JP2004300017A - High-strength hydraulic composition - Google Patents
High-strength hydraulic composition Download PDFInfo
- Publication number
- JP2004300017A JP2004300017A JP2004059439A JP2004059439A JP2004300017A JP 2004300017 A JP2004300017 A JP 2004300017A JP 2004059439 A JP2004059439 A JP 2004059439A JP 2004059439 A JP2004059439 A JP 2004059439A JP 2004300017 A JP2004300017 A JP 2004300017A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- strength
- parts
- emulsion
- hydraulic composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、高強度及び耐磨耗性に優れ、セルフレベリング性を兼ね備えた床仕上材などに用いることができる高強度水硬性組成物に関するものである。具体的には、病院、学校、オフィス、マンション、住宅、工場、倉庫、駐車場、ガソリンスタンド、コンビニエンスストア、厨房など一般建築物の床下地調整と仕上げに用いることができる。 TECHNICAL FIELD The present invention relates to a high-strength hydraulic composition which is excellent in high strength and abrasion resistance and which can be used as a floor finishing material having self-leveling properties. Specifically, it can be used for adjusting and finishing the floor base of general buildings such as hospitals, schools, offices, apartments, houses, factories, warehouses, parking lots, gas stations, convenience stores, and kitchens.
セルフレベリング材として使用される水硬性組成物の具備すべき第一の条件が、自己水平性を確保するために必要な高い流動性であることは当然であるが、仕上材施工後に負荷される積載物の荷重や車両の走行などから受ける変形や破壊に耐え得るためには、高い耐久性が必要である。
セルフレベリング性を兼ね備えた組成物については、既に、特許文献1において、アルミナセメント、石膏および高炉スラグよりなる水硬性成分、硫酸アルミニウム類およびリチウム塩よりなる凝結調整剤、高分子エマルジョン、減水剤、顔料、増粘剤、および、消泡剤より成る水硬性着色仕上材組成物が開示されている。
The first condition that the hydraulic composition used as a self-leveling material should have is, of course, the high fluidity required to secure self-leveling, but it is loaded after finishing material construction. High durability is required in order to be able to withstand deformation or destruction received from the load of a load or running of a vehicle.
As for the composition having self-leveling properties, already in Patent Document 1, a hydraulic component composed of alumina cement, gypsum and blast furnace slag, a setting regulator composed of aluminum sulfates and lithium salts, a polymer emulsion, a water reducing agent, A hydraulic colored finish composition comprising a pigment, a thickener, and an antifoam is disclosed.
高強度水硬性組成物として、作業特性(高流動性、長可使時間)及び硬化特性(圧縮強度、耐摩耗性、平滑性)に優れており、強度発現性も高い材料である。一般的に、曲げ強度を高くすると圧縮強度が低下するだけでなく、組成によっては、強度特性向上に伴い流動性が低下したり材料分離が起こる問題点が在る。そのため耐久性の観点から、圧縮強度及び曲げ強度の双方に優れ、流動性が低下することなく、表面特性に優れる材料が要求されている。 As a high-strength hydraulic composition, it is a material having excellent working characteristics (high fluidity, long pot life) and curing characteristics (compressive strength, abrasion resistance, smoothness) and high strength development. In general, when the bending strength is increased, not only does the compressive strength decrease, but also depending on the composition, there is a problem that the fluidity decreases and material separation occurs with the improvement of the strength characteristics. Therefore, from the viewpoint of durability, a material that is excellent in both compressive strength and flexural strength and that has excellent surface properties without lowering fluidity is required.
本発明は、圧縮強度、曲げ強度及び耐磨耗性に優れる高強度水硬性組成物の提供を目的とする。
さらに本発明は、セルフレベリング性、圧縮強度、曲げ強度及び耐磨耗性に優れる高強度水硬性組成物の提供を目的とする。
本発明は、色むらや気泡の発生しない表面仕上げ材として好適に使用できる高強度水硬性組成物、さらに着色仕上げ材として用いることができる高強度水硬性組成物の提供を目的とする。
An object of the present invention is to provide a high-strength hydraulic composition having excellent compressive strength, bending strength, and abrasion resistance.
Another object of the present invention is to provide a high-strength hydraulic composition having excellent self-leveling properties, compressive strength, bending strength, and abrasion resistance.
An object of the present invention is to provide a high-strength hydraulic composition that can be suitably used as a surface finishing material free from color unevenness and bubbles, and a high-strength hydraulic composition that can be used as a coloring finishing material.
発明者らは、アルミナセメント、ポルトランドセメント、石膏及び高炉スラグを含む水硬性成分と、特定の粒径を有する骨材と、ガラス転移温度の高いエマルジョンとを含む高強度水硬性組成物が、セルフレベリング性を有し、圧縮強度、曲げ強度及び耐磨耗性が向上することを見出し、本発明を完成した。 The present inventors have developed a high-strength hydraulic composition including a hydraulic component including alumina cement, Portland cement, gypsum and blast furnace slag, an aggregate having a specific particle size, and an emulsion having a high glass transition temperature. They have found that they have leveling properties and that the compressive strength, bending strength and abrasion resistance are improved, and the present invention has been completed.
本発明は、水硬性成分、骨材及びエマルジョンとを含む高強度水硬性組成物であり、
水硬性成分は、アルミナセメント、ポルトランドセメント、石膏及び高炉スラグを含み、
骨材は粒子径106μmでの残留累積割合が83.5〜99重量%かつ粒子径600μmでの残留累積割合が5〜15重量%の骨材であり、
エマルジョンはガラス転移点が0℃以上のエマルジョンを含むことを特徴とする高強度水硬性組成物を提供することである。
The present invention is a high-strength hydraulic composition comprising a hydraulic component, an aggregate and an emulsion,
Hydraulic components include alumina cement, Portland cement, gypsum and blast furnace slag,
The aggregate is an aggregate having a residual accumulation ratio of 83.5 to 99% by weight at a particle diameter of 106 μm and a residual accumulation ratio of 5 to 15% by weight at a particle diameter of 600 μm,
The purpose of the emulsion is to provide a high-strength hydraulic composition characterized by containing an emulsion having a glass transition point of 0 ° C. or higher.
本発明の高強度水硬性組成物の好ましい態様を以下に示す。
エマルジョンは、ガラス転移点が0℃以上のアクリル系樹脂エマルジョンを含むことが好ましい。
本発明の高強度水硬性組成物は、水硬性成分100質量部に対し、骨材60〜150質量部、エマルジョンの固形分4〜20質量部とを含むことが好ましい。
本発明の高強度水硬性組成物において、水硬性成分は、アルミナセメント100質量部に対して、ポルトランドセメント120質量部以下、石膏30〜100質量部、及び高炉スラグ50〜250質量部を含むことが好ましい。
本発明の高強度水硬性組成物において、骨材はさらに粒子径300μmでの残留累積割合が30〜82重量%であることが好ましい。
本発明の高強度水硬性組成物は、凝結速度調整剤を含むことが好ましく、さらに凝結速度調整剤、増粘剤、減水剤及び消泡剤を含むことが好ましい。
Preferred embodiments of the high-strength hydraulic composition of the present invention are shown below.
The emulsion preferably contains an acrylic resin emulsion having a glass transition point of 0 ° C. or higher.
The high-strength hydraulic composition of the present invention preferably contains 60 to 150 parts by mass of the aggregate and 4 to 20 parts by mass of the solid content of the emulsion based on 100 parts by mass of the hydraulic component.
In the high-strength hydraulic composition of the present invention, the hydraulic component contains, based on 100 parts by mass of alumina cement, 120 parts by mass or less of Portland cement, 30 to 100 parts by mass of gypsum, and 50 to 250 parts by mass of blast furnace slag. Is preferred.
In the high-strength hydraulic composition of the present invention, the aggregate preferably has a residual cumulative ratio of 30 to 82% by weight at a particle diameter of 300 µm.
The high-strength hydraulic composition of the present invention preferably contains a setting speed regulator, and further preferably contains a setting speed regulator, a thickener, a water reducing agent and an antifoaming agent.
本発明の高強度水硬性は、セルフレベリング材として十分な流動性を有しているだけではなく、高Tgエマルジョンの使用により硬化体の高圧縮強度と高曲げ強度の両立が可能となっているため、耐久性の面でも極めて優れた特性を有している。また、粒度調整した骨材の使用と、水量を低減しても流動性を確保し、尚且つ材料分離を生じさせない減水剤と増粘剤の最適な組合わせ、加えて消泡剤の使用により、顔料遍析が防止され色ムラの発生が完全に解消されているだけでなく、硬化体表面の材料分離、気泡発生も防止されていることから、従来にない美観に優れたセルフレベリング性高強度を提供する。 The high-strength hydraulic property of the present invention not only has sufficient fluidity as a self-leveling material, but also makes it possible to achieve both high compressive strength and high bending strength of a cured product by using a high Tg emulsion. Therefore, it also has extremely excellent characteristics in terms of durability. In addition, the use of aggregates with adjusted particle size, the optimal combination of a water reducing agent and a thickening agent that ensures fluidity even if the amount of water is reduced and does not cause material separation, and the use of an antifoaming agent In addition to preventing pigment segregation and completely eliminating the occurrence of color unevenness, it also prevents material separation on the surface of the cured product and prevents the generation of air bubbles, resulting in a high level of self-leveling that has never been seen before. Provides strength.
本発明の高強度水硬性組成物は、水硬性成分、骨材及びエマルジョンとを含む高強度水硬性組成物であり、
水硬性成分は、アルミナセメント、ポルトランドセメント、石膏及び高炉スラグを含み、
特定の粒子径を有する骨材とガラス転移点が0℃以上のエマルジョンを用いる高強度水硬性組成物である。
本発明の高強度水硬性組成物は、水硬性成分100質量部に対し、
(E)骨材好ましくは60〜150質量部、さらに好ましくは62〜130質量部、より好ましくは63〜100質量部、特に好ましくは65〜80質量部、
及び(F)エマルジョンの固形分好ましくは4〜20質量部、さらに好ましくは5〜18質量部、より好ましくは6〜16質量部、特に好ましくは7〜14質量部とを含む組成物である。
The high-strength hydraulic composition of the present invention is a high-strength hydraulic composition including a hydraulic component, an aggregate and an emulsion,
Hydraulic components include alumina cement, Portland cement, gypsum and blast furnace slag,
This is a high-strength hydraulic composition using an aggregate having a specific particle size and an emulsion having a glass transition point of 0 ° C. or higher.
