JP2010227963A - Joining method using metal nanoparticle - Google Patents

Joining method using metal nanoparticle Download PDF

Info

Publication number
JP2010227963A
JP2010227963A JP2009077457A JP2009077457A JP2010227963A JP 2010227963 A JP2010227963 A JP 2010227963A JP 2009077457 A JP2009077457 A JP 2009077457A JP 2009077457 A JP2009077457 A JP 2009077457A JP 2010227963 A JP2010227963 A JP 2010227963A
Authority
JP
Japan
Prior art keywords
spacer
materials
joined
bonded
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009077457A
Other languages
Japanese (ja)
Inventor
Kazuo Ogawa
和男 小川
Nagatsugu Mukaibo
長嗣 向坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009077457A priority Critical patent/JP2010227963A/en
Publication of JP2010227963A publication Critical patent/JP2010227963A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83194Lateral distribution of the layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering

Landscapes

  • Powder Metallurgy (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joining method by which the thickness of a joint layer including metal nanoparticles is made constant and uniform. <P>SOLUTION: A material 12 to be joined is pressed until the lower surface of the material 12 to be joined is brought into contact with spacers 13. By this pressing step, a paste layer 25 is compressed, and the thickness of the paste layer 25 is made A. Since the spacers 13 are longitudinally and laterally arranged, there is no possibility that the material 12 to be joined is inclined. As a result, a paste layer 25 of which the thickness is constant and uniform is obtained. By using the spacers 13, the thickness of a joint layer including metal nanoparticles is made constant and uniform. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金属ナノ粒子を接合要素にする接合方法に関する。   The present invention relates to a bonding method using metal nanoparticles as a bonding element.

2枚の被接合材をロウ材で接合することは広く実用に供されている。近年、ロウ材に代えて、ナノサイズの金属超微粒子(金属ナノ粒子と呼ぶ。)を使用する技術が提案されてきた(例えば、特許文献1(図1)参照。)。   Joining two materials to be joined with a brazing material is widely used in practice. In recent years, a technique using nano-sized metal ultrafine particles (referred to as metal nanoparticles) instead of a brazing material has been proposed (see, for example, Patent Document 1 (FIG. 1)).

特許文献1を次図に基づいて説明する。
図9は従来の接合方法を説明する図であり、(a)において、下の被接合部材101と上の被接合部材102との間に金属ナノ粒子が含まれている接合材料103を介在させる。そして、(b)において、加圧しながら加熱することで、接合構造を完成させる。
Patent document 1 is demonstrated based on the following figure.
FIG. 9 is a diagram for explaining a conventional bonding method. In FIG. 9A, a bonding material 103 containing metal nanoparticles is interposed between a lower bonded member 101 and an upper bonded member 102. . Then, in (b), the bonding structure is completed by heating while applying pressure.

しかし、特許文献1には、次に示す問題点が含まれている。
第1に、金属ナノ粒子が含まれている接合材料103からは、加熱されると有機ガスが発生することが知られている。接合材料103の面積が大きい場合には、中央部からのガス抜けが悪くなる。ガスが抜けない部位では、有機被膜の除去が不十分になり、焼結結合は不十分になる。結果、所望の接合強度が得られない。
第2に、矢印P、Pのように、押圧した場合に、設備の機械的な誤差や、がたに起因して、上の被接合部材102は僅かであるが傾斜する。すると、接合材料103は厚い部位と薄い部位が発生する。加えて、押圧力の大小のばらつきがあるため、接合材料103は厚さ自体も一定にすることが難しい。
However, Patent Document 1 includes the following problems.
First, it is known that an organic gas is generated from the bonding material 103 containing metal nanoparticles when heated. When the area of the bonding material 103 is large, the outgassing from the center portion is worsened. In the part where the gas does not escape, the organic film is not sufficiently removed, and the sinter bond is insufficient. As a result, a desired bonding strength cannot be obtained.
Secondly, when pressed as indicated by arrows P and P, the upper member 102 to be joined is slightly inclined due to mechanical errors and backlash of the equipment. Then, a thick part and a thin part are generated in the bonding material 103. In addition, since the pressing force varies in size, it is difficult to make the bonding material 103 constant in thickness.

