JP2010229009A - Self-fluidity hydraulic composition, self-fluidity hydraulic mortar and concrete floor structure - Google Patents

Self-fluidity hydraulic composition, self-fluidity hydraulic mortar and concrete floor structure Download PDF

Info

Publication number
JP2010229009A
JP2010229009A JP2009081455A JP2009081455A JP2010229009A JP 2010229009 A JP2010229009 A JP 2010229009A JP 2009081455 A JP2009081455 A JP 2009081455A JP 2009081455 A JP2009081455 A JP 2009081455A JP 2010229009 A JP2010229009 A JP 2010229009A
Authority
JP
Japan
Prior art keywords
self
mass
flowing hydraulic
hydraulic composition
mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009081455A
Other languages
Japanese (ja)
Inventor
Yoshinobu Hirano
義信 平野
Koji Makita
浩司 蒔田
Kiyomi Hayashiyama
貴代美 林山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2009081455A priority Critical patent/JP2010229009A/en
Publication of JP2010229009A publication Critical patent/JP2010229009A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self-fluidity hydraulic composition capable of stably keeping high fluidity for a long period of time, having excellent quick hardening property and horizontal leveling property, and capable of attaining excellent surface finishing property. <P>SOLUTION: The self-fluidity hydraulic composition having self fluidity contains: a hydraulic component, fine aggregate and a fluidizing agent. The fine aggregate contains <5 mass% coarse particle having ≥600 μm particle diameter in the fine aggregate (100 mass%) and water absorption of the fine aggregate is ≤1.6%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、コンクリート床構造体等の構造物の施工に用いられる自己流動性水硬性組成物、それを用いた自己流動性水硬性モルタル及びそれを有するコンクリート床構造体に関する。   The present invention relates to a self-flowing hydraulic composition used for construction of a structure such as a concrete floor structure, a self-flowing hydraulic mortar using the same, and a concrete floor structure having the same.

セルフレベリング材として使用される自己流動性水硬性組成物には、自己平滑性及び表面精度を確保するための高い流動性、流動保持性及び分離抵抗性、早期開放を可能にするに十分な速硬性、施工作業を容易にする面から適度の可使時間が取れることなどが要求される。   Self-flowing hydraulic compositions used as self-leveling materials have high fluidity, flow retention and separation resistance to ensure self-smoothness and surface accuracy, and are fast enough to allow early opening. From the aspect of hardness and ease of construction work, it is required to have an appropriate pot life.

高い流動性を有し、十分な可使時間を保持し硬化表面仕上りが良好な自己流動性水硬性組成物として、特許文献1には、凝結促進剤として硫酸アルミニウムとリチウム塩を含み、細骨材として100質量%中に30μm以上〜150μm未満の微粒分を3〜20質量%、150μm以上〜850μm未満の粒子を97〜80質量%含む自己流動性水硬性組成物が開示されている。   As a self-flowing hydraulic composition having high fluidity, maintaining sufficient pot life and good cured surface finish, Patent Document 1 includes aluminum sulfate and lithium salt as a setting accelerator, A self-flowing hydraulic composition containing 3 to 20% by weight of fine particles of 30 to 150 μm and 97 to 80% by weight of particles of 150 to 850 μm in 100% by weight as a material is disclosed.

また、特許文献2には、硫酸カリウムとリチウム塩を含み、細骨材として100質量%中に30μm以上〜150μm未満の微粒分を3〜20質量%、150μm以上〜850μm未満の粒子を97〜80質量%含む自己流動性水硬性組成物が開示されている。   Patent Document 2 includes potassium sulfate and a lithium salt. As fine aggregate, 3 to 20% by mass of fine particles of 30 μm to less than 150 μm in 100% by mass, and 97 to 95 μm of particles having a particle size of 150 μm to less than 850 μm. A self-flowing hydraulic composition containing 80% by weight is disclosed.

また、材料分離を抑えて自己平滑性を得られるのに適した流動性を安定して得ることができるセメントの自己平滑性として、特許文献3には、150μm未満の粒子含有率が70%容積以上であって、接水24時間後の水和反応率5%以上の粒子含有率が10容積%以上35容積%以下であるセメント系自己平滑性組成物が開示されている。   Further, as a self-smoothness of cement capable of stably obtaining fluidity suitable for obtaining self-smoothness by suppressing material separation, Patent Document 3 discloses that the particle content of less than 150 μm is 70% by volume. A cement-based self-smooth composition having a particle content of 5% or more and a hydration reaction rate of 5% or more after 24 hours of water contact is 10 to 35% by volume.

特開2008−162837号公報JP 2008-162837 A 特開2008−162836号公報JP 2008-162836 A 特開2008−037677号公報JP 2008-037677 A

本発明は、安定して高い流動性を長時間維持でき、速硬性と水平レベル性に優れ、良好な表面仕上りが得られる自己流動性を有する自己流動性水硬性モルタルを得ることのできる自己流動性水硬性組成物を提供することを目的とする。   The present invention provides a self-flowing hydraulic mortar that can maintain a stable and high fluidity for a long period of time, has excellent fast-hardness and horizontal level properties, and has a self-flowing property that provides a good surface finish. It aims at providing a water-soluble hydraulic composition.

本発明者らは、上記課題に対し、細骨材の特性が水硬性組成物を用いたモルタルやモルタルの特性に及ぼす影響を鋭意検討し、特に、細骨材の粒度分布及び吸水率の影響を明らかにして本発明を完成させた。   The present inventors have intensively studied the influence of fine aggregate properties on the properties of mortar and mortar using a hydraulic composition, particularly the influence of fine aggregate particle size distribution and water absorption rate. As a result, the present invention has been completed.

すなわち、本発明の第一は、水硬性成分と、細骨材と、流動化剤含む自己流動性水硬性組成物であって、細骨材が、細骨材(100質量%)中に600μm以上の粒子径を有する粗粒分を5質量%未満含み、細骨材の吸水率が、1.6%以下である自己流動性水硬性組成物である。   That is, the first of the present invention is a self-flowing hydraulic composition containing a hydraulic component, fine aggregate, and a fluidizing agent, and the fine aggregate is 600 μm in the fine aggregate (100% by mass). It is a self-flowing hydraulic composition containing less than 5% by mass of coarse particles having the above particle diameter and having a fine aggregate water absorption of 1.6% or less.

本発明の第二は、本発明の自己流動性水硬性組成物と、水とを混練して得られる自己流動性水硬性モルタルである。   The second of the present invention is a self-flowing hydraulic mortar obtained by kneading the self-flowing hydraulic composition of the present invention and water.

本発明の第三は、本発明の自己流動性水硬性モルタルの硬化体層を表層に有するコンクリート床構造体である。   3rd of this invention is a concrete floor structure which has the hardening body layer of the self-flowing hydraulic mortar of this invention in a surface layer.

本発明の自己流動性水硬性組成物の好ましい態様を以下に示す。好ましい態様は複数組み合わせることができる。
1)細骨材の粗粒率が1.00〜1.40の範囲であり、細骨材の単位容積質量が1.45〜1.70kg/Lの範囲であり、細骨材の実績率が55.0〜61.0%の範囲である。
2)水硬性成分(100質量%)は、アルミナセメント20〜80質量%、ポルトランドセメント5〜70質量%及び石膏5〜45質量%からなる。
3)自己流動性水硬性組成物が、さらに無機成分、凝結遅延剤、樹脂粉末、増粘剤及び消泡剤から選ばれる成分の少なくとも1種以上含む。
4)自己流動性水硬性組成物と、水とを混練りして調製した自己流動性水硬性モルタルのフロー値が210〜240mmの範囲であり、自己流動性水硬性モルタルの混練り直後から混練り後30分経過時点までのSL値が400〜600mmの範囲であり、自己流動性水硬性モルタルの混練り直後のSL値(L0)に対する混練り後20分経過時点のSL値(L20)及び混練り後30分経過時点のSL値(L30)の、L0=100と規格化したときの割合が100〜120の範囲である。
5)自己流動性水硬性組成物と、水とを混練して調製した自己流動性水硬性モルタルは、モルタル硬化体表面のショア硬度が、自己流動性水硬性モルタルを施工して3時間後に10以上である。
Preferred embodiments of the self-flowing hydraulic composition of the present invention are shown below. A plurality of preferred embodiments can be combined.
1) The fine aggregate has a coarse particle ratio in the range of 1.00 to 1.40, the fine aggregate has a unit volume mass in the range of 1.45 to 1.70 kg / L, and the fine aggregate performance rate Is in the range of 55.0 to 61.0%.
2) The hydraulic component (100% by mass) is composed of 20-80% by mass of alumina cement, 5-70% by mass of Portland cement, and 5-45% by mass of gypsum.
3) The self-flowing hydraulic composition further contains at least one component selected from inorganic components, setting retarders, resin powders, thickeners and antifoaming agents.
4) The flow value of the self-flowing hydraulic mortar prepared by kneading the self-flowing hydraulic composition and water is in the range of 210 to 240 mm, and is mixed immediately after the self-flowing hydraulic mortar is kneaded. The SL value up to 30 minutes after kneading is in the range of 400 to 600 mm, and the SL value (L20) at the time 20 minutes after kneading with respect to the SL value (L0) immediately after kneading of the self-flowing hydraulic mortar and The ratio of the SL value (L30) after 30 minutes after kneading is normalized to L0 = 100 is in the range of 100 to 120.
5) The self-flowing hydraulic mortar prepared by kneading the self-flowing hydraulic composition and water has a shore hardness of 10% after 3 hours after applying the self-flowing hydraulic mortar. That's it.