The high-strength hydraulic composition of the present invention is based on 100 parts by weight of the hydraulic component.
(E) aggregate, preferably 60 to 150 parts by mass, further preferably 62 to 130 parts by mass, more preferably 63 to 100 parts by mass, particularly preferably 65 to 80 parts by mass,
And (F) a composition containing preferably 4 to 20 parts by mass, more preferably 5 to 18 parts by mass, more preferably 6 to 16 parts by mass, and particularly preferably 7 to 14 parts by mass of the solid content of the emulsion.
セルフレベリング材の具備すべき重要な要件の一つは、適度な急硬性を有することであるが、急硬性は第一義的に、含まれる水硬性成分の種類に依存する。ポルトランドセメント系では硬化速度が遅く、乾燥収縮が大きいと言う欠点を有しており、一方、速硬性セメント系では硬化速度面では改善されるものの、流動性が低く、強度が低いと言う欠点を有している。
本発明の高強度水硬性組成物において、アルミナセメント、ポルトランドセメント、石膏および高炉スラグよりなる水硬性成分を使用することで、互いの欠点を補いこの問題を解決している。
水硬性成分は、(A)アルミナセメント100質量部に対して、
(B)ポルトランドセメント好ましくは120質量部以下、さらに好ましくは5〜115質量部、より好ましくは10〜110質量部、特に好ましくは20〜100質量部、
(C)石膏好ましくは30〜100質量部、さらに好ましくは33〜95質量部、より好ましくは35〜90質量部、特に好ましくは40〜80質量部、
及び(D)高炉スラグ好ましくは50〜250質量部、さらに好ましくは60〜220質量部、より好ましくは70〜180質量部、特に好ましくは80〜140質量部を含むことが好ましい。
One of the important requirements that the self-leveling material should have is to have an appropriate rapid hardening property, but the fast curing property depends primarily on the type of hydraulic component contained. Portland cement systems have the disadvantage that curing speed is slow and drying shrinkage is large.On the other hand, quick-setting cement systems have the disadvantage that curing speed is improved, but fluidity is low and strength is low. Have.
In the high-strength hydraulic composition of the present invention, the use of a hydraulic component comprising alumina cement, Portland cement, gypsum and blast furnace slag compensates for each other's drawbacks and solves this problem.
The hydraulic component is based on (A) 100 parts by mass of alumina cement.
(B) Portland cement preferably 120 parts by mass or less, more preferably 5 to 115 parts by mass, more preferably 10 to 110 parts by mass, particularly preferably 20 to 100 parts by mass,
(C) gypsum preferably 30 to 100 parts by mass, more preferably 33 to 95 parts by mass, more preferably 35 to 90 parts by mass, particularly preferably 40 to 80 parts by mass,
And (D) the blast furnace slag preferably contains 50 to 250 parts by mass, more preferably 60 to 220 parts by mass, more preferably 70 to 180 parts by mass, and particularly preferably 80 to 140 parts by mass.
アルミナセメントは、潜在的に急硬性を有しており、硬化後は耐化学薬品性、耐火性に優れた硬化体を与える。また、潜在水硬性を有する高炉スラグの存在により、その欠点である硬化体強度の経時的な低下も抑制される。アルミナセメントは鉱物組成が異なるものが数種知られ市販されており、何れも主成分はモノカルシウムアルミネート(CA)であるが、強度および着色性の面からは、CA成分が多く且つC4AF等の少量成分が少ないアルミナセメントが好ましい。
アルミナセメントは、水硬性成分100質量%に対し、好ましくは10質量%以上、さらに好ましくは15質量%以上、より好ましくは20質量%以上、特に好ましくは23質量%以上から、好ましくは100質量%以下、さらに好ましくは60質量%以下、より好ましくは50質量%以下、特に好ましくは40質量%以下の範囲の量を含むことが好ましい。
Alumina cement has potentially rapid hardening properties, and after hardening, gives a cured body having excellent chemical resistance and fire resistance. In addition, the presence of the blast furnace slag having latent hydraulic property also suppresses a drawback of the slag, which is a drawback, with time, in the strength of the cured product. Several types of alumina cements having different mineral compositions are known and commercially available, and the main component is monocalcium aluminate (CA). However, from the viewpoint of strength and coloring properties, there are many CA components and C 4 Alumina cement having a small amount of small components such as AF is preferable.
Alumina cement is preferably 10% by mass or more, more preferably 15% by mass or more, more preferably 20% by mass or more, particularly preferably 23% by mass or more, preferably 100% by mass, based on 100% by mass of the hydraulic component. Below, it is preferable that the content is more preferably 60% by mass or less, more preferably 50% by mass or less, particularly preferably 40% by mass or less.
ポルトランドセメントは、普通ポルトランドセメント、早強ポルトランドセメントなどを用いるができる。水硬性成分としてポルトランドセメントを用いることにより、コスト低減に効果が認められ好ましい、また、添加量が多すぎると流動性が低下する場合があり、白華発生の原因となるため、アルミナセメント100質量部に対し、好ましくは120質量部以下添加することが好ましい。ポルトランドセメントは、普通ポルトランドセメントが好ましい。 As the Portland cement, ordinary Portland cement, early strength Portland cement and the like can be used. By using Portland cement as the hydraulic component, the effect of reducing cost is recognized and preferred. In addition, if the amount is too large, the fluidity may be reduced, which may cause the occurrence of efflorescence. Parts by weight, and preferably 120 parts by mass or less. The Portland cement is usually preferably Portland cement.
石膏は急硬性であり、また、硬化後の寸法安定性保持成分として働くものであるが、その添加量は、アルミナセメント100質量部に対して、30〜100質量部とするのが好ましい。少なすぎると寸法安定性が低下し、多すぎると耐水性が低下し、水による異常膨張が起こることがある。なお、石膏は、無水、半水、2水等の各石膏がその種を問わず一種または二種以上の混合物として使用できる。 Gypsum has rapid hardening properties and acts as a dimensional stability retaining component after curing, but its addition amount is preferably 30 to 100 parts by mass with respect to 100 parts by mass of alumina cement. If the amount is too small, the dimensional stability decreases. If the amount is too large, the water resistance decreases, and abnormal expansion due to water may occur. In addition, gypsum can be used alone or as a mixture of two or more gypsums, such as anhydrous, hemihydrate, and water, regardless of the type.
高炉スラグは、硬化体の耐クラック性を高めるだけでなく、アルミナセメントの硬化体強度を向上させる効果も有している。高炉スラグの添加量は、アルミナセメント100質量部に対して、50〜250質量部とするのが好ましい。少なすぎると収縮が大きくなり、多すぎると強度低下を招くことがある。 The blast furnace slag not only increases the crack resistance of the cured product, but also has the effect of improving the strength of the cured product of the alumina cement. The amount of the blast furnace slag is preferably 50 to 250 parts by mass based on 100 parts by mass of the alumina cement. If the amount is too small, the shrinkage becomes large, and if it is too large, the strength may be reduced.
骨材は、JIS・Z−8801で規定する呼び寸法でのふるい分けで、
(1)粒子径106μmでの残留累積割合が83.5〜99重量%、好ましくは84〜98重量%、さらに好ましくは84.5〜97重量%、特に好ましくは85〜96重量%、
かつ粒子径600μmでの残留累積割合が5〜15重量%、好ましくは5.1〜14.5重量%、さらに好ましくは5.2〜14重量%、より好ましくは5.5〜13.5重量%、特に好ましくは6〜13重量%であることが、流動性に優れ、圧縮強度、曲げ強度及び耐磨耗性に優れ、表面状態に優れる。
骨材は、さらに粒子径300μmでの残留累積割合が、好ましくは30〜82重量%、さらに好ましくは33〜79重量%、より好ましくは37〜77重量%、特に好ましくは40〜75重量%であることが、流動性に優れ、圧縮強度、曲げ強度及び耐磨耗性に優れ、表面状態に優れるために好ましい。
骨材は、さらに粒子径850μmでの残留累積割合が、好ましくは2重量%以下、さらに好ましくは1.5重量%以下、より好ましくは1重量%以下、特に好ましくは0.5重量%以下であることが、流動性に優れ、圧縮強度、曲げ強度及び耐磨耗性に優れ、表面状態に優れるために好ましい。
骨材は、粒子径1000μmを超えるものを含まないものを用いることができる。
Aggregate is sieved with nominal size specified in JIS Z-8801.
(1) The residual cumulative ratio at a particle diameter of 106 μm is 83.5 to 99% by weight, preferably 84 to 98% by weight, more preferably 84.5 to 97% by weight, particularly preferably 85 to 96% by weight.
In addition, the residual cumulative ratio at a particle diameter of 600 μm is 5 to 15% by weight, preferably 5.1 to 14.5% by weight, further preferably 5.2 to 14% by weight, and more preferably 5.5 to 13.5% by weight. %, Particularly preferably 6 to 13% by weight, is excellent in fluidity, excellent in compressive strength, bending strength and abrasion resistance, and excellent in surface condition.
The aggregate further has a residual accumulation ratio at a particle diameter of 300 μm of preferably 30 to 82% by weight, more preferably 33 to 79% by weight, more preferably 37 to 77% by weight, particularly preferably 40 to 75% by weight. It is preferable that the compound has excellent fluidity, excellent compressive strength, bending strength and abrasion resistance, and excellent surface condition.
The aggregate further has a residual cumulative ratio at a particle diameter of 850 μm of preferably 2% by weight or less, more preferably 1.5% by weight or less, more preferably 1% by weight or less, particularly preferably 0.5% by weight or less. It is preferable that the compound has excellent fluidity, excellent compressive strength, bending strength and abrasion resistance, and excellent surface condition.
Aggregates that do not include those having a particle size exceeding 1000 μm can be used.