上述した第1の問題点を解決し得る接合方法が提案されている(例えば、特許文献2(図3)参照。)。
特許文献2の図3を次図で説明する。
図10は別の従来の接合方法を説明する図であり、下の金属板111に縞状に金属微粒子112を塗布し、上の金属板113を重ね、トンネル114が消失しない程度の圧力で上の金属板113を押し下げながら加熱する。一定時間が圧力を増やし、温度を上げて接合を行う。
A joining method that can solve the first problem described above has been proposed (see, for example, Patent Document 2 (FIG. 3)).
FIG. 3 of Patent Document 2 will be described below.
FIG. 10 is a diagram for explaining another conventional joining method, in which metal fine particles 112 are applied to the lower metal plate 111 in a striped manner, the upper metal plate 113 is stacked, and the upper pressure is high enough to prevent the tunnel 114 from disappearing. The metal plate 113 is heated while being pressed down. Bonding is performed at a certain time by increasing the pressure and increasing the temperature.

トンネル114を介してガスが逃がされるので、上述の第1の問題は解決する。
しかし、第2の問題(膜厚の不安定)は解決しないままである。
接合強度を安定化させるには、接合部材の厚さを一定に且つ均一にすることが求められる。
Since the gas is released through the tunnel 114, the first problem described above is solved.
However, the second problem (film thickness instability) remains unsolved.
In order to stabilize the bonding strength, the thickness of the bonding member is required to be constant and uniform.

特開2008−202084公報JP 2008-202084 A 特開2007−330980公報JP 2007-330980 A

本発明は、金属ナノ粒子を含む接合層の厚さを一定に且つ均一にすることができる接合方法を提供することを課題とする。   An object of the present invention is to provide a bonding method capable of making the thickness of a bonding layer containing metal nanoparticles constant and uniform.

請求項1に係る発明は、複数の被接合材を金属ナノ粒子で接合する接合方法において、
複数の被接合材と、径が一定の線状のスペーサと、このスペーサの径と同等の幅の遮蔽部を含む塗布パターンが設けられている塗布用マスクと、有機被膜で被覆された金属ナノ粒子を分散媒に分散させてなる金属ナノ粒子ペーストとを準備する工程と、
前記金属ナノ粒子ペースト及び前記塗布用マスクを用いて、前記スペーサの径より大きな厚さの塗膜を一方の被接合材に塗布する塗布工程と、
前記遮蔽部により塗膜に形成された溝部に、前記スペーサを配置するスペーサ配置工程と、
他方の被接合材を重ね合わせる工程と、
前記被接合材同士の間隔が前記スペーサの径に合致するまで、被接合材同士を押圧する工程と、
前記被接合材同士の間隔が前記スペーサの径に合致した状態で前記被接合材同士の間隔を保持し、前記スペーサを除去する工程と、
得られた合体物を焼成する工程と、からなることを特徴とする。
金属ナノ粒子を用いた接合方法。
The invention according to claim 1 is a joining method of joining a plurality of materials to be joined with metal nanoparticles,
A plurality of materials to be joined, a linear spacer having a constant diameter, a coating mask provided with a coating pattern including a shielding portion having a width equal to the diameter of the spacer, and a metal nanometer coated with an organic coating Preparing a metal nanoparticle paste obtained by dispersing particles in a dispersion medium;
Using the metal nanoparticle paste and the coating mask, an application step of applying a coating film having a thickness larger than the diameter of the spacer to one of the bonded materials;
A spacer arrangement step of arranging the spacer in the groove formed in the coating film by the shielding portion;
A step of superimposing the other material to be joined;
A step of pressing the materials to be joined until the distance between the materials to be joined matches the diameter of the spacer;
Maintaining the distance between the materials to be bonded in a state where the distance between the materials to be bonded matches the diameter of the spacer, and removing the spacer;
And a step of firing the resultant combined product.
Bonding method using metal nanoparticles.

請求項2に係る発明では、得られた合体物を焼成する工程は、得られた合体物を、分散媒が飛散するように加熱する第1加熱工程と、次に、有機被膜がガス化し、金属ナノ粒子が被接合材に拡散接合するよう加圧しながら加熱する第2加熱工程と、からなることを特徴とする。   In the invention which concerns on Claim 2, the process of baking the obtained unification thing is the 1st heating process which heats the obtained union thing so that a dispersion medium scatters, and then an organic film gasifies, A second heating step of heating the metal nanoparticles while applying pressure so that the metal nanoparticles are diffusion bonded to the material to be bonded.