本発明により、安定して高い流動性を長時間維持でき、速硬性と水平レベル性に優れ、良好な表面仕上りを得ることができる自己流動性水硬性モルタルを得ることのできる自己流動性水硬性組成物を提供することができる。   According to the present invention, it is possible to maintain a stable and high fluidity for a long time, a self-flowing hydraulic mortar capable of obtaining a self-flowing hydraulic mortar capable of obtaining a good surface finish, excellent in quick hardening and horizontal level properties. A composition can be provided.

SL測定器を用いた、モルタルのセルフレベリング性評価の概略を示す模式図である。It is a schematic diagram which shows the outline of self-leveling evaluation of mortar using SL measuring device.

本発明は、水硬性成分と、細骨材と、流動化剤とを含む自己流動性水硬性組成物であって、細骨材は、600μm以上の粒子径を有する粗粒分が少なく、その吸水率が1.6%以下であることを特徴とする自己流動性水硬性組成物に関する。本発明の自己流動性水硬性組成物に含まれる細骨材は、好ましくは、粗粒率が1.00〜1.40の範囲であり、単位容積質量が1.45〜1.70kg/Lの範囲であり、実績率が55.0〜61.0%の範囲である。   The present invention is a self-flowing hydraulic composition comprising a hydraulic component, a fine aggregate, and a fluidizing agent, wherein the fine aggregate has a small amount of coarse particles having a particle diameter of 600 μm or more, The present invention relates to a self-flowing hydraulic composition having a water absorption of 1.6% or less. The fine aggregate contained in the self-flowing hydraulic composition of the present invention preferably has a coarse particle ratio in the range of 1.00 to 1.40 and a unit volume mass of 1.45 to 1.70 kg / L. The performance rate is in the range of 55.0 to 61.0%.

本発明において、細骨材の粒子径は、JIS Z8801:2006に規定される呼び寸法の異なる数個の篩いを用いて測定する。また、本発明において、「600μm以上の粒子径を有する粗粒分」とは、600μm篩いを用いたときの残分の粒子の質量割合のことをいう。また、「吸水率」とは、JIS A1109:2006に規定されている骨材の吸水率(単位:%)をいう。また、「粗粒率」とは、JIS A1102:2006に規定されている骨材の粗粒率をいう。また、「単位容積質量」とは、JIS A1104:2006に規定されている骨材の単位容積質量(単位:kg/L)をいう。また、「実績率」とは、JIS A1104:2006に規定されている骨材の実績率(単位:%)をいう。   In the present invention, the particle size of the fine aggregate is measured using several sieves having different nominal dimensions as defined in JIS Z8801: 2006. In the present invention, the term “coarse particles having a particle diameter of 600 μm or more” refers to the mass ratio of the remaining particles when a 600 μm sieve is used. The “water absorption rate” refers to the water absorption rate (unit:%) of the aggregate as defined in JIS A1109: 2006. “Coarse grain ratio” refers to the coarse grain ratio of the aggregate defined in JIS A1102: 2006. The “unit volume mass” refers to the unit volume mass (unit: kg / L) of the aggregate defined in JIS A1104: 2006. The “actual rate” refers to the actual rate (unit:%) of the aggregate defined in JIS A1104: 2006.

本発明の自己流動性水硬性組成物に含まれる水硬性成分として、セメント成分と石膏とを含む水硬性成分を用いることができる。セメント成分としては、ポルトランドセメント及びアルミナセメント等から選択して用いることができる。   As the hydraulic component contained in the self-flowing hydraulic composition of the present invention, a hydraulic component containing a cement component and gypsum can be used. As a cement component, it can select and use from Portland cement, an alumina cement, etc.

水硬性成分に用いられるポルトランドセメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント及び白色ポルトランドセメントなどのポルトランドセメント並びに高炉セメント、フライアッシュセメント及びシリカセメントなどの混合セメントなどから選択して用いることができる。   Portland cements used for hydraulic components include ordinary Portland cement, early-strength Portland cement, ultra-early strong Portland cement, moderately hot Portland cement, low heat Portland cement and white Portland cement, and blast furnace cement, fly ash cement and It can be used by selecting from mixed cement such as silica cement.

水硬性成分に用いられるアルミナセメントとしては、鉱物組成の異なるものが数種知られ市販されているが、いずれも主成分はモノカルシウムアルミネート(CA)であり、市販品はその種類によらず使用することができる。   Several types of alumina cements with different mineral compositions are known and commercially available for use as hydraulic components, but the main component is monocalcium aluminate (CA). Can be used.

本発明の自己流動性水硬性組成物では、水硬性成分のひとつとして石膏を用いることができる。石膏は、自己流動性水硬性組成物と水とを混練して得られるモルタルが硬化した後の寸法安定性を保持する成分として機能するものである。   In the self-flowing hydraulic composition of the present invention, gypsum can be used as one of the hydraulic components. Gypsum functions as a component that retains dimensional stability after the mortar obtained by kneading the self-flowing hydraulic composition and water is cured.

本発明の自己流動性水硬性組成物で用いる石膏は、フッ酸製造工程等で副産される石膏、又は天然に産出される石膏のいずれも使用することができる。   As the gypsum used in the self-flowing hydraulic composition of the present invention, either gypsum produced as a by-product in a hydrofluoric acid production process or the like, or gypsum produced in nature can be used.

本発明では、水硬性成分として、アルミナセメント、ポルトランドセメント及び石膏からなる水硬性成分を用いることが、優れた自己流動性を有し、適正な可使時間と、優れた速硬性とを有する自己流動性水硬性組成物が得られることから好ましい。   In the present invention, a hydraulic component made of alumina cement, Portland cement and gypsum is used as the hydraulic component, and has excellent self-fluidity, proper pot life, and excellent fast-curing property. It is preferable because a fluid hydraulic composition is obtained.

本発明の自己流動性水硬性組成物の水硬性成分は、アルミナセメント、ポルトランドセメント及び石膏の合計質量を100質量部とした場合に、好ましくはアルミナセメント20〜80質量部、ポルトランドセメント5〜70質量部及び石膏5〜45質量部からなる組成、より好ましくはアルミナセメント30〜70質量部、ポルトランドセメント15〜60質量部及び石膏10〜40質量部からなる組成、さらに好ましくはアルミナセメント35〜60質量部、ポルトランドセメント20〜50質量部及び石膏15〜35質量部からなる組成、特に好ましくはアルミナセメント40〜50質量部、ポルトランドセメント25〜40質量部及び石膏17〜27質量部からなる組成を用いることが好ましい。このような組成とすることにより、自己流動性に優れる水硬性モルタル(自己流動性水硬性モルタル)を得ることができ、さらに速硬性を有し、低収縮性又は低膨張性で硬化中の体積変化が少ない硬化体を得ることが容易となるためである。   The hydraulic component of the self-flowing hydraulic composition of the present invention is preferably 20 to 80 parts by mass of alumina cement and 5 to 70 parts of Portland cement when the total mass of alumina cement, Portland cement and gypsum is 100 parts by mass. A composition consisting of 5 parts by mass and gypsum, more preferably 30 to 70 parts by mass of alumina cement, 15 to 60 parts by mass of Portland cement and 10 to 40 parts by mass of gypsum, more preferably 35 to 60 alumina cement. A composition comprising mass parts, 20 to 50 parts by mass of Portland cement and 15 to 35 parts by mass of gypsum, particularly preferably a composition comprising 40 to 50 parts by mass of alumina cement, 25 to 40 parts by mass of Portland cement and 17 to 27 parts by mass of gypsum. It is preferable to use it. By setting it as such a composition, the hydraulic mortar (self-flowing hydraulic mortar) which is excellent in self-fluidity can be obtained, and also has a rapid curing, low shrinkage or low expansion and volume during curing. This is because it becomes easy to obtain a cured body with little change.

