WO2015156493A1 - Method for manufacturing friction stir spot bonding portion of metal matrix composite - Google Patents

Method for manufacturing friction stir spot bonding portion of metal matrix composite Download PDF

Info

Publication number
WO2015156493A1
WO2015156493A1 PCT/KR2015/001499 KR2015001499W WO2015156493A1 WO 2015156493 A1 WO2015156493 A1 WO 2015156493A1 KR 2015001499 W KR2015001499 W KR 2015001499W WO 2015156493 A1 WO2015156493 A1 WO 2015156493A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction stir
metal
metal material
carbon
matrix composite
Prior art date
Application number
PCT/KR2015/001499
Other languages
French (fr)
Korean (ko)
Inventor
홍성태
천두만
염영진
이정희
정용하
오현석
Original Assignee
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산대학교 산학협력단 filed Critical 울산대학교 산학협력단
Publication of WO2015156493A1 publication Critical patent/WO2015156493A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1265Non-butt welded joints, e.g. overlap-joints, T-joints or spot welds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/128Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding making use of additional material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials

Abstract

The present invention provides a method for manufacturing a friction stir spot bonding portion of a metal matrix composite, comprising the steps of: providing a mask; laminating a carbon material on a first metal material using the mask; disposing the first metal material on a second metal material; and bonding the first metal material and the second metal material using friction stir spot welding (FSSW), thereby achieving low-cost and high-efficiency characteristics of NPDS and FSSW and easily manufacturing a composite at a desired location. Furthermore, since NPDS can adjust the amount of laminated carbon powder, it is possible to accurately predict the mechanical property of a spot bonding portion, and since powder is laminated with a sufficient adhesive force, it is possible to manufacture a neat composite.