請求項1に係る発明では、被接合材同士を押圧する工程で、被接合材同士の間隔がスペーサの径に合致するまで、被接合材同士を押圧する。これで、金属ナノ粒子ペーストの厚さが、スペーサの径と同一になり、金属ナノ粒子を含む接合層の厚さを一定に且つ均一にすることができる。さらに、スペーサによって小面積に分けられた金属ナノ粒子は、一面に塗布された金属ナノ粒子に較べ、接合面方向に接合材と被接合材の熱膨張率の差による応力を緩和する変化幅があるため、割れを防ぐ効果がある。   In the invention which concerns on Claim 1, in the process of pressing to-be-joined materials, to-be-joined materials are pressed until the space | interval of to-be-joined materials corresponds to the diameter of a spacer. Thereby, the thickness of the metal nanoparticle paste becomes the same as the diameter of the spacer, and the thickness of the bonding layer containing the metal nanoparticles can be made constant and uniform. Furthermore, the metal nanoparticles divided into a small area by the spacer have a variation range that relaxes the stress due to the difference in thermal expansion coefficient between the bonding material and the bonded material in the bonding surface direction compared to the metal nanoparticles applied on one surface. There is an effect to prevent cracks.

請求項2に係る発明では、焼成する工程を、第1加熱工程と第2加熱工程とからなる。
第1加熱工程で、合体物から分散媒を飛散させる。次に、第2加熱工程で、有機被膜をガス化し、金属ナノ粒子を被接合材に拡散接合する。
スペーサの配置部に空隙ができ、この空隙が分散媒・有機溶媒の脱離ルートとなるので、中心部分のボイドを防ぎ、強固な接合ができる。
In the invention which concerns on Claim 2, the process to bake consists of a 1st heating process and a 2nd heating process.
In the first heating step, the dispersion medium is scattered from the combined product. Next, in the second heating step, the organic coating is gasified and the metal nanoparticles are diffusion bonded to the material to be bonded.
Since a space is formed in the spacer arrangement portion, and this space becomes a desorption route of the dispersion medium / organic solvent, a void in the central portion can be prevented and strong bonding can be achieved.

本発明に係る準備工程を説明する図である。It is a figure explaining the preparatory process which concerns on this invention. 本発明に係る塗布工程を説明する図である。It is a figure explaining the application | coating process which concerns on this invention. 本発明に係る重ね合わせ工程を説明する図である。It is a figure explaining the superposition process concerning the present invention. 図3の4矢視図である。FIG. 4 is a view taken in the direction of arrow 4 in FIG. 3. 本発明に係る押圧工程を説明する図である。It is a figure explaining the press process which concerns on this invention. 本発明に係る第1加熱工程を説明する図である。It is a figure explaining the 1st heating process concerning the present invention. 本発明に係る第2加熱工程を説明する図である。It is a figure explaining the 2nd heating process concerning the present invention. 接合体に施す剪断強さ試験の説明図である。It is explanatory drawing of the shear strength test given to a conjugate | zygote. 従来の接合方法を説明する図である。It is a figure explaining the conventional joining method. 別の従来の接合方法を説明する図である。It is a figure explaining another conventional joining method.

本発明の実施の形態を添付図に基づいて以下に説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

本発明の実施例を図面に基づいて説明する。
図1(a)に示されるように、被接合材11、12を準備する。被接合材11、12は2枚で説明するが、3枚以上であってもよい。
被接合材11、12の材質は、焼結可能な金属材料(金属系複合材を含む。)であれば種類は任意であり、例えば、鋼、ステンレス、銅、アルミニウム、チタン、Al−SiC複合材又は炭素−金属複合材である。
Embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1A, materials to be joined 11 and 12 are prepared. Although the to-be-joined materials 11 and 12 are demonstrated by 2 sheets, 3 or more sheets may be sufficient.
The material of the materials to be joined 11 and 12 is arbitrary as long as it is a sinterable metal material (including a metal-based composite material). For example, steel, stainless steel, copper, aluminum, titanium, Al—SiC composite Material or carbon-metal composite.

これらの被接合材11、12を、洗浄する。洗浄は次の何れかの手順で実施する。
第1の手順は、アセトンで洗浄し、純水で洗い、乾燥させる。
第2の手順は、イソプロピルアルコール(IPA)で洗浄し、純水で洗い、乾燥させる。
第3の手順は、アセトン又はIPAで洗浄し、酸で洗い、純水で洗い、乾燥させる。
第4の手順は、プラズマ洗浄法で洗浄する。
These to-be-joined materials 11 and 12 are wash | cleaned. Washing is carried out by one of the following procedures.
The first procedure is washing with acetone, washing with pure water and drying.
The second procedure is washing with isopropyl alcohol (IPA), washing with pure water and drying.
The third procedure is washing with acetone or IPA, washing with acid, washing with pure water and drying.
In the fourth procedure, cleaning is performed by a plasma cleaning method.