骨材としては、珪砂、珪石粉などのシリカ質細骨材、スラグ、フライアッシュ、石灰石、タルク、カオリン、アルミナ粉、酸化チタン、水酸化アルミニウム、マイカ、パイロフィライト、ゼオライト、シリカゲルなどを用いることができる。
骨材としては、粒度分布の異なる骨材を2種以上混ぜ合わせて用いることができる。
骨材は、5号珪砂、6号珪砂及び7号珪砂など、5号珪砂と5号珪砂より粒度の小さな珪砂などの骨材との混合物を好ましく用いることができる。
As the aggregate, use is made of siliceous fine aggregates such as silica sand and silica powder, slag, fly ash, limestone, talc, kaolin, alumina powder, titanium oxide, aluminum hydroxide, mica, pyrophyllite, zeolite, silica gel, and the like. be able to.
As the aggregate, two or more types of aggregate having different particle size distributions can be used in combination.
As the aggregate, a mixture of silica sand such as No. 5 silica sand, No. 6 silica sand and No. 7 silica sand, and an aggregate such as silica sand having a smaller particle size than No. 5 silica sand can be preferably used.
本発明の高強度水硬性組成物において、エマルジョンの添加により、下地コンクリートとの接着性、硬化体の耐摩耗性、曲げ強度が向上する。
エマルジョンに含まれるポリマー成分のガラス転移温度は、どのようなものでも適宜選択して用いることができるが、特にガラス転移温度(Tg)が0℃以上、好ましくは5℃以上、さらに好ましくは10℃以上、より好ましくは15℃以上、特に好ましくは20℃以上のエマルジョンを用いることにより、圧縮強度を大きく低下させることなく曲げ強度及び耐摩耗性を増加させることができると共に、色むらや気泡の発生が抑制されることにより表面状態が優れ、仕上げ材として用いることができる。
In the high-strength hydraulic composition of the present invention, the addition of the emulsion improves the adhesion to the underlying concrete, the abrasion resistance of the cured product, and the bending strength.
The glass transition temperature of the polymer component contained in the emulsion can be appropriately selected and used, and particularly, the glass transition temperature (Tg) is 0 ° C or higher, preferably 5 ° C or higher, more preferably 10 ° C or higher. As described above, by using an emulsion having a temperature of preferably 15 ° C. or higher, particularly preferably 20 ° C. or higher, the bending strength and the abrasion resistance can be increased without significantly lowering the compressive strength, and the occurrence of color unevenness and bubbles is generated. Is suppressed, so that the surface state is excellent and can be used as a finishing material.
本発明の高強度水硬性組成物において、曲げ強度をより高くするには、エマルジョンの添加量を増やすことが有効であるが、その反面、圧縮強度が低下するという欠点を持っている。そのため、エマルジョンの添加量は、適宜選択して用いることができるが、水硬性成分100質量部に対して、固形分量で4〜20質量部とするのが好ましく、4質量部未満では、曲げ強度の増加が十分でなく、耐摩耗性も低下することが考えられ、また、20質量部を超えると、スラリーの粘性が増加し、流動性の低下と表面状態の不良性、及び圧縮強度の低下を招くことが考えられるために好ましくない。 In the high-strength hydraulic composition of the present invention, in order to further increase the bending strength, it is effective to increase the amount of the emulsion added, but on the other hand, there is a disadvantage that the compressive strength is reduced. Therefore, the addition amount of the emulsion can be appropriately selected and used, but is preferably 4 to 20 parts by mass in terms of solid content with respect to 100 parts by mass of the hydraulic component, and if less than 4 parts by mass, the flexural strength is It is conceivable that the increase in abrasion resistance is not sufficient and the abrasion resistance is also reduced. When the amount exceeds 20 parts by mass, the viscosity of the slurry increases, the flowability decreases, the surface condition deteriorates, and the compressive strength decreases. It is not preferable because it may cause
エマルジョンとは、合成樹脂エマルジョン又はポリマーエマルジョンであり、ポリ酢酸ビニルエマルジョン、エチレンと酢酸ビニルの共重合体エマルジョン(エチレン−酢酸ビニル共重合体エマルジョン)、エチレン、酢酸ビニルと(メタ)クリル酸誘導体の共重合体マルジョン、エチレンと(メタ)クリル酸誘導体との共重合体エマルジョン、ポリ(メタ)クリル酸誘導体のエマルジョン、スチレンと(メタ)クリル酸誘導体との共重合体エマルジョン、ポリクロロプレンラテックス、酢酸ビニルと塩化ビニルの共重合体エマルジョン、スチレンとブタジエンの共重合体エマルジョン、アクリロニトリとブタジエンの共重合体エマルジョン、酢酸ビニルと(メタ)クリル酸誘導体のエマルジョンなどのエチレン、スチレン、酢酸ビニル、(メタ)クリル酸誘導体などを少なくとも1種含む合成樹脂のエマルジョンを用いることができる。(メタ)クリル酸誘導体は、アクリル酸及びメタクリル酸、これらのエステルなどの誘導体を意味する。 Emulsions are synthetic resin emulsions or polymer emulsions, such as polyvinyl acetate emulsions, copolymer emulsions of ethylene and vinyl acetate (ethylene-vinyl acetate copolymer emulsions), ethylene, vinyl acetate and (meth) acrylic acid derivatives. Copolymer emulsion, copolymer emulsion of ethylene and (meth) acrylic acid derivative, emulsion of poly (meth) acrylic acid derivative, copolymer emulsion of styrene and (meth) acrylic acid derivative, polychloroprene latex, acetic acid Ethylene, styrene, vinyl acetate, such as copolymer emulsion of vinyl and vinyl chloride, copolymer emulsion of styrene and butadiene, copolymer emulsion of acrylonitrile and butadiene, and emulsion of vinyl acetate and (meth) acrylic acid derivative ( Data) acrylic acid derivatives and the like may be used an emulsion of synthetic resin containing at least one kind. The (meth) acrylic acid derivative means derivatives such as acrylic acid and methacrylic acid, and esters thereof.
エマルジョンは、アクリル系樹脂エマルジョンを好ましくは70〜100質量%、さらに好ましくは80〜100質量%、より好ましくは90〜100質量%、特に好ましくは95〜100質量%含むエマルジョンが、圧縮強度を保持しながら曲げ強度を増加させるために好ましい。
エマルジョンは、ガラス転移温度0℃以上、好ましくは5℃以上、さらに好ましくは10℃以上、より好ましくは15℃以上、特に好ましくは20℃以上のエマルジョンを、エマルジョン中に好ましくは70〜100質量%、さらに好ましくは80〜100質量%、より好ましくは90〜100質量%、特に好ましくは95〜100質量%含むものが、圧縮強度を保持しながら曲げ強度を増加させるために好ましい。
特にエマルジョンは、ガラス転移温度0℃以上、好ましくは5℃以上、さらに好ましくは10℃以上、より好ましくは15℃以上、特に好ましくは20℃以上のアクリル系樹脂エマルジョンを、エマルジョン中に好ましくは70〜100質量%、さらに好ましくは80〜100質量%、より好ましくは90〜100質量%、特に好ましくは95〜100質量%含むものが、圧縮強度を保持しながら曲げ強度を増加させるために好ましい。
The emulsion preferably contains an acrylic resin emulsion in an amount of 70 to 100% by mass, more preferably 80 to 100% by mass, more preferably 90 to 100% by mass, and particularly preferably 95 to 100% by mass. It is preferable to increase the bending strength while doing so.
The emulsion has a glass transition temperature of 0 ° C. or higher, preferably 5 ° C. or higher, more preferably 10 ° C. or higher, more preferably 15 ° C. or higher, particularly preferably 20 ° C. or higher. More preferably, it contains 80 to 100% by mass, more preferably 90 to 100% by mass, and particularly preferably 95 to 100% by mass, in order to increase the bending strength while maintaining the compressive strength.
In particular, the emulsion has an acrylic resin emulsion having a glass transition temperature of 0 ° C. or higher, preferably 5 ° C. or higher, more preferably 10 ° C. or higher, more preferably 15 ° C. or higher, and particularly preferably 20 ° C. or higher. Those containing from 100 to 100% by mass, more preferably from 80 to 100% by mass, more preferably from 90 to 100% by mass, particularly preferably from 95 to 100% by mass are preferable in order to increase the bending strength while maintaining the compressive strength.
エマルジョンは、公知の製造方法により得られるものを用いることができ、例えば、乳化剤の存在下に、重合開始剤を用いて、水又は含水溶媒中で合成樹脂の原料となる重合性モノマーを乳化重合する方法などにより製造することができる。
エマルジョンは、水を含まない、粉末エマルジョンを含み、粉末エマルジョンを用いると水を除いた全成分を一つのパッケージとすることができ、施工現場では水を添加するだけで使用できるので便利である。
As the emulsion, those obtained by a known production method can be used.For example, in the presence of an emulsifier, a polymerization initiator is used to carry out emulsion polymerization of a polymerizable monomer as a raw material of a synthetic resin in water or a water-containing solvent using a polymerization initiator. It can be manufactured by such a method.
The emulsion includes a powder emulsion containing no water, and the use of the powder emulsion makes it possible to form all the components except for water into one package, which can be conveniently used at the construction site simply by adding water.
乳化剤としては、公知のものを用いることができ、アニオン性、ノニオン性、カチオン性又は両性の界面活性剤やポリビニルアルコール等の保護コロイドなどを挙げることができる。
重合開始剤としては、水又は含水溶媒中でラジカル重合などの重合ができるものが好ましく、過酸化水素、過酢酸、過硫酸又はこれらのアンモニウム塩や硫酸塩等の水溶性の過酸化物やその塩などを挙げることができる。また、ベンゾイルパーオキサイド、t−ブチルハイドロパーオキサイド、2,2’−アゾビスイソブチルニトリルなどの有機過酸化物、メタ亜硫酸ナトリウムやピロ亜硫酸ナトリウムなどの還元剤を併用することができる。
重合開始剤の使用量は、エマルジョンが製造できる範囲であれば適宜選択できる。
As the emulsifier, a known emulsifier can be used, and examples thereof include anionic, nonionic, cationic or amphoteric surfactants and protective colloids such as polyvinyl alcohol.