Description

금속 기지 복합 재료 마찰교반 점접합부 제조 방법Metal matrix composite friction stir welding method
본 발명은 금속 기지 복합 재료 마찰교반 점접합부 제조 방법에 관한 것이다. 더욱 상세하게는 탄소소재 입자를 나노입자적층시스템(Nano-Particle Deposition System, NPDS)으로 적층시킨 후 그 표면을 마찰교반점용접(Friction Stir Spot Welding, FSSW)하여 금속기지 복합재료 점접합부를 제조하는 금속 기지 복합 재료 마찰교반 점접합부 제조 방법에 관한 것이다.The present invention relates to a method for producing a metal matrix composite friction stir point joint. More specifically, the carbon-based particles are laminated with a Nano-Particle Deposition System (NPDS), and then the surface is subjected to friction stir spot welding (FSSW) to manufacture a metal base composite spot junction. A method for producing a metal matrix composite friction stir point joint.
일반적으로 금속 기지 복합 재료(MMC, metal matrix composites)는 탄소 소재를 금속 기지에 첨가하여 금속 기지의 기계적 성능을 향상시킨 것을 말하며, 통상 알루미늄(Al), 마그네슘(Mg) 등 경량 금속 소재를 기지로 하여 제조된다.In general, metal matrix composites (MMC) are those in which carbon materials are added to the metal base to improve the mechanical performance of the metal base, and are usually based on lightweight metal materials such as aluminum (Al) and magnesium (Mg). It is manufactured by.
탄소 소재는, 일반 금속 재료에 비하여 높은 탄성 계수를 가지고, 열 전도성 및 전기 전도성이 우수한 소재로서, 일반적으로 나노(nano) 또는 마이크로(micro) 크기의 흑연(graphite), 그래핀(graphene), 탄소 나노튜브(CNT, carbon nanotube) 등을 사용한다. Carbon materials, which have a higher modulus of elasticity and superior thermal and electrical conductivity than ordinary metallic materials, are generally nano or micro sized graphite, graphene, carbon Nanotubes (CNT, carbon nanotube) are used.
일례로, 경량의 알루미늄 판재에 마찰 교반 처리법(FSP, friction stir process)을 적용하여 알루미늄 기지의 경량성과 탄소 소재의 높은 강도 및 열 전도도를 동시에 가지도록 금속 기지 복합 재료를 제조할 수 있다. 마찰 교반 처리법(FSP)은 고속으로 회전하는 공구(tool)로 소재의 표면에 국부적인 소성 변형을 일으켜 소재 표면의 미세 구조를 원하는 형태로 변화시켜 표면의 기계적 특성을 향상시키는 방법이다. For example, a metal matrix composite material may be manufactured to simultaneously have a lightweight aluminum sheet and a friction stir process (FSP) to simultaneously have a high strength and thermal conductivity of a carbon base and a high carbon material. Friction Stirring (FSP) is a tool that rotates at a high speed to cause local plastic deformation of the surface of the material to change the microstructure of the material surface to a desired shape to improve the mechanical properties of the surface.
한편, 마찰 교반 점 용접법(FSSW)은 마찰 교반 용접법(FSW, friction stir welding)에서 파생된 고상 접합(solid state bonding) 기술의 하나로서, 기존의 저항 점 용접법(RSW, resistance spot welding)의 단점을 보완하여 용접부의 기계적 성질을 향상시킬 수 있는 기술이다.Meanwhile, friction stir spot welding (FSSW) is one of the solid state bonding techniques derived from friction stir welding (FSW) and overcomes the disadvantages of conventional resistance spot welding (RSW). It is a technology that can improve the mechanical properties of the weld by supplementing.
도 1은 일반적인 마찰 교반 점 용접법(FSSW)을 나타내는 개념도이다.1 is a conceptual diagram showing a general friction stir spot welding method (FSSW).
도 1을 참조하면, 마찰 교반 점 용접법(FSSW)에 사용되는 공구(10, tool)는, 상하로 접촉 배치된 피접합재(1, 2)에 직접 삽입되는 나사산 형태의 프로브(11, probe), 피접합재(1, 2)의 상면에서 마찰되는 쇼울더(12, shoulder), 및 쇼울더(12)를 주축에 결합시킬 수 있는 그립(grip, 도시하지 않음)을 포함한다.Referring to FIG. 1, the tool 10 used in the friction stir spot welding method FSSW includes a threaded probe 11 directly inserted into the to-be-joined materials 1 and 2 contacted up and down, Shoulders rubbed on the upper surfaces of the to-be-joined materials 1 and 2, and grips (not shown) capable of engaging the shoulders 12 to the main shaft.
마찰 교반 점 용접법의 수행 과정은 다음과 같다.The process of friction stir spot welding is as follows.
