当量は179.5g/eq.、150℃における溶融粘度は0.28Pa・sであった。
Synthesis Example 6
A 5 L 4-neck flask was charged with 500 g of the phenol resin obtained in Synthesis Example 5, 403 g of diethylene glycol dimethyl ether, and 2684 g of epichlorohydrin, and the temperature was raised to 60 ° C. Subsequently, after 51.5 g of 49% aqueous potassium hydroxide solution was added dropwise over 2 hours to perform a preliminary reaction, 315.3 g of 49% aqueous sodium hydroxide solution was added dropwise over 3.5 hours at 63 ° C. under reduced pressure. The water refluxed during the dropwise addition and epichlorohydrin were separated in a separation tank, epichlorohydrin was returned to the reaction vessel, and water was removed from the system to react. After completion of the reaction, the salt generated by filtration was removed, and after further washing with water, epichlorohydrin was distilled off to obtain 675 g of an epoxy resin (epoxy resin D). The epoxy equivalent of the obtained resin was 179.5 g / eq. The melt viscosity at 150 ° C. was 0.28 Pa · s.
合成例7
  5Lの4口フラスコに、フェノール300g(3.2モル)及び酸触媒としてp-トルエンスルホン酸1.01gを仕込み、50℃に昇温した。次に、50℃にて攪拌しながら40%グリオキザール水溶液154gを30分かけて滴下し、滴下終了後50℃にて30分、100℃にて2時間反応した。続いて、減圧下100℃にて脱水を行った後、100℃にて4時間反応した。反応終了後、フェノールを留去し、フェノール樹脂226gを得た。得られた樹脂の水酸基当量は130.6g/eq.であった。また、GPC測定結果より、n=0成分:29.9%、n=1以上の成分:55.3%であった。
Synthesis example 7
A 5 L 4-necked flask was charged with 300 g of phenol (3.2 mol) and 1.01 g of p-toluenesulfonic acid as an acid catalyst, and the temperature was raised to 50 ° C. Next, 154 g of 40% aqueous glyoxal solution was added dropwise over 30 minutes while stirring at 50 ° C., and reacted at 50 ° C. for 30 minutes and at 100 ° C. for 2 hours. Subsequently, dehydration was performed at 100 ° C. under reduced pressure, and the reaction was performed at 100 ° C. for 4 hours. After completion of the reaction, phenol was distilled off to obtain 226 g of phenol resin. The obtained resin had a hydroxyl equivalent weight of 130.6 g / eq. Met. From the GPC measurement results, n = 0 component: 29.9%, and n = 1 or more component: 55.3%.
合成例8
  5Lの4口フラスコに、合成例7にて得られたフェノール樹脂125g、ジエチレングリコールジメチルエーテル86g、エピクロルヒドリン575gを仕込み60℃に昇温した。続いて、49%水酸化カリウム水溶液11.0gを2時間かけて滴下し予備反応を行った後、減圧下63℃にて49%水酸化ナトリウム水溶液67.5gを3.5時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離槽で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。反応終了後、濾過により生成した塩を除き、更に水洗したのちエピクロルヒドリンを留去し、エポキシ樹脂70gを得た(エポキシ樹脂E)。得られた樹脂のエポキシ当量は209.6g/eq.、150℃における溶融粘度は3.08Pa・sであった。
Synthesis example 8
A 5 L 4-neck flask was charged with 125 g of the phenol resin obtained in Synthesis Example 7, 86 g of diethylene glycol dimethyl ether, and 575 g of epichlorohydrin, and the temperature was raised to 60 ° C. Subsequently, 11.0 g of 49% aqueous potassium hydroxide solution was added dropwise over 2 hours to perform a preliminary reaction, and then 67.5 g of 49% aqueous sodium hydroxide solution was added dropwise over 3.5 hours at 63 ° C. under reduced pressure. The water refluxed during the dropwise addition and epichlorohydrin were separated in a separation tank, the epichlorohydrin was returned to the reaction vessel, and water was removed from the system to react. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin was distilled off to obtain 70 g of an epoxy resin (epoxy resin E). The epoxy equivalent of the obtained resin was 209.6 g / eq. The melt viscosity at 150 ° C. was 3.08 Pa · s.
 合成例1、3、5、7で得られたフェノール樹脂のGPCチャートを図1、、3、5、7に示し、合成例2、4、6、8で得られたエポキシ樹脂のGPCチャートを図2、4、6、8に示す。 GPC charts of the phenol resins obtained in Synthesis Examples 1, 3, 5, and 7 are shown in FIGS. 1, 3, 5, and 7, and GPC charts of the epoxy resins obtained in Synthesis Examples 2, 4, 6, and 8 are shown. It is shown in FIGS.
実施例1