本発明の自己流動性水硬性組成物は、水硬性成分と、細骨材と、流動化剤とを含む。細骨材は、水硬性成分100質量部に対し、好ましくは30〜500質量部、より好ましくは50〜400質量部、さらに好ましくは100〜300質量部、特に好ましくは150〜250質量部の範囲が好ましい。   The self-fluid hydraulic composition of the present invention includes a hydraulic component, fine aggregate, and a fluidizing agent. The fine aggregate is preferably 30 to 500 parts by mass, more preferably 50 to 400 parts by mass, still more preferably 100 to 300 parts by mass, and particularly preferably 150 to 250 parts by mass with respect to 100 parts by mass of the hydraulic component. Is preferred.

本発明の自己流動性水硬性組成物に含まれる細骨材の粒度としては、その600μm以上の粒子径を有する粗粒分が、好ましくは同粗粒分を5質量%未満含むもの、より好ましくは同粗粒分を3質量%未満含むもの、さらに好ましくは同粗粒分を0.15質量%未満含むものを主成分としていることが好ましい。同粗粒分の下限は特に制限がなく、600μm以上の粒子径を有する粗粒分は0質量%であってもよい。   As the particle size of the fine aggregate contained in the self-flowing hydraulic composition of the present invention, the coarse particle having a particle diameter of 600 μm or more, preferably containing less than 5% by mass of the same coarse particle, more preferably Is preferably composed mainly of a material containing less than 3% by mass of the same coarse particles, more preferably a material containing less than 0.15% by mass of the same coarse particles. The lower limit of the coarse particles is not particularly limited, and the coarse particles having a particle diameter of 600 μm or more may be 0% by mass.

優れた自己流動性を得るために、本発明の自己流動性水硬性組成物に含まれる細骨材の吸水率として、好ましくは1.60%以下、より好ましくは1.40%以下、さらに好ましくは、1.28%以下のものを主成分であることが好ましい。細骨材の吸水率の下限は特に制限がなく、吸水率は0%であってもよい。   In order to obtain excellent self-fluidity, the water absorption rate of the fine aggregate contained in the self-fluidic hydraulic composition of the present invention is preferably 1.60% or less, more preferably 1.40% or less, and still more preferably Is preferably 1.28% or less as a main component. The lower limit of the water absorption rate of the fine aggregate is not particularly limited, and the water absorption rate may be 0%.

また、優れた自己流動性を得るために、本発明の自己流動性水硬性組成物に含まれる細骨材の粗粒率としては、好ましくは1.00〜1.40、より好ましくは1.10〜1.35、さらに好ましくは1.12〜1.30であることが好ましい。   Further, in order to obtain excellent self-fluidity, the coarse particle ratio of the fine aggregate contained in the self-fluidic hydraulic composition of the present invention is preferably 1.00 to 1.40, more preferably 1. It is preferable that it is 10-1.35, More preferably, it is 1.12-1.30.

また、優れた自己流動性を得るために、本発明の自己流動性水硬性組成物に含まれる細骨材の単位容積質量として、好ましくは1.45〜1.70kg/L、より好ましくは1.50〜1.60kg/L、さらに好ましくは1.52〜1.55kg/Lであることが好ましい。   In order to obtain excellent self-fluidity, the unit volume mass of the fine aggregate contained in the self-fluidic hydraulic composition of the present invention is preferably 1.45 to 1.70 kg / L, more preferably 1 .50 to 1.60 kg / L, more preferably 1.52 to 1.55 kg / L.

また、優れた自己流動性を得るために、本発明の自己流動性水硬性組成物に含まれる細骨材の実績率としては、好ましくは55.0〜61.0%、より好ましくは56.0〜60.0%、さらに好ましくは57.0〜59.0%であることが好ましい。   Further, in order to obtain excellent self-fluidity, the actual rate of fine aggregate contained in the self-fluidic hydraulic composition of the present invention is preferably 55.0 to 61.0%, more preferably 56. It is preferably 0 to 60.0%, more preferably 57.0 to 59.0%.

細骨材の種類は、珪砂、川砂、海砂、山砂及び砕砂などの砂類、アルミナクリンカー、シリカ粉、粘土鉱物、廃FCC触媒及び石灰石などの無機材料、ウレタン砕、EVAフォーム及び発砲樹脂などの樹脂粉砕物などから適宜選択して用いることができる。特に細骨材としては、珪砂、川砂、海砂、山砂、砕砂などの砂類、廃FCC触媒、石英粉末及びアルミナクリンカーなどから選択したものを好ましく用いることができる。   Fine aggregates include silica sand, river sand, sea sand, mountain sand and crushed sand, alumina clinker, silica powder, clay mineral, waste FCC catalyst and inorganic materials such as limestone, urethane crushed, EVA foam and foaming resin It can select suitably from resin pulverized materials etc., such as. In particular, as the fine aggregate, those selected from sands such as quartz sand, river sand, sea sand, mountain sand and crushed sand, waste FCC catalyst, quartz powder, alumina clinker and the like can be preferably used.

本発明の自己流動性水硬性組成物は、材料分離を抑制しつつ好適な流動性を確保する流動化剤(高性能減水剤などの減水剤)を含む。水硬性成分であるアルミナセメントの発現強度は、水/セメント比の影響を大きく受けることから、減水効果を有する流動化剤を使用して水/水硬性成分比を小さくすることが特に好ましい。   The self-flowing hydraulic composition of the present invention includes a fluidizing agent (water reducing agent such as a high-performance water reducing agent) that ensures suitable fluidity while suppressing material separation. Since the expression strength of alumina cement, which is a hydraulic component, is greatly affected by the water / cement ratio, it is particularly preferable to reduce the water / hydraulic component ratio by using a fluidizing agent having a water reducing effect.

流動化剤としては、減水効果を合わせ持つ、メラミンスルホン酸のホルムアルデヒド縮合物、カゼイン、カゼインカルシウム、ポリカルボン酸系、ポリエーテル系及びポリエーテルポリカルボン酸系などの市販の流動化剤が、その種類を問わず使用でき、特にポリエーテル系及びポリエーテルポリカルボン酸などの市販の流動化剤を用いることが好ましい。   As the fluidizing agent, commercially available fluidizing agents such as formaldehyde condensate of melamine sulfonic acid, casein, casein calcium, polycarboxylic acid-based, polyether-based and polyether polycarboxylic acid-based, which have a water reducing effect, are included. It can be used regardless of the type, and it is particularly preferable to use commercially available fluidizing agents such as polyether-based and polyether polycarboxylic acid.

流動化剤は、使用する水硬性成分に応じて、特性を損なわない範囲で適宜添加することができ、水硬性成分100質量部に対して好ましくは0.01〜2.0質量部、より好ましくは0.05〜1.0質量部、さらに好ましくは0.1〜0.5質量部を配合することができる。添加量が余り少ないと好適な効果(優れた流動性と高い硬化体強度)を発現せず、また添加量が多すぎても添加量に見合った効果は期待できず、単に不経済であるだけでなく、場合によっては粘稠性も大きくなり所要の流動性を得るための混練水量が増大して強度性状が悪化する場合が考えられる。   The fluidizing agent can be appropriately added in a range that does not impair the characteristics, depending on the hydraulic component used, and is preferably 0.01 to 2.0 parts by mass, more preferably 100 parts by mass with respect to the hydraulic component. May be blended in an amount of 0.05 to 1.0 part by mass, more preferably 0.1 to 0.5 part by mass. If the amount added is too small, no suitable effect (excellent fluidity and high cured product strength) will be exhibited, and if the amount added is too large, an effect commensurate with the amount added cannot be expected, and it is merely uneconomical. In some cases, the viscosity increases and the amount of kneading water for obtaining the required fluidity increases to deteriorate the strength properties.

本発明の自己流動性水硬性組成物は、アルミナセメント、ポルトランドセメント及び石膏からなる水硬性成分と、細骨材と、流動化剤とを含み、さらに無機成分、凝結遅延剤、凝結促進剤、増粘剤及び消泡剤から選ばれる成分を1種以上含むことが好ましい。   The self-flowing hydraulic composition of the present invention includes a hydraulic component composed of alumina cement, Portland cement and gypsum, a fine aggregate, and a fluidizing agent, and further includes an inorganic component, a setting retarder, a setting accelerator, It is preferable to include one or more components selected from thickeners and antifoaming agents.

本発明の自己流動性水硬性組成物は、高炉スラグ微粉末、フライアッシュ及びシリカヒュームから選ばれる少なくとも1種以上の無機成分を含み、特に高炉スラグ微粉末を含むことにより、乾燥収縮による硬化体の耐クラック性を高めることができる。本発明の自己流動性水硬性組成物において、無機成分の添加量は、水硬性成分100質量部に対し、好ましくは10〜350質量部、より好ましくは30〜200質量部、さらに好ましくは50〜150質量部、特に好ましくは70〜130質量部とすることが好ましい。   The self-fluid hydraulic composition of the present invention contains at least one inorganic component selected from blast furnace slag fine powder, fly ash and silica fume, and in particular, a cured product due to drying shrinkage by containing the blast furnace slag fine powder. The crack resistance can be improved. In the self-flowing hydraulic composition of the present invention, the amount of the inorganic component added is preferably 10 to 350 parts by mass, more preferably 30 to 200 parts by mass, and still more preferably 50 to 100 parts by mass with respect to 100 parts by mass of the hydraulic component. 150 parts by mass, particularly preferably 70 to 130 parts by mass is preferable.