As the polymerization initiator, those capable of performing polymerization such as radical polymerization in water or a water-containing solvent are preferable, and hydrogen peroxide, peracetic acid, persulfuric acid or a water-soluble peroxide such as an ammonium salt or a sulfate thereof or the like. Salts and the like can be mentioned. Further, organic peroxides such as benzoyl peroxide, t-butyl hydroperoxide, 2,2′-azobisisobutylnitrile, and reducing agents such as sodium metasulfite and sodium pyrosulfite can be used in combination.
The amount of the polymerization initiator can be appropriately selected as long as the emulsion can be produced.
エマルジョンは、エマルジョン中に含まれる合成樹脂などの固形分率は適宜選択することができるが、エマルジョン100質量部中、30〜80質量部が好ましく、40〜60質量部がより好ましい。30質量部未満だと硬化しにくいおそれがあり、80質量部を越えると粘度が大きすぎて作業性が低下したり、塗膜を均一に形成できないおそれが考えられる。 In the emulsion, the solid content of the synthetic resin and the like contained in the emulsion can be appropriately selected, but is preferably 30 to 80 parts by mass, more preferably 40 to 60 parts by mass, per 100 parts by mass of the emulsion. If the amount is less than 30 parts by mass, curing may be difficult. If the amount is more than 80 parts by mass, the viscosity may be too high to lower the workability, or the coating film may not be formed uniformly.
アクリル系樹脂エマルジョンとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレートなどのアルキル(メタ)アクリレートなど(メタ)アクリレート化合物などを1種または2種以上を重合したもの、さらにこれらのモノマーと共重合可能なスチレン、酢酸ビニル、塩化ビニリデンなどのビニル化合物と共重合させたものを用いることが出来る。(メタ)アクリレートとは、メタクリレート及びアクリレートを意味する。
アクリル系樹脂エマルジョンは、エマルジョンに含まれるポリマー成分が、架橋していないポリマー、さらに好ましくはポリマー内又はポリマー間で架橋していないポリマーを用いることにより、伸びに優れるために好ましい。
Examples of the acrylic resin emulsion include one or more (meth) acrylate compounds such as alkyl (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. Those obtained by polymerizing two or more kinds, and those obtained by copolymerizing with a vinyl compound such as styrene, vinyl acetate, and vinylidene chloride copolymerizable with these monomers can be used. (Meth) acrylate means methacrylate and acrylate.
The acrylic resin emulsion is preferable because the polymer component contained in the emulsion is excellent in elongation by using a polymer that is not crosslinked, more preferably a polymer that is not crosslinked within or between polymers.
エチレン−酢酸ビニル共重合体エマルジョンは、エチレンと酢酸ビニルとを共重合した公知のエマルジョンを用いることが出来る。
エチレン−酢酸ビニル共重合体エマルジョンとしては、ポリビニルアルコール、セルロース誘導体などの水溶性高分子を乳化剤や保護コロイドとして用いる物を好ましく用いることが出来る。特にエチレン−酢酸ビニル共重合体エマルジョンは、保護コロイドとしてポリビニルアルコールを用いたものが好ましい。
エチレン−酢酸ビニル共重合体エマルジョンの重合体成分において、酢酸ビニル含有量は、好ましくは30〜90質量%、さらに好ましくは50〜90質量%、特に好ましくは60〜86質量%が好ましい。
エチレン−酢酸ビニル共重合体エマルジョン中のエチレン酢酸ビニル共重合体成分の含有量は、好ましくは40〜65質量%、さらに好ましくは45〜60質量%、特に好ましくは47〜60質量%である。
As the ethylene-vinyl acetate copolymer emulsion, a known emulsion obtained by copolymerizing ethylene and vinyl acetate can be used.
As the ethylene-vinyl acetate copolymer emulsion, those using a water-soluble polymer such as polyvinyl alcohol or a cellulose derivative as an emulsifier or protective colloid can be preferably used. In particular, the ethylene-vinyl acetate copolymer emulsion preferably uses polyvinyl alcohol as a protective colloid.
In the polymer component of the ethylene-vinyl acetate copolymer emulsion, the vinyl acetate content is preferably 30 to 90% by mass, more preferably 50 to 90% by mass, and particularly preferably 60 to 86% by mass.
The content of the ethylene-vinyl acetate copolymer component in the ethylene-vinyl acetate copolymer emulsion is preferably 40 to 65% by mass, more preferably 45 to 60% by mass, and particularly preferably 47 to 60% by mass.
本発明の高強度水硬性組成物において、凝結速度調整剤は、水硬性組成物に応じて、特性を損なわない範囲で適宜添加することができ、凝結促進剤及び凝結遅延剤の成分、添加量及び混合比率を適宜選択して、流動性、可使時間を調整することができる。
凝結速度調整剤は、流動性及び可使時間を調整する場合には、リチウム塩などの凝結促進剤とナトリウム塩などの凝結遅延剤の合量が、水硬性成分100質量部に対して0.05〜5質量部、さらに0.1〜2質量部、特に0.30〜0.70質量部の範囲で添加することが好ましい。
凝結速度調整剤において、凝結遅延剤のモル量を凝結促進剤のモル量で除したモル比[(凝結遅延剤のモル量)/(凝結促進剤のモル量)]は、1〜50の範囲にすることが好ましく、モル比が1より小さいと、凝結が早く自己流動性が低下するため、可使時間が短くなりすぎて施工に支障を来たす場合があり、また50より大きいと、速硬性が低下し、早期開放が困難になる場合があり、好ましくない。
In the high-strength hydraulic composition of the present invention, the setting speed regulator can be appropriately added within a range that does not impair the properties, depending on the hydraulic composition, and the components and amounts of the setting accelerator and the setting retarder are added. The fluidity and the pot life can be adjusted by appropriately selecting the mixing ratio.
When adjusting the fluidity and the pot life, the total amount of the setting accelerator, such as a lithium salt, and the setting retarder, such as a sodium salt, is set to be 0.1 to 100 parts by mass of the hydraulic component. It is preferably added in the range of 0.5 to 5 parts by mass, more preferably 0.1 to 2 parts by mass, particularly preferably 0.30 to 0.70 part by mass.
In the setting speed regulator, the molar ratio [(molar amount of setting retarder) / (molar amount of setting accelerator)] obtained by dividing the molar amount of the setting retarder by the molar amount of the setting accelerator is in the range of 1 to 50. When the molar ratio is less than 1, the setting time is short and the self-fluidity is reduced, so that the working time may be too short and may hinder the construction. Is reduced, and early opening may be difficult, which is not preferable.
凝結促進剤としては、公知の凝結促進剤を用いることが出来る。凝結促進剤の一例として、炭酸リチウム、塩化リチウム、硫酸リチウム、硝酸リチウム、水酸化リチウム、酢酸リチウム、酒石酸リチウム、リンゴ酸リチウム、クエン酸リチウムなどの有機酸などの、無機リチウム塩や有機リチウム塩などのリチウム塩を用いることが出来る。特に炭酸リチウムは、効果、入手容易性、価格の面から好ましい。
凝結促進剤としては、特性を妨げない粒径を用いることが好ましく、粒径は50μm以下にするのが好ましい。
特にリチウム塩を用いる場合、リチウム塩の粒径は50μm以下、さらに30μm以下、特に10μm以下が好ましく、粒径が上記範囲より大きくなるとリチウム塩の溶解度が小さくなるために好ましくなく、特に顔料などの着色剤添加系では微細な多数の斑点として目立ち、美観を損なう場合がある。
As the setting accelerator, a known setting accelerator can be used. Examples of the setting accelerator include inorganic lithium salts and organic lithium salts such as organic acids such as lithium carbonate, lithium chloride, lithium sulfate, lithium nitrate, lithium hydroxide, lithium acetate, lithium tartrate, lithium malate and lithium citrate. And the like. In particular, lithium carbonate is preferable from the viewpoint of effect, availability, and price.
As the setting accelerator, it is preferable to use a particle size that does not hinder the properties, and it is preferable that the particle size be 50 μm or less.
In particular, when a lithium salt is used, the particle size of the lithium salt is preferably 50 μm or less, more preferably 30 μm or less, and particularly preferably 10 μm or less. When the particle size is larger than the above range, the solubility of the lithium salt is reduced, which is not preferable. In the colorant-added system, it is conspicuous as many fine spots, which may impair the aesthetic appearance.
凝結遅延剤としては、公知の凝結遅延剤を用いることが出来る。凝結遅延剤の一例として、硫酸ナトリウム、りん酸ナトリウム、重炭酸ナトリウム、酒石酸ナトリウム、リンゴ酸ナトリウム、クエン酸ナトリウム、グルコン酸ナトリウムなどの、無機ナトリウム塩や有機ナトリウム塩などのナトリウム塩を用いることが出来る。特に重炭酸ナトリウムや酒石酸ナトリウムは、効果、入手容易性、価格の面から好ましい。なお、添加量が多いと、流動性の低下、硬化不良を招いたり、ブリージング水の発生による表面不良が生じることがあるので、注意が必要である。 As the setting retarder, a known setting retarder can be used. As an example of a setting retarder, it is possible to use sodium salts such as inorganic sodium salts and organic sodium salts such as sodium sulfate, sodium phosphate, sodium bicarbonate, sodium tartrate, sodium malate, sodium citrate and sodium gluconate. I can do it. In particular, sodium bicarbonate and sodium tartrate are preferable in terms of effect, availability, and price. Attention should be paid to the fact that a large amount of addition may cause a decrease in fluidity, poor curing, or a surface failure due to the generation of breathing water.
セルフレベリング材が具備すべき最も基本的な要件は高い流動性である。高強度の硬化体を得るには、水/水硬性成分比を下げる必要があるが、水/水硬性成分を低くして高い流動性を確保するためには、減水剤を添加することが好ましい。
特に、本発明における水硬性成分の一つであるアルミナセメントの強度発現性は、水/セメント比の影響を大きく受けることから、減水剤を使用し、水/水硬性成分比を小さくすることが好ましい。減水剤の添加は、材料分離を生じ易くなるため、減水剤と増粘剤を併用することが好ましい。
本発明の高強度水硬性組成物において、増粘剤及び/又は消泡剤の添加は、硬化体表面における材料分離、気泡の発生を抑制し、硬化体外観の改善に好ましい効果を与えるために好ましい。
The most basic requirement that a self-leveling material should have is high fluidity. In order to obtain a high-strength cured product, it is necessary to lower the water / hydraulic component ratio. However, in order to lower the water / hydraulic component and ensure high fluidity, it is preferable to add a water reducing agent. .