図1(b)に示めすスペーサ13を準備する。スペーサ13は径Aが一定の丸棒、角棒(三角断面、四角断面、五角断面などの多角断面棒)に代表される線状の棒、ロッド、ワイヤが採用できる。   A spacer 13 shown in FIG. 1B is prepared. As the spacer 13, a linear rod, rod, or wire represented by a round bar or a square bar having a constant diameter A (polygonal cross-section bars such as a triangular cross section, a square cross section, and a pentagon cross section) can be used.

図1(c)に示めす塗布マスク14を準備する。塗布マスク14は、枠15と、この枠15に張ったスクリーン16とからなり、このスクリーン16は、遮蔽部17、18と透過部19、19とからなる。
(c)の矢視図である(d)に示すように、スクリーン16には、遮蔽部17、18と透過部19、19とからなる塗布パターンが設けられている。そして、透過部19、19間の遮蔽部17の遮蔽幅Bは、スペーサ13は径Aに対応した大きさに設定される。具体的には、A≦Bとする。
A coating mask 14 shown in FIG. 1C is prepared. The coating mask 14 includes a frame 15 and a screen 16 stretched on the frame 15, and the screen 16 includes shielding portions 17 and 18 and transmission portions 19 and 19.
As shown in (d), which is an arrow view of (c), the screen 16 is provided with a coating pattern including shielding portions 17 and 18 and transmission portions 19 and 19. The shielding width B of the shielding portion 17 between the transmission portions 19 and 19 is set to a size corresponding to the diameter A of the spacer 13. Specifically, A ≦ B.

図1(e)に示めす金属ナノ粒子ペースト20を準備する。この金属ナノ粒子ペースト20は、C、H、Oを含む有機被膜21で被覆された金属ナノ粒子22を、分散媒23に分散させてなる。金属ナノ粒子22の金属は銀が好ましい。また、分散媒23は、エチレングリコール、トルエン、テトラデカン、ブタンジオール、低級アルコールの一種又は複数種を含む。   A metal nanoparticle paste 20 shown in FIG. 1 (e) is prepared. This metal nanoparticle paste 20 is obtained by dispersing metal nanoparticles 22 coated with an organic coating 21 containing C, H, and O in a dispersion medium 23. The metal of the metal nanoparticles 22 is preferably silver. The dispersion medium 23 includes one or more of ethylene glycol, toluene, tetradecane, butanediol, and lower alcohol.

次に、図2に示すように、一方の被接合材11に、塗布マスク14を載せ、スクリーン16上に、想像線で示す金属ナノ粒子ペースト20を載せ、この金属ナノ粒子ペースト20を掻き板24で掻く。すると、金属ナノ粒子ペースト20は透過部19、19を通って被接合材11に至る。なお、金属ナノ粒子ペースト20の塗布厚さCは、スペーサの径A(図1、符号13)より大きく設定する。   Next, as shown in FIG. 2, a coating mask 14 is placed on one of the materials to be joined 11, and a metal nanoparticle paste 20 indicated by an imaginary line is placed on a screen 16, and the metal nanoparticle paste 20 is scraped. Scratch with 24. Then, the metal nanoparticle paste 20 reaches the material to be bonded 11 through the transmission parts 19 and 19. The coating thickness C of the metal nanoparticle paste 20 is set to be larger than the spacer diameter A (FIG. 1, reference numeral 13).

慎重に塗布マスク14を外すと、図3に示すように、被接合材11の上面に、厚さがCのペースト層25、25が積層されている。そして、隣り合うペースト層25とペースト層25との間に、溝部26が形成されている。この溝部26はスクリーンの遮蔽部(図2、符号17)によって形成されたものである。   When the coating mask 14 is carefully removed, paste layers 25 and 25 having a thickness of C are laminated on the upper surface of the material to be joined 11 as shown in FIG. A groove 26 is formed between the adjacent paste layers 25. The groove portion 26 is formed by a screen shielding portion (reference numeral 17 in FIG. 2).