  エポキシ樹脂成分として、合成例2で得られたエポキシ樹脂A100g、硬化剤成分として、フェノールノボラック(PSM-4324(群栄化学工業株式会社製)、OH当量105、軟化点:100℃)57.5gを用いた。更に、硬化促進剤A;2-メチルイミダゾール(東京化成株式会社製)0.7gを用い、混練してエポキシ樹脂組成物を得た。このエポキシ樹脂組成物を用いて、成形温度175℃、3分で、ポストキュア温度250℃、5時間の条件(成形条件A)にて硬化物試験片を得た後、5%重量減少温度を測定した。結果を表1に示す。
Example 1
As an epoxy resin component, 100 g of epoxy resin A obtained in Synthesis Example 2, and as a curing agent component, phenol novolac (PSM-4324 (manufactured by Gunei Chemical Industry Co., Ltd.), OH equivalent 105, softening point: 100 ° C.) 57.5 g Was used. Further, 0.7 g of curing accelerator A; 2-methylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.) was used and kneaded to obtain an epoxy resin composition. Using this epoxy resin composition, a cured product test piece was obtained at a molding temperature of 175 ° C. for 3 minutes and a post-cure temperature of 250 ° C. for 5 hours (molding condition A). It was measured. The results are shown in Table 1.
実施例2
  エポキシ樹脂成分として、合成例8で得られたエポキシ樹脂E100gを使用した以外は実施例1と同様にして、5%重量減少温度を測定した。結果を表1に示す。
Example 2
A 5% weight loss temperature was measured in the same manner as in Example 1 except that 100 g of the epoxy resin E obtained in Synthesis Example 8 was used as the epoxy resin component. The results are shown in Table 1.
比較例1
  エポキシ樹脂成分として、合成例4で得られたエポキシ樹脂B100gを使用した以外は実施例1と同様にして、5%重量減少温度を測定した。結果を表1に示す。
Comparative Example 1
A 5% weight loss temperature was measured in the same manner as in Example 1 except that 100 g of the epoxy resin B obtained in Synthesis Example 4 was used as the epoxy resin component. The results are shown in Table 1.
比較例2
  エポキシ樹脂成分として、合成例6で得られたエポキシ樹脂D100gを使用した以外は実施例1と同様にして、5%重量減少温度を測定した。結果を表1に示す。
Comparative Example 2
A 5% weight loss temperature was measured in the same manner as in Example 1 except that 100 g of the epoxy resin D obtained in Synthesis Example 6 was used as the epoxy resin component. The results are shown in Table 1.
実施例3~15、比較例3、4
 上記の合成例で得られたエポキシ樹脂A、E、又はエポキシ樹脂C、硬化剤、無機充填剤及び硬化促進剤(硬化触媒)とその他の添加剤を表2~3に示す配合割合で混練してエポキシ樹脂組成物を調製した。表中の数値は配合における重量部を示す。
Examples 3 to 15 and Comparative Examples 3 and 4
The epoxy resins A and E obtained in the above synthesis examples, or the epoxy resin C, a curing agent, an inorganic filler, a curing accelerator (curing catalyst), and other additives are kneaded at a blending ratio shown in Tables 2 to 3. Thus, an epoxy resin composition was prepared. The numerical value in a table | surface shows the weight part in mixing | blending.
  表中の略号の説明
エポキシ樹脂C:o-クレゾールノボラック型エポキシ樹脂(エポキシ当量200、軟化点65℃、新日鐵化学社製)
(硬化剤)
PN;フェノールノボラック(PSM-4324、OH当量105、軟化点:100℃、群栄化学工業株式会社製)
TPM;トリフェノールメタン(TPM-100、OH当量97.5、軟化点105℃、群栄化学工業株式会社製)
(無機充填剤)
球状シリカ(製品名;FB-8S、電気化学工業株式会社製)
(硬化促進剤)
A;2-メチルイミダゾール(東京化成株式会社製)
B;2-フェニル-4,5-ジヒドロキシメチルイミダゾール(2PHZ-PW、四国化成株式会社製)
C;トリス-(2,6-ジメトキシフェニル)ホスフィン(東京化成株式会社製)
(シランカップリング剤)
4-アミノプロピルエトキシシラン(KBR-903、信越化学工業株式会社製)
(離型剤)
カルナバワックス(TOWAX171、東亜化成株式会社製)
(着色剤)
カーボンブラック(MA-100、三菱化学株式会社製)
Explanation of abbreviations in the table Epoxy resin C: o-cresol novolac type epoxy resin (epoxy equivalent 200, softening point 65 ° C., manufactured by Nippon Steel Chemical Co., Ltd.)
(Curing agent)
PN: phenol novolak (PSM-4324, OH equivalent 105, softening point: 100 ° C., manufactured by Gunei Chemical Industry Co., Ltd.)
TPM: Triphenolmethane (TPM-100, OH equivalent 97.5, softening point 105 ° C., manufactured by Gunei Chemical Industry Co., Ltd.)
(Inorganic filler)
Spherical silica (Product name: FB-8S, manufactured by Denki Kagaku Kogyo Co., Ltd.)
(Curing accelerator)
A; 2-methylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.)
B: 2-Phenyl-4,5-dihydroxymethylimidazole (2PHZ-PW, manufactured by Shikoku Kasei Co., Ltd.)
C: Tris- (2,6-dimethoxyphenyl) phosphine (manufactured by Tokyo Chemical Industry Co., Ltd.)