먼저, 공구(10)를 회전시켜 프로브(11)를 피접합재(1, 2)에 삽입한다(Plunging).First, the tool 10 is rotated to insert the probe 11 into the to-be-joined materials 1 and 2 (Plunging).
다음으로, 프로브(11) 및 쇼울더(12)와 피접합재(1, 2)와의 상호마찰에 의해 열이 발생하고, 이러한 마찰열에 의해 주변의 피접합재(1, 2)는 연화되며, 공구(10)의 교반에 의한 재료의 소성 유동으로 접합면 양쪽의 재료들이 강제적으로 혼합되어 점접합부(20)를 형성한다(Bonding).Next, heat is generated by mutual friction between the probe 11 and the shoulder 12 and the joined materials 1 and 2, and the peripheral joined materials 1 and 2 are softened by the frictional heat, and the tool 10 With the plastic flow of the material by stirring, the materials on both sides of the bonding surface are forcibly mixed to form the point junction 20 (Bonding).
다음으로, 공구(10)의 프로브(11) 및 쇼울더(12)를 피접합재(1, 2)로부터 분리시킴으로써 피접합재(1, 2)의 마찰 교반 점 용접법(FSSW)이 마무리 된다(Drawing out).Next, the friction stir spot welding method (FSSW) of the to-be-joined materials 1 and 2 is finished by drawing out the probe 11 and the shoulder 12 of the tool 10 from the to-be-joined materials 1 and 2 (Drawing out). .
점접합부의 품질을 결정하는 주요 요소 중 하나는 강도 등의 기계적 성질이며, 마찰 교반 점 용접법(FSSW)에 의해 형성된 점 접합부(20)는 후크(21, hook) 부위가 상대적으로 취약하여 파단의 시작점이 된다. One of the main factors that determine the quality of the point joint is mechanical properties such as strength, and the point joint 20 formed by the friction stir spot welding method (FSSW) has a weak point of the hook 21, so that the starting point of fracture Becomes
본 발명의 실시예는 우수한 기계적 성질을 갖는 점 접합부를 가지는 금속 기지 복합 재료를 제조하는 방법을 제공하고자 한다.Embodiments of the present invention seek to provide a method of making a metal matrix composite having point junctions with good mechanical properties.
본 발명의 바람직한 일실시예인 금속 기지 복합 재료 제조 방법은,마스크를 제공하는 단계, 상기 마스크를 이용하여 제1 금속재에 탄소 소재를 적층하는 단계, 상기 제1 금속재를 제2 금속재 위에 배치하는 단계 및 마찰 교반 점 용접법(FSSW)을 이용하여 상기 제1 금속재와 상기 제2 금속재를 접합하는 단계를 포함한다. According to one or more exemplary embodiments, a method of manufacturing a metal matrix composite material includes: providing a mask, laminating a carbon material on a first metal material using the mask, placing the first metal material on a second metal material, and Bonding the first metal material to the second metal material using friction stir spot welding (FSSW).
바람직하게는, 상기 탄소 소재를 적층하는 단계는, 상온에서 이송가스를 통해 상기 탄소 소재를 고속으로 가속시켜 적층하는 것을 특징으로 할 수 있다.Preferably, the step of laminating the carbon material, it may be characterized in that the carbon material is accelerated to be laminated at high speed through a transport gas at room temperature.
바람직하게는, 상기 탄소 소재를 적층하는 단계는, 나노 입자 적층 시스템을 이용하여 상기 탄소 소재를 적층하는 것을 특징으로 할 수 있다.Preferably, the step of laminating the carbon material, it may be characterized in that for laminating the carbon material using a nanoparticle lamination system.
바람직하게는, 상기 탄소 소재는, 흑연(graphite), 그래핀(graphene), 탄소 나노튜브(CNT, carbon nanotube), 팽창 흑연(expanded graphite) 및 이들의 혼합물로 이루어진 군에서 선택된 적어도 하나의 물질을 포함할 수 있다.Preferably, the carbon material comprises at least one material selected from the group consisting of graphite, graphene, carbon nanotubes (CNT), expanded graphite, and mixtures thereof. It may include.
본 발명의 금속 기지 복합 재료 제조 방법에 따르면, NPDS와 FSSW가 가지는 저비용, 고효율 특성과 원하는 위치에 손쉽게 복합재료를 제작할 수 있는 효과가 있다.According to the method for manufacturing a metal matrix composite material of the present invention, there is an effect that NPDS and FSSW have a low cost, high efficiency characteristics and can easily produce a composite material at a desired position.
또한, NPDS는 적층되는 탄소소재 분말의 양을 조절할 수 있으므로 점접합부의 기계적 성질의 정확한 예측이 가능하고, 분말은 충분한 접착력을 가지고 적층이 되므로 깔끔한 복합재료의 제작이 가능하다.In addition, NPDS can control the amount of carbon material powder to be laminated, so it is possible to accurately predict the mechanical properties of the point bonding portion, and the powder is laminated with sufficient adhesive force, it is possible to produce a clean composite material.