次に、図4(a)(図3の4矢視図)に示すように、溝部26へ長短のスペーサ13を縦横に収納する。この図での塗布パターンは菱形ベースであるが、塗布パターンが矩形ベースであれば、図4(b)の形態となるため、隣り合うペースト層25とペースト層25との間の溝部26に長短のスペーサ13が縦横に収納される。すなわち、塗布パターンの形状は任意であり、そこに設けられた溝部26に縦横にスペーサ13が収納される。   Next, as shown in FIG. 4A (viewed in the direction of arrow 4 in FIG. 3), the long and short spacers 13 are housed vertically and horizontally in the groove 26. The application pattern in this figure is a rhombus base. However, if the application pattern is a rectangular base, the shape is as shown in FIG. 4B. Therefore, the groove 26 between the adjacent paste layers 25 is short and long. The spacers 13 are accommodated vertically and horizontally. That is, the shape of the coating pattern is arbitrary, and the spacers 13 are accommodated vertically and horizontally in the grooves 26 provided there.

図3に戻って、他方の被接合材12を被せる。続いて、図5に示すように、被接合材12の下面がスペーサ13に当たるまで、被接合材12を押圧する。この押圧工程により、ペースト層25は、圧縮されて厚さがAになる。図4で説明したように、スペーサ13は縦横に配列されているため、図5での押圧時に、被接合材12が傾く心配はない。結果、厚さが一定で且つ均一なペースト層25が得られる。   Returning to FIG. 3, the other material to be bonded 12 is covered. Subsequently, as shown in FIG. 5, the bonded material 12 is pressed until the lower surface of the bonded material 12 hits the spacer 13. By this pressing step, the paste layer 25 is compressed to a thickness A. As described with reference to FIG. 4, since the spacers 13 are arranged vertically and horizontally, there is no concern that the material to be joined 12 is inclined when pressed in FIG. As a result, a uniform paste layer 25 having a uniform thickness is obtained.

図5に示されるスペーサ13は、次の第1加熱工程の前に、引き抜く。すなわち、図5の形態のままで、スペーサ13だけを図おもて側へ引き抜く。得られた合体物28に次の要領で加熱を施す。   The spacer 13 shown in FIG. 5 is pulled out before the next first heating step. That is, with the configuration shown in FIG. 5, only the spacer 13 is pulled out to the front side. The obtained combined product 28 is heated in the following manner.

図6に示すように、ヒータ29を備えている第1加熱炉30に合体物28を装入する。
そして、この第1加熱炉30で、大気雰囲気中、60〜120℃の温度で、5〜120分間、第1加熱を実施する。この第1加熱工程により、分散媒(図1、符号23)が除去される。
As shown in FIG. 6, the combined product 28 is charged into a first heating furnace 30 provided with a heater 29.
And in this 1st heating furnace 30, 1st heating is implemented for 5 to 120 minutes at the temperature of 60-120 degreeC in air | atmosphere atmosphere. By this first heating step, the dispersion medium (FIG. 1, reference numeral 23) is removed.

次に、合体物28を、図7に示すヒータ31及びプレスパンチ32を備えている第2加熱炉33に装入する。そして、この第2加熱炉33で、プレスパンチ32で抑えながら、大気雰囲気中、150〜300℃の温度で、5〜120分間、第2加熱を実施する。この第2加熱工程により、有機被膜がガス化して除去される。発生ガスは、ペースト層25、25間の溝部26を通るため、円滑に且つ短い時間で排出される。   Next, the combined product 28 is charged into a second heating furnace 33 including the heater 31 and the press punch 32 shown in FIG. Then, in the second heating furnace 33, the second heating is performed in the air atmosphere at a temperature of 150 to 300 ° C. for 5 to 120 minutes while being suppressed by the press punch 32. By this second heating step, the organic coating is gasified and removed. Since the generated gas passes through the groove 26 between the paste layers 25, 25, it is discharged smoothly and in a short time.

ペースト層25は、加熱処理により、焼結反応が進行する。すなわち、有機被膜が消失したため、金属ナノ粒子(図1、符号22)は、直接被接合材11、12に接触し、焼結反応により、結合する。   The paste layer 25 undergoes a sintering reaction by heat treatment. That is, since the organic coating has disappeared, the metal nanoparticles (FIG. 1, reference numeral 22) directly contact the bonded materials 11 and 12 and are bonded by a sintering reaction.