本発明の自己流動性水硬性組成物において、高炉スラグ微粉末の添加量は、水硬性成分100質量部に対し、好ましくは10〜350質量部、より好ましくは30〜200質量部、さらに好ましくは50〜150質量部、特に好ましくは70〜130質量部とすることが好ましい。高炉スラグ微粉末の添加量が、少なすぎると硬化体の乾燥収縮が大きくなり、多すぎると初期強度の低下を招くことがあるためである。高炉スラグ微粉末は、JIS A 6206に規定されるブレーン比表面積3000cm/g以上のものを用いることができる。 In the self-flowing hydraulic composition of the present invention, the amount of blast furnace slag fine powder added is preferably 10 to 350 parts by mass, more preferably 30 to 200 parts by mass, and still more preferably, with respect to 100 parts by mass of the hydraulic component. 50 to 150 parts by mass, particularly preferably 70 to 130 parts by mass is preferable. This is because if the addition amount of the blast furnace slag fine powder is too small, the drying shrinkage of the cured body increases, and if it is too large, the initial strength may be lowered. As the blast furnace slag fine powder, those having a brain specific surface area of 3000 cm 2 / g or more as defined in JIS A 6206 can be used.

凝結調整剤は、使用する水硬性成分や自己流動性水硬性組成物に応じて、特性を損なわない範囲で適宜添加することができ、凝結遅延剤及び凝結促進剤の成分、添加量及び混合比率を適宜選択して、自己流動性水硬性組成物の可使時間と速硬性とを調整することができる。   The setting modifier can be added as appropriate within the range that does not impair the properties, depending on the hydraulic component and self-flowing hydraulic composition used, and the components, addition amount and mixing ratio of the setting retarder and the setting accelerator. Can be appropriately selected to adjust the pot life and fast setting of the self-flowing hydraulic composition.

凝結遅延剤としては、公知の凝結遅延剤を用いることができる。凝結遅延剤の一例として、酒石酸類、リンゴ酸類、クエン酸類及びグルコン酸類などのオキシカルボン酸類を代表とする有機酸や、硫酸ナトリウム、重炭酸ナトリウム、リン酸ナトリウム、ポリリン酸ナトリウム及びトリポリリン酸ナトリウムなどの無機ナトリウム塩類などを、それぞれの成分を単独で又は2種以上の成分を併用して用いることができる。   As the setting retarder, a known setting retarder can be used. Examples of setting retarders include organic acids typified by oxycarboxylic acids such as tartaric acids, malic acids, citric acids and gluconic acids, sodium sulfate, sodium bicarbonate, sodium phosphate, sodium polyphosphate and sodium tripolyphosphate These inorganic sodium salts can be used alone or in combination of two or more components.

オキシカルボン酸類は、オキシカルボン酸及びこれらの塩を含む。オキシカルボン酸としては、例えばクエン酸、グルコン酸、酒石酸、グリコール酸、乳酸、ヒドロアクリル酸、α−オキシ酪酸、グリセリン酸、タルトロン酸、リンゴ酸などの脂肪族オキシ酸、サリチル酸、m−オキシ安息香酸、p−オキシ安息香酸、没食子酸、マンデル酸及びトロパ酸等の芳香族オキシ酸等を挙げることができる。   Oxycarboxylic acids include oxycarboxylic acids and their salts. Examples of the oxycarboxylic acid include aliphatic oxyacids such as citric acid, gluconic acid, tartaric acid, glycolic acid, lactic acid, hydroacrylic acid, α-oxybutyric acid, glyceric acid, tartronic acid, malic acid, salicylic acid, and m-oxybenzoic acid. Examples thereof include aromatic oxyacids such as acid, p-oxybenzoic acid, gallic acid, mandelic acid and tropic acid.

オキシカルボン酸の塩としては、例えばオキシカルボン酸のアルカリ金属塩(具体的にはナトリウム塩及びカリウム塩など)及びアルカリ土類金属塩(具体的にはカルシウム塩、バリウム塩及びマグネシウム塩など)などを挙げることができ、ナトリウム塩がより好ましい。また、特に、重炭酸ナトリウム及び酒石酸一ナトリウムが、凝結遅延効果、入手容易性、価格の面から好ましく、これらを併用することが、さらに好ましい。   Examples of the oxycarboxylic acid salt include alkali metal salts (specifically sodium salt and potassium salt) of oxycarboxylic acid and alkaline earth metal salts (specifically calcium salt, barium salt and magnesium salt). The sodium salt is more preferable. In particular, sodium bicarbonate and monosodium tartrate are preferable from the standpoint of setting delay effect, availability, and cost, and it is more preferable to use these in combination.

本発明の自己流動性水硬性組成物に含まれる凝結遅延剤は、水硬性成分100質量部に対して、好ましくは0.01〜2質量部であり、より好ましくは0.1〜1.5質量部、さらに好ましくは0.2〜1.2質量部、特に好ましくは0.4〜1質量部の範囲で用いることにより好適な流動性が得られる可使時間(ハンドリングタイム)を確保できることから好ましい。さらに、凝結遅延剤の添加量を、前記の好ましい範囲に調整することにより、自己流動性(セルフレベリング性)を有し、好適な流動性が得られる可使時間(ハンドリングタイム)を有するモルタルを得ることができるため好ましい。   The setting retarder contained in the self-flowing hydraulic composition of the present invention is preferably 0.01-2 parts by mass, more preferably 0.1-1.5 parts per 100 parts by mass of the hydraulic component. The pot life (handling time) with which suitable fluidity is obtained can be ensured by using in the range of parts by mass, more preferably 0.2 to 1.2 parts by mass, particularly preferably 0.4 to 1 part by mass. preferable. Furthermore, by adjusting the addition amount of the setting retarder to the above preferred range, a mortar having self-fluidity (self-leveling property) and having a pot life (handling time) capable of obtaining suitable fluidity is obtained. It is preferable because it can be obtained.

本発明の自己流動性水硬性組成物に含まれる凝結促進剤としては、公知の凝結を促進する成分を用いることができる。凝結促進剤としては、例えば、凝結促進効果を有するリチウム塩及び酸アルミニウムなどの硫酸塩を好適に用いることができ、これらを数種組み合わせて使用することができる。   As the setting accelerator contained in the self-flowing hydraulic composition of the present invention, a known component for promoting setting can be used. As the setting accelerator, for example, a lithium salt having a setting acceleration effect and a sulfate such as aluminum acid can be preferably used, and several kinds of these can be used in combination.

リチウム塩の一例として、炭酸リチウム、塩化リチウム、硫酸リチウム、硝酸リチウム及び水酸化リチウムなどの無機リチウム塩や、シュウ酸リチウム、酢酸リチウム、酒石酸リチウム、リンゴ酸リチウム及びクエン酸リチウムなどの有機酸有機リチウム塩などを挙げることができる。特に炭酸リチウムは、凝結促進効果、入手容易性及び価格の面から好ましい。   Examples of lithium salts include inorganic lithium salts such as lithium carbonate, lithium chloride, lithium sulfate, lithium nitrate and lithium hydroxide, and organic acid organics such as lithium oxalate, lithium acetate, lithium tartrate, lithium malate and lithium citrate. A lithium salt etc. can be mentioned. In particular, lithium carbonate is preferable from the viewpoint of the setting acceleration effect, availability, and cost.

凝結促進剤としては、自己流動性水硬性組成物の特性を妨げない粒子径のものを用いることが好ましく、粒子径は50μm以下にすることが好ましい。特にリチウム塩を用いる場合、リチウム塩の粒子径は50μm以下、より好ましくは30μm以下、さらに好ましくは10μm以下であることが好ましい。リチウム塩の粒子径が上記範囲より大きくなるとリチウム塩の溶解度が小さくなるために好ましくなく、特に顔料添加系では微細な多数の斑点として目立ち、美観を損なう場合がある。   As the setting accelerator, those having a particle size that does not interfere with the characteristics of the self-flowing hydraulic composition are preferably used, and the particle size is preferably 50 μm or less. Particularly when a lithium salt is used, the particle diameter of the lithium salt is preferably 50 μm or less, more preferably 30 μm or less, and even more preferably 10 μm or less. When the particle diameter of the lithium salt is larger than the above range, the solubility of the lithium salt becomes small, which is not preferable. In particular, in the pigment addition system, it is noticeable as a large number of fine spots, and the appearance may be impaired.