In particular, since the strength developability of alumina cement, which is one of the hydraulic components in the present invention, is greatly affected by the water / cement ratio, it is necessary to use a water reducing agent to reduce the water / hydraulic component ratio. preferable. Since addition of a water reducing agent tends to cause material separation, it is preferable to use a water reducing agent and a thickener in combination.
In the high-strength hydraulic composition of the present invention, the addition of a thickener and / or an antifoaming agent suppresses material separation and generation of bubbles on the surface of the cured product, and has a favorable effect on improving the appearance of the cured product. preferable.
減水剤は、ナフタレン系、メラミン系、ポリカルボン酸系、リグニンスルホン酸系などを用いることが出来、併用する増粘剤との最適な組合わせとなるのは、ポリカルボン酸系が好ましい。
減水剤の添加量は、本発明の特性を損なわない範囲で添加することができ、水硬性成分100質量部に対して0.05〜5質量部、さらに0.1〜2質量部、特に0.2〜1質量部が好ましい。
As the water reducing agent, a naphthalene type, a melamine type, a polycarboxylic acid type, a lignin sulfonic acid type or the like can be used, and a polycarboxylic acid type is preferable in combination with a thickener used in combination.
The amount of the water reducing agent can be added within a range that does not impair the properties of the present invention, and is 0.05 to 5 parts by mass, more preferably 0.1 to 2 parts by mass, especially 0 to 100 parts by mass of the hydraulic component. 0.2 to 1 part by mass is preferred.
増粘剤は、メチルセルロース、カルボキシメチルセルロースなどのセルロース系、ゼラチン、ベクチンなどの蛋白質系、ポリエチレングリコール、ポリエチレンオキサイド、ポリアクリルアミド、ポリビニルアルコールなどの水溶性ポリマー系、ラテックス系などを用いることが出来、特にセルロース系などを用いることが出来る。
増粘剤の添加量は、本発明の特性を損なわない範囲で添加することができ、水硬性成分100質量部に対して0.01〜0.5質量部、さらに0.01〜0.2質量部、特に0.01〜0.1質量部含むことが好ましい。増粘剤の添加量が多くなると、流動性の低下を招く恐れがあり好ましくない。
Thickeners, methylcellulose, cellulosic such as carboxymethylcellulose, gelatin, protein such as vectin, polyethylene glycol, polyethylene oxide, polyacrylamide, water-soluble polymer such as polyvinyl alcohol, latex, etc. can be used, especially Cellulose type or the like can be used.
The addition amount of the thickener can be added in a range that does not impair the properties of the present invention, and is 0.01 to 0.5 part by mass, more preferably 0.01 to 0.2 part by mass, per 100 parts by mass of the hydraulic component. It is preferable to include the parts by mass, particularly 0.01 to 0.1 parts by mass. If the amount of the thickener is increased, the flowability may decrease, which is not preferable.
本発明の高強度水硬性組成物は、硬化物の圧縮強度や耐磨耗性、表面状態を向上させる目的で、消泡剤を含むことができる。
消泡剤は、シリコン系、アルコール系、ポリエーテル系、鉱物油系、フッ素系などの合成物質または植物由来の天然物質など、公知のものを用いることが出来る。
消泡剤の添加量は、本発明の特性を損なわない範囲で添加することができ、水硬性成分100質量部に対して、2質量部以下、さらに1質量部以下、特に0.5質量部以下が好ましい。消泡剤の添加量は、上記より多く添加する場合、消泡効果の向上がみとめられない場合がある。
The high-strength hydraulic composition of the present invention may contain an antifoaming agent for the purpose of improving the compression strength, abrasion resistance, and surface state of the cured product.
As the defoaming agent, known substances such as synthetic substances such as silicon-based, alcohol-based, polyether-based, mineral oil-based, and fluorine-based substances or natural substances derived from plants can be used.
The addition amount of the defoaming agent can be added in a range that does not impair the properties of the present invention, and is 2 parts by mass or less, further 1 part by mass or less, particularly 0.5 part by mass with respect to 100 parts by mass of the hydraulic component. The following is preferred. When the addition amount of the defoaming agent is larger than the above, the improvement of the defoaming effect may not be observed.
本発明の高強度水硬性組成物は、さらに顔料を添加して、着色の表面仕上げ材用高強度水硬性組成物として用いることができる。
本発明の高強度水硬性組成物は、硬化時における顔料の遍析が完全に防止されていることから、色ムラのない均一な色相を有する着色硬化体を形成し、従来使用されている撒床材を未硬化コンクリートに撒布した後にコテ仕上を行なう方法や、エポキシ系の樹脂をコンクリート表面に塗布する塗り床材を用いることなく、優れた美観を有する着色硬化体を、床下地調製と同時に得ることができる。
The high-strength hydraulic composition of the present invention can be used as a high-strength hydraulic composition for a colored surface finishing material by further adding a pigment.
The high-strength hydraulic composition of the present invention forms a colored cured product having a uniform hue without color unevenness, since the eccentricity of the pigment during curing is completely prevented. Without using a method of ironing after spreading the floor material on uncured concrete, or using a coated floor material that applies an epoxy resin to the concrete surface, a colored cured body with an excellent appearance can be prepared at the same time as the floor foundation preparation Obtainable.
顔料は、目的とする色彩によって、それを発現するものを適宜選択することになるが、硬化体の使用目的からして、耐アルカリ性および耐候性に優れたものが好ましく、無機系顔料やアクリル系顔料を用いることが好ましい。
無機系顔料は、例えばチタンホワイト、ベンガラ、チタンイエロー、イエローオーカーなどの色彩名を冠した、鉄、クロム、チタン、コバルトその他の各種金属酸化物、水酸化物あるいは硫化物を主成分とする各種色彩のものが市販されており、市販品を単独、または複数を混合した混合色として使用することができる。
顔料の添加量は、目的とする色濃度によって決めることになるが、水硬性成分100質量部に対して、0.5〜10質量部とするのが良い。
Depending on the intended color, the pigment may be appropriately selected so as to exhibit the color.However, in view of the intended use of the cured product, those having excellent alkali resistance and weather resistance are preferable, and inorganic pigments and acrylic pigments are preferred. It is preferable to use a pigment.
Inorganic pigments include, for example, iron, chromium, titanium, cobalt, and other various metal oxides, hydroxides, or sulfides bearing the color names such as titanium white, red iron, titanium yellow, and yellow ocher. Colored products are commercially available, and commercially available products can be used alone or as a mixture of a plurality of colors.
The amount of the pigment to be added is determined depending on the desired color density, but is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the hydraulic component.
本発明の高強度水硬性組成物の使用に当たっては、水の配合量は、適宜選択して配合することが出来、好ましくはフロー値が210mm以上のモルタルを得ることができる量であり、さらに好ましくは水硬性成分100質量部に対して23〜30質量部とするのが好ましい。水量は、この適正範囲以下に低減するとその範囲以上の圧縮強度の増加は見込めず、流動性が大きく低下するために好ましくなく、一方この適正範囲を超えて水量が多すぎると、圧縮強度が大幅に低下するだけでなく、色ムラなどの表面状態が悪化するために好ましくない。 In using the high-strength hydraulic composition of the present invention, the amount of water can be appropriately selected and compounded, and is preferably an amount capable of obtaining a mortar having a flow value of 210 mm or more, and more preferably. Is preferably 23 to 30 parts by mass with respect to 100 parts by mass of the hydraulic component. If the amount of water is reduced below this appropriate range, an increase in compressive strength beyond that range is not expected, and the fluidity is greatly reduced, which is not preferable.On the other hand, if the amount of water exceeds this appropriate range, the compressive strength will be large. Not only because the surface condition such as color unevenness is deteriorated.
本発明の高強度水硬性組成物において、20℃の可使時間は、好ましくは0.5〜2.5時間、さらに好ましくは0.75〜2時間、特に好ましくは1〜1.5時間が、作業性および硬化表面状態のために好ましい。 In the high-strength hydraulic composition of the present invention, the pot life at 20 ° C. is preferably 0.5 to 2.5 hours, more preferably 0.75 to 2 hours, and particularly preferably 1 to 1.5 hours. Preferred for workability and cured surface condition.
本発明の高強度水硬性組成物は、フロー値が好ましくは210mm以上のモルタルを得ることができる。 The high-strength hydraulic composition of the present invention can obtain a mortar having a flow value of preferably 210 mm or more.
本発明の高強度水硬性組成物は、圧縮強度が材齢7日で好ましくは40N/mm2以上、さらに好ましくは42N/mm2以上、特に好ましくは44N/mm2以上の硬化物を得ることができる。
本発明の高強度水硬性組成物は、圧縮強度が材齢28日で好ましくは60N/mm2以上、さらに好ましくは61N/mm2以上、特に好ましくは62N/mm2以上の硬化物を得ることができる。
High strength hydraulic composition of the present invention, the compressive strength preferably at an age of 7 days 40N / mm 2 or more, more preferably 42N / mm 2 or more, and particularly preferably to obtain 44N / mm 2 or more cured Can be.
High strength hydraulic composition of the present invention, the compressive strength preferably at an age of 28 days 60N / mm 2 or more, more preferably 61N / mm 2 or more, and particularly preferably to obtain 62N / mm 2 or more cured Can be.
本発明の高強度水硬性組成物は、曲げ強度が材齢7日で好ましくは8N/mm2以上、さらに好ましくは9N/mm2以上、特に好ましくは10N/mm2以上の硬化物を得ることができる。
本発明の高強度水硬性組成物は、曲げ強度が材齢28日で好ましくは10N/mm2以上、さらに好ましくは11N/mm2以上、特に好ましくは12N/mm2以上の硬化物を得ることができる。
The high-strength hydraulic composition of the present invention obtains a cured product having a flexural strength of preferably 7 N / mm 2 or more, more preferably 9 N / mm 2 or more, particularly preferably 10 N / mm 2 or more at a material age of 7 days. Can be.