(Silane coupling agent)
4-Aminopropylethoxysilane (KBR-903, manufactured by Shin-Etsu Chemical Co., Ltd.)
(Release agent)
Carnauba wax (TOWAX171, manufactured by Toa Kasei Co., Ltd.)
(Coloring agent)
Carbon black (MA-100, manufactured by Mitsubishi Chemical Corporation)
  このエポキシ樹脂組成物を用いて、次に示す成形条件にて成形を行った。硬化物試験片を得た後、各種物性測定に供した。結果を表2~3に示す。
 成形条件
 A;成形温度175℃、3分。ポストキュア温度250℃、5時間
 B;成形温度175℃、3分。ポストキュア温度175℃、5時間
Using this epoxy resin composition, molding was performed under the following molding conditions. After obtaining a cured product test piece, it was subjected to various physical property measurements. The results are shown in Tables 2-3.
Molding conditions A: Molding temperature 175 ° C., 3 minutes. Post cure temperature 250 ° C., 5 hours B; Molding temperature 175 ° C., 3 minutes. Post cure temperature 175 ° C, 5 hours
1)エポキシ当量の測定
  電位差滴定装置を用い、溶媒としてメチルエチルケトンを使用し、臭素化テトラエチルアンモニウム酢酸溶液を加え、電位差滴定装置にて0.1mol/L過塩素酸-酢酸溶液を用いて測定した。
1) Measurement of epoxy equivalent Using a potentiometric titrator, methyl ethyl ketone was used as a solvent, a brominated tetraethylammonium acetic acid solution was added, and the potential was measured using a 0.1 mol / L perchloric acid-acetic acid solution.
2)溶融粘度
  東亜工業株式会社製、CV-1S型コーンプレート粘度計を用いて、150℃にて測定した。
2) Melt viscosity Measured at 150 ° C. using a CV-1S type cone plate viscometer manufactured by Toa Kogyo Co., Ltd.
3)ガラス転移点(Tg)
  セイコーインスツル製TMA6100型熱機械測定装置により、昇温速度10℃/分の条件でTgを求めた。
3) Glass transition point (Tg)
Tg was determined under the condition of a temperature increase rate of 10 ° C./min using a Seiko Instruments TMA6100 thermomechanical measuring device.
4)長期熱分解安定性評価(重量保持率)
  回転枠つき恒温器(タバイエスペック株式会社製、GPHH-201)を用いて、250℃における1000時間後の試験片重量と加熱前の試験片重量との差から重量保持率(wt%)を求めた。
4) Long-term pyrolysis stability evaluation (weight retention)
Using a thermostat with a rotating frame (GPHH-201, manufactured by Tabai Espec Co., Ltd.), obtain the weight retention rate (wt%) from the difference between the specimen weight after 1000 hours at 250 ° C and the specimen weight before heating. It was.
5)スパイラルフロー
  規格(EMMI-1-66)に準拠したスパイラルフロー測定用金型でエポキシ樹脂組成物をスパイラルフローの注入圧力(150Kgf/cm2)、硬化時間3分の条件で成形して、170℃における流動長を調べた。
6)DSC発熱ピーク温度
  セイコーインスツル製DSC6200型熱機械測定装置により、昇温速度10℃/分の条件で発熱ピーク温度を求めた。
5) Spiral flow An epoxy resin composition was molded using a spiral flow measurement mold in accordance with the standard (EMMI-1-66) under the conditions of spiral flow injection pressure (150 kgf / cm 2) and curing time of 3 minutes. The flow length at 0 ° C. was examined.
6) DSC exothermic peak temperature An exothermic peak temperature was determined under the condition of a temperature rising rate of 10 ° C / min using a DSC6200 thermomechanical measuring device manufactured by Seiko Instruments Inc.
7)5%重量減少温度
 セイコーインスツル製TG/DTA6200型熱機械測定装置により、窒素雰囲気下、昇温速度10℃/分の条件で5%重量減少温度を求めた。
8)曲げ強度及び曲げ弾性
  JISK 6911に従い、3点曲げ試験法で常温及び250℃にて測定した。
9)曲げ強度・弾性率維持率
  高温(250℃)時の曲げ強度および曲げ弾性率の常温の曲げ強度および曲げ弾性率に対する維持率を求めた。高いほど室温との物性変化が少ないことを示す。
7) 5% weight reduction temperature A 5% weight reduction temperature was determined by a TG / DTA6200 type thermomechanical measurement device manufactured by Seiko Instruments Inc. under a nitrogen atmosphere under a temperature increase rate of 10 ° C./min.
8) Flexural strength and flexural elasticity Measured at room temperature and 250 ° C. by a three-point bending test method according to JISK 6911.
9) Bending strength and elastic modulus retention rate The bending strength and bending elastic modulus at high temperatures (250 ° C) were determined with respect to the bending strength and bending elastic modulus at room temperature. A higher value indicates less change in physical properties with room temperature.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 