도 1은 일반적인 마찰 교반 점 용접법(FSSW)을 나타내는 개념도이다.1 is a conceptual diagram showing a general friction stir spot welding method (FSSW).
도 2는 본 발명의 바람직한 실시예인 금속 기지 복합 재료 제조 방법의 순서도이다.2 is a flow chart of a method for producing a metal matrix composite material which is a preferred embodiment of the present invention.
도 3는 금속 기지 복합 재료 제조 방법을 실시하기 위한 나노 입자 적층 시스템(NPDS)의 구성도이다.3 is a schematic diagram of a nanoparticle stacking system (NPDS) for carrying out a method for producing a metal matrix composite material.
도 4는 본 발명에서 마스크를 이용하여 탄소 입자의 적층을 나타내는 단면도이다.4 is a cross-sectional view showing the lamination of carbon particles using a mask in the present invention.
도 5는 마찰 교반 점 용접법을 실시하기 위한 구성도이다.It is a block diagram for implementing a friction stir spot welding method.
도 6은 마찰 교반 점 용접법 실시 상태와 실시 후 접합부를 나타내는 단면도이다.It is sectional drawing which shows the state of friction friction spot welding method implementation, and a joining part after implementation.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 본 발명의 실시예에 따른 금속 기지 복합 재료 마찰교반 점접합부 제조 방법을 상세히 설명한다. 우선 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 이하에서 본 발명의 바람직한 실시예를 설명할 것이나, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.Hereinafter, a method of manufacturing a metal matrix composite friction stir point joint according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. First, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible, even if shown on different drawings. In addition, the following will describe a preferred embodiment of the present invention, but the technical idea of the present invention is not limited thereto and may be variously modified and modified by those skilled in the art.
도 2는 본 발명의 바람직한 실시예인 금속 기지 복합 재료 제조 방법의 순서도이고, 도 3는 금속 기지 복합 재료 제조 방법을 실시하기 위한 나노 입자 적층 시스템(NPDS)의 구성도이고, 도 4는 본 발명에서 마스크를 이용하여 탄소 입자의 적층을 나타내는 단면도이고, 도 5는 마찰 교반 점 용접법을 실시하기 위한 구성도이고, 도 6은 마찰 교반 점 용접법 실시 상태와 실시 후 접합부를 나타내는 단면도이다.2 is a flowchart of a method for manufacturing a metal matrix composite material, which is a preferred embodiment of the present invention, and FIG. 3 is a schematic diagram of a nanoparticle stacking system (NPDS) for implementing a method for manufacturing metal matrix composite material, and FIG. It is sectional drawing which shows the lamination | stacking of carbon particle using a mask, FIG. 5 is a block diagram for performing a friction stir spot welding method, and FIG. 6 is sectional drawing which shows the junction state after implementation and the friction stir spot welding method.
도 2 내지 도 6을 참조하면, 금속 기지 복합 재료 제조 방법은 마스크(40)를 제공하는 단계(100S), 상기 마스크(40)를 이용하여 제1 금속재(35)에 탄소 소재를 적층하는 단계(200S), 상기 제1 금속재(35)를 제2 금속재(36) 위에 배치하는 단계(300S) 및 마찰 교반 점 용접법을 이용하여 상기 제1 금속재(35)와 상기 제2 금속재(36)를 접합하는 단계(400S)로 진행된다.2 to 6, the method for manufacturing a metal matrix composite material includes providing a mask 40 (100S), and laminating a carbon material on the first metal material 35 using the mask 40 ( 200S), disposing the first metal material 35 on the second metal material 36 (300S) and joining the first metal material 35 and the second metal material 36 using a friction stir spot welding method. The process proceeds to step 400S.