The high-strength hydraulic composition of the present invention obtains a cured product having a flexural strength of 28 days, preferably 10 N / mm 2 or more, more preferably 11 N / mm 2 or more, and particularly preferably 12 N / mm 2 or more. Can be.
本発明の高強度水硬性組成物は、スラリー打設3時間後での表面硬度が好ましくは10以上、さらに好ましくは12以上、より好ましくは15以上、特に好ましくは18以上の硬化物を得ることができる。 The high-strength hydraulic composition of the present invention obtains a cured product having a surface hardness of preferably 10 or more, more preferably 12 or more, more preferably 15 or more, and particularly preferably 18 or more after 3 hours of casting the slurry. Can be.
本発明の高強度水硬性組成物は、耐磨耗性が材齢7日で好ましくは0.30mm以下、さらに好ましくは0.25mm以下、より好ましくは0.20mm以下、特に好ましくは0.18mm以下の硬化物を得ることができる。
本発明の高強度水硬性組成物は、耐磨耗性が材齢28日で好ましくは0.25mm以下、さらに好ましくは0.20mm以下、より好ましくは0.18mm以下、特に好ましくは0.16mm以下の硬化物を得ることができる。
The high-strength hydraulic composition of the present invention has an abrasion resistance of preferably 0.30 mm or less, more preferably 0.25 mm or less, more preferably 0.20 mm or less, particularly preferably 0.18 mm at a material age of 7 days. The following cured products can be obtained.
The high-strength hydraulic composition of the present invention has an abrasion resistance of preferably 0.25 mm or less, more preferably 0.20 mm or less, more preferably 0.18 mm or less, particularly preferably 0.16 mm at 28 days of age. The following cured products can be obtained.
本発明の高強度水硬性組成物の施工の一例を示すと、
(1)コンクリート又はモルタルを屋上、床面又は壁に打設し、コテ、機械等で仕上げた後、コンクリート又はモルタルを硬化させてコンクリート層を形成させ、
(2)必要に応じてプライマーの硬化物層をコンクリート層の表面に形成し、
(3)本発明の高強度水硬性組成物と水を混ぜたモルタルをモルタルポンプなどを用いる一般的方法で流し込み、必要に応じてコテやトンボ等でスラリー表面を均し、その後高強度水硬性組成物を硬化させた硬化物層を形成させることにより、構造体を施工することができる。
When showing an example of the construction of the high-strength hydraulic composition of the present invention,
(1) Cast concrete or mortar on the roof, floor or wall, finish with iron, machine, etc., then harden concrete or mortar to form concrete layer,
(2) If necessary, a cured product layer of the primer is formed on the surface of the concrete layer,
(3) The mortar obtained by mixing the high-strength hydraulic composition of the present invention and water is poured by a general method using a mortar pump or the like, and if necessary, the slurry surface is leveled with a trowel or a register mark, and then the high-strength hydraulic The structure can be constructed by forming a cured product layer obtained by curing the composition.
本発明の高強度水硬性組成物は、病院、学校、オフィス、マンション、住宅、工場、倉庫、駐車場、ガソリンスタンド、コンビニエンスストア、厨房などの一般建築物などに用いることができる。
本発明の高強度水硬性組成物は、病院、学校、オフィス、マンション、住宅、工場、倉庫、駐車場、ガソリンスタンド、コンビニエンスストア、厨房などの一般建築物などの床下地調整と仕上げに用いることができる。
本発明の高強度水硬性組成物は、自己流動性病院、学校、オフィス、マンション、住宅、工場、倉庫、駐車場、ガソリンスタンド、コン> ビニエンスストア、厨房などの一般建築物の床下地調整と仕上げに用い、セルフレベリング性又は自己流動性を有する高強度水硬性組成物として用いることができる。
The high-strength hydraulic composition of the present invention can be used for general buildings such as hospitals, schools, offices, apartments, houses, factories, warehouses, parking lots, gas stations, convenience stores, kitchens, and the like.
The high-strength hydraulic composition of the present invention can be used for floor preparation and finishing of general buildings such as hospitals, schools, offices, apartments, houses, factories, warehouses, parking lots, gas stations, convenience stores, and kitchens. Can be.
The high-strength hydraulic composition of the present invention can be used for self-fluidizing hospitals, schools, offices, condominiums, houses, factories, warehouses, parking lots, gas stations, convenience stores, kitchens, etc. It can be used for finishing and can be used as a high-strength hydraulic composition having self-leveling properties or self-flowability.
以下、本発明を実施例に基づき、さらに詳細に説明する。但し、本発明は下記実施例により制限されるものでない。 Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited by the following examples.
評価の方法を示す。
(1)骨材の粒子径の測定:
骨材200gを16メッシュ(1000μm残留)、20メッシュ(850μm残留)、24メッシュ(710μm残留)、28メッシュ(600μm残留)、35メッシュ(425μm残留)、48メッシュ(300μm残留)、70メッシュ(212μm残留)、100メッシュ(150μm残留)、150メッシュ(106μm残留)、及び200メッシュ(75μm残留)の篩を用いて、振動篩機にて20分間振盪させ、分別した。各メッシュに残留する骨材の重量を測定した。
残留累積割合とは、以下の数式(1)〜(3)に従い算出し、粒子径106μm、300μm及び600μm以外の他の粒子径については、数式(1)と同様にして求めることができる。
The evaluation method will be described.
(1) Measurement of particle size of aggregate:
Aggregate 200g is 16 mesh (1000 μm residual), 20 mesh (850 μm residual), 24 mesh (710 μm residual), 28 mesh (600 μm residual), 35 mesh (425 μm residual), 48 mesh (300 μm residual), 70 mesh (212 μm residual) Using a sieve of 100 mesh (residual of 150 μm), 150 mesh (residual of 106 μm), and 200 mesh (residual of 75 μm), the mixture was shaken with a vibrating sieve for 20 minutes and separated. The weight of aggregate remaining in each mesh was measured.
The residual cumulative ratio is calculated according to the following formulas (1) to (3), and the other particle sizes other than 106 μm, 300 μm and 600 μm can be obtained in the same manner as in formula (1).
(2)ガラス転移温度(Tg)の測定:
ガラス板上にアクリル系樹脂エマルジョンを適量滴下し、60℃で16時間乾燥し、得られた質量が9.5〜10.5mgの範囲に入った乾燥塗膜を、示差走査熱量計(島津製作所社製、DSC−50)を用い、ガラス転移温度を測定する。
DSCの測定条件は、室温から150℃に10分間で昇温させ、150℃を10分間保持した後に計算で得られた試料のTgより50℃低い温度まで下げ、再度150℃まで10分間で昇温するさいに、1回目のTgの測定を行う。次に1回目で測定したTgより50℃低い温度まで下げるさいに、2回目のTgの測定を行い、2回目のTgの値をガラス転移温度とする。
(2) Measurement of glass transition temperature (Tg):
An appropriate amount of an acrylic resin emulsion is dropped on a glass plate and dried at 60 ° C. for 16 hours. The resulting dried coating film having a mass in the range of 9.5 to 10.5 mg is subjected to a differential scanning calorimeter (Shimadzu Corporation) The glass transition temperature is measured using DSC-50).
The DSC measurement conditions were as follows: the temperature was raised from room temperature to 150 ° C. in 10 minutes, kept at 150 ° C. for 10 minutes, lowered to a temperature 50 ° C. lower than the Tg of the sample obtained by calculation, and then raised again to 150 ° C. in 10 minutes. When warming, a first measurement of Tg is made. Next, when the temperature is lowered to a temperature 50 ° C. lower than the Tg measured in the first time, the second time Tg is measured, and the value of the second time Tg is defined as the glass transition temperature.
(3)モルタルの評価:
1)フロー値:生成モルタルのフロー値は、JASS・15M−103に準拠して測定する。
2)圧縮強度(N/mm2)、曲げ強度(N/mm2):JIS・R−5201に示される4×4×16cmの型枠に生成モルタルを型詰めして、温度20℃、湿度65%で24時間気中養生した後、脱型し、さらに気中で所定期間(7日、28日)追加養生して成型体を得る。成型体は、JIS・R−5201記載の方法に従い測定する。
3)表面状態(色むら、材料分離及び気泡の有無):生成モルタルを2×1mのコンクリート床に厚さ10mmで流し込み、外気温(温度20℃、湿度65%)、自然乾燥状態で28日養生し、硬化物を得る。硬化物表面の色むら、材料分離及び気泡の有無を目視にて観察を、評価する。
・色むら(○:なし、×:あり)。
・材料分離(○:なし、×:あり)。
・気泡(○:なし、×:あり)。
(3) Mortar evaluation:
1) Flow value: The flow value of the resulting mortar is measured according to JASS 15M-103.
2) Compressive strength (N / mm 2 ), flexural strength (N / mm 2 ): The resulting mortar is packed into a 4 × 4 × 16 cm form shown in JIS R-5201, and the temperature is 20 ° C. and the humidity is After being cured in the air at 65% for 24 hours, it is demolded and further cured in the air for a predetermined period (7 days and 28 days) to obtain a molded body. The molded body is measured according to the method described in JIS R-5201.
3) Surface condition (unevenness of color, material separation and presence or absence of air bubbles): Pour the resulting mortar into a 2 × 1 m concrete floor at a thickness of 10 mm, and store for 28 days in an outside air temperature (temperature 20 ° C., humidity 65%) and naturally dried Cure to obtain a cured product. Observation is evaluated by visually observing color unevenness on the surface of the cured product, material separation, and the presence or absence of air bubbles.
-Uneven color (o: no, x: yes).
・ Material separation (○: none, ×: present).
-Air bubbles (o: no, x: present).