Claims (10)

  1.  下記一般式(2)で表されるエポキシ樹脂。
    Figure JPOXMLDOC01-appb-I000001
     
     ここで、Rは独立に、水素原子又は炭素数1~6の炭化水素基を示し、Gはグリシジル基を示す。nは繰り返し数であるが、nが1以上の多量体を10%以上含む。
    An epoxy resin represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-I000001

    Here, R independently represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and G represents a glycidyl group. n is the number of repetitions, and includes 10% or more of multimers in which n is 1 or more.
  2.  下記一般式(1)
    Figure JPOXMLDOC01-appb-I000002
     
     ここで、Rは独立に、水素原子又は炭素数1~6の炭化水素基を示し、Gはグリシジル基を示し、nは繰り返し数を示す。
    で表され、ゲルパーミエーションクロマトグラフィーで測定した面積%においてn=1以上の成分が10%以上である多価ヒドロキシ化合物とエピクロルヒドリンとを反応させて得られることを特徴とするエポキシ樹脂。
    The following general formula (1)
    Figure JPOXMLDOC01-appb-I000002

    Here, R independently represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, G represents a glycidyl group, and n represents a repeating number.
    An epoxy resin obtained by reacting a polyhydroxy compound having a component of n = 1 or more and 10% or more in an area% measured by gel permeation chromatography with epichlorohydrin.
  3.  請求項2に記載のエポキシ樹脂、フェノール系硬化剤、硬化触媒及び無機充填剤を含有することを特徴とするエポキシ樹脂組成物。 An epoxy resin composition comprising the epoxy resin according to claim 2, a phenolic curing agent, a curing catalyst, and an inorganic filler.
  4.  請求項1に記載のエポキシ樹脂、フェノール系硬化剤、硬化触媒及び無機充填剤を含有することを特徴とするエポキシ樹脂組成物。 An epoxy resin composition comprising the epoxy resin according to claim 1, a phenol-based curing agent, a curing catalyst, and an inorganic filler.
  5.  硬化触媒が、イミダゾール類、有機ホスフィン類、及びアミン類からなる群れから選ばれる少なくとも1種である請求項3に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 3, wherein the curing catalyst is at least one selected from the group consisting of imidazoles, organic phosphines, and amines.
  6.  硬化触媒が、エポキシ樹脂組成物をDSCにて昇温速度10℃/分の条件で測定したとき、発熱ピークトップが150℃以上となるものである請求項3に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 3, wherein the curing catalyst has an exothermic peak top of 150 ° C or higher when the epoxy resin composition is measured by DSC at a temperature rising rate of 10 ° C / min.
  7.  請求項3に記載のエポキシ樹脂組成物を100℃~200℃で成形後、200℃~300℃でポストキュアすることを特徴とするエポキシ樹脂組成物の硬化方法。 A method for curing an epoxy resin composition, comprising molding the epoxy resin composition according to claim 3 at 100 ° C to 200 ° C and then post-curing at 200 ° C to 300 ° C.
  8.  請求項3に記載のエポキシ樹脂組成物を100℃~200℃で成形後、200℃~300℃でポストキュアして得られることを特徴とするエポキシ樹脂硬化物。 4. A cured epoxy resin obtained by molding the epoxy resin composition according to claim 3 at 100 ° C. to 200 ° C. and then post-curing at 200 ° C. to 300 ° C.
  9.  半導体封止材用のエポキシ樹脂硬化物であることを特徴とする請求項8に記載のエポキシ樹脂硬化物。 The cured epoxy resin product according to claim 8, which is a cured epoxy resin product for a semiconductor encapsulant.