結果、図8に示すような、金属ナノ粒子からなる接合層35、35で接合された被接合材11、12とからなる積層体36が得られる。
この積層体36に、外力Fを加えることにより剪断強さを求めることができる。剪断強さは、接合層35の面積S(接合層35が複数個の場合は、合計面積)で除した値となる。すなわち、剪断強さ=F/Sの計算により求まる。
As a result, as shown in FIG. 8, a laminated body 36 composed of the materials to be joined 11 and 12 joined by the joining layers 35 and 35 made of metal nanoparticles is obtained.
The shear strength can be obtained by applying an external force F to the laminate 36. The shear strength is a value obtained by dividing by the area S of the bonding layer 35 (the total area when there are a plurality of bonding layers 35). That is, it is obtained by calculation of shear strength = F / S.

詳細な条件は省略するが、本発明によれば、次表の実施例の欄に示す通り、接合層の厚さは40μm均一であり、剪断強さは20MPaであった。   Although detailed conditions are omitted, according to the present invention, as shown in the Examples column of the following table, the thickness of the bonding layer was uniform 40 μm and the shear strength was 20 MPa.

Figure 2010227963
Figure 2010227963

普通のスクリーンによる塗布を行い、他の条件は実施例と同一にした比較例では、接合層の厚さは30〜100μmに変動し、剪断強さは9MPaに留まった。
比較例はペースト層における圧縮率にばらつきがあり、その結果、接合層の強度に、ばらつきが生じ、剪断強さが低くなったと考えられる。
In a comparative example in which application was performed using an ordinary screen and the other conditions were the same as in the example, the thickness of the bonding layer varied from 30 to 100 μm, and the shear strength remained at 9 MPa.
In the comparative example, the compressibility in the paste layer varies, and as a result, the strength of the bonding layer varies, and the shear strength is considered to be low.

一方、本発明によれば、ペースト層の厚みが均一になり、その結果、接合層の強度が安定し、剪断強さが高くなったと考えられる。   On the other hand, according to the present invention, it is considered that the thickness of the paste layer becomes uniform, and as a result, the strength of the bonding layer is stabilized and the shear strength is increased.

以上に詳しく述べたが、本発明は次のようにまとめることができる。
本発明は、図1に示すように、複数の被接合材11、12と、径Aが一定の線状のスペーサ13と、このスペーサ13の径Aと同等の幅の遮蔽部17を含む塗布パターンが設けられている塗布用マスク14と、有機被膜21で被覆された金属ナノ粒子22を分散媒23に分散させてなる金属ナノ粒子ペースト20とを準備する工程と、
図2に示すように、金属ナノ粒子ペースト20及び前記塗布用マスク14を用いて、スペーサ13の径Aより大きな厚さBの塗膜を一方の被接合材11に塗布する塗布工程と、
図4に示すように、遮蔽部17により塗膜に形成された溝部26に、スペーサ13を配置するスペーサ配置工程と、
図3に示すように、他方の被接合材12を重ね合わせる工程と、
図5に示すように、被接合材同士11、12の間隔がスペーサ13の径Aに合致するまで、被接合材同士11、12を押圧する工程と、
被接合材同士の間隔がスペーサの径に合致した状態で被接合材同士の間隔を保持し、スペーサ13を除去する工程と、
図6に示すように、得られた合体物28を、分散媒が飛散するように加熱する第1加熱工程と、
図7に示すように、有機被膜がガス化し、金属ナノ粒子が被接合材に拡散接合するよう加圧しながら加熱する第2加熱工程と、からなることを特徴とする。
Although described in detail above, the present invention can be summarized as follows.
As shown in FIG. 1, the present invention includes a plurality of materials to be joined 11, 12, a linear spacer 13 having a constant diameter A, and a shielding portion 17 having a width equivalent to the diameter A of the spacer 13. Preparing a coating mask 14 provided with a pattern, and a metal nanoparticle paste 20 in which metal nanoparticles 22 coated with an organic coating 21 are dispersed in a dispersion medium 23;
As shown in FIG. 2, using the metal nanoparticle paste 20 and the coating mask 14, a coating step of coating a coating film having a thickness B larger than the diameter A of the spacer 13 on one bonded material 11,
As shown in FIG. 4, a spacer arrangement step of arranging the spacer 13 in the groove portion 26 formed in the coating film by the shielding portion 17,
As shown in FIG. 3, a step of superimposing the other material to be joined 12;
As shown in FIG. 5, the step of pressing the members to be bonded 11 and 12 until the distance between the members to be bonded 11 and 12 matches the diameter A of the spacer 13;
Maintaining the distance between the materials to be bonded in a state where the distance between the materials to be bonded matches the diameter of the spacer, and removing the spacer 13;
As shown in FIG. 6, a first heating step of heating the obtained combined product 28 so that the dispersion medium is scattered,
As shown in FIG. 7, the method includes a second heating step of heating while applying pressure so that the organic coating is gasified and the metal nanoparticles are diffusion bonded to the material to be bonded.