4)表面硬度:生成モルタルを13×19cmの型枠に厚さ10mmで流し込み、温度20℃、湿度65%で養生し、打設3時間後の表面硬度を測定する。なお、表面硬度はスプリング式硬度計タイプD型にて測定する。
5)耐磨耗性(mm):生成モルタルを11×11cmの型枠に厚さ10mmで流し込み、温度20℃、湿度65%で24時間気中養生した後、脱型し、さらに気中で所定期間(7日、28日)追加養生して成型体を得る。磨耗試験は、高さを精密に測定した成型体を用い、テーパー磨耗試験機にて、磨耗輪GC150H、荷重250g、回転数2000回の条件で、成型体の磨耗試験を行い、磨耗試験後の成型体の高さを精密に測定する。耐磨耗性は、磨耗試験前の成型体の高さから、磨耗試験後の成型体の高さを減じた値「(磨耗試験前の成型体の高さ)−(磨耗試験後の成型体の高さ)」とする。
なお、高さの測定は、ダイヤルゲージを用いて行う。
4) Surface hardness: The resulting mortar is poured into a 13 × 19 cm mold at a thickness of 10 mm, cured at a temperature of 20 ° C. and a humidity of 65%, and the surface hardness is measured 3 hours after casting. The surface hardness is measured by a spring type hardness meter type D.
5) Abrasion resistance (mm): The resulting mortar was poured into a mold of 11 × 11 cm at a thickness of 10 mm, cured in the air at a temperature of 20 ° C. and a humidity of 65% for 24 hours, then removed from the mold, and further in air. The molded body is obtained by additional curing for a predetermined period (7 days, 28 days). The wear test was performed using a molded body whose height was precisely measured, and a tapered abrasion tester was used to perform a wear test on the molded body under the conditions of a wear wheel GC150H, a load of 250 g, and a rotation number of 2,000 times. Measure the height of the molded body precisely. The abrasion resistance is a value obtained by subtracting the height of the molded body after the abrasion test from the height of the molded body before the abrasion test, “(height of the molded body before the abrasion test) − (the molded body after the abrasion test). Height) ".
The height is measured using a dial gauge.
[実施例1〜7及び比較例1〜5]
(1)使用材料:各例の実施に当たっては、次の材料を使用した。
・AC:アルミナセメント(ラファージュアルミネート社製:ブレーン比表面積3600cm2/g、モノカルシウムアルミネート含有量55重量%)
・PC:早強ポルトランドセメント(宇部三菱セメント(株)製:ブレーン比表面積4500cm2/g)
・石膏:II型無水石膏(セントラル硝子(株)社製:ブレーン比表面積3300cm2/g)
・スラグ:高炉スラグ(宇部三菱セメント(株)製:ブレーン比表面積4400cm2/g)
・骨材A:5号珪砂及び7号珪砂を混合した物(混合比2:1)(三久海運(株)製)
・骨材B:5号珪砂及び7号珪砂を混合した物(混合比5:1)(三久海運(株)製)
・骨材C:5号珪砂及び7号珪砂を混合した物(混合比1:1)(三久海運(株)製)
・骨材D:5号珪砂(三久海運(株)製)
・骨材E:5号珪砂及び7号珪砂を混合した物(混合比1:2)(三久海運(株)製)
・促進剤A:炭酸リチウム(本荘ケミカル(株)製:粒径10μm以下)
・遅延剤A:重炭酸ナトリウム(東ソー(株)製)
・遅延剤B:酒石酸ナトリウム(扶桑化学工業(株)製)
・EA:アクリル系樹脂エマルジョン(Tg:25℃)(クラリアントポリマー(株)製)
・EB:アクリル系樹脂エマルジョン(Tg:−8℃)(旭化成(株)製)
・EC:アクリル系樹脂エマルジョン(Tg:−22℃)(旭化成(株)製)
・減水剤:ポリカルボン酸系減水剤(花王(株)製)
・増粘剤:メチルセルロース系増粘剤(松本油脂製薬(株)製)
・消泡剤:ポリエーテル系消泡剤(旭電化工業(株)製)
・顔料:酸化クロム粉末、粒子径0.3μm(バイエル(株)製)
用いた骨材A〜骨材Eの各粒子径での残留累積割合を表1に示す
[Examples 1 to 7 and Comparative Examples 1 to 5]
(1) Materials used: In carrying out each example, the following materials were used.
AC: Alumina cement (made by Lafarge aluminate: Brain specific surface area 3600 cm 2 / g, monocalcium aluminate content 55% by weight)
・ PC: Early Portland Cement (Ube Mitsubishi Cement Co., Ltd .: Brain specific surface area 4500 cm 2 / g)
Gypsum: Type II anhydrous gypsum (Central Glass Co., Ltd .: Blaine specific surface area 3300 cm 2 / g)
・ Slag: Blast furnace slag (manufactured by Ube Mitsubishi Cement Co., Ltd .: Blaine specific surface area 4400 cm 2 / g)
・ Aggregate A: mixture of No. 5 silica sand and No. 7 silica sand (mixing ratio 2: 1) (Miku Kaiun Co., Ltd.)
・ Aggregate B: mixture of No. 5 silica sand and No. 7 silica sand (mixing ratio 5: 1) (Miku Kaiun K.K.)
・ Aggregate C: A mixture of No. 5 silica sand and No. 7 silica sand (mixing ratio 1: 1) (Miku Shipping Co., Ltd.)
・ Aggregate D: No.5 silica sand (Miku Shipping Co., Ltd.)
・ Aggregate E: a mixture of No. 5 silica sand and No. 7 silica sand (mixing ratio 1: 2) (Miku Kaiun K.K.)
Accelerator A: lithium carbonate (Honjo Chemical Co., Ltd .: particle size 10 μm or less)
-Delaying agent A: sodium bicarbonate (manufactured by Tosoh Corporation)
-Delaying agent B: sodium tartrate (made by Fuso Chemical Industry Co., Ltd.)
EA: acrylic resin emulsion (Tg: 25 ° C.) (manufactured by Clariant Polymer Co., Ltd.)
-EB: acrylic resin emulsion (Tg: -8 ° C) (manufactured by Asahi Kasei Corporation)
-EC: acrylic resin emulsion (Tg: -22 ° C) (manufactured by Asahi Kasei Corporation)
・ Water reducer: Polycarboxylic acid-based water reducer (manufactured by Kao Corporation)
・ Thickener: Methylcellulose thickener (Matsumoto Yushi Seiyaku Co., Ltd.)
-Antifoaming agent: Polyether-based antifoaming agent (Asahi Denka Kogyo Co., Ltd.)
・ Pigment: Chromium oxide powder, particle diameter 0.3 μm (manufactured by Bayer Corporation)
Table 1 shows the residual cumulative ratio of the used aggregates A to E at each particle size.
(2)モルタルの調製:
表2に示す割合の水硬性成分と、水硬性成分に100質量部に対し表3に示す割合の骨材、エマルジョン、凝結速度調整剤、減水剤、増粘剤、消泡剤及び顔料を加えたものに、さらに水を加えて3分間混練して、生成モルタルを得た。尚、使用材料及び使用機具は、いずれも20℃恒温室に1日以上保管したものを使用した。
得られた生成モルタルを用いて、フロー値、圧縮強度、曲げ強度、表面状態、表面硬度及び耐磨耗性の評価を行い、結果を表4に示す。
また、生成モルタルより得られた硬化物の表面状態を目視観察を行った結果、全ての硬化物表面には白華は認められなかった。
(2) Preparation of mortar:
A hydraulic component having a ratio shown in Table 2 and an aggregate, an emulsion, a setting speed regulator, a water reducing agent, a thickener, a defoaming agent and a pigment having a ratio shown in Table 3 are added to 100 parts by mass of the hydraulic component. The resulting mixture was further mixed with water and kneaded for 3 minutes to obtain a resultant mortar. The materials used and the tools used were all stored in a constant temperature room at 20 ° C. for one day or more.
Using the resulting mortar, the flow value, compressive strength, bending strength, surface condition, surface hardness and abrasion resistance were evaluated. The results are shown in Table 4.
Further, as a result of visually observing the surface state of the cured product obtained from the resulting mortar, no efflorescence was observed on all cured product surfaces.
実施例より、本発明の組成物は、生成するモルタルが、自己流動性に必要なフロー値を有し、硬化時間も短く、流動時の材料分離、色むらも無くセルフレベリング性を有するものである。
本発明の組成物は、得られる硬化物が高い圧縮強度、十分な曲げ強度及び高い耐磨耗性を有し、表面状態も優れている。
From the examples, the composition of the present invention has a mortar that has a flow value necessary for self-flowability, a short curing time, material separation during flow, and self-leveling without color unevenness. is there.
In the composition of the present invention, the obtained cured product has high compressive strength, sufficient bending strength, high abrasion resistance, and excellent surface condition.
