JP7370222B2 - Metal-ceramic bonded substrate and its manufacturing method - Google Patents

Metal-ceramic bonded substrate and its manufacturing method Download PDF

Info

Publication number
JP7370222B2
JP7370222B2 JP2019200684A JP2019200684A JP7370222B2 JP 7370222 B2 JP7370222 B2 JP 7370222B2 JP 2019200684 A JP2019200684 A JP 2019200684A JP 2019200684 A JP2019200684 A JP 2019200684A JP 7370222 B2 JP7370222 B2 JP 7370222B2
Authority
JP
Japan
Prior art keywords
metal
active metal
mass
ceramic
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019200684A
Other languages
Japanese (ja)
Other versions
JP2021075402A (en
Inventor
祐基 寺本
幸司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2019200684A priority Critical patent/JP7370222B2/en
Publication of JP2021075402A publication Critical patent/JP2021075402A/en
Application granted granted Critical
Publication of JP7370222B2 publication Critical patent/JP7370222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、金属-セラミックス接合基板およびその製造方法に関し、特に、ろう材を介してセラミックス基板の少なくとも一方の面に金属板が接合した金属-セラミックス接合基板およびその製造方法に関する。 The present invention relates to a metal-ceramic bonded substrate and a method for manufacturing the same, and more particularly to a metal-ceramic bonded substrate in which a metal plate is bonded to at least one surface of a ceramic substrate via a brazing material, and a method for manufacturing the same.

従来、電気自動車、電車、工作機械などの大電力を制御するために、パワーモジュールが使用されている。このようなパワーモジュール用の絶縁基板として、ろう材を介して金属板がセラミックス基板に接合された金属-セラミックス接合基板が使用されている。 Conventionally, power modules have been used to control large amounts of power in electric vehicles, trains, machine tools, etc. A metal-ceramic bonded substrate in which a metal plate is bonded to a ceramic substrate via a brazing material is used as an insulating substrate for such a power module.

このような金属-セラミックス接合基板の製造方法として、Ti、ZrおよびHfからなる群から選ばれる活性金属の一種とAgとCuとを混合したろう材を用いて金属板をセラミックス基板に接合する方法(例えば、特許文献1参照)や、活性金属とBi系ガラスとCuとAgを含む粉体をビヒクルに添加して混練したろう材を用いて金属板をセラミックス基板に接合する方法(例えば、特許文献2参照)が提案されている。 A method for manufacturing such a metal-ceramic bonded substrate is a method of bonding a metal plate to a ceramic substrate using a brazing material that is a mixture of Ag and Cu and an active metal selected from the group consisting of Ti, Zr, and Hf. (for example, see Patent Document 1), and a method of joining a metal plate to a ceramic substrate using a brazing filler metal prepared by adding and kneading powder containing an active metal, Bi-based glass, Cu, and Ag to a vehicle (for example, patent document 1). (see literature 2) has been proposed.

しかし、特許文献1~2の方法では、ろう材中のAgのマイグレーションにより、金属-セラミックス接合基板の耐電圧の低下や部分放電などの電気特性が悪化するおそれがある。 However, in the methods of Patent Documents 1 and 2, migration of Ag in the brazing filler metal may deteriorate electrical properties such as a decrease in withstand voltage and partial discharge of the metal-ceramic bonded substrate.

また、Agを含まないろう材を用いて金属板をセラミックス基板に接合する方法として、Cu-P系ろう材と活性金属材を介してCuまたはCu合金からなるCu部材をセラミックス部材に接合する方法(例えば、特許文献3参照)や、Cu-P-Sn系ろう材とTi材を介してCuまたはCu合金からなるCu部材をセラミックス部材に接合する方法(例えば、特許文献4参照)が提案されている。 Additionally, as a method for joining a metal plate to a ceramic substrate using a brazing material that does not contain Ag, there is a method of joining a Cu member made of Cu or a Cu alloy to a ceramic member via a Cu-P brazing material and an active metal material. (see, for example, Patent Document 3), and a method of joining a Cu member made of Cu or a Cu alloy to a ceramic member via a Cu-P-Sn brazing filler metal and a Ti material (see, for example, Patent Document 4). ing.

特開平8-97554号公報(段落番号0011)JP-A-8-97554 (paragraph number 0011) 特開2010-241627号公報(段落番号0009)JP2010-241627A (paragraph number 0009) 特開2015-43393号公報(段落番号0007)JP2015-43393A (paragraph number 0007) 特開2015-65423号公報(段落番号0008)JP2015-65423A (paragraph number 0008)

しかし、特許文献3~4の方法では、Cu部材とセラミックス部材との間に1~35kgf/cmの高い荷重を加えながら比較的高温(900~1050℃)で加熱する必要があるので、そのような高い荷重を加える装置を設ける必要があり、加熱温度も高いため、製造コストが増加するという問題がある。また、そのような高い荷重を加える装置を接合炉内に入れる必要があるため、生産性に劣るという問題もある。 However, in the methods of Patent Documents 3 and 4, it is necessary to heat the Cu member and the ceramic member at a relatively high temperature (900 to 1050°C) while applying a high load of 1 to 35 kgf/ cm2 . Since it is necessary to provide a device that applies such a high load, and the heating temperature is also high, there is a problem that manufacturing costs increase. Furthermore, since it is necessary to insert a device that applies such a high load into the welding furnace, there is also the problem of poor productivity.

したがって、本発明は、このような従来の問題点に鑑み、従来よりも低い荷重を加えながら低い温度で加熱しても、銅板をセラミックス基板に良好に接合することができる、金属-セラミックス接合基板およびその製造方法を提供することを目的とする。 Therefore, in view of these conventional problems, the present invention provides a metal-ceramic bonded substrate that can bond a copper plate to a ceramic substrate well even when heated at a lower temperature while applying a lower load than conventional ones. The purpose is to provide a method for producing the same.

本発明者らは、上記課題を解決するために鋭意研究した結果、金属成分として活性金属のみを含む活性金属材と、金属成分として活性金属以外の金属のみを含み且つPを含むろう材を用意し、活性金属材の金属成分とろう材の金属成分およびPとの合計の質量に対する活性金属材の金属成分の質量の割合を5質量%以下として、セラミックス基板の一方の面に活性金属材を配置するとともに、銅板の一方の面にろう材を配置し、セラミックス基板と銅板とを、活性金属材とろう材が当接するように配置した後、セラミックス基板と銅板との間に0.005~0.5kgf/cmの荷重を加えながら780~890℃で加熱してセラミックス基板に銅板を接合することにより、従来よりも低い荷重を加えながら低い温度で加熱しても、銅板をセラミックス基板に良好に接合することができることを見出し、本発明を完成するに至った。 As a result of intensive research to solve the above problems, the present inventors prepared an active metal material containing only an active metal as a metal component and a brazing filler metal containing only a metal other than the active metal as a metal component and containing P. The active metal material is applied to one surface of the ceramic substrate, with the ratio of the mass of the metal component of the active metal material to the total mass of the metal component of the active metal material, the metal component of the brazing material, and P being 5% by mass or less. At the same time, a brazing material is placed on one side of the copper plate, and the ceramic substrate and the copper plate are arranged so that the active metal material and the brazing material are in contact with each other. By bonding the copper plate to the ceramic substrate by heating it at 780 to 890°C while applying a load of 0.5 kgf/ cm2 , the copper plate can be bonded to the ceramic substrate even if it is heated at a lower temperature while applying a lower load than before. It was discovered that good bonding could be achieved, and the present invention was completed.

すなわち、本発明による金属-セラミックス接合基板の製造方法は、金属成分として活性金属のみを含む活性金属材と、金属成分として活性金属以外の金属のみを含み且つPを含むろう材を用意し、活性金属材の金属成分とろう材の金属成分およびPとの合計の質量に対する活性金属材の金属成分の質量の割合を5質量%以下として、セラミックス基板の一方の面に活性金属材を配置するとともに、銅板の一方の面にろう材を配置し、セラミックス基板と銅板とを、活性金属材とろう材が当接するように配置した後、セラミックス基板と銅板との間に0.005~0.5kgf/cmの荷重を加えながら780~890℃で加熱してセラミックス基板に銅板を接合することを特徴とする。 That is, in the method for manufacturing a metal-ceramic bonded substrate according to the present invention, an active metal material containing only an active metal as a metal component and a brazing material containing only a metal other than the active metal as a metal component and containing P, The active metal material is placed on one side of the ceramic substrate, with the ratio of the mass of the metal component of the active metal material to the total mass of the metal component of the metal material, the metal component of the brazing material, and P being 5% by mass or less; After arranging the brazing material on one side of the copper plate and arranging the ceramic substrate and the copper plate so that the active metal material and the brazing material are in contact with each other, 0.005 to 0.5 kgf is applied between the ceramic substrate and the copper plate. The method is characterized in that a copper plate is bonded to a ceramic substrate by heating at 780 to 890°C while applying a load of /cm 2 .