尚、第1加熱工程と第2加熱工程とを、焼成工程にまとめることは可能である。焼成工程にまとめることにより、分散媒の処理と、有機被膜の処理とが同時並行的に行われる。2工程を1工程にすることができ、生産性を高めることができ
しかし、焼成工程は、第1加熱工程と第2加熱工程の2工程で実施することが望ましい。分散媒の処理と、有機被膜の処理と、拡散接合処理とのこの順位に実施されるため、スペーサ配置部の空隙からよりよく分散媒と有機溶媒の離脱が行われ、焼結時のボイドを防ぐため強固な高品質の接合層が得られるからである。
The first heating process and the second heating process can be combined into a firing process. By combining the firing steps, the treatment of the dispersion medium and the treatment of the organic coating are performed in parallel. Two processes can be made into one process, and productivity can be improved However, it is desirable to implement a baking process in two processes, a 1st heating process and a 2nd heating process. Since the dispersion medium treatment, the organic film treatment, and the diffusion bonding treatment are performed in this order, the dispersion medium and the organic solvent are better separated from the gaps in the spacer arrangement portion, and voids during sintering are removed. This is because a strong high-quality bonding layer is obtained to prevent this.

本発明は、金属板同士を接合する技術に好適である。   The present invention is suitable for a technique for joining metal plates together.

11…一方の被接合材、12…他方の被接合材、13…スペーサ、14…塗布マスク、20…金属ナノ粒子ペースト、21…有機被膜、22…金属ナノ粒子、23…分散媒、26…溝部、28…合体物、30…第1加熱炉、33…第2加熱炉。   DESCRIPTION OF SYMBOLS 11 ... One to-be-joined material, 12 ... Other to-be-joined material, 13 ... Spacer, 14 ... Application mask, 20 ... Metal nanoparticle paste, 21 ... Organic coating, 22 ... Metal nanoparticle, 23 ... Dispersion medium, 26 ... Groove part, 28 ... union, 30 ... first heating furnace, 33 ... second heating furnace.

Claims (2)

複数の被接合材を金属ナノ粒子で接合する接合方法において、
複数の被接合材と、径が一定の線状のスペーサと、このスペーサの径と同等の幅の遮蔽部を含む塗布パターンが設けられている塗布用マスクと、有機被膜で被覆された金属ナノ粒子を分散媒に分散させてなる金属ナノ粒子ペーストとを準備する工程と、
前記金属ナノ粒子ペースト及び前記塗布用マスクを用いて、前記スペーサの径より大きな厚さの塗膜を一方の被接合材に塗布する塗布工程と、
前記遮蔽部により塗膜に形成された溝部に、前記スペーサを配置するスペーサ配置工程と、
他方の被接合材を重ね合わせる工程と、
前記被接合材同士の間隔が前記スペーサの径に合致するまで、被接合材同士を押圧する工程と、
前記被接合材同士の間隔が前記スペーサの径に合致した状態で前記被接合材同士の間隔を保持し、前記スペーサを除去する工程と、
得られた合体物を焼成する工程と、からなることを特徴とする金属ナノ粒子を用いた接合方法。
In a joining method for joining a plurality of materials to be joined with metal nanoparticles,
A plurality of materials to be joined, a linear spacer having a constant diameter, a coating mask provided with a coating pattern including a shielding portion having a width equal to the diameter of the spacer, and a metal nanometer coated with an organic coating Preparing a metal nanoparticle paste obtained by dispersing particles in a dispersion medium;
Using the metal nanoparticle paste and the coating mask, an application step of applying a coating film having a thickness larger than the diameter of the spacer to one of the bonded materials;
A spacer arrangement step of arranging the spacer in the groove formed in the coating film by the shielding portion;
A step of superimposing the other material to be joined;
A step of pressing the materials to be joined until the distance between the materials to be joined matches the diameter of the spacer;
Maintaining the distance between the materials to be bonded in a state where the distance between the materials to be bonded matches the diameter of the spacer, and removing the spacer;
A bonding method using metal nanoparticles, characterized by comprising a step of firing the resultant union.
前記得られた合体物を焼成する工程は、
前記得られた合体物を、前記分散媒が飛散するように加熱する第1加熱工程と、
次に、前記有機被膜がガス化し、前記金属ナノ粒子が前記被接合材に拡散接合するよう加圧しながら加熱する第2加熱工程と、からなることを特徴とする請求項1記載の金属ナノ粒子を用いた接合方法。
The step of firing the obtained combined product,
A first heating step of heating the obtained combined product so that the dispersion medium scatters;
The metal nanoparticle according to claim 1, further comprising a second heating step in which the organic coating is gasified and heated while applying pressure so that the metal nanoparticle is diffusion bonded to the material to be bonded. Bonding method using.
JP2009077457A 2009-03-26 2009-03-26 Joining method using metal nanoparticle Pending JP2010227963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009077457A JP2010227963A (en) 2009-03-26 2009-03-26 Joining method using metal nanoparticle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009077457A JP2010227963A (en) 2009-03-26 2009-03-26 Joining method using metal nanoparticle