凝結促進剤は、水硬性成分100質量部に対して、好ましくは0.01〜1質量部であり、より好ましくは0.01〜0.5質量部、さらに好ましくは0.02〜0.4質量部、特に好ましくは0.04〜0.3質量部の範囲で用いることによって、自己流動性水硬性組成物の可使時間を確保したのち好適な速硬性が得られることから好ましい。凝結促進剤の添加量を、前記の好ましい範囲に調整することにより、自己流動性(セルフレベリング性)を有し、良好な可使時間を確保したのち、好適な速硬性を発現するモルタルを得ることができるため好ましい。   The setting accelerator is preferably 0.01 to 1 part by weight, more preferably 0.01 to 0.5 part by weight, and further preferably 0.02 to 0.4 part by weight with respect to 100 parts by weight of the hydraulic component. It is preferable to use in the range of part by mass, particularly preferably in the range of 0.04 to 0.3 part by mass, since a suitable quick setting can be obtained after securing the pot life of the self-flowing hydraulic composition. By adjusting the addition amount of the setting accelerator within the above-mentioned preferable range, a mortar having self-fluidity (self-leveling property) and securing a good pot life is obtained, and a suitable fast-curing property is obtained. This is preferable.

本発明の自己流動性水硬性組成物に含まれる増粘剤は、ヒドロキシエチルメチルセルロースを含み、ヒドロキシエチルメチルセルロースを除く他のセルロース系、スターチエーテル等の加工澱粉系、蛋白質系、ラテックス系及び水溶性ポリマー系などの増粘剤を併用して用いることができる。増粘剤の添加量は、本発明の自己流動性水硬性組成物の特性を損なわない範囲で添加することができる。具体的には、水硬性成分100質量部に対して、好ましくは0.001〜2質量部、より好ましくは0.01〜1.5質量部、さらに好ましくは0.05〜1質量部、特に好ましくは0.1〜0.6質量部含むことが好ましい。増粘剤の添加量が多くなると、モルタル粘度が増加して流動性の低下を招く恐れがあるために上記の好ましい範囲で用いることが好ましい。   The thickening agent contained in the self-flowing hydraulic composition of the present invention contains hydroxyethyl methylcellulose, other cellulose-based excluding hydroxyethylmethylcellulose, modified starch such as starch ether, protein-based, latex-based and water-soluble A thickener such as a polymer can be used in combination. The addition amount of the thickener can be added within a range that does not impair the characteristics of the self-flowing hydraulic composition of the present invention. Specifically, the amount is preferably 0.001 to 2 parts by mass, more preferably 0.01 to 1.5 parts by mass, still more preferably 0.05 to 1 part by mass, particularly 100 parts by mass of the hydraulic component. Preferably 0.1 to 0.6 parts by mass are included. When the addition amount of the thickener is increased, the mortar viscosity is increased and the fluidity may be lowered. Therefore, it is preferably used in the above preferred range.

本発明の自己流動性水硬性組成物において、増粘剤及び消泡剤を併用して用いることは、水硬性成分や細骨材などの骨材分離の抑制、気泡発生の抑制及び硬化体表面の改善に対して好ましい効果を与え、自己流動性水硬性組成物の硬化物の特性を向上させる上で好ましい。   In the self-flowing hydraulic composition of the present invention, it is used in combination with a thickener and an antifoaming agent to suppress separation of aggregates such as hydraulic components and fine aggregates, suppression of bubble generation, and the surface of the cured body This is preferable for improving the properties of the self-flowing hydraulic composition and improving the properties of the cured product.

本発明の自己流動性水硬性組成物に含まれる消泡剤は、シリコン系、アルコール系及びポリエーテル系などの合成物質、鉱物油系、又は植物由来の天然物質など、公知のものを用いることができる。消泡剤の添加量は、本発明の自己流動性水硬性組成物の特性を損なわない範囲で添加することができ、水硬性成分100質量部に対して、好ましくは0.001〜2質量部、より好ましくは0.01〜1.5質量部、さらに好ましくは0.05〜1質量部、特に好ましくは0.1〜0.5質量部含むことが好ましい。消泡剤の添加量は、上記範囲内であることが、好適な消泡効果が認められるために好ましい。   As the antifoaming agent contained in the self-flowing hydraulic composition of the present invention, a known material such as a synthetic material such as silicon-based, alcohol-based or polyether-based material, mineral oil-based material, or plant-derived natural material should be used. Can do. The addition amount of the antifoaming agent can be added within a range that does not impair the characteristics of the self-flowing hydraulic composition of the present invention, and is preferably 0.001 to 2 parts by mass with respect to 100 parts by mass of the hydraulic component. More preferably, it is 0.01-1.5 mass parts, More preferably, it is 0.05-1 mass part, Especially preferably, it is preferable to contain 0.1-0.5 mass part. The addition amount of the antifoaming agent is preferably within the above range because a suitable antifoaming effect is recognized.

本発明の自己流動性水硬性組成物では、乾燥クラックの防止・抑制効果をより高める場合などには、収縮低減剤及び樹脂粉末などを適宜選択して用いることができる。   In the self-flowing hydraulic composition of the present invention, a shrinkage reducing agent, a resin powder, and the like can be appropriately selected and used when the effect of preventing and suppressing dry cracks is further increased.

本発明の自己流動性水硬性組成物を構成する場合に、特に好適な成分構成は、アルミナセメント、ポルトランドセメント及び石膏からなる水硬性成分、硅砂などの細骨材、流動化剤、無機成分、凝結調整剤、増粘剤並びに消泡剤を含むものである。   In the case of constituting the self-flowing hydraulic composition of the present invention, particularly suitable component constitutions are hydraulic components composed of alumina cement, Portland cement and gypsum, fine aggregates such as dredged sand, fluidizing agents, inorganic components, It includes a setting modifier, a thickener and an antifoaming agent.

所定の水硬性成分及び無機成分、細骨材、流動化剤、無機成分、凝結調整剤、増粘剤及び消泡剤などを混合機で混合することによって、本発明の自己流動性水硬性組成物のプレミックス粉体を得ることができる。   The self-fluid hydraulic composition of the present invention is prepared by mixing a predetermined hydraulic component and inorganic component, fine aggregate, fluidizing agent, inorganic component, setting modifier, thickener, antifoaming agent and the like with a mixer. A premix powder of the product can be obtained.

自己流動性水硬性組成物のプレミックス粉体は、所定量の水と混合・攪拌することによって、自己流動性を有する水硬性モルタル(自己流動性水硬性モルタル)を製造することができる。また、その自己流動性水硬性モルタルを硬化させることによって自己流動性水硬性モルタルの硬化体を得ることができる。   The premix powder of the self-flowing hydraulic composition can produce hydraulic mortar (self-flowing hydraulic mortar) having self-fluidity by mixing and stirring with a predetermined amount of water. Moreover, the hardening body of a self-flowing hydraulic mortar can be obtained by hardening the self-flowing hydraulic mortar.

自己流動性水硬性組成物は、水と混合・攪拌することによって自己流動性水硬性モルタルを製造することができる。このとき、水の添加量を調整することにより、自己流動性水硬性モルタルの流動性、可使時間、材料分離性、硬化体の強度などを調整することができる。   The self-flowing hydraulic composition can produce a self-flowing hydraulic mortar by mixing and stirring with water. At this time, by adjusting the amount of water added, the fluidity, pot life, material separability, strength of the cured product, and the like of the self-flowing hydraulic mortar can be adjusted.

水の添加量は、自己流動性水硬性組成物100質量部に対し、好ましくは10〜40質量部、より好ましくは14〜34質量部、さらに好ましくは18〜30質量部、特に好ましくは22〜28質量部の範囲で添加して用いることが、適切な流動性を得るために好ましい。   The amount of water added is preferably 10 to 40 parts by mass, more preferably 14 to 34 parts by mass, still more preferably 18 to 30 parts by mass, and particularly preferably 22 to 100 parts by mass with respect to 100 parts by mass of the self-flowing hydraulic composition. It is preferable to add and use within the range of 28 parts by mass in order to obtain appropriate fluidity.

本発明の自己流動性水硬性モルタルは、水と混練りして調製した自己流動性水硬性モルタルのフロー値が、好ましくは210〜240mm、より好ましくは210〜230mm、さらに好ましくは210〜225mmに調整されていることが、施工の容易さ、及び平滑性高く硬度の高い硬化体表面を得られやすいという理由により好ましい。   The flow value of the self-flowing hydraulic mortar prepared by kneading with water is preferably 210 to 240 mm, more preferably 210 to 230 mm, and still more preferably 210 to 225 mm. It is preferable that it is adjusted for the reason that it is easy to construct and that it is easy to obtain a hardened body surface with high smoothness and high hardness.