  10.  請求項9に記載のエポキシ樹脂硬化物で半導体素子を封止したことを特徴とする半導体装置。 A semiconductor device, wherein a semiconductor element is sealed with the cured epoxy resin according to claim 9.
PCT/JP2013/068650 2012-07-09 2013-07-08 Epoxy resin, epoxy resin composition, method for curing same, and cured product thereof WO2014010559A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014524798A JPWO2014010559A1 (en) 2012-07-09 2013-07-08 Epoxy resin, epoxy resin composition, curing method thereof and cured product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012153699 2012-07-09
JP2012-153699 2012-07-09

Publications (1)

Publication Number Publication Date
WO2014010559A1 true WO2014010559A1 (en) 2014-01-16

Family

ID=49916012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068650 WO2014010559A1 (en) 2012-07-09 2013-07-08 Epoxy resin, epoxy resin composition, method for curing same, and cured product thereof

Country Status (3)

Country Link
JP (1) JPWO2014010559A1 (en)
TW (1) TW201418308A (en)
WO (1) WO2014010559A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114206976A (en) * 2019-08-08 2022-03-18 住友电木株式会社 Sealing resin composition and electronic component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008231A1 (en) * 2021-07-30 2023-02-02 日本化薬株式会社 Epoxy resin, curable resin composition, and cured products thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142908A (en) * 1982-02-19 1983-08-25 Mitsubishi Petrochem Co Ltd Preparation of polyepoxy compound
JPH04332721A (en) * 1991-05-08 1992-11-19 Tomoegawa Paper Co Ltd Epoxy resin composition and resin encapsulation type device
JPH05155978A (en) * 1991-12-06 1993-06-22 Nippon Kayaku Co Ltd Production of high-purity epoxy resin
JPH06228257A (en) * 1993-02-05 1994-08-16 Kashima Sekiyu Kk Oxygen-containing modified phenolic resin, epoxy resin-containing modified phenolic resin molding material and semiconductor-sealing material
JPH11145346A (en) * 1997-11-04 1999-05-28 Toshiba Corp Semiconductor encapsulating resin composition and semiconductor device
JP2002526572A (en) * 1998-09-22 2002-08-20 ボーデン・ケミカル・インコーポレーテッド Phenol novolak resin with improved optical properties
JP2002542389A (en) * 1999-04-23 2002-12-10 ボーデン・ケミカル・インコーポレーテッド Phenol-novolak with improved optical properties
JP2003535934A (en) * 2000-06-05 2003-12-02 ボーデン・ケミカル・インコーポレーテッド Glyoxal-phenol condensate having strong fluorescence
JP2009051874A (en) * 2007-08-23 2009-03-12 Ube Ind Ltd Heat resisting liquid phenol novolac resin, and producing method and cured product thereof
JP2009191122A (en) * 2008-02-13 2009-08-27 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JP2012046616A (en) * 2010-08-26 2012-03-08 Nippon Steel Chem Co Ltd Phenolic resin, epoxy resin, production method of the same, epoxy resin composition and cured product