마스크(40)를 제공하는 단계(100S)에서, 마스크(40)는 탄소 소재의 적층 모양을 형성하는 역할을 수행한다. 마스크(40)는 탄소 적층의 면적과 형상에 따라 크기나 형상의 변형이 가능하며, 마스크(40)의 형상에 의하여 탄소 소재의 분말분사영역(42)이 결정된다. 마스크(40)의 일실시예로 고리형상으로 구비될 수 있다. In the step 100S of providing the mask 40, the mask 40 serves to form a stacked shape of the carbon material. The mask 40 can be modified in size or shape according to the area and shape of the carbon laminate, and the powder injection zone 42 of the carbon material is determined by the shape of the mask 40. In one embodiment of the mask 40 may be provided in a ring shape.
마스크(40)를 이용하여 제1 금속재(35)에 탄소 소재를 적층하는 단계(200S)에서, 탄소 소재의 적층은 나노 입자 적층 시스템(Nano-Particle Deposition System, NPDS), 에어로졸 증착(Aerosol Deposition), 또는 저온분사(Cold Spray) 등을 이용하여 고속의 이송가스를 통해 상기 탄소 소재를 분말 상태에서 아무런 처리 없이 바로 상기 금속재 위에 충돌시켜 적층한다.In the step of stacking the carbon material on the first metal material 35 using the mask 40 (200S), the carbon material is laminated in the nano-particle deposition system (NPDS), aerosol deposition (Aerosol Deposition) Or by impinging the carbon material directly on the metal material without any treatment in a powder state through a high-speed transfer gas using a cold spray or the like.
NPDS는 상온 건식 적층 시스템으로써 기존의 고온조건, 혹은 화학 물질을 포함한 공정조건의 단점을 없애고, 세라믹 재료와 금속 재료를 모두 적층할 수 있는 효율적인 공정 기술이다. NPDS is a room temperature dry lamination system that eliminates the disadvantages of existing high temperature conditions or process conditions including chemicals, and is an efficient process technology capable of laminating both ceramic and metal materials.
NPDS 장치(30)는 탄소 분말을 공급하는 분말공급장치(33), 상기 분말공급장치(33)와 연결되어 탄소 분말의 출구가 되는 노즐(34), 상기 분말공급장치(33)와 연결되어 탄소 분말을 상기 노즐(34)을 따라 외부로 분사하는 공기압축기(32), 제1 금속재(35)와 제2 금속재(36)가 놓이는 스테이지(37) 및 NPDS 내부를 진공상태로 만들어 NPDS 장치(30) 내부의 청결을 유지하는 진공펌프(38)를 구비한다.The NPDS apparatus 30 is connected to the powder supply apparatus 33 for supplying carbon powder, the nozzle 34 connected to the powder supply apparatus 33 to become an outlet of the carbon powder, and the powder supply apparatus 33 for carbon. An air compressor 32 for injecting powder to the outside along the nozzle 34, a stage 37 on which the first metal material 35 and the second metal material 36 are placed, and the inside of the NPDS are vacuumed to form an NPDS device 30. ) Is provided with a vacuum pump 38 for maintaining the internal cleanliness.
마스크(40)는 노즐(34)의 출구에 위치하며, 노즐(34)로부터 분사되는 탄소 소재를 일정형상으로 적층시킬 수 있다.The mask 40 is located at the outlet of the nozzle 34, and the carbon material injected from the nozzle 34 may be laminated in a predetermined shape.
상기 탄소 소재의 실시예로, 그라파이트(Graphite), 그래핀(Graphene), 카본 나노 튜브(CNT; Carbon Nano Tube), 익스팬디드 그라파이트(Expanded Graphite) 또는 이들의 하이브리드 혼합물 중 어느 하나를 사용할 수 있다.As an example of the carbon material, any one of graphite, graphene, carbon nanotube, expanded graphite, or a hybrid mixture thereof may be used. .
좀 더 부연하면, 상기 그라파이트는 일반적인 금속재료에 비하여 높은 탄성계수를 가지고, 열전도도 및 전기 전도성이 우수한 소재이며, 이러한 이유로 그래핀 또는 카본 나노 튜브 등의 탄소 소재 등과 함께 금속 혹은 폴리머를 모재로 하는 복합재료의 강화제(Reinforcement)로 흔히 고려되고 있다. 또한 상기 그래핀은 구조적 물성이 안정할 뿐아니라, 그 밀도가 2g/㎤이하로서 금속재료 대비 가볍고, 인장강도가 수십 GPa 정도로 매우 강하며, 열전도도가 매우 크기 때문에 열적 인터페이스 재료(TIM;Thermal Interface Material) 등에 다양하게 활용되고 있으며, 향후 소재 분야에서 매우 중요한 소재로 인정되어 현재 전 세계적인 연구가 추진되고 있다. 더욱이 2차원 소재인 상기 그래핀을 1차원 소재인 탄소 나노 튜브와 하이브리드(Hybrid)화 할 경우에는, 전도에 필요한 퍼콜레이션 한계(Percolation limit) 농도를 낮출 수 있으며, 열전도도를 더욱 높일 수 있다는 장점을 갖는다.More specifically, the graphite is a material having a high modulus of elasticity and excellent thermal conductivity and electrical conductivity compared to a general metal material, and for this reason, a graphite or carbon nanotube, such as a carbon material or a metal or polymer as a base material It is often considered as a reinforcement for composites. In addition, the graphene is not only stable in structural properties, but also has a density of 2 g / cm 3 or