さらに、自己流動性水硬性モルタルの混練り直後のSL値(L0)に対する混練り後20分経過時点のSL値(L20)及び混練り後30分経過時点のSL値(L30)の、L0=100と規格化したときの割合が、好ましくは100〜120、より好ましくは100〜115の範囲に調整されていることが、施工の容易さ、及び平滑性が高く硬度の高い硬化体表面を得られやすいという理由により好ましい。   Furthermore, the SL value (L20) at the time 20 minutes after kneading and the SL value (L30) at the time 30 minutes after kneading with respect to the SL value (L0) immediately after kneading of the self-flowing hydraulic mortar, L0 = The ratio when normalized to 100 is preferably adjusted to a range of 100 to 120, more preferably 100 to 115, to obtain a hardened body surface that is easy to construct and has high smoothness and high hardness. This is preferable because it is easily formed.

本発明の自己流動性水硬性モルタルは、施工終了後0.5時間〜3時間の間に硬化を開始し、硬化の進行に伴って硬化体の表面硬度が上昇し、硬化体表面の含水量が低下する。自己流動性水硬性モルタルの硬化体表面のショア硬度は、モルタルの打設(施工)から好ましくは3時間後に10以上、より好ましくは3時間後に20以上、さらに好ましくは3時間後に30以上、特に好ましくは3時間後に40以上の値が得られ、スラリー施工が終了した後、速やかに硬化が進行することによって自己流動性水硬性モルタルの施工を完了することができる。   The self-flowing hydraulic mortar of the present invention starts curing within 0.5 to 3 hours after completion of construction, and the surface hardness of the cured body increases with the progress of curing, and the moisture content on the surface of the cured body Decreases. The shore hardness of the cured body surface of the self-flowing hydraulic mortar is preferably 10 or more after 3 hours, more preferably 20 or more after 3 hours, more preferably 30 or more after 3 hours, especially from the placement (construction) of the mortar. Preferably, a value of 40 or more is obtained after 3 hours, and after the slurry construction is completed, the construction of the self-flowing hydraulic mortar can be completed by rapidly proceeding with the curing.

本発明の自己流動性水硬性組成物を用いると、安定して高い流動性を長時間維持できる自己流動性水硬性モルタルを得ることができる。本発明の自己流動性水硬性モルタルは、良好なハンドリング性が得られ、さらに速硬性並びに表面の平滑性及び精度に優れており、良好な仕上り表面を有する硬化体を安定して得ることができる。本発明の自己流動性水硬性モルタルは、優れた自己流動性を生かしてセルフレベリング材として用いる場合は、学校、マンション、コンビニエンスストア、病院、ベランダ、工場、倉庫、駐車場、ガソリンスタンド、厨房及び屋上などの床下地や床仕上げ材に用いることができる。   When the self-flowing hydraulic composition of the present invention is used, a self-flowing hydraulic mortar that can stably maintain high fluidity for a long time can be obtained. The self-flowing hydraulic mortar of the present invention has good handling properties, and is excellent in fast curing and surface smoothness and accuracy, and can stably obtain a cured product having a good finished surface. . When the self-fluid hydraulic mortar of the present invention is used as a self-leveling material by taking advantage of excellent self-fluidity, it is used in schools, condominiums, convenience stores, hospitals, verandas, factories, warehouses, parking lots, gas stations, kitchens and It can be used for flooring such as rooftops and floor finishing materials.

以下、本発明を実施例に基づき、さらに詳細に説明する。但し、本発明は下記実施例により制限されるものでない。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited by the following examples.

(1)モルタルの評価:
評価に用いるモルタルは、水硬性組成物と水とを混練して調製した混練直後の水硬性モルタルを用いる。
(1) Mortar evaluation:
As the mortar used for evaluation, a hydraulic mortar immediately after kneading prepared by kneading a hydraulic composition and water is used.

・セルフレベリング性(自己流動性):フロー値及びSL値
フロー値は、JASS・15M−103に準拠して測定する。厚さ5mmのみがき板ガラスの上に内径50mm、高さ51mmの塩化ビニル製パイプ(内容積100ml)を置き、練り混ぜた水硬性モルタル組成物を充填した後、パイプを引き上げる。広がりが静止した後、直角2方向の直径を測定し、その平均値をフロー値とする。
-Self-leveling property (self-fluidity): flow value and SL value The flow value is measured according to JASS 15M-103. A pipe made of vinyl chloride (internal volume: 100 ml) having an inner diameter of 50 mm and a height of 51 mm is placed on a glass sheet having a thickness of 5 mm, filled with the kneaded hydraulic mortar composition, and then the pipe is pulled up. After the spread has stopped, the diameters in two perpendicular directions are measured, and the average value is taken as the flow value.

・SL値
SL値は、図1に示すSL(セルフレベリング性)測定器を使用し、幅30mm×高さ30mm×長さ750mmのレールに、先端より長さ150mmのところに堰板を設け、混練直後のモルタルを所定量満たして成形する。成形直後に堰板を引き上げて、モルタルの流れの停止後に、標点(堰板の設置部)から水硬性モルタル流れの先端の最も標点に近い部分(最短部)までの距離を測定し、その値(SL値)をL0とする。
SL value SL value uses SL (self-leveling) measuring device shown in FIG. 1, a rail 30 mm wide × 30 mm high × 750 mm long is provided with a weir plate at a length of 150 mm from the tip, A predetermined amount of mortar immediately after kneading is filled and molded. Pull up the weir plate immediately after molding and after the mortar flow stops, measure the distance from the gauge point (the part where the dam plate is installed) to the part closest to the gauge point (shortest part) at the tip of the hydraulic mortar flow, The value (SL value) is L0.

同様に成形後10分、20分又は30分後に堰板を引き上げて、モルタルの流れの停止後に、標点(堰板の設置部)からモルタル流れの最短部までの距離を測定し、その値(SL値)をL10、L20又はL30とする。また、L0=100となるようにL0の値で規格化した指数を、SL値指数という。   Similarly, after 10 minutes, 20 minutes or 30 minutes after molding, the weir plate is pulled up, and after the mortar flow is stopped, the distance from the gauge point (the installation portion of the weir plate) to the shortest part of the mortar flow is measured. (SL value) is set to L10, L20, or L30. An index normalized with the value of L0 so that L0 = 100 is referred to as an SL value index.

・流動速度
SL値の測定において、堰板を引き上げた時点より、モルタル流れの先端部の移動距離が200mmとなるまでの秒数(s/200mm)を流動速度とする。
-Flow rate In the measurement of SL value, the flow rate is defined as the number of seconds (s / 200 mm) from when the weir plate is pulled up until the moving distance of the tip of the mortar flow reaches 200 mm.

・評価条件
上記の評価は、温度20℃、湿度65%の環境下で行う。
-Evaluation conditions The above evaluation is performed in an environment of a temperature of 20 ° C and a humidity of 65%.

(2)硬化体表面の状態
水硬性モルタル硬化体表面の状態は、調製した水硬性モルタルを、13cm×19cmの樹脂製の型枠へ厚さ10mmで流し込み、硬化後材齢24時間で、表面仕上りを目視で観察することで評価した。評価は以下の通りとした。評価条件は、温度20℃、湿度65%の環境下で行う。
○:凹凸無し、×:凹凸有り。
(2) The state of the cured body surface The condition of the surface of the cured mortar body is that the prepared hydraulic mortar is poured into a 13 cm × 19 cm resin mold at a thickness of 10 mm, and the surface is 24 hours after curing. The finish was evaluated by visual observation. Evaluation was as follows. Evaluation conditions are performed in an environment of a temperature of 20 ° C. and a humidity of 65%.
○: No irregularities, ×: Irregularities.

(3)硬化体表面のショア硬度
水硬性モルタル打設後からの所定の経過時間の後に、硬化した表面の硬度をスプリング式硬度計タイプD型((株)上島製作所製)を用いて、任意の4カ所の表面硬度を測定し、そのスプリング式硬度計タイプD型のゲージの読み取り値の平均値をその時間の表面硬度とする。本発明の実施例及び比較例の場合は、3時間後のショア硬度を測定した。
(3) Shore hardness of the cured body surface After a predetermined elapsed time after placing the hydraulic mortar, the hardness of the cured surface can be arbitrarily determined using a spring type hardness meter type D (manufactured by Ueshima Seisakusho Co., Ltd.). The surface hardness at the four locations is measured, and the average value of the reading values of the spring type hardness tester type D gauge is defined as the surface hardness at that time. In the case of Examples and Comparative Examples of the present invention, the Shore hardness after 3 hours was measured.