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142908A (en) * 1982-02-19 1983-08-25 Mitsubishi Petrochem Co Ltd Preparation of polyepoxy compound
JPH04332721A (en) * 1991-05-08 1992-11-19 Tomoegawa Paper Co Ltd Epoxy resin composition and resin encapsulation type device
JPH05155978A (en) * 1991-12-06 1993-06-22 Nippon Kayaku Co Ltd Production of high-purity epoxy resin
JPH06228257A (en) * 1993-02-05 1994-08-16 Kashima Sekiyu Kk Oxygen-containing modified phenolic resin, epoxy resin-containing modified phenolic resin molding material and semiconductor-sealing material
JPH11145346A (en) * 1997-11-04 1999-05-28 Toshiba Corp Semiconductor encapsulating resin composition and semiconductor device
JP2002526572A (en) * 1998-09-22 2002-08-20 ボーデン・ケミカル・インコーポレーテッド Phenol novolak resin with improved optical properties
JP2002542389A (en) * 1999-04-23 2002-12-10 ボーデン・ケミカル・インコーポレーテッド Phenol-novolak with improved optical properties
JP2003535934A (en) * 2000-06-05 2003-12-02 ボーデン・ケミカル・インコーポレーテッド Glyoxal-phenol condensate having strong fluorescence
JP2009051874A (en) * 2007-08-23 2009-03-12 Ube Ind Ltd Heat resisting liquid phenol novolac resin, and producing method and cured product thereof
JP2009191122A (en) * 2008-02-13 2009-08-27 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JP2012046616A (en) * 2010-08-26 2012-03-08 Nippon Steel Chem Co Ltd Phenolic resin, epoxy resin, production method of the same, epoxy resin composition and cured product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114206976A (en) * 2019-08-08 2022-03-18 住友电木株式会社 Sealing resin composition and electronic component
EP3828220A4 (en) * 2019-08-08 2022-08-03 Sumitomo Bakelite Co.Ltd. Sealing resin composition and electronic part

Also Published As

Publication number Publication date
TW201418308A (en) 2014-05-16
JPWO2014010559A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
JPWO2014065152A1 (en) Epoxy resin composition, method for producing cured epoxy resin, and semiconductor device
TWI642690B (en) Epoxy resin and method for manufacturing the same, epoxy resin composition, and prepreg and cured product thereof
JP5931234B2 (en) Method for producing epoxy resin composition
JP6605828B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP6937744B2 (en) Multivalent hydroxy resin, its manufacturing method, epoxy resin, epoxy resin composition and its cured product
JP6139997B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP5548562B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
WO2013125620A1 (en) Polyvalent hydroxy resin, epoxy resin, method for producing same, epoxy resin composition and cured product thereof
JP6426966B2 (en) Semiconductor sealing resin composition and semiconductor device
JP5457304B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP2017119768A (en) Polyhydric hydroxy resin and method for producing epoxy resin
WO2003068837A1 (en) Indole resins, epoxy resins and resin compositions containing the same
WO2014010559A1 (en) Epoxy resin, epoxy resin composition, method for curing same, and cured product thereof
JP2019214736A (en) Polyvalent hydroxy resins, epoxy resins, methods for producing them, epoxy resin compositions, and cured products thereof
JP5841947B2 (en) Epoxy resin composition and cured product
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP6292925B2 (en) Epoxy resin composition and cured product thereof
WO2015146670A1 (en) Epoxy resin composition, method for producing epoxy resin cured product and semiconductor device
JP7158228B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP2016180056A (en) Polyhydric resin, epoxy resin, method for producing the same, epoxy resin composition, and cured product of the same
WO2006043524A1 (en) Resin containing indole skeleton, epoxy resin containing indole skeleton, epoxy resin composition and cured product therefrom
TW202340293A (en) Epoxy resin, polyhydric hydroxy resin, epoxy resin composition, cured epoxy resin product, and method for producing polyhydric hydroxy resin
CN116891564A (en) Epoxy resin composition and cured product
JP2022016887A (en) Epoxy resin composition and cured product
JP5390491B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524798

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817600

Country of ref document: EP

Kind code of ref document: A1