Publications (1)

Publication Number Publication Date
JP2010227963A true JP2010227963A (en) 2010-10-14

Family

ID=43044336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009077457A Pending JP2010227963A (en) 2009-03-26 2009-03-26 Joining method using metal nanoparticle

Country Status (1)

Country Link
JP (1) JP2010227963A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160707A (en) * 2013-02-19 2014-09-04 Mitsubishi Materials Corp Method for manufacturing conjugant, method for manufacturing power module, and power module
KR101514681B1 (en) * 2014-04-09 2015-04-23 울산대학교 산학협력단 Manufacturing method of metal matrix composite using friction stir spot welding
US9695521B2 (en) 2010-07-19 2017-07-04 Universiteit Leiden Process to prepare metal nanoparticles or metal oxide nanoparticles
JP6195689B1 (en) * 2016-01-28 2017-09-13 三菱電機株式会社 Power module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9695521B2 (en) 2010-07-19 2017-07-04 Universiteit Leiden Process to prepare metal nanoparticles or metal oxide nanoparticles
JP2014160707A (en) * 2013-02-19 2014-09-04 Mitsubishi Materials Corp Method for manufacturing conjugant, method for manufacturing power module, and power module
KR101514681B1 (en) * 2014-04-09 2015-04-23 울산대학교 산학협력단 Manufacturing method of metal matrix composite using friction stir spot welding
WO2015156493A1 (en) * 2014-04-09 2015-10-15 울산대학교 산학협력단 Method for manufacturing friction stir spot bonding portion of metal matrix composite
JP6195689B1 (en) * 2016-01-28 2017-09-13 三菱電機株式会社 Power module
US10418295B2 (en) 2016-01-28 2019-09-17 Mitsubishi Electric Corporation Power module

Similar Documents

Publication Publication Date Title
JP5549958B2 (en) Joining structure of aluminum member and copper member
JP6580385B2 (en) Composite of aluminum and carbon particles and method for producing the same
JP2011071301A (en) Joining method and joining body using metal nanoparticle
JP2010227963A (en) Joining method using metal nanoparticle
WO2014196459A1 (en) Carbon nanotube sheet and production method for carbon nanotube sheet
JP2860037B2 (en) Method of manufacturing heat dissipation board for semiconductor device
JP2012091975A (en) Method for manufacturing joined body of ceramic material and metallic material
JP2008192823A (en) Manufacturing apparatus and manufacturing method for circuit board, and cushion sheet used for the manufacturing method
WO2017110140A1 (en) Method for producing metal-carbon fiber composite material
JP6709040B2 (en) Method of manufacturing semiconductor device
JP7142864B2 (en) Method for producing anisotropic graphite composite
JP2010232366A (en) Device for power electronics
US20220285238A1 (en) Bonded substrate and bonded substrate manufacturing method
JP5388654B2 (en) High thermal conductive composite material and manufacturing method thereof
JP6821479B2 (en) Materials for plastic working, plastic working bodies and thermal conductors
JP6498040B2 (en) Composite of aluminum and carbon particles and insulating substrate
JP5500710B2 (en) High thermal conductive composite material and manufacturing method thereof
JP2021076297A (en) Heat conducting member
JP6396703B2 (en) Manufacturing method of heat dissipation component for semiconductor element
JP2005041193A (en) SiC-BASED STRUCTURE
JP7431857B2 (en) Manufacturing method of bonded substrate
US10679770B1 (en) Interface layer with mesh and sinter paste
JP6670605B2 (en) Manufacturing method of insulating substrate
JP2009283752A (en) Soaking plate, and substrate heating device and substrate cooling device using the same
JP7370222B2 (en) Metal-ceramic bonded substrate and its manufacturing method