原料は以下のものを使用した。
1)水硬性成分
・アルミナセメント(フォンジュ、ケルネオス社製、ブレーン比表面積3100cm/g)。
・ポルトランドセメント(早強セメント、宇部三菱セメント社製、ブレーン比表面積4500cm/g)。
・石膏:天然無水石膏(ブレーン比表面積4500cm/g)。
2)細骨材
下記において、「600μm篩い残分」とは、600μm篩いを用いたときの残分の粒子の質量割合(600μm以上の粒子径を有する粗粒分)である。
・珪砂A:珪砂(吸水率=1.16%、600μm篩い残分=0.1質量%、粗粒率=1.27、単位容積質量=1.54kg/L、実績率=58.8%)
・珪砂B:珪砂(吸水率=1.25%、600μm篩い残分=0.1質量%、粗粒率1.15、単位容積質量=1.53kg/L、実績率=57.5%)
・珪砂C:珪砂(吸水率=3.84%、600μm篩い残分=0.8質量%、粗粒率=1.13、単位容積質量=1.40kg/L、実績率=56.8%)
・珪砂D:珪砂(吸水率=1.96%、600μm篩い残分=9.0質量%、粗粒率=1.49、単位容積質量=1.51kg/L、実績率=58.7%)
・珪砂E:珪砂(吸水率=1.68%、600μm篩い残分=14.2質量%、粗粒率=1.59、単位容積質量=1.62kg/L、実績率=61.9%)
・珪砂F:珪砂(吸水率=1.78%、600μm篩い残分=0.1質量%、粗粒率=1.27、単位容積質量=1.54kg/L、実績率=59.6%)
3)流動化剤:ポリカルボン酸系流動化剤(花王社製)。
4)無機成分
・高炉スラグ微粉末(リバーメント、千葉リバーメント社製、ブレーン比表面積4400cm/g)。
5)凝結調整剤:
・重炭酸Na:重炭酸ナトリウム(東ソー社製)。
・酒石酸Na:L−酒石酸ナトリウム(扶桑化学工業社製)。
・炭酸Li :炭酸リチウム(本荘ケミカル社製)。
・硫酸Al :無水硫酸アルミニウム(大明化学工業社製)
6)増粘剤 :ヒドロキシエチルメチルセルロース系増粘剤(マーポローズMX−30000、松本油脂社製)。
7)消泡剤 :ポリエーテル系消泡剤(サンノプコ社製)。
The following materials were used.
1) Hydraulic component-Alumina cement (Fonju, Kerneos, Blaine specific surface area 3100 cm 2 / g).
Portland cement (early strong cement, manufactured by Ube Mitsubishi Cement Co., Ltd., Blaine specific surface area 4500 cm 2 / g).
Gypsum: natural anhydrous gypsum (Blaine specific surface area 4500 cm 2 / g).
2) Fine aggregate In the following, “600 μm sieve residue” is the mass ratio of the remaining particles when using a 600 μm sieve (coarse particles having a particle diameter of 600 μm or more).
Silica sand A: Silica sand (water absorption rate = 1.16%, 600 μm sieve residue = 0.1% by mass, coarse particle rate = 1.27, unit volume mass = 1.54 kg / L, actual rate = 58.8% )
Silica sand B: Silica sand (water absorption rate = 1.25%, 600 μm sieve residue = 0.1 mass%, coarse grain ratio 1.15, unit volume mass = 1.53 kg / L, actual rate = 57.5%)
Silica sand C: Silica sand (water absorption rate = 3.84%, 600 μm sieve residue = 0.8 mass%, coarse particle ratio = 1.13, unit volume mass = 1.40 kg / L, actual rate = 56.8% )
Silica sand D: Silica sand (water absorption rate = 1.96%, 600 μm sieve residue = 9.0% by mass, coarse particle rate = 1.49, unit volume mass = 1.51 kg / L, actual rate = 58.7% )
Silica sand E: Silica sand (water absorption rate = 1.68%, 600 μm sieve residue = 14.2% by mass, coarse particle rate = 1.59, unit volume mass = 1.62 kg / L, actual rate = 61.9% )
Silica sand F: Silica sand (water absorption rate = 1.78%, 600 μm sieve residue = 0.1% by mass, coarse particle rate = 1.27, unit volume mass = 1.54 kg / L, actual rate = 59.6% )
3) Fluidizer: Polycarboxylic acid fluidizer (manufactured by Kao Corporation).
4) Inorganic components-Blast furnace slag fine powder (Reverment, manufactured by Chiba Rebirth Co., Ltd., Blaine specific surface area 4400 cm 2 / g).
5) Setting agent:
-Bicarbonate Na: Sodium bicarbonate (made by Tosoh Corporation).
-Sodium tartrate: L-sodium tartrate (manufactured by Fuso Chemical Industries).
-Carbonic acid Li: Lithium carbonate (made by Honjo Chemical Co., Ltd.).
・ Sulfuric acid Al: anhydrous aluminum sulfate (manufactured by Daimei Chemical Industry Co., Ltd.)
6) Thickener: Hydroxyethylmethylcellulose thickener (Marporose MX-30000, manufactured by Matsumoto Yushi Co., Ltd.).
7) Antifoaming agent: Polyether type antifoaming agent (manufactured by San Nopco).

<実施例及び参考例>
表1に示す水硬性成分、細骨材、流動化剤、無機成分、凝結調整剤、増粘剤及び消泡剤(総量:1.5kg)を、ケミスタラーを用いて混練して水硬性組成物を調製し、さらに水390gを加えて3分間混練して、水硬性モルタルを得た。水硬性組成物及びモルタルの調製は、温度20℃、湿度65%の雰囲気下で行った。
<Examples and reference examples>
Hydraulic composition obtained by kneading the hydraulic component, fine aggregate, fluidizing agent, inorganic component, setting modifier, thickener and antifoaming agent (total amount: 1.5 kg) shown in Table 1 using a chemistor. Then, 390 g of water was further added and kneaded for 3 minutes to obtain a hydraulic mortar. The hydraulic composition and the mortar were prepared in an atmosphere at a temperature of 20 ° C. and a humidity of 65%.

得られた水硬性モルタルを用いて、SL(セルフレベリング)特性、ショア硬度発現性、硬化体表面仕上りの評価を行った結果を表2に示す。   Table 2 shows the results of evaluation of SL (self-leveling) characteristics, Shore hardness development, and cured body surface finish using the obtained hydraulic mortar.

Figure 2010229009
Figure 2010229009

Figure 2010229009
Figure 2010229009

比較例1〜4に示すように、吸水率が高い細骨材を用いた水硬性モルタルの場合、流動性が低下する一方で、流動性が一定とならず、20〜30分経過した後に流動性が増加する傾向であった。また、比較例2、3に示すように、粒度において600μm篩い残分が高い細骨材を使用した場合は、硬化後の表面精度は悪くなった。   As shown in Comparative Examples 1 to 4, in the case of a hydraulic mortar using a fine aggregate with a high water absorption rate, the fluidity decreases, but the fluidity does not become constant and flows after 20 to 30 minutes have passed. There was a tendency for sex to increase. Moreover, as shown in Comparative Examples 2 and 3, when a fine aggregate having a high 600 μm sieving residue in the particle size was used, the surface accuracy after curing deteriorated.

これに対して、実施例1〜2に示すように、吸水率が低く、粒度において600μm残分が低い細骨材を使用した自己流動性水硬性モルタルの場合、流動性は高く、かつ長時間ほぼ一定に保持されており、硬化後の表面精度も良好であった。   On the other hand, as shown in Examples 1 and 2, in the case of a self-flowing hydraulic mortar using a fine aggregate having a low water absorption rate and a low particle size residue of 600 μm, the fluidity is high and the time is long. It was kept almost constant, and the surface accuracy after curing was also good.

上述の実施例から、本発明の自己流動性水硬性組成物を用いた自己流動性水硬性モルタルは、高い流動性を安定して長時間維持できることから、良好なハンドリング性が得られ、さらに速硬性と水平レベル性に優れており、表面精度の良好な仕上り表面を有する硬化体を安定して得ることができることが明らかとなった。   From the above examples, the self-flowing hydraulic mortar using the self-flowing hydraulic composition of the present invention can stably maintain a high fluidity for a long time, so that good handling properties are obtained and the speed is further increased. It has been clarified that a cured product having a finished surface with excellent hardness and horizontal level properties and good surface accuracy can be obtained stably.