less, which is lighter than metal materials, has a very high tensile strength of several tens of GPa, and has a high thermal conductivity. It is widely used in materials, etc., and is recognized as a very important material in the field of materials in the future. Furthermore, when the graphene, which is a two-dimensional material, is hybridized with the carbon nanotube, which is a one-dimensional material, the concentration of percolation limit required for conduction can be lowered, and the thermal conductivity can be further increased. Has
제1 금속재(35)를 제2 금속재(36) 위에 배치하는 단계(300S)에서는, 탄소 소재가 적층된 제1 금속재(35)를 제2 금속재(36) 위에 배치하여 제1 금속재(35)와 제2 금속재(36)간의 결합을 준비한다.In the step 300S of disposing the first metal material 35 on the second metal material 36, the first metal material 35 on which the carbon material is laminated is disposed on the second metal material 36 to be disposed on the first metal material 35. The coupling between the second metal materials 36 is prepared.
마찰 교반 점 용접법을 이용하여 상기 제1 금속재(35)와 상기 제2 금속재(36)를 접합하는 단계(400S)에서는, 탄소 소재가 적층된 위치에서 마찰교반점용접(Friction Stir Spot Welding, FSSW)을 실시한다.In the step 400S of joining the first metal material 35 and the second metal material 36 using a friction stir spot welding method, friction stir spot welding (FSSW) is performed at a position where a carbon material is laminated. Is carried out.
마찰교반점용접(FSSW)은 마찰교반용접 공정 중에서 공구의 이송단계를 제외하고 회전부재(50)의 삽입하고, 용접 유지 시간을 가진 후, 원위치하는 3단계 프로세스를 가지는 접합 방법이다. 이는 고속으로 회전하는 비소모성 공구인 회전부재(50)를 대상 소재에 삽입하여 공구와 소재간의 마찰열과 재료의 소성유동을 응용한 것이다.Friction stir welding (FSSW) is a joining method having a three-step process of repositioning after the insertion of the rotating member 50, except for the conveying step of the tool during the friction stir welding process, the welding holding time. This inserts the rotating member 50, which is a non-consumable tool that rotates at a high speed, into the target material to apply friction heat between the tool and the material and plastic flow of the material.
도 5와 도 6을 참조하면, 접합하고자하는 제2 금속재(36) 상부에 제1 금속재(35)를 배치하고 접합하고자 하는 부위에 탄소 소재를 적층시킨 후 비소모성 회전부재(50)를 이용한 마찰교반용접을 실시하여 FSSW 접합부(52)를 형성하게 된다. 5 and 6, the first metal material 35 is disposed on the second metal material 36 to be bonded, and the carbon material is laminated on the portion to be bonded, and then friction is performed using the non-consumable rotating member 50. Stir welding is performed to form the FSSW joint 52.
본 발명의 금속 기지 복합 재료 제조 방법에 따르면, NPDS와 FSSW가 가지는 저비용, 고효율 특성과 원하는 위치에 손쉽게 복합재료를 제작할 수 있는 효과가 있다.According to the method for manufacturing a metal matrix composite material of the present invention, there is an effect that NPDS and FSSW have a low cost, high efficiency characteristics and can easily produce a composite material at a desired position.
또한, NPDS는 적층되는 탄소소재 분말의 양을 조절할 수 있고, 분말은 충분한 접착력을 가지고 적층이 되므로 깔끔한 복합재료의 제작이 가능하다.In addition, NPDS can control the amount of carbon material powder to be laminated, the powder is laminated with a sufficient adhesive force it is possible to produce a clean composite material.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and various modifications, changes, and substitutions may be made by those skilled in the art without departing from the essential characteristics of the present invention. will be. Accordingly, the embodiments disclosed in the present invention and the accompanying drawings are not intended to limit the technical spirit of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by the embodiments and the accompanying drawings. . The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (4)