この金属-セラミックス接合基板の製造方法において、活性金属以外の金属がCuであるのが好ましく、活性金属がTi、ZrおよびHfからなる群から選ばれる少なくとも1種であるのが好ましい。また、ろう材がペーストからなるのが好ましく、活性金属材が板材またはペーストからなるのが好ましく、活性金属材の厚さが10μm以下であるのが好ましい。また、セラミックス基板と銅板との接合が4.0×10-2Pa以下の真空中において行われるのが好ましく、セラミックス基板に銅板を接合する際の加熱の時間が30分間以上であるのが好ましい。 In this method for manufacturing a metal-ceramic bonded substrate, the metal other than the active metal is preferably Cu, and the active metal is preferably at least one selected from the group consisting of Ti, Zr, and Hf. Further, it is preferable that the brazing material is made of a paste, that the active metal material is preferably made of a plate material or a paste, and that the thickness of the active metal material is preferably 10 μm or less. Further, it is preferable that the bonding between the ceramic substrate and the copper plate is performed in a vacuum of 4.0×10 −2 Pa or less, and it is preferable that the heating time when bonding the copper plate to the ceramic substrate is 30 minutes or more. .

また、本発明による金属-セラミックス接合基板は、活性金属と活性金属以外の金属とPとを含む接合層を介してセラミックス基板と銅板が接合された金属-セラミックス接合基板において、接合層が、活性金属とPとの化合物および活性金属と活性金属以外の金属とPとの化合物の少なくとも一方の化合物からなる相と、金属成分として活性金属以外の金属のみを含む相とからなり、活性金属とPとの化合物および活性金属と活性金属以外の金属とPとの化合物の少なくとも一方の化合物からなる相の一部が、セラミックス基板と接合層との間の界面に当接して存在し、活性金属とPとの化合物および活性金属と活性金属以外の金属とPとの化合物の少なくとも一方の化合物からなる相の他の部分とセラミックス基板との間に、金属成分として活性金属以外の金属のみを含む相が存在することを特徴とする。 Further, the metal-ceramic bonded substrate according to the present invention is a metal-ceramic bonded substrate in which a ceramic substrate and a copper plate are bonded via a bonding layer containing an active metal, a metal other than the active metal, and P, in which the bonding layer is active. A phase consisting of a compound of at least one of a compound of a metal and P and a compound of an active metal and a metal other than the active metal and P, and a phase containing only a metal other than the active metal as a metal component, and the active metal and P. A part of the phase consisting of at least one of a compound of P and a compound of an active metal and a metal other than the active metal exists in contact with the interface between the ceramic substrate and the bonding layer, and A phase containing only a metal other than the active metal as a metal component between the other part of the phase consisting of a compound with P and a compound of at least one of an active metal, a metal other than the active metal, and P, and the ceramic substrate. It is characterized by the existence of

この金属-セラミックス接合基板において、活性金属以外の金属がCuであるのが好ましい。また、金属成分として活性金属以外の金属のみを含む相が、Pを含むのが好ましく、80質量%以上のCuを含むのが好ましい。また、活性金属がTi、ZrおよびHfからなる群から選ばれる少なくとも1種からなるのが好ましい。 In this metal-ceramic bonded substrate, it is preferable that the metal other than the active metal is Cu. Further, the phase containing only a metal other than the active metal as a metal component preferably contains P, and preferably contains 80% by mass or more of Cu. Further, it is preferable that the active metal is at least one selected from the group consisting of Ti, Zr, and Hf.

本発明によれば、従来よりも低い荷重を加えながら低い温度で加熱しても、銅板をセラミックス基板に良好に接合することができる、金属-セラミックス接合基板およびその製造方法を提供することができる。 According to the present invention, it is possible to provide a metal-ceramic bonded substrate and a method for manufacturing the same, which can bond a copper plate to a ceramic substrate well even when heated at a lower temperature while applying a lower load than before. .

本発明による金属-セラミックス接合基板の製造方法の実施の形態により得られた銅板とセラミックス基板の積層体を概略的に示す断面図である。1 is a cross-sectional view schematically showing a laminate of a copper plate and a ceramic substrate obtained by an embodiment of the method for manufacturing a metal-ceramic bonded substrate according to the present invention. 本発明による金属-セラミックス接合基板の製造方法の実施の形態において、図1の積層体に加圧する工程を説明する断面図である。FIG. 2 is a cross-sectional view illustrating a step of applying pressure to the laminate shown in FIG. 1 in an embodiment of the method for manufacturing a metal-ceramic bonded substrate according to the present invention. 本発明による金属-セラミックス接合基板の実施の形態を説明する断面図である。1 is a cross-sectional view illustrating an embodiment of a metal-ceramic bonded substrate according to the present invention. 実施例1の金属-セラミックス接合基板の断面の走査電子顕微鏡写真(SEM像)である。1 is a scanning electron micrograph (SEM image) of a cross section of the metal-ceramic bonded substrate of Example 1. 図4の金属-セラミックス接合基板の断面を模式的に示す図である。5 is a diagram schematically showing a cross section of the metal-ceramic bonded substrate of FIG. 4. FIG.

本発明による金属-セラミックス接合基板の製造方法の実施の形態では、図1に示すように、(窒化アルミニウムなどからなる)セラミックス基板10の少なくとも一方の面(図示した実施の形態では両面)に(金属成分として活性金属のみを含む)活性金属材12を配置するとともに、銅板16の一方の面(図示した実施の形態では2枚の銅板の各々の一方の面)に(金属成分として活性金属以外の金属を含み且つリン(P)を含む)ろう材14を(活性金属材の金属成分とろう材の金属成分およびPとの合計の質量に対する活性金属材の金属成分の質量の割合を5質量%以下(好ましくは1.0~4.5質量%、さらに好ましくは1.5~3.5質量%)として)配置した後、セラミックス基板10と銅板16とを、活性金属材12とろう材14を当接させて鉛直方向に積層されるように配置する。この積層体を、図2に示すように、一対のスペーサ18の一方のスペーサ(下側スペーサ)18上に載置し、この積層体の上に他方のスペーサ(上側スペーサ)18を載置した後、この上側スペーサ18の上に重り20を載せてセラミックス基板と銅板との間に0.005~0.5kgf/cm(好ましくは0.01~0.2kgf/cm)の荷重を加えながら780~890℃(好ましくは800~850℃)で加熱してセラミックス基板10に銅板16を接合する。 In an embodiment of the method for manufacturing a metal-ceramic bonded substrate according to the present invention, as shown in FIG. The active metal material 12 (containing only an active metal as a metal component) is disposed, and the active metal material 12 (containing only an active metal as a metal component) is disposed on one surface of the copper plate 16 (in the illustrated embodiment, one surface of each of two copper plates). and phosphorus (P)) (the ratio of the mass of the metal component of the active metal material to the total mass of the metal component of the active metal material, the metal component of the brazing material, and P) is 5 mass. % (preferably 1.0 to 4.5% by mass, more preferably 1.5 to 3.5% by mass)), the ceramic substrate 10 and the copper plate 16 are bonded to the active metal material 12 and the brazing material. 14 are placed in contact with each other and stacked vertically. As shown in FIG. 2, this laminate was placed on one spacer (lower spacer) 18 of a pair of spacers 18, and the other spacer (upper spacer) 18 was placed on top of this laminate. After that, a weight 20 is placed on the upper spacer 18 to apply a load of 0.005 to 0.5 kgf/cm 2 (preferably 0.01 to 0.2 kgf/cm 2 ) between the ceramic substrate and the copper plate. The copper plate 16 is bonded to the ceramic substrate 10 by heating at 780 to 890°C (preferably 800 to 850°C).

活性金属材の活性金属は、Ti、ZrおよびHfからなる群から選ばれる少なくとも1種であるのが好ましい。また、活性金属材は、厚さ10μm以下(好ましくは1~8μm、さらに好ましくは1~5μm)の活性金属板(または活性金属箔)であるのが好ましく、活性金属のペーストを厚さ10μm以下(好ましくは1~8μm、さらに好ましくは1~5μm)に塗布してもよい。 The active metal of the active metal material is preferably at least one selected from the group consisting of Ti, Zr, and Hf. Further, the active metal material is preferably an active metal plate (or active metal foil) with a thickness of 10 μm or less (preferably 1 to 8 μm, more preferably 1 to 5 μm), and the active metal paste is preferably an active metal plate (or active metal foil) with a thickness of 10 μm or less (preferably 1 to 8 μm, more preferably 1 to 5 μm).

ろう材の活性金属以外の金属は、Cuであるのが好ましく、ろう材がCuとPを含むCu-P系ろう材であるのが好ましい。また、ろう材の金属成分およびPと活性金属材の活性金属との合計の質量に対するろう材のCuの質量の割合は、86質量%以上であるのが好ましく、93質量%以下であるのが好ましい。また、ろう材は、ビヒクル(バインダや溶剤などの有機物成分)を含むペーストからなるろう材ペーストであるのが好ましいが、ろう材箔でもよい。 The metal other than the active metal in the brazing filler metal is preferably Cu, and the brazing filler metal is preferably a Cu--P brazing filler metal containing Cu and P. Further, the mass ratio of Cu in the brazing filler metal to the total mass of the metal components and P in the brazing filler metal and the active metal of the active metal material is preferably 86% by mass or more, and preferably 93% by mass or less. preferable. Further, the brazing material is preferably a brazing material paste made of a paste containing a vehicle (organic components such as a binder and a solvent), but may also be a brazing material foil.

また、ろう材と活性金属材は、活性金属材の金属成分とろう材の金属成分およびPとの合計の質量に対する活性金属材の金属成分の質量の割合を5質量%以下(好ましくは1.0~4.5質量%、さらに好ましくは1.5~3.5質量%)になるように配置する。また、ろう材がCuとPを含むCu-P系ろう材であり、活性金属材の活性金属がTiである場合には、Pの質量に対するTiの質量の割合(Ti×100/P)が10~60であるのが好ましく、セラミックス基板と銅板との接合状態をさらに向上させるためには、20~40であるのがさらに好ましい。 In addition, the brazing material and the active metal material are such that the ratio of the mass of the metal component of the active metal material to the total mass of the metal component of the active metal material, the metal component of the brazing material, and P is 5% by mass or less (preferably 1.5% by mass). 0 to 4.5% by mass, more preferably 1.5 to 3.5% by mass). Furthermore, if the brazing filler metal is a Cu-P brazing filler metal containing Cu and P, and the active metal of the active metal material is Ti, the ratio of the mass of Ti to the mass of P (Ti x 100/P) is It is preferably from 10 to 60, and more preferably from 20 to 40 in order to further improve the bonding state between the ceramic substrate and the copper plate.

セラミックス基板と銅板との接合は、4.0×10-2Pa以下の真空中において行われるのが好ましく、セラミックス基板に銅板を接合する際の加熱の時間は、30分間以上であるのが好ましい。 The bonding between the ceramic substrate and the copper plate is preferably performed in a vacuum of 4.0×10 −2 Pa or less, and the heating time when bonding the copper plate to the ceramic substrate is preferably 30 minutes or more. .

また、本発明による金属-セラミックス接合基板の実施の形態は、図3に示すように、活性金属と活性金属以外の金属とPとを含む接合層22を介してセラミックス基板10と銅板16が接合された金属-セラミックス接合基板において、接合層22が、活性金属とPとの化合物および活性金属と活性金属以外の金属とPとの化合物の少なくとも一方の化合物からなる相22aと、金属成分として活性金属以外の金属のみを含む相22bとからなり、活性金属とPとの化合物および活性金属と活性金属以外の金属とPとの化合物の少なくとも一方の化合物からなる相22aの一部が、セラミックス基板10と接合層22との間の界面に当接して存在し、活性金属とPとの化合物および活性金属と活性金属以外の金属とPとの化合物の少なくとも一方のからなる相22aの他の部分とセラミックス基板10との間に、金属成分として活性金属以外の金属のみを含む相22bが存在する。 Further, in the embodiment of the metal-ceramic bonded substrate according to the present invention, as shown in FIG. In the metal-ceramic bonded substrate, the bonding layer 22 includes a phase 22a consisting of at least one of a compound of an active metal and P and a compound of an active metal and a metal other than the active metal and P, and an active metal component. A phase 22b containing only a metal other than the metal, and a part of the phase 22a containing at least one of a compound of an active metal and P and a compound of an active metal, a metal other than the active metal, and P are formed on a ceramic substrate. 10 and the bonding layer 22, the other part of the phase 22a is composed of at least one of a compound of an active metal and P and a compound of an active metal and a metal other than the active metal and P. A phase 22b containing only a metal other than the active metal as a metal component exists between and the ceramic substrate 10.

この金属-セラミックス接合基板の実施の形態において、活性金属以外の金属がCuであるのが好ましい。また、金属成分として活性金属以外の金属のみを含む相22bが、Pを含むのが好ましく、80質量%以上のCuを含むのが好ましい。また、活性金属がTi、ZrおよびHfからなる群から選ばれる少なくとも1種からなるのが好ましい。 In this embodiment of the metal-ceramic bonded substrate, it is preferable that the metal other than the active metal is Cu. Further, the phase 22b containing only metals other than the active metal as a metal component preferably contains P, and preferably contains 80% by mass or more of Cu. Further, it is preferable that the active metal is at least one selected from the group consisting of Ti, Zr, and Hf.

以下、本発明による金属-セラミックス接合基板およびその製造方法の実施例について詳細に説明する。 Examples of the metal-ceramic bonded substrate and method for manufacturing the same according to the present invention will be described in detail below.

[実施例1]
68mm×68mm×0.635mmの大きさの窒化アルミニウムからなるセラミックス基板(TDパワーマテリアル株式会社製)の両面の各々の面の面積3cmの領域に、(金属成分として活性金属のみを含む)活性金属材として厚さ2μmのTi箔(単位面積当たりの活性金属の重量0.0009g/cm)を配置するとともに、70mm×70mm×0.25mmの大きさの2枚の(無酸素銅からなる)銅板の各々の一方の面の面積11.01cmの領域に、(金属成分として活性金属以外の金属を含み且つPを含む)ろう材として(91.78質量%のCuと8.22質量%のPを含む)Cu-P合金粉からなるろう材100重量部と(アクリル系バインダと溶剤からなる)ビヒクル16.7重量部とを混練して得られたろう材ペースト0.445g(単位面積当たりのろう材の重量0.0404g/cm)をスクリーン印刷により塗布(活性金属材の金属成分とろう材の金属成分およびPとの合計の質量100質量%に対するCuとPとTiのそれぞれの質量は89.5質量%、8.0質量%、2.5質量%)し、2枚の銅板とセラミックス基板とを、ろう材と活性金属材を当接させて鉛直方向に積層されるように配置した。
[Example 1]
A ceramic substrate (manufactured by TD Power Materials Co., Ltd.) made of aluminum nitride with a size of 68 mm x 68 mm x 0.635 mm was coated with active metal (containing only active metals as metal components) in an area of 3 cm 2 on each surface. A 2 μm thick Ti foil (weight of active metal per unit area: 0.0009 g/cm 2 ) was placed as a metal material, and two sheets (made of oxygen-free copper) with a size of 70 mm x 70 mm x 0.25 mm were placed. ) A brazing material (91.78% by mass of Cu and 8.22% by mass) (containing a metal other than the active metal as a metal component and containing P) was applied to an area of 11.01 cm 2 on one side of each copper plate. % of P) and 16.7 parts by weight of a vehicle (comprised of an acrylic binder and a solvent). The weight of each brazing filler metal is 0.0404 g/cm 2 ) is applied by screen printing. The mass is 89.5% by mass, 8.0% by mass, and 2.5% by mass), and two copper plates and a ceramic substrate are stacked vertically with the brazing filler metal and the active metal material in contact with each other. It was placed in

この積層体を90mm×75mm×0.6mmの大きさのアルミナ板からなる一対のスペーサの一方のスペーサ(下側スペーサ)上に載置し、この積層体の上に他方のスペーサ(上側スペーサ)を載置した後、この上側スペーサの上に495gの重りを載せた状態で、4.0×10-2Pa以下の真空中において830~850℃で45分間加熱して銅板とセラミックス基板を接合した。 This laminate is placed on one spacer (lower spacer) of a pair of spacers made of alumina plates measuring 90 mm x 75 mm x 0.6 mm, and the other spacer (upper spacer) is placed on top of this laminate. After placing a 495 g weight on the upper spacer, the copper plate and the ceramic substrate were bonded by heating at 830 to 850°C for 45 minutes in a vacuum of 4.0 × 10 -2 Pa or less. did.

このようにして製造した金属-セラミックス接合基板について、セラミックス基板と銅板との接合部を超音波探傷装置(SAT)(日立建機ファインテック株式会社製のFS100II)により観察したところ、セラミックス基板と銅板との間の接合層にボイドなどの欠陥は確認されず、接合率(接合部の全面(Ti箔を配置した領域)の面積に対する接合している領域の面積の割合)は99面積%以上であり、非常に良好に接合していた。 Regarding the metal-ceramic bonded substrate manufactured in this way, when the bonded area between the ceramic substrate and the copper plate was observed using an ultrasonic flaw detector (SAT) (FS100II manufactured by Hitachi Construction Machinery Finetech Co., Ltd.), it was found that the bond between the ceramic substrate and the copper plate was No defects such as voids were observed in the bonding layer between the two, and the bonding rate (ratio of the area of the bonded area to the area of the entire surface of the bonded part (the area where the Ti foil is placed)) was 99 area% or more. Yes, it was very well bonded.

また、本実施例で製造した金属-セラミックス接合基板の断面の1000倍の走査電子顕微鏡写真(SEM像)を図4に示し、その断面を図5に模式的に示す。図5に示すように、本実施例で製造した金属-セラミックス接合基板は、活性金属(Ti)と活性金属以外の金属(Cu)とPとを含む接合層22を介してセラミックス基板10と銅板16が接合された金属-セラミックス接合基板において、接合層22が、活性金属(Ti)とPとの化合物および活性金属(Ti)と活性金属以外の金属(Cu)とPとの化合物の少なくとも一方の化合物からなる相22aと、金属成分として活性金属以外の金属(Cu)のみを含む相22bとからなり、活性金属(Ti)とPとの化合物および活性金属(Ti)と活性金属以外の金属(Cu)とPとの化合物の少なくとも一方の化合物からなる相22aの一部が、セラミックス基板10と接合層22との間の界面に当接して存在し、活性金属(Ti)とPとの化合物および活性金属(Ti)と活性金属以外の金属(Cu)とPとの化合物の少なくとも一方の化合物からなる相22aの他の部分とセラミックス基板10との間に、金属成分として活性金属以外の金属(Cu)のみを含む相22bが存在するのがわかる。なお、走査電子顕微鏡(SEM)に取り付けられたエネルギー分散形X線分析装置(EDS)による特性X線像と組成分析から、活性金属(Ti)とPとの化合物および活性金属(Ti)と活性金属以外の金属(Cu)とPとの化合物の少なくとも一方の化合物からなる相22aが、TiとPの化合物層と、TiとPとCuの化合物層とを含むことがわかった。また、金属成分として活性金属以外の金属(Cu)のみを含む相22bが、Cu相とCu-P相を含み、80質量%以上のCuを含むことがわかった。 Further, a scanning electron micrograph (SEM image) of a cross section of the metal-ceramic bonded substrate manufactured in this example at a magnification of 1000 times is shown in FIG. 4, and the cross section is schematically shown in FIG. As shown in FIG. 5, the metal-ceramic bonded substrate manufactured in this example connects a ceramic substrate 10 to a copper plate via a bonding layer 22 containing an active metal (Ti), a metal other than the active metal (Cu), and P. In the metal-ceramic bonded substrate 16 bonded, the bonding layer 22 includes at least one of a compound of an active metal (Ti) and P, and a compound of an active metal (Ti), a metal other than the active metal (Cu), and P. and a phase 22b containing only a metal other than the active metal (Cu) as a metal component, and a phase 22b consisting of a compound of an active metal (Ti) and P and an active metal (Ti) and a metal other than the active metal. A part of the phase 22a made of at least one compound of (Cu) and P exists in contact with the interface between the ceramic substrate 10 and the bonding layer 22, and the active metal (Ti) and P are in contact with each other. Between the ceramic substrate 10 and the other part of the phase 22a consisting of a compound of at least one of a compound and an active metal (Ti), a metal other than the active metal (Cu), and P, a metal other than the active metal is present as a metal component. It can be seen that a phase 22b containing only metal (Cu) exists. In addition, from the characteristic X-ray image and composition analysis using an energy dispersive X-ray spectrometer (EDS) attached to a scanning electron microscope (SEM), it was found that compounds of active metals (Ti) and P, and active metals (Ti) and It was found that the phase 22a made of at least one compound of a metal (Cu) other than metal and a compound of P includes a compound layer of Ti and P and a compound layer of Ti, P, and Cu. Further, it was found that the phase 22b containing only a metal (Cu) other than the active metal as a metal component included a Cu phase and a Cu--P phase, and contained 80% by mass or more of Cu.

[実施例2]
実施例1と同様のセラミックス基板の両面の各々の面の面積44.90cmの領域に、(金属成分として活性金属のみを含む)活性金属材として厚さ3μmのTi箔(単位面積当たりの活性金属の重量0.0014g/cm)を配置するとともに、実施例1と同様の2枚の銅板の各々の一方の面の面積44.04cmの領域に、(金属成分として活性金属以外の金属を含み且つPを含む)ろう材として(91.78質量%のCuと8.22質量%のPを含む)Cu-P合金粉からなるろう材100重量部と(実施例1と同様の)ビヒクル16.7重量部とを混練して得られたろう材ペースト2.510g(単位面積当たりのろう材の重量0.0570g/cm)をスクリーン印刷により塗布(活性金属材の金属成分とろう材の金属成分およびPとの合計の質量100質量%に対するCuとPとTiのそれぞれの質量は89.3質量%、8.0質量%、2.7質量%)し、2枚の銅板とセラミックス基板とを、ろう材と活性金属材を当接させて鉛直方向に積層されるように配置し、この積層体を実施例1と同様の一対のスペーサの一方のスペーサ(下側スペーサ)上に載置し、この積層体の上に他方のスペーサ(上側スペーサ)を載置した後、この上側スペーサの上に477gの重りを載せた状態で、4.0×10-2Pa以下の真空中において830~850℃で45分間加熱して銅板とセラミックス基板を接合した。
[Example 2]
A 3 μm thick Ti foil (containing only active metal as a metal component) as an active metal material (containing only active metal as a metal component) was applied to an area of 44.90 cm 2 on each side of the same ceramic substrate as in Example 1. A metal with a weight of 0.0014 g/cm 2 ) was placed on a region of 44.04 cm 2 on one side of each of two copper plates similar to those in Example 1. 100 parts by weight of a brazing material made of Cu--P alloy powder (containing 91.78% by mass of Cu and 8.22% by mass of P) as a brazing material (containing 91.78% by mass of Cu and 8.22% by mass of P); 2.510 g of brazing filler metal paste obtained by kneading 16.7 parts by weight of vehicle (brazing filler metal weight per unit area 0.0570 g/cm 2 ) was applied by screen printing (the metal component of the active metal material and the brazing filler metal The respective masses of Cu, P, and Ti are 89.3% by mass, 8.0% by mass, and 2.7% by mass relative to the total mass of 100% by mass of the metal components and P, respectively. The brazing material and the active metal material are placed in contact with each other and stacked vertically, and this laminate is placed on one spacer (lower spacer) of a pair of spacers similar to Example 1. After placing the other spacer (upper spacer) on top of this laminate, it was placed in a vacuum of 4.0×10 -2 Pa or less with a weight of 477 g placed on top of this upper spacer. The copper plate and ceramic substrate were bonded by heating at 830 to 850°C for 45 minutes.

このようにして製造した金属-セラミックス接合基板について、実施例1と同様の方法により観察したところ、セラミックス基板と銅板との間の接合層にボイドなどの欠陥は確認されず、接合率は99面積%以上であり、非常に良好に接合していた。 When the metal-ceramic bonded substrate thus manufactured was observed using the same method as in Example 1, no defects such as voids were observed in the bonding layer between the ceramic substrate and the copper plate, and the bonding rate was 99. % or more, indicating very good bonding.

[実施例3]
実施例1と同様のセラミックス基板の両面の各々の面の面積44.90cmの領域に、(金属成分として活性金属のみを含む)活性金属材として厚さ3μmのTi箔(単位面積当たりの活性金属の重量0.0014g/cm)を配置するとともに、実施例1と同様の2枚の銅板の各々の一方の面の面積44.04cmの領域に、(金属成分として活性金属以外の金属を含み且つPを含む)ろう材として(91.78質量%のCuと8.22質量%のPを含む)Cu-P合金粉からなるろう材100重量部と(実施例1と同様の)ビヒクル16.7重量部とを混練して得られたろう材ペースト1.621g(単位面積当たりのろう材の重量0.0368g/cm)をスクリーン印刷により塗布(活性金属材の金属成分とろう材の金属成分およびPとの合計の質量100質量%に対するCuとPとTiのそれぞれの質量は88.0質量%、7.9質量%、4.1質量%)し、2枚の銅板とセラミックス基板とを、ろう材と活性金属材を当接させて鉛直方向に積層されるように配置し、この積層体を実施例1と同様の一対のスペーサの一方のスペーサ(下側スペーサ)上に載置し、この積層体の上に他方のスペーサ(上側スペーサ)を載置した後、この上側スペーサの上に1959gの重りを載せた状態で、4.0×10-2Pa以下の真空中において830~850℃で45分間加熱して銅板とセラミックス基板を接合した。
[Example 3]
A 3 μm thick Ti foil (containing only active metal as a metal component) as an active metal material (containing only active metal as a metal component) was applied to an area of 44.90 cm 2 on each side of the same ceramic substrate as in Example 1. A metal with a weight of 0.0014 g/cm 2 ) was placed on a region of 44.04 cm 2 on one side of each of two copper plates similar to those in Example 1. 100 parts by weight of a brazing material made of Cu--P alloy powder (containing 91.78% by mass of Cu and 8.22% by mass of P) as a brazing material (containing 91.78% by mass of Cu and 8.22% by mass of P); 1.621 g of brazing paste obtained by kneading 16.7 parts by weight of vehicle (brazing filler metal weight per unit area 0.0368 g/cm 2 ) was applied by screen printing (the metal component of the active metal material and the brazing filler metal were mixed together). The respective masses of Cu, P, and Ti are 88.0% by mass, 7.9% by mass, and 4.1% by mass with respect to the total mass of 100% by mass of the metal components and P), and the two copper plates and the ceramic The brazing material and the active metal material are placed in contact with each other and stacked vertically, and this laminate is placed on one spacer (lower spacer) of a pair of spacers similar to Example 1. After placing the other spacer (upper spacer) on top of this laminate, it was placed in a vacuum of 4.0×10 -2 Pa or less with a weight of 1959 g placed on top of this upper spacer. The copper plate and ceramic substrate were bonded by heating at 830 to 850°C for 45 minutes.

このようにして製造した金属-セラミックス接合基板について、実施例1と同様の方法により観察したところ、接合率は90面積%~99面積%未満であり、良好に接合していた。 When the metal-ceramic bonded substrate thus produced was observed using the same method as in Example 1, the bonding rate was 90 area % to less than 99 area %, indicating good bonding.

[実施例4]
実施例1と同様のセラミックス基板の両面の各々の面の面積44.90cmの領域に、(金属成分として活性金属のみを含む)活性金属材として厚さ3μmのTi箔(単位面積当たりの活性金属の重量0.0014g/cm)を配置するとともに、実施例1と同様の2枚の銅板の各々の一方の面の面積44.04cmの領域に、(金属成分として活性金属以外の金属を含み且つPを含む)ろう材として(91.78質量%のCuと8.22質量%のPを含む)Cu-P合金粉からなるろう材100重量部と(実施例1と同様の)ビヒクル16.7重量部とを混練して得られたろう材ペースト1.832g(単位面積当たりのろう材の重量0.0416g/cm)をスクリーン印刷により塗布(活性金属材の金属成分とろう材の金属成分およびPとの合計の質量100質量%に対するCuとPとTiのそれぞれの質量は88.4質量%、7.9質量%、3.7質量%)し、2枚の銅板とセラミックス基板とを、ろう材と活性金属材を当接させて鉛直方向に積層されるように配置し、この積層体を実施例1と同様の一対のスペーサの一方のスペーサ(下側スペーサ)上に載置し、この積層体の上に他方のスペーサ(上側スペーサ)を載置した後、この上側スペーサの上に496gの重りを載せた状態で、4.0×10-2Pa以下の真空中において830~850℃で45分間加熱して銅板とセラミックス基板を接合した。
[Example 4]
A 3 μm thick Ti foil (containing only active metal as a metal component) as an active metal material (containing only active metal as a metal component) was applied to an area of 44.90 cm 2 on each side of the same ceramic substrate as in Example 1. A metal with a weight of 0.0014 g/cm 2 ) was placed on a region of 44.04 cm 2 on one side of each of two copper plates similar to those in Example 1. 100 parts by weight of a brazing material made of Cu--P alloy powder (containing 91.78% by mass of Cu and 8.22% by mass of P) as a brazing material (containing 91.78% by mass of Cu and 8.22% by mass of P); 1.832 g of brazing paste obtained by kneading 16.7 parts by weight of vehicle (brazing filler metal weight per unit area: 0.0416 g/cm 2 ) was applied by screen printing (the metal component of the active metal material and the brazing filler metal were mixed together). The respective masses of Cu, P, and Ti are 88.4% by mass, 7.9% by mass, and 3.7% by mass with respect to the total mass of 100% by mass of the metal components and P), and the two copper plates and the ceramic The brazing material and the active metal material are placed in contact with each other and stacked vertically, and this laminate is placed on one spacer (lower spacer) of a pair of spacers similar to Example 1. After placing the other spacer (upper spacer) on top of this laminate, it was placed in a vacuum of 4.0×10 -2 Pa or less with a weight of 496 g placed on top of this upper spacer. The copper plate and ceramic substrate were bonded by heating at 830 to 850°C for 45 minutes.

このようにして製造した金属-セラミックス接合基板について、実施例1と同様の方法により観察したところ、接合率は75面積%~90面積%未満であり、ほぼ良好に接合していた。 When the metal-ceramic bonded substrate produced in this way was observed using the same method as in Example 1, the bonding rate was 75 area % to less than 90 area %, indicating almost good bonding.

[実施例5]
実施例1と同様のセラミックス基板の両面の各々の面の面積44.90cmの領域に、(金属成分として活性金属のみを含む)活性金属材として厚さ3μmのTi箔(単位面積当たりの活性金属の重量0.0014g/cm)を配置するとともに、実施例1と同様の2枚の銅板の各々の一方の面の面積44.04cmの領域に、(金属成分として活性金属以外の金属を含み且つPを含む)ろう材として(91.78質量%のCuと8.22質量%のPを含む)Cu-P合金粉からなるろう材100重量部と(実施例1と同様の)ビヒクル16.7重量部とを混練して得られたろう材ペースト1.621g(単位面積当たりのろう材の重量0.0368g/cm)をスクリーン印刷により塗布(活性金属材の金属成分とろう材の金属成分およびPとの合計の質量100質量%に対するCuとPとTiのそれぞれの質量は88.0質量%、7.9質量%、4.1質量%)し、2枚の銅板とセラミックス基板とを、ろう材と活性金属材を当接させて鉛直方向に積層されるように配置し、この積層体を実施例1と同様の一対のスペーサの一方のスペーサ(下側スペーサ)上に載置し、この積層体の上に他方のスペーサ(上側スペーサ)を載置した後、この上側スペーサの上に494gの重りを載せた状態で、4.0×10-2Pa以下の真空中において830~850℃で45分間加熱して銅板とセラミックス基板を接合した。
[Example 5]
A 3 μm thick Ti foil (containing only active metal as a metal component) as an active metal material (containing only active metal as a metal component) was applied to an area of 44.90 cm 2 on each side of the same ceramic substrate as in Example 1. A metal with a weight of 0.0014 g/cm 2 ) was placed on a region of 44.04 cm 2 on one side of each of two copper plates similar to those in Example 1. 100 parts by weight of a brazing material made of Cu--P alloy powder (containing 91.78% by mass of Cu and 8.22% by mass of P) as a brazing material (containing 91.78% by mass of Cu and 8.22% by mass of P); 1.621 g of brazing paste obtained by kneading 16.7 parts by weight of vehicle (brazing filler metal weight per unit area 0.0368 g/cm 2 ) was applied by screen printing (the metal component of the active metal material and the brazing filler metal were mixed together). The respective masses of Cu, P, and Ti are 88.0% by mass, 7.9% by mass, and 4.1% by mass with respect to the total mass of 100% by mass of the metal components and P), and the two copper plates and the ceramic The brazing material and the active metal material are placed in contact with each other and stacked vertically, and this laminate is placed on one spacer (lower spacer) of a pair of spacers similar to Example 1. After placing the other spacer (upper spacer) on top of this laminate, it was placed in a vacuum of 4.0×10 -2 Pa or less with a weight of 494 g placed on top of this upper spacer. The copper plate and ceramic substrate were bonded by heating at 830 to 850°C for 45 minutes.

このようにして製造した金属-セラミックス接合基板について、実施例1と同様の方法により観察したところ、接合率は75面積%~90面積%未満であり、ほぼ良好に接合していた。 When the metal-ceramic bonded substrate produced in this way was observed using the same method as in Example 1, the bonding rate was 75 area % to less than 90 area %, indicating almost good bonding.

[実施例6]
実施例1と同様のセラミックス基板の両面の各々の面の面積11.56cmの領域に、(金属成分として活性金属のみを含む)活性金属材として厚さ3μmのTi箔(単位面積当たりの活性金属の重量0.0014g/cm)を配置するとともに、実施例1と同様の2枚の銅板の各々の一方の面の面積11.01cmの領域に、(金属成分として活性金属以外の金属を含み且つPを含む)ろう材として(91.78質量%のCuと8.22質量%のPを含む)Cu-P合金粉からなるろう材100重量部と(実施例1と同様の)ビヒクル16.7重量部とを混練して得られたろう材ペースト0.405g(単位面積当たりのろう材の重量0.0368g/cm)をスクリーン印刷により塗布(活性金属材の金属成分とろう材の金属成分およびPとの合計の質量100質量%に対するCuとPとTiのそれぞれの質量は88.0質量%、7.9質量%、4.1質量%)し、2枚の銅板とセラミックス基板とを、ろう材と活性金属材を当接させて鉛直方向に積層されるように配置し、この積層体を実施例1と同様の一対のスペーサの一方のスペーサ(下側スペーサ)上に載置し、この積層体の上に他方のスペーサ(上側スペーサ)を載置した後、この上側スペーサの上に495gの重りを載せた状態で、4.0×10-2Pa以下の真空中において830~850℃で45分間加熱して銅板とセラミックス基板を接合した。
[Example 6]
A 3 μm thick Ti foil (containing only active metal as a metal component) as an active metal material (containing only active metal as a metal component) was applied to an area of 11.56 cm 2 on each side of the same ceramic substrate as in Example 1. A metal with a weight of 0.0014 g/cm 2 ) was placed in a region of 11.01 cm 2 on one side of each of two copper plates similar to those in Example 1. 100 parts by weight of a brazing material made of Cu--P alloy powder (containing 91.78% by mass of Cu and 8.22% by mass of P) as a brazing material (containing 91.78% by mass of Cu and 8.22% by mass of P); 0.405 g of brazing paste obtained by kneading 16.7 parts by weight of vehicle (brazing filler metal weight per unit area: 0.0368 g/cm 2 ) was applied by screen printing (the metal component of the active metal material and the brazing filler metal were mixed together). The respective masses of Cu, P, and Ti are 88.0% by mass, 7.9% by mass, and 4.1% by mass with respect to the total mass of 100% by mass of the metal components and P), and the two copper plates and the ceramic The brazing material and the active metal material are placed in contact with each other and stacked vertically, and this laminate is placed on one spacer (lower spacer) of a pair of spacers similar to Example 1. After placing the other spacer (upper spacer) on top of this laminate, it was placed in a vacuum of 4.0×10 -2 Pa or less with a 495 g weight placed on top of this upper spacer. The copper plate and ceramic substrate were bonded by heating at 830 to 850°C for 45 minutes.

このようにして製造した金属-セラミックス接合基板について、実施例1と同様の方法により観察したところ、接合率は75面積%~90面積%未満であり、ほぼ良好に接合していた。 When the metal-ceramic bonded substrate produced in this way was observed using the same method as in Example 1, the bonding rate was 75 area % to less than 90 area %, indicating almost good bonding.

[実施例7]
実施例1と同様のセラミックス基板の両面の各々の面の面積44.04cmの領域に、(金属成分として活性金属のみを含む)活性金属材としてTi粉100重量部と(実施例1と同様の)ビヒクル16.7重量部とを混練して得られた活性金属ペースト(Tiペースト)を厚さ約1.5μm(単位面積当たりの活性金属の重量0.0007g/cm)になるようにスクリーン印刷により塗布するとともに、実施例1と同様の2枚の銅板の各々の一方の面の面積44.04cmの領域に、(金属成分として活性金属以外の金属を含み且つPを含む)ろう材として(91.78質量%のCuと8.22質量%のPを含む)Cu-P合金粉からなるろう材100重量部と(実施例1と同様の)ビヒクル16.7重量部とを混練して得られたろう材ペースト2.995g(単位面積当たりのろう材の重量0.0680g/cm)をスクリーン印刷により塗布(活性金属材の金属成分とろう材の金属成分およびPとの合計の質量100質量%に対するCuとPとTiのそれぞれの質量は90.7質量%、8.1質量%、1.2質量%)し、2枚の銅板とセラミックス基板とを、ろう材と活性金属材を当接させて鉛直方向に積層されるように配置し、この積層体を実施例1と同様の一対のスペーサの一方のスペーサ(下側スペーサ)上に載置し、この積層体の上に他方のスペーサ(上側スペーサ)を載置した後、この上側スペーサの上に497gの重りを載せた状態で、4.0×10-2Pa以下の真空中において830~850℃で45分間加熱して銅板とセラミックス基板を接合した。
[Example 7]
100 parts by weight of Ti powder as an active metal material (containing only active metal as a metal component) was added to an area of 44.04 cm 2 on each side of a ceramic substrate similar to Example 1. The active metal paste (Ti paste) obtained by kneading the active metal paste (Ti paste) with 16.7 parts by weight of vehicle (1) to a thickness of about 1.5 μm (weight of active metal per unit area: 0.0007 g/cm 2 ). It was applied by screen printing, and a wax (containing a metal other than the active metal as a metal component and containing P) was applied to an area of 44.04 cm 2 on one side of each of two copper plates similar to those in Example 1. 100 parts by weight of a brazing filler metal made of Cu--P alloy powder (containing 91.78% by mass of Cu and 8.22% by mass of P) and 16.7 parts by weight of vehicle (same as in Example 1) were used as materials. 2.995 g of the brazing filler metal paste obtained by kneading (weight of brazing filler metal per unit area 0.0680 g/cm 2 ) was applied by screen printing (the sum of the metal component of the active metal material, the metal component of the brazing filler metal, and P). The respective masses of Cu, P, and Ti are 90.7% by mass, 8.1% by mass, and 1.2% by mass with respect to 100% by mass), and the two copper plates and the ceramic substrate are The metal materials are placed in contact with each other and stacked vertically, and this laminate is placed on one spacer (lower spacer) of a pair of spacers similar to Example 1. After placing the other spacer (upper spacer) on top, with a 497 g weight placed on top of this upper spacer, it was heated at 830 to 850°C for 45 minutes in a vacuum of 4.0 × 10 -2 Pa or less. The copper plate and ceramic substrate were bonded together by heating.

このようにして製造した金属-セラミックス接合基板について、実施例1と同様の方法により観察したところ、接合率は90面積%~99面積%未満であり、良好に接合していた。 When the metal-ceramic bonded substrate thus produced was observed using the same method as in Example 1, the bonding rate was 90 area % to less than 99 area %, indicating good bonding.

[比較例1]
実施例1と同様のセラミックス基板の両面の各々の面の面積3cmの領域に、(金属成分として活性金属のみを含む)活性金属材として厚さ10μmのTi箔(単位面積当たりの活性金属の重量0.0045g/cm)を配置するとともに、実施例1と同様の2枚の銅板の各々の一方の面の面積11.01cmの領域に、(金属成分として活性金属以外の金属を含み且つPを含む)ろう材として(91.78質量%のCuと8.22質量%のPを含む)Cu-P合金粉からなるろう材100重量部と(実施例1と同様の)ビヒクル16.7重量部とを混練して得られたろう材ペースト0.460g(単位面積当たりのろう材の重量0.0418g/cm)をスクリーン印刷により塗布(活性金属材の金属成分とろう材の金属成分およびPとの合計の質量100質量%に対するCuとPとTiのそれぞれの質量は81.5質量%、7.3質量%、11.2質量%)し、2枚の銅板とセラミックス基板とを、ろう材と活性金属材を当接させて鉛直方向に積層されるように配置し、この積層体を実施例1と同様の一対のスペーサの一方のスペーサ(下側スペーサ)上に載置し、この積層体の上に他方のスペーサ(上側スペーサ)を載置した後、この上側スペーサの上に490gの重りを載せた状態で、4.0×10-2Pa以下の真空中において830~850℃で45分間加熱して銅板とセラミックス基板を接合した。
[Comparative example 1]
A 10 μm thick Ti foil (with active metal content per unit area) as an active metal material (containing only active metal as a metal component) was placed on a 3 cm 2 area on each side of the same ceramic substrate as in Example 1. (Weight: 0.0045 g/cm 2 ) was placed in an area of 11.01 cm 2 on one side of each of two copper plates similar to those in Example 1. 100 parts by weight of a brazing material made of Cu--P alloy powder (containing 91.78% by mass of Cu and 8.22% by mass of P) and a vehicle (same as in Example 1) 16 0.460 g of brazing filler metal paste obtained by kneading .7 parts by weight (weight of brazing filler metal per unit area: 0.0418 g/cm 2 ) was applied by screen printing (the metal component of the active metal material and the metal of the brazing filler metal were mixed together) by screen printing. The respective masses of Cu, P, and Ti are 81.5% by mass, 7.3% by mass, and 11.2% by mass with respect to 100% by mass of the total mass of components and P, and two copper plates and a ceramic substrate are used. are arranged so that the brazing material and the active metal material are in contact with each other and stacked vertically, and this laminate is placed on one spacer (lower spacer) of a pair of spacers similar to Example 1. After placing the other spacer (upper spacer) on top of this laminate, it was heated to 830 g in a vacuum of 4.0×10 -2 Pa or less with a 490 g weight placed on top of this upper spacer. The copper plate and ceramic substrate were bonded by heating at ~850°C for 45 minutes.

このようにして製造した金属-セラミックス接合基板について、実施例1と同様の方法により観察したところ、接合率は50面積%未満であり、良好に接合していなかった。 When the thus produced metal-ceramic bonded substrate was observed using the same method as in Example 1, the bonding rate was less than 50 area %, indicating that the bonding was not good.

[比較例2]
重りの重量を1962gとした以外は、比較例1と同様の方法により、銅板とセラミックス基板を接合した。
[Comparative example 2]
A copper plate and a ceramic substrate were joined by the same method as in Comparative Example 1, except that the weight of the weight was 1962 g.

このようにして製造した金属-セラミックス接合基板について、実施例1と同様の方法により観察したところ、接合率は50面積%未満であり、良好に接合していなかった。 When the thus produced metal-ceramic bonded substrate was observed using the same method as in Example 1, the bonding rate was less than 50 area %, indicating that the bonding was not good.

[比較例3]
実施例1と同様のセラミックス基板の両面の各々の面の面積44.04cmの領域に、(金属成分として活性金属のみを含む)活性金属材として実施例7と同様の活性金属ペースト(Tiペースト)を厚さ約11.4μm(単位面積当たりの活性金属の重量0.0051g/cm)になるようにスクリーン印刷により塗布するとともに、実施例1と同様の2枚の銅板の各々の一方の面の面積44.04cmの領域に、(金属成分として活性金属以外の金属を含み且つPを含む)ろう材として(91.78質量%のCuと8.22質量%のPを含む)Cu-P合金粉からなるろう材100重量部と(実施例1と同様の)ビヒクル16.7重量部とを混練して得られたろう材ペースト2.995g(単位面積当たりのろう材の重量0.0680g/cm)をスクリーン印刷により塗布(活性金属材の金属成分とろう材の金属成分およびPとの合計の質量100質量%に対するCuとPとTiのそれぞれの質量は84.3質量%、7.6質量%、8.1質量%)し、2枚の銅板とセラミックス基板とを、ろう材と活性金属材を当接させて鉛直方向に積層されるように配置し、この積層体を実施例1と同様の一対のスペーサの一方のスペーサ(下側スペーサ)上に載置し、この積層体の上に他方のスペーサ(上側スペーサ)を載置した後、この上側スペーサの上に493gの重りを載せた状態で、4.0×10-2Pa以下の真空中において830~850℃で45分間加熱して銅板とセラミックス基板を接合した。
[Comparative example 3]
The same active metal paste (Ti paste as in Example 7) was applied as an active metal material (containing only active metal as a metal component) to an area of 44.04 cm 2 on each surface of both surfaces of the same ceramic substrate as in Example 1. ) was coated by screen printing to a thickness of approximately 11.4 μm (weight of active metal per unit area: 0.0051 g/cm 2 ), and on one side of each of the two copper plates similar to Example 1. Cu (contains 91.78% by mass of Cu and 8.22% by mass of P) as a brazing material (contains a metal other than the active metal as a metal component and also includes P) in an area of 44.04 cm 2 of the surface 2.995 g of brazing paste obtained by kneading 100 parts by weight of a brazing filler metal made of -P alloy powder and 16.7 parts by weight of a vehicle (same as in Example 1) (weight of brazing filler metal per unit area: 0.95 g). 0680 g/cm 2 ) by screen printing (the mass of each of Cu, P, and Ti is 84.3 mass% with respect to 100 mass% of the total mass of the metal component of the active metal material, the metal component of the brazing material, and P, 7.6% by mass, 8.1% by mass), two copper plates and a ceramic substrate are arranged so that they are stacked vertically with the brazing filler metal and active metal material in contact with each other, and this laminate is After placing it on one spacer (lower spacer) of a pair of spacers similar to Example 1, and placing the other spacer (upper spacer) on this laminate, 493g was placed on top of this upper spacer. The copper plate and the ceramic substrate were bonded by heating at 830 to 850° C. for 45 minutes in a vacuum of 4.0×10 −2 Pa or less with a weight placed on the copper plate.

このようにして製造した金属-セラミックス接合基板について、実施例1と同様の方法により観察したところ、接合率は50面積%未満であり、良好に接合していなかった。 When the thus produced metal-ceramic bonded substrate was observed using the same method as in Example 1, the bonding rate was less than 50 area %, indicating that the bonding was not good.

[比較例4]
実施例1と同様のセラミックス基板の両面の各々の面の面積44.04cmの領域に、(金属成分として活性金属のみを含む)活性金属材として実施例7と同様の活性金属ペースト(Tiペースト)を厚さ約2μm(単位面積当たりの活性金属の重量0.0009g/cm)になるようにスクリーン印刷により塗布するとともに、実施例1と同様の2枚の銅板の各々の一方の面の面積44.04cmの領域に、(金属成分として活性金属以外の金属を含み且つPを含む)ろう材として(91.78質量%のCuと8.22質量%のPを含む)Cu-P合金粉からなるろう材100重量部と(実施例1と同様の)ビヒクル16.7重量部とを混練して得られたろう材ペースト3.039g(単位面積当たりのろう材の重量0.0690g/cm)をスクリーン印刷により塗布(活性金属材の金属成分とろう材の金属成分およびPとの合計の質量100質量%に対するCuとPとTiのそれぞれの質量は90.4質量%、8.1質量%、1.5質量%)し、2枚の銅板とセラミックス基板とを、ろう材と活性金属材を当接させて鉛直方向に積層されるように配置し、この積層体を実施例1と同様の一対のスペーサの一方のスペーサ(下側スペーサ)上に載置し、この積層体の上に他方のスペーサ(上側スペーサ)を載置した後、この上側スペーサの上に497gの重りを載せた状態で、4.0×10-2Pa以下の真空中において750℃で45分間加熱して銅板とセラミックス基板を接合した。
[Comparative example 4]
The same active metal paste (Ti paste as in Example 7) was applied as an active metal material (containing only active metal as a metal component) to an area of 44.04 cm 2 on each surface of both surfaces of the same ceramic substrate as in Example 1. ) to a thickness of approximately 2 μm (weight of active metal per unit area: 0.0009 g/cm 2 ), and coated on one side of each of two copper plates similar to Example 1. In an area of 44.04 cm 2 , Cu-P (containing 91.78% by mass of Cu and 8.22% by mass of P) was used as a brazing material (containing a metal other than the active metal as a metal component and also containing P). 3.039 g of brazing paste obtained by kneading 100 parts by weight of a brazing material made of alloy powder and 16.7 parts by weight of a vehicle (same as in Example 1) (weight of brazing material per unit area: 0.0690 g/ cm 2 ) by screen printing (the mass of each of Cu, P, and Ti is 90.4% by mass based on 100% by mass of the total mass of the metal component of the active metal material, the metal component of the brazing material, and P, 8. 1% by mass and 1.5% by mass), two copper plates and a ceramic substrate were arranged so as to be vertically stacked with the brazing filler metal and the active metal material in contact with each other, and this laminate was used as an example. Place it on one spacer (lower spacer) of a pair of spacers similar to 1, place the other spacer (upper spacer) on top of this laminate, and then place a 497 g weight on top of this upper spacer. The copper plate and the ceramic substrate were bonded by heating at 750° C. for 45 minutes in a vacuum of 4.0×10 −2 Pa or less.

このようにして製造した金属-セラミックス接合基板について、実施例1と同様の方法により観察したところ、接合率は50面積%未満であり、良好に接合していなかった。 When the thus produced metal-ceramic bonded substrate was observed using the same method as in Example 1, the bonding rate was less than 50 area %, indicating that the bonding was not good.

[比較例5]
実施例1と同様の2枚の銅板の各々の一方の面の面積44.9cmの領域に、(金属成分として活性金属のみを含む)活性金属材として厚さ3μmのTi箔(単位面積当たりの活性金属の重量0.0014g/cm)を配置するとともに、実施例1と同様のセラミックス基板の両面の各々の面の面積44.04cmの領域に、(金属成分として活性金属以外の金属を含み且つPを含む)ろう材として(91.78質量%のCuと8.22質量%のPを含む)Cu-P合金粉からなるろう材100重量部と(実施例1と同様の)ビヒクル16.7重量部とを混練して得られたろう材ペースト2.519g(単位面積当たりのろう材の重量0.0572g/cm)をスクリーン印刷により塗布(活性金属材の金属成分とろう材の金属成分およびPとの合計の質量100質量%に対するCuとPとTiのそれぞれの質量は89.3質量%、8.0質量%、2.7質量%)し、2枚の銅板とセラミックス基板とを、ろう材と活性金属材を当接させて鉛直方向に積層されるように配置し、この積層体を実施例1と同様の一対のスペーサの一方のスペーサ(下側スペーサ)上に載置し、この積層体の上に他方のスペーサ(上側スペーサ)を載置した後、この上側スペーサの上に494gの重りを載せた状態で、4.0×10-2Pa以下の真空中において830~850℃で45分間加熱して銅板とセラミックス基板を接合した。
[Comparative example 5]
A Ti foil with a thickness of 3 μm (per unit area) was placed as an active metal material (containing only active metal as a metal component) in an area of 44.9 cm 2 on one side of each of two copper plates similar to Example 1. (Weight of active metal 0.0014 g/cm 2 ) was placed on a region of 44.04 cm 2 on each surface of both surfaces of the same ceramic substrate as in Example 1. 100 parts by weight of a brazing material made of Cu--P alloy powder (containing 91.78% by mass of Cu and 8.22% by mass of P) as a brazing material (containing 91.78% by mass of Cu and 8.22% by mass of P); 2.519 g of brazing paste obtained by kneading 16.7 parts by weight of vehicle (brazing filler metal weight per unit area 0.0572 g/cm 2 ) was applied by screen printing (the metal component of the active metal material and the brazing filler metal were mixed together). The respective masses of Cu, P, and Ti are 89.3% by mass, 8.0% by mass, and 2.7% by mass relative to the total mass of 100% by mass of the metal components and P, respectively. The brazing material and the active metal material are placed in contact with each other and stacked vertically, and this laminate is placed on one spacer (lower spacer) of a pair of spacers similar to Example 1. After placing the other spacer (upper spacer) on top of this laminate, it was placed in a vacuum of 4.0×10 -2 Pa or less with a weight of 494 g placed on top of this upper spacer. The copper plate and ceramic substrate were bonded by heating at 830 to 850°C for 45 minutes.

このようにして製造した金属-セラミックス接合基板について、実施例1と同様の方法により観察したところ、接合率は50面積%未満であり、良好に接合していなかった。 When the thus produced metal-ceramic bonded substrate was observed using the same method as in Example 1, the bonding rate was less than 50 area %, indicating that the bonding was not good.

これらの実施例および比較例の金属-セラミックス接合基板の製造条件および特性を表1~表4に示す。なお、表4において、接合状態が非常に良好な場合を◎、良好な場合を○、ほぼ良好な場合を△、良好でない場合を×で示している。 The manufacturing conditions and characteristics of the metal-ceramic bonded substrates of these Examples and Comparative Examples are shown in Tables 1 to 4. In Table 4, a case where the bonding condition is very good is indicated by ◎, a good case is indicated by ◯, a case where it is almost good is indicated by △, and a case where it is not good is indicated by ×.

Figure 0007370222000001
Figure 0007370222000001

Figure 0007370222000002
Figure 0007370222000002

Figure 0007370222000003
Figure 0007370222000003

Figure 0007370222000004
Figure 0007370222000004

10 セラミックス基板
12 活性金属材
14 ろう材
16 銅板
18 スペーサ
20 重り
22 接合層
22a 化合物相
22b 金属成分として活性金属以外の金属のみを含む相
10 Ceramic substrate 12 Active metal material 14 Brazing filler metal 16 Copper plate 18 Spacer 20 Weight 22 Bonding layer 22a Compound phase 22b Phase containing only metals other than active metals as metal components

Claims (11)

金属成分として活性金属のみを含む活性金属材と、金属成分として活性金属以外の金属としてのCuを含み且つPを含むろう材を用意し、活性金属材の金属成分とろう材の金属成分およびPとの合計の質量に対する活性金属材の金属成分の質量の割合を5質量%以下として、セラミックス基板の一方の面に活性金属材を配置するとともに、銅板の一方の面にろう材を配置し、セラミックス基板と銅板とを、活性金属材とろう材が当接するように配置した後、セラミックス基板と銅板との間に0.005~0.5kgf/cmの荷重を加えながら780~890℃で加熱してセラミックス基板に銅板を接合することを特徴とする、金属-セラミックス接合基板の製造方法。 An active metal material containing only an active metal as a metal component and a brazing material containing Cu as a metal other than the active metal and P as a metal component are prepared, and the metal component of the active metal material, the metal component of the brazing material, and P are prepared. The active metal material is arranged on one side of the ceramic substrate, and the brazing material is arranged on one side of the copper plate, with the ratio of the mass of the metal component of the active metal material to the total mass of the active metal material being 5% by mass or less, After arranging the ceramic substrate and the copper plate so that the active metal material and the brazing material are in contact with each other, the ceramic substrate and the copper plate are heated at 780 to 890°C while applying a load of 0.005 to 0.5 kgf/ cm2 between the ceramic substrate and the copper plate. A method for manufacturing a metal-ceramic bonded substrate, characterized by bonding a copper plate to a ceramic substrate by heating. 前記活性金属がTi、ZrおよびHfからなる群から選ばれる少なくとも1種であることを特徴とする、請求項に記載の金属-セラミックス接合基板の製造方法。 2. The method for manufacturing a metal-ceramic bonded substrate according to claim 1 , wherein the active metal is at least one selected from the group consisting of Ti, Zr, and Hf. 前記ろう材がペーストからなることを特徴とする、請求項1または2に記載の金属-セラミックス接合基板の製造方法。 3. The method for manufacturing a metal-ceramic bonded substrate according to claim 1 , wherein the brazing material is a paste. 前記活性金属材が板材またはペーストからなることを特徴とする、請求項1乃至のいずれかに記載の金属-セラミックス接合基板の製造方法。 4. The method for manufacturing a metal-ceramic bonded substrate according to claim 1 , wherein the active metal material is a plate material or a paste. 前記活性金属材の厚さが10μm以下であることを特徴とする、請求項1乃至のいずれかに記載の金属-セラミックス接合基板の製造方法。 5. The method for manufacturing a metal-ceramic bonded substrate according to claim 1 , wherein the active metal material has a thickness of 10 μm or less. 前記セラミックス基板と銅板との接合が4.0×10-2Pa以下の真空中において行われることを特徴とする、請求項1乃至のいずれかに記載の金属-セラミックス接合基板の製造方法。 6. The method for manufacturing a metal-ceramic bonded substrate according to claim 1, wherein the bonding of the ceramic substrate and the copper plate is performed in a vacuum of 4.0× 10 −2 Pa or less. 前記セラミックス基板に銅板を接合する際の加熱の時間が30分間以上であることを特徴とする、請求項1乃至のいずれかに記載の金属-セラミックス接合基板の製造方法。 7. The method for manufacturing a metal-ceramic bonded substrate according to claim 1, wherein the heating time for bonding the copper plate to the ceramic substrate is 30 minutes or more. 活性金属と活性金属以外の金属としてのCuと、Pとを含む接合層を介してセラミックス基板と銅板が接合された金属-セラミックス接合基板において、前記接合層が、活性金属とPとの化合物および活性金属と活性金属以外の金属とPとの化合物の少なくとも一方の化合物からなる相と、金属成分として活性金属以外の金属のみを含む相とからなり、前記活性金属とPとの化合物および活性金属と活性金属以外の金属とPとの化合物の少なくとも一方の化合物からなる相の一部が、前記セラミックス基板と前記接合層との間の界面に当接して存在し、前記活性金属とPとの化合物および活性金属と活性金属以外の金属とPとの化合物の少なくとも一方の化合物からなる相の他の部分と前記セラミックス基板との間に、前記金属成分として活性金属以外の金属のみを含む相が存在することを特徴とする、金属-セラミックス接合基板。 In a metal-ceramic bonded substrate in which a ceramic substrate and a copper plate are bonded via a bonding layer containing an active metal , Cu as a metal other than the active metal, and P, the bonding layer includes the active metal and P. and a phase consisting of a compound of at least one of a compound of an active metal, a metal other than the active metal, and P, and a phase containing only a metal other than the active metal as a metal component, and a phase of the active metal and P. A portion of a phase consisting of at least one of a compound and a compound of an active metal, a metal other than the active metal, and P is present in contact with the interface between the ceramic substrate and the bonding layer, and the active metal Between the ceramic substrate and the other part of the phase consisting of a compound of at least one of a compound of P and an active metal, a metal other than the active metal, and P, only a metal other than the active metal is used as the metal component. A metal-ceramic bonded substrate characterized by the presence of a phase containing. 前記金属成分として活性金属以外の金属のみを含む相がPを含むことを特徴とする、請求項に記載の金属-セラミックス接合基板。 9. The metal-ceramic bonded substrate according to claim 8 , wherein the phase containing only a metal other than the active metal as the metal component contains P. 前記金属成分として活性金属以外の金属のみを含む相が80質量%以上のCuを含むことを特徴とする、請求項8または9に記載の金属-セラミックス接合基板。 The metal-ceramic bonded substrate according to claim 8 or 9 , wherein the phase containing only a metal other than the active metal as the metal component contains 80% by mass or more of Cu. 前記活性金属がTi、ZrおよびHfからなる群から選ばれる少なくとも1種からなることを特徴とする、請求項乃至10のいずれかに記載の金属-セラミックス接合基板。 11. The metal-ceramic bonded substrate according to claim 8 , wherein the active metal is at least one selected from the group consisting of Ti, Zr, and Hf.
JP2019200684A 2019-11-05 2019-11-05 Metal-ceramic bonded substrate and its manufacturing method Active JP7370222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019200684A JP7370222B2 (en) 2019-11-05 2019-11-05 Metal-ceramic bonded substrate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019200684A JP7370222B2 (en) 2019-11-05 2019-11-05 Metal-ceramic bonded substrate and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021075402A JP2021075402A (en) 2021-05-20
JP7370222B2 true JP7370222B2 (en) 2023-10-27

Family

ID=75897286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019200684A Active JP7370222B2 (en) 2019-11-05 2019-11-05 Metal-ceramic bonded substrate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7370222B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072036A (en) 2003-08-22 2005-03-17 Mitsubishi Materials Corp Power module, and method and apparatus for manufacturing circuit board
JP2015043393A (en) 2013-08-26 2015-03-05 三菱マテリアル株式会社 Method for manufacturing joining structure, and method for manufacturing substrate for power modules
JP2015057847A (en) 2014-11-07 2015-03-26 三菱マテリアル株式会社 Method for manufacturing substrate for power module
JP2015065423A (en) 2013-08-26 2015-04-09 三菱マテリアル株式会社 Joined body and substrate for power module
JP2015166304A (en) 2014-02-12 2015-09-24 三菱マテリアル株式会社 Copper/ceramics connected body, and power module substrate
JP2015177045A (en) 2014-03-14 2015-10-05 三菱マテリアル株式会社 Copper/ceramic assembly and power module substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349175A (en) * 1991-01-10 1992-12-03 Kawasaki Steel Corp Method for joining copper sheet and aln substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072036A (en) 2003-08-22 2005-03-17 Mitsubishi Materials Corp Power module, and method and apparatus for manufacturing circuit board
JP2015043393A (en) 2013-08-26 2015-03-05 三菱マテリアル株式会社 Method for manufacturing joining structure, and method for manufacturing substrate for power modules
JP2015065423A (en) 2013-08-26 2015-04-09 三菱マテリアル株式会社 Joined body and substrate for power module
JP2015166304A (en) 2014-02-12 2015-09-24 三菱マテリアル株式会社 Copper/ceramics connected body, and power module substrate
JP2015177045A (en) 2014-03-14 2015-10-05 三菱マテリアル株式会社 Copper/ceramic assembly and power module substrate
JP2015057847A (en) 2014-11-07 2015-03-26 三菱マテリアル株式会社 Method for manufacturing substrate for power module

Also Published As

Publication number Publication date
JP2021075402A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
US20210068251A1 (en) Power module substrate, power module substrate with heat sink, power module, method of producing power module substrate, paste for copper sheet bonding, and method of producing bonded body
JP5549958B2 (en) Joining structure of aluminum member and copper member
JP2018140929A (en) Copper-ceramic bonded body, insulating circuit board, method for manufacturing copper-ceramic bonded body, and method for manufacturing insulating circuit board
WO2013115359A1 (en) Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, and paste for bonding copper member
JP6287682B2 (en) Bonded body and power module substrate
JPWO2013002407A1 (en) Brazing material, brazing material paste, ceramic circuit board, ceramic master circuit board and power semiconductor module
WO2018159590A1 (en) Copper/ceramic joined body insulated circuit board, method for producing copper/ceramic joined body, and method for producing insulated circuit board
TW201526171A (en) Method of producing a jointed body and method of producing power module substrate
JP2014177031A (en) Conjugate, substrate for power module, and substrate for power module with heat sink
JP6048541B2 (en) Power module substrate, power module substrate with heat sink, power module, power module substrate manufacturing method, and copper member bonding paste
JP2014060215A (en) Substrate for power module with heat sink, power module with heat sink and manufacturing method of substrate for power module with heat sink
WO2020044593A1 (en) Copper/ceramic bonded body, insulation circuit board, method for producing copper/ceramic bonded body, and method for manufacturing insulation circuit board
JP6142584B2 (en) Metal composite, circuit board, semiconductor device, and method for manufacturing metal composite
JP2021159926A (en) Brazing filler metal and method of manufacturing the same, and metal-ceramic bonding substrate
JP6010926B2 (en) Bonding material, power module, and method of manufacturing power module
JP7370222B2 (en) Metal-ceramic bonded substrate and its manufacturing method
JP5165629B2 (en) Metal-ceramic bonding substrate and brazing material used therefor
JP2018116994A (en) Power module
JP6432208B2 (en) Method for manufacturing power module substrate, and method for manufacturing power module substrate with heat sink
JP2016058417A (en) Semiconductor power module manufacturing method
JPH0936277A (en) Substrate for power module and its manufacture
JP4953873B2 (en) Composite bonding material and bonded body
CN108701659B (en) Bonded body, substrate for power module, method for manufacturing bonded body, and method for manufacturing substrate for power module
JP2006120973A (en) Circuit board and manufacturing method thereof
WO2023008565A1 (en) Copper/ceramic bonded body and insulated circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231017

R150 Certificate of patent or registration of utility model

Ref document number: 7370222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150