Claims (8)

水硬性成分と、細骨材と、流動化剤とを含む自己流動性水硬性組成物であって、
細骨材が、細骨材(100質量%)中に600μm以上の粒子径を有する粗粒分を5質量%未満含み、
細骨材の吸水率が、1.6%以下である、自己流動性水硬性組成物。
A self-flowing hydraulic composition comprising a hydraulic component, fine aggregate, and a fluidizing agent,
The fine aggregate contains less than 5 mass% of coarse particles having a particle diameter of 600 μm or more in the fine aggregate (100 mass%),
A self-flowing hydraulic composition having a fine aggregate water absorption of 1.6% or less.
細骨材の粗粒率が1.00〜1.40の範囲であり、
細骨材の単位容積質量が1.45〜1.70kg/Lの範囲であり、
細骨材の実績率が55.0〜61.0%の範囲である、請求項1記載の自己流動性水硬性組成物。
The coarse particle ratio of the fine aggregate is in the range of 1.00 to 1.40,
The unit volume mass of the fine aggregate is in the range of 1.45 to 1.70 kg / L,
The self-flowing hydraulic composition according to claim 1, wherein the fine aggregate performance ratio is in the range of 55.0 to 61.0%.
水硬性成分(100質量%)が、アルミナセメント20〜80質量%、ポルトランドセメント5〜70質量%及び石膏5〜45質量%からなる、請求項1又は2記載の自己流動性水硬性組成物。   The self-flowing hydraulic composition according to claim 1 or 2, wherein the hydraulic component (100% by mass) comprises 20 to 80% by mass of alumina cement, 5 to 70% by mass of Portland cement, and 5 to 45% by mass of gypsum. 自己流動性水硬性組成物が、さらに無機成分、凝結遅延剤、樹脂粉末、増粘剤及び消泡剤から選ばれる成分の少なくとも1種以上を含む、請求項1〜3のいずれか1項記載の自己流動性水硬性組成物。   The self-fluid hydraulic composition further includes at least one component selected from an inorganic component, a setting retarder, a resin powder, a thickener, and an antifoaming agent. Self-flowing hydraulic composition. 自己流動性水硬性組成物と、水とを混練りして調製した自己流動性水硬性モルタルのフロー値が210〜240mmの範囲であり、
自己流動性水硬性モルタルの混練り直後から混練り後30分経過時点までのSL値が、400〜600mmの範囲であり、
自己流動性水硬性モルタルの混練り直後のSL値(L0)に対する混練り後20分経過時点のSL値(L20)及び混練り後30分経過時点のSL値(L30)の、L0=100と規格化したときの割合が、100〜120の範囲である、請求項1〜4のいずれか1項記載の自己流動性水硬性組成物。
The flow value of the self-flowing hydraulic mortar prepared by kneading the self-flowing hydraulic composition and water is in the range of 210 to 240 mm,
SL value from immediately after kneading of self-flowing hydraulic mortar to 30 minutes after kneading is in the range of 400 to 600 mm,
The SL value (L20) at the time 20 minutes after kneading and the SL value (L30) at the time 30 minutes after kneading with respect to the SL value (L0) immediately after kneading of the self-flowing hydraulic mortar, L0 = 100 The self-flowing hydraulic composition according to any one of claims 1 to 4, wherein the ratio when normalized is in the range of 100 to 120.
自己流動性水硬性組成物と、水とを混練して調製した自己流動性水硬性モルタルのモルタル硬化体表面のショア硬度が、自己流動性水硬性モルタルを施工して3時間後に10以上である、請求項1〜5のいずれか1項記載の自己流動性水硬性組成物。   The shore hardness of the mortar cured body surface of the self-flowing hydraulic mortar prepared by kneading the self-flowing hydraulic composition and water is 10 or more after 3 hours from the application of the self-flowing hydraulic mortar. The self-flowing hydraulic composition according to any one of claims 1 to 5. 請求項1〜6のいずれか1項記載の自己流動性水硬性組成物と、水とを混練して得られる自己流動性水硬性モルタル。   A self-flowing hydraulic mortar obtained by kneading the self-flowing hydraulic composition according to any one of claims 1 to 6 and water. 請求項7記載の自己流動性水硬性モルタルの硬化体層を表層に有するコンクリート床構造体。   A concrete floor structure having a cured body layer of the self-flowing hydraulic mortar according to claim 7 as a surface layer.
JP2009081455A 2009-03-30 2009-03-30 Self-fluidity hydraulic composition, self-fluidity hydraulic mortar and concrete floor structure Pending JP2010229009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009081455A JP2010229009A (en) 2009-03-30 2009-03-30 Self-fluidity hydraulic composition, self-fluidity hydraulic mortar and concrete floor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009081455A JP2010229009A (en) 2009-03-30 2009-03-30 Self-fluidity hydraulic composition, self-fluidity hydraulic mortar and concrete floor structure

Publications (1)

Publication Number Publication Date
JP2010229009A true JP2010229009A (en) 2010-10-14

Family

ID=43045180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009081455A Pending JP2010229009A (en) 2009-03-30 2009-03-30 Self-fluidity hydraulic composition, self-fluidity hydraulic mortar and concrete floor structure

Country Status (1)

Country Link
JP (1) JP2010229009A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195343A (en) * 2010-03-17 2011-10-06 Ube Industries Ltd Self-flowable hydraulic composition
JP2012193085A (en) * 2011-03-17 2012-10-11 Ube Industries Ltd Self-leveling material
JP2012193086A (en) * 2011-03-17 2012-10-11 Ube Industries Ltd Self-leveling material
JP2013193951A (en) * 2012-03-23 2013-09-30 Ube Industries Ltd Self-leveling material
JP2014015348A (en) * 2012-07-09 2014-01-30 Ube Ind Ltd Self-fluidity hydraulic composition
JP2016216291A (en) * 2015-05-19 2016-12-22 宇部興産株式会社 Self-levelling material, self-levelling material slurry and cured body
KR102322227B1 (en) * 2021-03-05 2021-11-05 주식회사 하은산업 High-strength mortar panel for reducing floor impact sound in apartment houses and its manufacturing method
KR102343104B1 (en) * 2021-03-05 2021-12-28 주식회사 예은 Method for constructing high-strength mortar panel for reducing floor impact sound in apartment houses
JP7421981B2 (en) 2020-03-30 2024-01-25 Muマテックス株式会社 Self-leveling material and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300017A (en) * 2003-03-20 2004-10-28 Ube Ind Ltd High-strength hydraulic composition
JP2008230900A (en) * 2007-03-20 2008-10-02 Ube Ind Ltd Leveling hydraulic composition capable of being thinly applied and mortar capable of being thinly apllied formed from the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300017A (en) * 2003-03-20 2004-10-28 Ube Ind Ltd High-strength hydraulic composition
JP2008230900A (en) * 2007-03-20 2008-10-02 Ube Ind Ltd Leveling hydraulic composition capable of being thinly applied and mortar capable of being thinly apllied formed from the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013015705; コンクリート総覧 第1版第1刷, 19980610, 第200頁、第205頁, 技術書院 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195343A (en) * 2010-03-17 2011-10-06 Ube Industries Ltd Self-flowable hydraulic composition
JP2012193085A (en) * 2011-03-17 2012-10-11 Ube Industries Ltd Self-leveling material
JP2012193086A (en) * 2011-03-17 2012-10-11 Ube Industries Ltd Self-leveling material
JP2013193951A (en) * 2012-03-23 2013-09-30 Ube Industries Ltd Self-leveling material
JP2014015348A (en) * 2012-07-09 2014-01-30 Ube Ind Ltd Self-fluidity hydraulic composition
JP2016216291A (en) * 2015-05-19 2016-12-22 宇部興産株式会社 Self-levelling material, self-levelling material slurry and cured body
JP7421981B2 (en) 2020-03-30 2024-01-25 Muマテックス株式会社 Self-leveling material and its manufacturing method
KR102322227B1 (en) * 2021-03-05 2021-11-05 주식회사 하은산업 High-strength mortar panel for reducing floor impact sound in apartment houses and its manufacturing method
KR102343104B1 (en) * 2021-03-05 2021-12-28 주식회사 예은 Method for constructing high-strength mortar panel for reducing floor impact sound in apartment houses

Similar Documents

Publication Publication Date Title
JP4816425B2 (en) Self-flowing hydraulic composition
JP4985008B2 (en) Levelable hydraulic compositions capable of being thinned and thinnable mortars obtained therefrom
JP2010229009A (en) Self-fluidity hydraulic composition, self-fluidity hydraulic mortar and concrete floor structure
JP2008127247A (en) Self-leveling hydraulic composition
JP5423103B2 (en) Self-flowing hydraulic composition
JP5598050B2 (en) Self-flowing hydraulic composition
JP2009227544A (en) Hydraulic composition, hydraulic mortar and hardened body
JP2008273811A (en) Hydraulic composition
JP2013193951A (en) Self-leveling material
JP2009184867A (en) Hydraulic composition
JP4816449B2 (en) Self-flowing hydraulic composition
JP5776268B2 (en) Self-leveling material
JP5782776B2 (en) Self-leveling material
JP5983115B2 (en) Self-flowing hydraulic composition
JP5055731B2 (en) Self-flowing hydraulic composition
JP2008254996A (en) Self-flowing hydraulic composition
JP5464002B2 (en) Self-flowing hydraulic composition and mortar using the same
JP4816448B2 (en) Self-flowing hydraulic composition
JP5459001B2 (en) Self-flowing hydraulic composition
JP5515900B2 (en) Self-flowing hydraulic composition
JP5779937B2 (en) Self-leveling material
JP5217538B2 (en) Hydraulic composition and concrete floor structure using the same
JP5217539B2 (en) Hydraulic composition and concrete floor structure
JP5515911B2 (en) Self-flowing hydraulic composition
JP5776238B2 (en) Self-leveling material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730