  1. 마스크를 제공하는 단계,Providing a mask,
    상기 마스크를 이용하여 제1 금속재에 탄소 소재를 적층하는 단계,Laminating a carbon material on a first metal material using the mask;
    상기 제1 금속재를 제2 금속재 위에 배치하는 단계 및Disposing the first metal material on the second metal material; and
    마찰 교반 점 용접법(FSSW)을 이용하여 상기 제1 금속재와 상기 제2 금속재를 접합하는 단계Bonding the first metal material to the second metal material using friction stir spot welding (FSSW);
    를 포함하는 금속 기지 복합 재료 마찰교반 점접합부 제조 방법.Metal matrix composite friction stir point joint manufacturing method comprising a.
  2. 제1 항에서,In claim 1,
    상기 탄소 소재를 적층하는 단계는,Laminating the carbon material,
    상온에서 이송가스를 통해 상기 탄소 소재를 고속으로 가속시켜 적층하는 것을 특징으로 하는 금속 기재 복합 재료 마찰교반 점접합부 제조 방법.Method for producing a metal-based composite material friction stir point joint portion characterized in that the carbon material is accelerated and laminated at high speed through a transport gas at room temperature.
  3. 제2 항에 있어서,The method of claim 2,
    상기 탄소 소재를 적층하는 단계는,Laminating the carbon material,
    나노 입자 적층 시스템(NPDS)을 이용하여 상기 탄소 소재를 적층하는 것을 특징으로 하는 금속 기지 복합 재료 마찰교반 점접합부 제조 방법.A method for producing a metal matrix composite friction stir point joint, characterized in that the carbon material is laminated using a nanoparticle lamination system (NPDS).
  4. 제1 항 내지 제3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 탄소 소재는,The carbon material,
    흑연(graphite), 그래핀(graphene), 탄소 나노튜브(CNT, carbon nanotube), 팽창 흑연(expanded graphite) 및 이들의 혼합물로 이루어진 군에서 선택된 적어도 하나의 물질을 포함하는 금속 기지 복합 재료 마찰교반 점접합부 제조 방법.Metal matrix composite friction stir point comprising at least one material selected from the group consisting of graphite, graphene, carbon nanotubes (CNT), expanded graphite, and mixtures thereof Method of manufacturing the joint.
PCT/KR2015/001499 2014-04-09 2015-02-13 Method for manufacturing friction stir spot bonding portion of metal matrix composite WO2015156493A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0042361 2014-04-09
KR1020140042361A KR101514681B1 (en) 2014-04-09 2014-04-09 Manufacturing method of metal matrix composite using friction stir spot welding

Publications (1)

Publication Number Publication Date
WO2015156493A1 true WO2015156493A1 (en) 2015-10-15

Family

ID=53053970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001499 WO2015156493A1 (en) 2014-04-09 2015-02-13 Method for manufacturing friction stir spot bonding portion of metal matrix composite

Country Status (2)

Country Link
KR (1) KR101514681B1 (en)
WO (1) WO2015156493A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234658A (en) * 2018-11-28 2019-01-18 黑龙江科技大学 A method of preparing graphene enhancing Al alloy composite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101890064B1 (en) * 2017-05-11 2018-08-20 울산대학교 산학협력단 Friction stir spot welding apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033485A (en) * 1998-07-22 2000-02-02 Mitsubishi Heavy Ind Ltd Manufacture of metal-based composite material and composite material
KR100881472B1 (en) * 1999-02-04 2009-02-05 어플라이드 머티어리얼스, 인코포레이티드 A method for depositing built-up structures upon a patterned mask surface resting on a predetermined substrate
JP2010227963A (en) * 2009-03-26 2010-10-14 Honda Motor Co Ltd Joining method using metal nanoparticle
KR101282659B1 (en) * 2012-05-02 2013-07-12 울산대학교 산학협력단 Fabrication method of metal matrix composite joints by friction stir spot welding(fssw)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033485A (en) * 1998-07-22 2000-02-02 Mitsubishi Heavy Ind Ltd Manufacture of metal-based composite material and composite material
KR100881472B1 (en) * 1999-02-04 2009-02-05 어플라이드 머티어리얼스, 인코포레이티드 A method for depositing built-up structures upon a patterned mask surface resting on a predetermined substrate
JP2010227963A (en) * 2009-03-26 2010-10-14 Honda Motor Co Ltd Joining method using metal nanoparticle
KR101282659B1 (en) * 2012-05-02 2013-07-12 울산대학교 산학협력단 Fabrication method of metal matrix composite joints by friction stir spot welding(fssw)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234658A (en) * 2018-11-28 2019-01-18 黑龙江科技大学 A method of preparing graphene enhancing Al alloy composite

Also Published As

Publication number Publication date
KR101514681B1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
Zhou et al. Fast joining SiC ceramics with Ti3SiC2 tape film by electric field-assisted sintering technology
WO2015149384A1 (en) Preparation method of graphene/metal composite board
JP2018537587A5 (en)
US11390054B2 (en) Composite and multilayered silver films for joining electrical and mechanical components
JP5592349B2 (en) Thermoplastic composite tape mounting method
TWI620808B (en) Thermally conductive sheet
Fan et al. Active brazing of carbon fiber reinforced SiC composite and 304 stainless steel with Ti–Zr–Be
WO2015156493A1 (en) Method for manufacturing friction stir spot bonding portion of metal matrix composite
EP2952496B1 (en) Joined material and method for producing same
CN105585328B (en) A kind of technique of nanometer of foil connection carbon/silicon carbide ceramic matrix composite and metal
Fan et al. A novel composite-diffusion brazing process based on transient liquid phase bonding of a Cf/SiC composite to Ti-6Al-4V
CN106189679A (en) Graphene powder coating, preparation method and coating method thereof
CN212451221U (en) System for connecting silicon carbide materials, multilayer composite film structure and connecting structure
JP5764506B2 (en) Ceramic porous body-metal heat insulating material and manufacturing method thereof
CN106029566A (en) Highly oriented graphite
US9387655B2 (en) Nano-engineered structural joints: materials, procedures and applications thereof
CN105732070B (en) Bonding dissimilar ceramic components
KR101282659B1 (en) Fabrication method of metal matrix composite joints by friction stir spot welding(fssw)
Liu et al. Effect of Ti content on microstructure and strength of Si3N4/Si3N4 joints brazed with Cu–Pd–Ti filler metals
Peng et al. Thermal shock resistance of SiC/MAS–LAS multilayer joint of carbon/carbon composites to LAS glass-ceramic
CN102173828B (en) Preparation method of layered zirconium boride composite material with heat insulation function
CN101239420A (en) Soldering method of composite foil for carbon/silicon carbide and niobium or niobium alloy
KR102109127B1 (en) Method of joining metal and plastic using hot metal pressing
CN104384516B (en) The preparation method of the metallurgical powder brake material that a kind of bullet train uses
EP2119992A3 (en) High strength and high thermal conductivity heat transfer apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15777348

Country of ref document: EP

Kind code of ref document: A1