Claims (6)
水硬性成分は、アルミナセメント、ポルトランドセメント、石膏及び高炉スラグを含み、
骨材は粒子径106μmでの残留累積割合が83.5〜99重量%かつ粒子径600μmでの残留累積割合が5〜15重量%の骨材であり、エマルジョンは、ガラス転移点が0℃以上のエマルジョンを含むことを特徴とする高強度水硬性組成物。 A high-strength hydraulic composition comprising a hydraulic component, an aggregate and an emulsion,
Hydraulic components include alumina cement, Portland cement, gypsum and blast furnace slag,
The aggregate is an aggregate having a residual cumulative ratio of 83.5 to 99% by weight at a particle diameter of 106 μm and a residual cumulative ratio of 5 to 15% by weight at a particle diameter of 600 μm. The emulsion has a glass transition point of 0 ° C. or higher. A high-strength hydraulic composition comprising an emulsion of
The high-strength hydraulic composition according to any one of claims 1 to 5, wherein the high-strength hydraulic composition further comprises a setting speed regulator, a thickener, a water reducing agent, and an antifoaming agent. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004059439A JP4826062B2 (en) | 2003-03-20 | 2004-03-03 | High strength hydraulic composition |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003078051 | 2003-03-20 | ||
JP2003078051 | 2003-03-20 | ||
JP2004059439A JP4826062B2 (en) | 2003-03-20 | 2004-03-03 | High strength hydraulic composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004300017A true JP2004300017A (en) | 2004-10-28 |
JP4826062B2 JP4826062B2 (en) | 2011-11-30 |
Family
ID=33421940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004059439A Expired - Fee Related JP4826062B2 (en) | 2003-03-20 | 2004-03-03 | High strength hydraulic composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4826062B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100613902B1 (en) | 2005-03-30 | 2006-08-17 | 덕주건설(주) | Mortar composition having improved strength and durability |
JP2006265011A (en) * | 2005-03-22 | 2006-10-05 | Ube Ind Ltd | Hydraulic composition, mortar obtained by using the same and hardening |
JP2006298663A (en) * | 2005-04-15 | 2006-11-02 | Ube Ind Ltd | Repairable mortar and its hardened matter |
JP2007084359A (en) * | 2005-09-20 | 2007-04-05 | Ube Ind Ltd | Self-fluidizing hydraulic composition, mortar and method of constructing floor |
JP2007254196A (en) * | 2006-03-22 | 2007-10-04 | Ube Ind Ltd | Hydraulic composition |
JP2007277047A (en) * | 2006-04-07 | 2007-10-25 | Ube Ind Ltd | Polymer cement composition |
JP2008127250A (en) * | 2006-11-22 | 2008-06-05 | Ube Ind Ltd | Self-flowable hydraulic composition |
JP2008247669A (en) * | 2007-03-30 | 2008-10-16 | Ube Ind Ltd | Leveling material, and concrete-floor structure having leveling material applied thereto |
JP2008254996A (en) * | 2007-03-13 | 2008-10-23 | Ube Ind Ltd | Self-flowing hydraulic composition |
JP2008273811A (en) * | 2007-03-30 | 2008-11-13 | Ube Ind Ltd | Hydraulic composition |
JP2009091207A (en) * | 2007-10-10 | 2009-04-30 | Machida Corporation Kk | Manufacturing method of concrete block |
JP2009132558A (en) * | 2007-11-30 | 2009-06-18 | Taiheiyo Material Kk | Hydraulic mortar composition and hardened body |
JP2010229009A (en) * | 2009-03-30 | 2010-10-14 | Ube Ind Ltd | Self-fluidity hydraulic composition, self-fluidity hydraulic mortar and concrete floor structure |
JP2010235362A (en) * | 2009-03-31 | 2010-10-21 | Ube Ind Ltd | Hydraulic composition |
JP2011016681A (en) * | 2009-07-08 | 2011-01-27 | Taiheiyo Materials Corp | Rapid hardening polymer cement mortar composition for repair and method for applying the same |
JP2015000816A (en) * | 2013-06-13 | 2015-01-05 | 宇部興産株式会社 | Waterproof structure construction method |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61108687A (en) * | 1984-10-31 | 1986-05-27 | Sumitomo Chem Co Ltd | Waterproofing composition |
JPH0154294B2 (en) * | 1984-07-30 | 1989-11-17 | Kikusui Kagaku Kogyo Kk | |
JPH0259460A (en) * | 1988-08-26 | 1990-02-28 | Denki Kagaku Kogyo Kk | Quick-hardening polymer cement composition |
JPH0215507B2 (en) * | 1987-07-31 | 1990-04-12 | Daiichi Cement Co Ltd | |
JPH04321540A (en) * | 1991-04-23 | 1992-11-11 | Denki Kagaku Kogyo Kk | Rapidly curable polymer cement composition |
JPH07126055A (en) * | 1993-10-26 | 1995-05-16 | Toray Ind Inc | Hydraulic composition, extrusion molded article and production thereof |
JPH07291697A (en) * | 1994-04-28 | 1995-11-07 | Mitsubishi Materials Corp | Compound for mortar previously fed |
JPH10231165A (en) * | 1996-12-20 | 1998-09-02 | Ube Ind Ltd | Hydraulic composition having self-fluidity |
JPH1179802A (en) * | 1997-08-29 | 1999-03-23 | Ube Ind Ltd | Powdery self-leveling cement composition and its production |
JP2000302519A (en) * | 1999-04-20 | 2000-10-31 | Ube Ind Ltd | Self-fluidity hydraulic composition |
JP2004113838A (en) * | 2002-09-24 | 2004-04-15 | National Institute Of Advanced Industrial & Technology | Impervious material and its formed body |
-
2004
- 2004-03-03 JP JP2004059439A patent/JP4826062B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0154294B2 (en) * | 1984-07-30 | 1989-11-17 | Kikusui Kagaku Kogyo Kk | |
JPS61108687A (en) * | 1984-10-31 | 1986-05-27 | Sumitomo Chem Co Ltd | Waterproofing composition |
JPH0215507B2 (en) * | 1987-07-31 | 1990-04-12 | Daiichi Cement Co Ltd | |
JPH0259460A (en) * | 1988-08-26 | 1990-02-28 | Denki Kagaku Kogyo Kk | Quick-hardening polymer cement composition |
JPH04321540A (en) * | 1991-04-23 | 1992-11-11 | Denki Kagaku Kogyo Kk | Rapidly curable polymer cement composition |
JPH07126055A (en) * | 1993-10-26 | 1995-05-16 | Toray Ind Inc | Hydraulic composition, extrusion molded article and production thereof |
JPH07291697A (en) * | 1994-04-28 | 1995-11-07 | Mitsubishi Materials Corp | Compound for mortar previously fed |
JPH10231165A (en) * | 1996-12-20 | 1998-09-02 | Ube Ind Ltd | Hydraulic composition having self-fluidity |
JPH1179802A (en) * | 1997-08-29 | 1999-03-23 | Ube Ind Ltd | Powdery self-leveling cement composition and its production |
JP2000302519A (en) * | 1999-04-20 | 2000-10-31 | Ube Ind Ltd | Self-fluidity hydraulic composition |
JP2004113838A (en) * | 2002-09-24 | 2004-04-15 | National Institute Of Advanced Industrial & Technology | Impervious material and its formed body |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006265011A (en) * | 2005-03-22 | 2006-10-05 | Ube Ind Ltd | Hydraulic composition, mortar obtained by using the same and hardening |
KR100613902B1 (en) | 2005-03-30 | 2006-08-17 | 덕주건설(주) | Mortar composition having improved strength and durability |
JP2006298663A (en) * | 2005-04-15 | 2006-11-02 | Ube Ind Ltd | Repairable mortar and its hardened matter |
JP2007084359A (en) * | 2005-09-20 | 2007-04-05 | Ube Ind Ltd | Self-fluidizing hydraulic composition, mortar and method of constructing floor |
JP2007254196A (en) * | 2006-03-22 | 2007-10-04 | Ube Ind Ltd | Hydraulic composition |
JP2007277047A (en) * | 2006-04-07 | 2007-10-25 | Ube Ind Ltd | Polymer cement composition |
JP2008127250A (en) * | 2006-11-22 | 2008-06-05 | Ube Ind Ltd | Self-flowable hydraulic composition |
JP2008254996A (en) * | 2007-03-13 | 2008-10-23 | Ube Ind Ltd | Self-flowing hydraulic composition |
JP4710884B2 (en) * | 2007-03-13 | 2011-06-29 | 宇部興産株式会社 | Self-flowing hydraulic composition |
JP2008247669A (en) * | 2007-03-30 | 2008-10-16 | Ube Ind Ltd | Leveling material, and concrete-floor structure having leveling material applied thereto |
JP2008273811A (en) * | 2007-03-30 | 2008-11-13 | Ube Ind Ltd | Hydraulic composition |
JP2009091207A (en) * | 2007-10-10 | 2009-04-30 | Machida Corporation Kk | Manufacturing method of concrete block |
JP2009132558A (en) * | 2007-11-30 | 2009-06-18 | Taiheiyo Material Kk | Hydraulic mortar composition and hardened body |
JP2010229009A (en) * | 2009-03-30 | 2010-10-14 | Ube Ind Ltd | Self-fluidity hydraulic composition, self-fluidity hydraulic mortar and concrete floor structure |
JP2010235362A (en) * | 2009-03-31 | 2010-10-21 | Ube Ind Ltd | Hydraulic composition |
JP2011016681A (en) * | 2009-07-08 | 2011-01-27 | Taiheiyo Materials Corp | Rapid hardening polymer cement mortar composition for repair and method for applying the same |
JP2015000816A (en) * | 2013-06-13 | 2015-01-05 | 宇部興産株式会社 | Waterproof structure construction method |
Also Published As
Publication number | Publication date |
---|---|
JP4826062B2 (en) | 2011-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4826062B2 (en) | High strength hydraulic composition | |
CA3124895C (en) | Highly water-resistant, flexible cementitious coating | |
JP2008247666A (en) | Self-leveling hydraulic composition | |
JP2008248554A (en) | Method of constructing concrete structure | |
JP2010155740A (en) | High-fluidity mortar | |
JP5359153B2 (en) | Composite floor structure and construction method thereof | |
JP2000302519A (en) | Self-fluidity hydraulic composition | |
JP4282982B2 (en) | Latex for resin mortar and resin mortar composition | |
JP4345511B2 (en) | Polymer cement composition for waterproofing | |
JP3478108B2 (en) | Hydraulic coloring finishing material composition | |
JP3528301B2 (en) | High strength self-leveling cement composition | |
JP5076596B2 (en) | Leveling material and concrete floor structure with leveling material | |
JP5469800B2 (en) | Concrete floor structure and construction method thereof | |
JP4357929B2 (en) | Concrete floor structure and construction method thereof | |
JP2009215136A (en) | Hydraulic composition | |
JP2010018496A (en) | Hydraulic composition | |
JP4842229B2 (en) | Self-flowing hydraulic composition and slurry and cured product using the same | |
JP5031222B2 (en) | Polymer cement compositions, these mortars, mortar coated structures | |
JP4380306B2 (en) | Concrete floor structure and construction method thereof | |
JP6163382B2 (en) | Latex for mortar, mortar composition, and cured mortar | |
JP2005289719A (en) | High-strength hydraulic composition | |
JP2011207634A (en) | Acid-proof cement composition | |
JP4509587B2 (en) | Aqueous resin dispersion for cement mortar and composition thereof | |
JP2005008790A (en) | Water-based resin dispersion for cement and composition containing the same | |
JP4108165B2 (en) | Resin mortar composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060714 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091027 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091224 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20091224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100831 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101014 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110816 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110829 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140922 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4826062 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |