JP2010222656A - Method for measuring thickness of stuck-material layer of stave in blast furnace - Google Patents

Method for measuring thickness of stuck-material layer of stave in blast furnace Download PDF

Info

Publication number
JP2010222656A
JP2010222656A JP2009072375A JP2009072375A JP2010222656A JP 2010222656 A JP2010222656 A JP 2010222656A JP 2009072375 A JP2009072375 A JP 2009072375A JP 2009072375 A JP2009072375 A JP 2009072375A JP 2010222656 A JP2010222656 A JP 2010222656A
Authority
JP
Japan
Prior art keywords
stave
thickness
casting
deposit layer
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009072375A
Other languages
Japanese (ja)
Inventor
Ayumi Nishikiori
歩 錦織
Kentaro Nozawa
健太郎 野澤
Tsuneji Shiraishi
恒司 白石
Yoichiro Yamano
洋一郎 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009072375A priority Critical patent/JP2010222656A/en
Publication of JP2010222656A publication Critical patent/JP2010222656A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Blast Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for quantitatively and precisely enabling to measure the thickness of stuck material layer at a low cost even during operating a blast furnace. <P>SOLUTION: A stave-casting thermometer 4 having a measuring part 40 in the stave-casting 3, and a thermal-sensor 5 which has a plurality of measuring parts 51,52,53 in the thickness direction of the stave-casting 3 and projects at least one of the measuring part 51 among the plurality of measuring parts into the blast furnace and sets by penetrating the stave-casting 3 so as to position the other at least one of measuring part 53 into the stave-casting 3, are provided. A heat-conductivity λa of the stuck material layer 6 is calculated and also, the thickness L of the stuck material layer is calculated by using the measured temperature data with the stave thermometer 4 and the thermal-sensor 5 and simultaneously solving a plurality of heat-conductive equations containing the heat-conductivity λa and the thickness L of the stuck material layer as unknown quantities, in the respective setting position of the stave thermometer 4 and the thermal-sensor 5. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高炉ステーブに付着した付着物層厚みの測定方法に関する。   The present invention relates to a method for measuring the thickness of a deposit layer attached to a blast furnace stave.

高炉の炉壁は、新設のときには、鉄皮の内側に鋳鉄鋳物製のステーブが設置され、さらにその内側に耐火煉瓦層が設けられている。しかしながら、一定の稼動年数を経た高炉では、耐火煉瓦層が損耗ないし脱落して完全に消失してしまい、ステーブ鋳物の表面に直接付着物層が形成されるようになる。   When the furnace wall of the blast furnace is newly installed, a cast iron cast stave is installed inside the iron skin, and a refractory brick layer is further provided inside the stave. However, in a blast furnace after a certain number of years of operation, the refractory brick layer is worn or dropped and completely disappears, and an adhering layer is directly formed on the surface of the stave casting.

また、近年では鋳鉄製のものに替えて銅や銅合金製のステーブを用い、初めからその内側の耐火物層を省略する設置例も見られるが、そのような場合でもステーブ鋳物の表面に付着物層が形成されることは同じである。   In recent years, there have also been installation examples in which a stadium made of copper or copper alloy is used instead of cast iron and the refractory layer on the inside is omitted from the beginning. It is the same that the kimono layer is formed.

付着物層は一定厚みに成長し、ステーブ本体を熱衝撃や磨耗から守るセルフライニングの役目をする。しかしながら、付着物層は、ステーブ表面で亜鉛やアルカリ類が凝縮しスラグや鉱石粉など巻き込んで形成されるが、ステーブ表面近傍におけるガス流れの淀みなどの原因で付着物層が急成長した場合は、高炉内において装入物の降下不良やガス流れの偏りが生じ、高炉の生産性を低下させるだけでなく、大きな付着物が脱落した場合には、羽口の破損やそれに伴う突発的な高炉の休風に至る危険性も高まる。   The deposit layer grows to a certain thickness and serves as self-flying to protect the stave body from thermal shock and wear. However, the deposit layer is formed by condensing zinc and alkalis on the surface of the stave and involving slag, ore powder, etc., but if the deposit layer grows rapidly due to gas flow stagnation in the vicinity of the stave surface, etc. In addition to lowering the charge in the blast furnace and uneven gas flow, not only lowering the productivity of the blast furnace, but if large deposits fall off, the tuyere breaks down and the sudden blast furnace that accompanies it The risk of wind breaks increases.

したがって、ステーブ表面における付着物層の形成状況を常に監視しておき、付着物層厚みが増大する傾向を察知した際には直ちに対処することが要求される。このため、高炉の操業中においても付着物層厚みを定量的に精度良く測定しうる方法の開発が強く要請されていた。   Therefore, it is required to always monitor the formation state of the deposit layer on the surface of the stave and take immediate action when detecting the tendency of the deposit layer thickness to increase. For this reason, there has been a strong demand for the development of a method capable of measuring the deposit layer thickness quantitatively and accurately even during operation of the blast furnace.

このような付着物層厚み測定技術として、特許文献1には、高炉炉壁の耐火物厚さ方向に複数の温度測定部を有し、そのうちの少なくとも一つが高炉内に突出し、各温度測定値が原料装入周期に対応して周期的に変動する場合のその周期的変動の各温度測定部間の時間遅れと、各測定部間の距離との関係を解析することにより耐火物と付着物の境界位置および付着物最内面位置を求める技術が提案されている。   As such a deposit layer thickness measurement technique, Patent Document 1 has a plurality of temperature measurement parts in the refractory thickness direction of the blast furnace wall, at least one of which protrudes into the blast furnace, and each temperature measurement value Refractories and deposits by analyzing the relationship between the time lag between each temperature measurement part and the distance between each measurement part when the periodical fluctuations corresponding to the raw material charging period A technique for obtaining the boundary position and the innermost surface position of the deposit has been proposed.

また、特許文献2には、高炉炉壁の耐火物厚さ方向に複数の温度測定部を有し、そのうちの少なくとも一つが高炉内に突出し、少なくとも一つが耐火物内に位置するように配置して、各温度測定値の時系列データを周波数解析し、その解析結果について、所定値以上の周波数成分の変動強度を抽出し、耐火物内に位置する温度測定部の変動強度に基づいて、各温度測定部が付着物中にあるか否かを判定する技術が提案されている。   Further, Patent Document 2 has a plurality of temperature measuring units in the refractory thickness direction of the blast furnace wall, and is arranged so that at least one of them protrudes into the blast furnace and at least one is located in the refractory. Then, frequency analysis is performed on the time-series data of each temperature measurement value, and for the analysis result, the fluctuation intensity of the frequency component above the predetermined value is extracted, and based on the fluctuation intensity of the temperature measurement part located in the refractory, There has been proposed a technique for determining whether or not the temperature measurement unit is in the deposit.

また、特許文献3には、高炉炉壁に付着した付着物厚みを測定する測定装置において、耐熱・耐磨耗性材料よりなる円柱体の一方側の先端を円柱体の軸と斜交する鉛直平面で切断して斜切直円柱体とし、該斜切直円柱体の他方側の面から該斜切直円柱体の軸と平行に複数の細孔を穿孔し、該細孔に温度計を挿嵌した測定装置を用いることにより、銅及び銅合金製ステーブクーラ使用個所においても、ステーブクーラの表面に成長した付着物の成長の状況を常時監視し、異常成長を敏感に検知し、炉内の変動をいち早く推定するという技術が提案されている。   Further, in Patent Document 3, in a measuring apparatus for measuring the thickness of deposits attached to the blast furnace wall, a vertical tip in which one end of a cylindrical body made of a heat-resistant and wear-resistant material is obliquely crossed with the axis of the cylindrical body. Cut a plane into a slant-cut straight cylinder, drill a plurality of pores parallel to the axis of the slant-cut straight cylinder from the other side of the slant-cut cylinder, and put a thermometer on the pore By using the inserted measuring device, it is possible to constantly monitor the growth of deposits grown on the surface of the stave cooler even at the place where the copper and copper alloy stave cooler is used. There has been proposed a technique for quickly estimating the fluctuations of the above.

しかしながら、上記特許文献1,2に記載の技術は、炉壁を構成する耐火物内に少なくとも一つの温度測定部を位置させて、炉内と付着物内と耐火物内とにおける温度変動特性の相違を利用して付着物厚みを測定(推定)するため、ステーブで構成される炉壁には採用できない。   However, the techniques described in Patent Documents 1 and 2 have the temperature fluctuation characteristics in the furnace, the deposit, and the refractory by positioning at least one temperature measuring unit in the refractory constituting the furnace wall. Since the deposit thickness is measured (estimated) using the difference, it cannot be used for the furnace wall composed of stave.

また、特許文献3に記載の技術は、測定装置を高価な耐熱・耐磨耗材料で構成するとともに、その先端部を斜めに切断した構造とし、炉内に突き出して設置するようにしているため、測定装置のコストが上がることに加え、先端部の鋭角の部分から破損しやすく、測定装置の寿命が極端に短くなることが想定される。   In addition, the technique described in Patent Document 3 is configured with an expensive heat-resistant and wear-resistant material and has a structure in which a tip portion thereof is cut obliquely and is protruded and installed in the furnace. In addition to an increase in the cost of the measuring device, it is assumed that the sharp end portion of the measuring device is easily damaged, and the life of the measuring device is extremely shortened.

特公昭61−6125号公報Japanese Patent Publication No. 61-6125 特開平8−81707号公報JP-A-8-81707 特許第3910347号公報Japanese Patent No. 3910347

そこで、本発明は、低コストで、高炉の操業中においても付着物層厚みを定量的に精度良く測定しうる方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method that can measure the thickness of the deposit layer quantitatively and accurately even during operation of a blast furnace at low cost.

請求項1に記載の発明は、高炉のステーブ鋳物の表面に付着した付着物層の厚みを測定する方法であって、前記ステーブ鋳物内に測定部を有するステーブ鋳物温度計と、前記ステーブ鋳物の厚み方向に複数の測定部を有し、当該複数の測定部のうち少なくとも一の測定部が前記高炉内に突出するとともに、前記複数の測定部のうち少なくとも一の測定部が前記ステーブ鋳物内に位置するように、前記ステーブ鋳物を貫通して設置された温度センサとを備え、前記ステーブ温度計と前記温度センサで測定された温度データを用いて、前記ステーブ温度計と前記温度センサの各設置場所における、前記付着物層の熱伝導率と厚みを未知数として含む複数の伝熱方程式を連立して解くことにより、前記付着物層の熱伝導率を算出するとともに前記付着物層の厚みを算出することを特徴とする高炉ステーブ付着物層厚みの測定方法である。   The invention according to claim 1 is a method for measuring the thickness of a deposit layer adhering to the surface of a blast furnace stave casting, the stave casting thermometer having a measuring portion in the stave casting, and the stave casting It has a plurality of measurement parts in the thickness direction, and at least one measurement part of the plurality of measurement parts protrudes into the blast furnace, and at least one measurement part of the plurality of measurement parts is in the stave casting. A temperature sensor installed through the stave casting so as to be positioned, and using the temperature data measured by the stave thermometer and the temperature sensor, each installation of the stave thermometer and the temperature sensor The thermal conductivity of the deposit layer is calculated simultaneously by solving a plurality of heat transfer equations including unknown values of the thermal conductivity and thickness of the deposit layer at the location. Is a measurement method of the blast furnace stave deposit layer thickness and calculates the thickness of the object layer.

請求項2に記載の発明は、請求項1に記載の測定方法において、前記温度センサの、前記高炉内に突出した測定部が破損した後においては、該高炉内に突出した測定部が破損する前に請求項1に記載の方法で算出した前記付着物層の熱伝導率を既知数として用い、前記ステーブ温度計と前記温度センサで測定された温度データを用いて、ステーブ鋳物温度計と前記温度センサの各設置場所における、前記付着物層の厚みのみを未知数として含む複数の伝熱方程式を連立して解くことにより、前記付着物層の厚みを算出することを特徴とする高炉ステーブ付着物層厚みの測定方法である。   According to a second aspect of the present invention, in the measurement method according to the first aspect, after the measurement part protruding into the blast furnace of the temperature sensor is damaged, the measurement part protruding into the blast furnace is damaged. Using the thermal conductivity of the deposit layer previously calculated by the method of claim 1 as a known number, using the temperature data measured by the stave thermometer and the temperature sensor, a stave casting thermometer and the A blast furnace stave deposit that calculates the thickness of the deposit layer by simultaneously solving a plurality of heat transfer equations including only the thickness of the deposit layer as an unknown at each location where the temperature sensor is installed It is a measuring method of layer thickness.

請求項1に記載の発明によれば、ステーブ鋳物温度計と、複数の測定部を有し、その少なくとも一の測定部が高炉内に突出した温度センサとを併用して測定した温度データを用いて、付着物層の熱伝導率と厚みを未知数として含む複数の伝熱方程式を連立して解くことにより、付着物層の熱伝導率を算出するとともに付着物層の厚みを算出することで、簡易な装置構成により低コストでかつ高精度に付着物層厚みを推定(測定)できるようになった。   According to the first aspect of the present invention, temperature data measured using a stave casting thermometer and a temperature sensor having a plurality of measuring portions, at least one of which is protruded into the blast furnace, is used. By simultaneously solving a plurality of heat transfer equations including the thermal conductivity and thickness of the deposit layer as unknowns, calculating the thermal conductivity of the deposit layer and calculating the thickness of the deposit layer, With a simple device configuration, the deposit layer thickness can be estimated (measured) at low cost and with high accuracy.

また、請求項2に記載の発明によれば、炉内に突出した測定部が破損した後においては、該炉内に突出した測定部が破損する前に上記請求項1に記載の方法で算出した付着物層の熱伝導率を既知数として用い、付着物層の厚みのみを未知数として含む複数の伝熱方程式を連立して解くことにより、付着物層の厚みを算出することで、高炉内に突出した測定部が破損した後も付着物層厚みの推定(測定)を継続でき、長期間の測定が可能になった。   In addition, according to the invention described in claim 2, after the measurement part protruding into the furnace is damaged, the calculation according to claim 1 is performed before the measurement part protruding into the furnace is damaged. In the blast furnace, the thickness of the deposit layer is calculated by simultaneously solving a plurality of heat transfer equations including only the thickness of the deposit layer as an unknown, using the thermal conductivity of the deposited layer as a known number. Even after the measurement part protruding to the surface is broken, the estimation (measurement) of the deposit layer thickness can be continued, and long-term measurement is possible.

本発明の一実施形態に係る高炉ステーブ付着物層厚み測定装置の概略構成を示す水平断面図である。It is a horizontal sectional view showing a schematic structure of a blast furnace stave deposit layer thickness measuring device concerning one embodiment of the present invention. 温度センサにおける、測定部2点間の距離と、測定部2点間の温度勾配との関係を示すグラフ図である。It is a graph which shows the relationship between the distance between two measurement parts in a temperature sensor, and the temperature gradient between two measurement parts. 付着物層厚みの推定値Lcと実測値Lmとの関係を示すレーダーチャート図である。It is a radar chart figure which shows the relationship between the estimated value Lc of the deposit | attachment layer thickness, and the measured value Lm. 本発明適用後における、ステーブ鋳物温度Tsと、温度センサ最先端側の温度T1と、付着物層厚みの推定値Lcの各経時変化を示す推移グラフ図である。It is a transition graph figure which shows each time-dependent change of stave casting temperature Ts, temperature sensor most recent side temperature T1, and the estimated value Lc of a deposit layer thickness after application of this invention. 貫流熱流束Qと、付着物層厚みLcとの関係を示すグラフ図である。It is a graph which shows the relationship between the through-flow heat flux Q and the deposit layer thickness Lc.

(実施形態)
〔測定装置の構成〕
図1に本発明の一実施形態に係る高炉ステーブ付着物層厚み測定装置の概略構成を示す。
(Embodiment)
[Configuration of measuring device]
FIG. 1 shows a schematic configuration of a blast furnace stave deposit layer thickness measuring apparatus according to an embodiment of the present invention.

同図において、1は鉄皮、2は断熱材、3はステーブ鋳物(単に、「ステーブ」ともいう。)、4はステーブ鋳物温度計、5は温度センサ、6は付着物層を示す。   In the figure, 1 is an iron skin, 2 is a heat insulating material, 3 is a stave casting (also simply referred to as “stave”), 4 is a stave casting thermometer, 5 is a temperature sensor, and 6 is a deposit layer.

ステーブ鋳物温度計4は、軸状体であってその先端40に熱電対が内蔵されており、該先端位置40がステーブ鋳物3表面から所定の距離(d0)だけ炉外側になるようにステーブ鋳物3内に挿入されている。   The stave casting thermometer 4 is a shaft-like body and has a thermocouple built in the tip 40 thereof. The stave casting is such that the tip position 40 is located outside the furnace by a predetermined distance (d0) from the surface of the stave casting 3. 3 is inserted.

ステーブ鋳物温度計4としては、水冷されたステーブ鋳物内の比較的低温領域の測定であるので、例えば熱応答性に優れた接地型のシース熱電対を用いればよい。   The stave casting thermometer 4 is a measurement in a relatively low temperature region in a water-cooled stave casting, and therefore, for example, a grounded sheath thermocouple having excellent thermal response may be used.

一方、温度センサ5は、軸状体であってその内部に、該温度センサ5の長手方向に複数(本例では3点)の測定部(本例では51、52、53)を有し、最先端側の測定部51は高炉内に突出させるとともに、最後端側の測定部53はステーブ鋳物3内に位置するように、ステーブ鋳物3を貫通させて設置している。   On the other hand, the temperature sensor 5 is a shaft-like body and has a plurality of (three points in this example) measuring units (51, 52, 53 in this example) in the longitudinal direction of the temperature sensor 5, The measuring part 51 on the most advanced side is protruded into the blast furnace, and the measuring part 53 on the rearmost side is installed through the stave casting 3 so as to be located in the stave casting 3.

なお、後述するように、温度センサ5の先端位置50と最先端側の測定部51は、通常の付着物層厚みの内部に位置させ、真ん中の測定部52はステーブ鋳物3表面に位置させるのが推奨される。   As will be described later, the tip position 50 of the temperature sensor 5 and the measuring portion 51 on the foremost side are positioned inside the normal deposit layer thickness, and the middle measuring portion 52 is positioned on the surface of the stave casting 3. Is recommended.

温度センサ5としては、例えばステンレス鋼製の保護管内に充填剤としてのMgO粉末を介して、高温領域でノイズが少ない非接地型のシース熱電対を内蔵したものが推奨される。   As the temperature sensor 5, for example, a stainless steel protective tube with a non-grounded sheath thermocouple with low noise in a high temperature region incorporated through MgO powder as a filler is recommended.

温度センサ5の測定部51は、温度センサ5の先端位置50における温度T0の推定精度を高めるためには、温度センサ5の先端位置50に可能な限り近づけるのが好ましいが、非接地型のシース熱電対を内蔵する場合は、シースの先端部に絶縁部分が必須であることから一定の距離を必要とする。したがって、温度センサ5の先端位置50から最先端側の測定部51までの距離d0は、10mm以内、さらには5mm以内とするのが好ましい。   The measuring unit 51 of the temperature sensor 5 is preferably as close as possible to the tip position 50 of the temperature sensor 5 in order to increase the estimation accuracy of the temperature T0 at the tip position 50 of the temperature sensor 5, but the non-grounding type sheath When a thermocouple is built in, a certain distance is required because an insulating portion is essential at the distal end of the sheath. Therefore, it is preferable that the distance d0 from the tip position 50 of the temperature sensor 5 to the measurement unit 51 on the most advanced side is within 10 mm, more preferably within 5 mm.

また、温度センサ5の各測定部間の距離d1,d2は、近すぎると温度差が小さすぎ、一方遠すぎると温度センサ5の側面からの伝熱の影響が大きくなり、いずれの場合も温度勾配が小さめに出るため、10〜30mmの範囲とするのが好ましい(後記実施例、図2参照)。   Further, if the distances d1 and d2 between the measurement parts of the temperature sensor 5 are too close, the temperature difference is too small, while if too far, the influence of heat transfer from the side surface of the temperature sensor 5 becomes large. Since the gradient appears to be small, it is preferably in the range of 10 to 30 mm (see Examples and FIG. 2 described later).

ステーブ鋳物温度計4および温度センサ5は、いずれもステーブ鋳物3内に配設された冷却パイプ(図示せず)を避けて設置することは当然である。   Of course, both the stave casting thermometer 4 and the temperature sensor 5 are installed avoiding a cooling pipe (not shown) disposed in the stave casting 3.

〔付着物層厚みの推定ロジック〕
次に、ステーブ鋳物温度計4および温度センサ5にて測定された温度データを用いて、付着物層6の厚みを推定(測定)するロジックの一例について図1を参照しつつ説明する。
[Attachment layer thickness estimation logic]
Next, an example of logic for estimating (measuring) the thickness of the deposit layer 6 using temperature data measured by the stave casting thermometer 4 and the temperature sensor 5 will be described with reference to FIG.

図1において、Tsはステーブ鋳物温度計4の先端41の温度、T1、T2、T3は温度センサ5の測定部51,52,53の各温度、Tmは付着物層6表面の温度、Twはステーブ鋳物3表面の温度、T0は温度センサ5先端の温度、λsはステーブ鋳物3の熱伝導度、λaは付着物層6の熱伝導度、λfは温度センサ5の熱伝導度、d0はステーブ鋳物温度計4の先端41位置とステーブ鋳物3表面との距離、d1は温度センサ5の先端位置と測定部51との距離、d2は温度センサ5の測定部51と測定部52との距離、d3は温度センサ5の測定部52と測定部53との距離、Lは付着物層6の厚み、Qは炉壁の貫流熱流束(炉壁を通過する単位面積当たりの熱流量)をそれぞれ示す。   In FIG. 1, Ts is the temperature of the tip 41 of the stave casting thermometer 4, T1, T2, and T3 are the temperatures of the measuring parts 51, 52, and 53 of the temperature sensor 5, Tm is the temperature of the surface of the deposit layer 6, and Tw is Temperature of stave casting 3 surface, T0 is temperature of tip of temperature sensor 5, λs is thermal conductivity of stave casting 3, λa is thermal conductivity of deposit layer 6, λf is thermal conductivity of temperature sensor 5, and d0 is stave The distance between the tip 41 position of the casting thermometer 4 and the surface of the stave casting 3, d1 is the distance between the tip position of the temperature sensor 5 and the measurement unit 51, d2 is the distance between the measurement unit 51 and the measurement unit 52 of the temperature sensor 5, d3 is the distance between the measuring part 52 and the measuring part 53 of the temperature sensor 5, L is the thickness of the deposit layer 6, and Q is the through-flow heat flux of the furnace wall (heat flow per unit area passing through the furnace wall). .

ここに、Ts、T1、T2、T3、λs、λf、d0、d1、d2、d3は既知数であり、Tm、Tw、T0、λa、L、Qは未知数である。   Here, Ts, T1, T2, T3, λs, λf, d0, d1, d2, and d3 are known numbers, and Tm, Tw, T0, λa, L, and Q are unknown numbers.

以下、上記未知数である、Tm、Tw、T0、λa、L,Qを求める手順を説明する。   Hereinafter, a procedure for obtaining the unknowns Tm, Tw, T0, λa, L, and Q will be described.

先ず、炉壁の貫流熱流束Qは、温度センサ5の2つの測定部51と52間の温度勾配から下記式(1)で求められる。   First, the once-through heat flux Q of the furnace wall is obtained by the following equation (1) from the temperature gradient between the two measurement parts 51 and 52 of the temperature sensor 5.

Q=λf(T2−T3)/d3 …式(1)     Q = λf (T2-T3) / d3 (1)

次に、ステーブ鋳物3表面の温度Twは、上記貫流熱流束Qとステーブ鋳物温度計4の先端40の温度(以下、「ステーブ鋳物温度」ということあり。)Tsとから下記式(2)で求められる。   Next, the temperature Tw of the surface of the stave casting 3 is expressed by the following formula (2) from the above-mentioned once-through heat flux Q and the temperature Ts of the tip 40 of the stave casting thermometer 4 (hereinafter sometimes referred to as “stave casting temperature”). Desired.

Tw=Ts+d0×Q/λs …式(2)     Tw = Ts + d0 × Q / λs (2)

次に、温度センサ5先端位置50の温度T0は、上記貫流熱流束Qと測定部51の温度T1とから下記式(3)で求められる。   Next, the temperature T0 at the tip position 50 of the temperature sensor 5 is obtained by the following equation (3) from the through-flow heat flux Q and the temperature T1 of the measurement unit 51.

T0=T1+Q/λf …式(3)     T0 = T1 + Q / λf (3)

次に、付着物層6の熱伝導度λaは、温度センサ5先端の温度T0とステーブ鋳物3表面の温度Twとから下記式(4)で求められる。   Next, the thermal conductivity λa of the deposit layer 6 is obtained by the following formula (4) from the temperature T0 at the tip of the temperature sensor 5 and the temperature Tw on the surface of the stave casting 3.

λa=(d1+d2)×Q/(T0−Tw) …式(4)     λa = (d1 + d2) × Q / (T0−Tw) (4)

そして、付着物層6表面の温度Tmと付着物層6の厚みLが未知数として残っているが、TmとLとの間には下記式(5)の関係が成立し、仮にTmが既知数とすれば、Lは同式で求められることとなる。   The temperature Tm on the surface of the adhering material layer 6 and the thickness L of the adhering material layer 6 remain as unknown numbers. However, the relationship of the following formula (5) is established between Tm and L, and Tm is a known number. Then, L is obtained by the same equation.

L=λa(Tm−Tw)/Q …式(5)       L = λa (Tm−Tw) / Q (5)

ここで、付着物層6表面の温度Tmは付着物層6の溶融温度に相当すると考えられる。したがって、温度センサ5最先端側の温度T1が急上昇したときに、温度センサ5の先端位置50まで付着物層6が溶融し、該先端位置50が露出したと推定できる。したがって、そのときのLはd2に等しい(L=d2)ので、そのときのQ、Tw、λaの値を上記式(1)、(2)、(4)より求め、これらの値とL=d2とを上記式(5)に代入することで、Tmが求まる。   Here, the temperature Tm on the surface of the deposit layer 6 is considered to correspond to the melting temperature of the deposit layer 6. Therefore, when the temperature T1 on the most front side of the temperature sensor 5 rises rapidly, it can be estimated that the deposit layer 6 is melted to the tip position 50 of the temperature sensor 5 and the tip position 50 is exposed. Therefore, since L at that time is equal to d2 (L = d2), the values of Q, Tw, and λa at that time are obtained from the above equations (1), (2), and (4), and these values and L = Tm is obtained by substituting d2 into the above equation (5).

以後は、このようにして求めたTmを用いて上記式(5)でLを求めることができる。   Thereafter, L can be obtained by the above equation (5) using Tm thus obtained.

なお、上記ロジックでは、炉壁に沿う方向の伝熱を無視して解析を行っているが、実際には炉壁に沿う方向の伝熱の影響があるため、上記のようにして求めたLには一定の誤差が含まれる。   In the above logic, the heat transfer in the direction along the furnace wall is ignored, but in actuality, there is an influence of the heat transfer in the direction along the furnace wall. Contains a certain error.

そこで、通常行われているように、高炉の休風中に、ステーブ鋳物3に予め設けた貫通孔(操業時は封止)を介して付着物層6にも貫通孔を穿孔し、該ステーブ鋳物3と付着物層6の貫通孔に先端が鉤状の金棒を差し込んで付着物層6の厚みLmを実測する。そして、この実測値Lmと、休風直前に上記式(5)で求めた、付着物層6厚みの推定値Lから、補正係数α=Lm/Lを求める。そして、この補正係数αを推定値Lに掛けて得られたLc(=α×L)を付着物層6の厚みとすることで、高炉の操業中における付着物層6厚みの推定精度がさらに向上する。   Therefore, as usual, during the blast furnace break, a through-hole is drilled in the deposit layer 6 through a through-hole provided in the stave casting 3 in advance (sealing during operation), and the stave A metal rod having a bowl-shaped tip is inserted into the through hole of the casting 3 and the deposit layer 6 to measure the thickness Lm of the deposit layer 6. Then, the correction coefficient α = Lm / L is obtained from the actual measurement value Lm and the estimated value L of the deposit layer 6 thickness obtained by the above equation (5) immediately before the break. Then, by calculating Lc (= α × L) obtained by multiplying the estimated value L by the correction coefficient α as the thickness of the deposit layer 6, the estimation accuracy of the deposit layer 6 thickness during the operation of the blast furnace is further increased. improves.

なお、炉壁に沿う方向の伝熱状況は、高炉操業の経過により変化する可能性があるので、休風毎に付着物層厚みLmを実測して上記補正係数αを更新することにより、付着物層厚みの推定精度を維持するのが好ましい。   Note that the heat transfer state along the furnace wall may change with the progress of the blast furnace operation. Therefore, by measuring the deposit layer thickness Lm for each pause and updating the correction coefficient α, It is preferable to maintain the estimation accuracy of the kimono layer thickness.

上記のようにして操業中においても付着物層厚みを精度良く推定することが可能となるので、例えば、装入物分布を変更して炉内ガス流れを変化させ貫流熱流速Qを調整する手段や、ステーブ冷却水流量を変更してステーブ鋳物表面温度T0を調整する手段などを用いて、付着物層厚みを高精度に制御することが実現できる。   Since it is possible to accurately estimate the deposit layer thickness even during operation as described above, for example, means for adjusting the through-flow heat flow rate Q by changing the charge distribution to change the gas flow in the furnace Alternatively, it is possible to control the deposit layer thickness with high accuracy by using means for adjusting the stave casting surface temperature T0 by changing the stave cooling water flow rate.

また、付着物層が剥離するなどして温度センサ5の先端側の測定部(本例では51)が破損してしまった後でも、破損するまでに測定された温度データで求めた付着物層6の熱伝導度λaを既知数として用いることにより、上記式(3)および(4)を用いることなく、上記式(1)、(2)および(5)を用いて付着物層6の厚みL(さらにはLc)を求めることができる。   Further, even after the adhered layer is peeled off and the measurement part (51 in this example) on the front end side of the temperature sensor 5 is damaged, the adhered layer obtained from the temperature data measured until it is damaged By using the thermal conductivity λa of 6 as a known number, the thickness of the deposit layer 6 can be determined using the above formulas (1), (2), and (5) without using the above formulas (3) and (4). L (and Lc) can be obtained.

(変形例)
上記実施形態では、温度センサ5の測定部は3点とする例を示したが、2点または4点以上としても良い。測定部の点数を多くするほど測定精度は向上するが、温度センサ5のコストも上昇するので、測定精度とコストのバランスを勘案すれば、実用的には3〜4点程度とするのが推奨される。
(Modification)
In the above embodiment, the example in which the measurement unit of the temperature sensor 5 has three points is shown, but two points or four or more points may be used. As the number of measurement points increases, the measurement accuracy improves, but the cost of the temperature sensor 5 also rises. Therefore, considering the balance between measurement accuracy and cost, it is recommended to use about 3 to 4 points in practice. Is done.

また、上記実施形態では、温度センサ5の測定部のうち真ん中の測定部52の位置は、ステーブ鋳物3表面の位置に一致させたが、必ずしもこれに限定されるものではなく、適宜ステーブ鋳物3表面の位置より炉内側または炉外側にずらして位置させることも可能である。尤も、真ん中の測定部52の位置をステーブ鋳物3表面の位置に一致させるのが、最も簡単な解析ロジックを用いることができるメリットがある。   Moreover, in the said embodiment, although the position of the measurement part 52 of the middle among the measurement parts of the temperature sensor 5 was made to correspond with the position of the surface of the stave casting 3, it is not necessarily limited to this, The stave casting 3 is suitably used. It is also possible to shift the position from the surface position to the inside or outside of the furnace. However, there is an advantage that the simplest analysis logic can be used to match the position of the middle measurement unit 52 with the position of the surface of the stave casting 3.

また、上記実施形態では、ステーブ鋳物温度計4と温度センサ5は、同一水平面上に設置する例を示したが、同一水平面上の設置が困難な場合は、高さ方向にずらして設置してもよい。   Moreover, in the said embodiment, although the stave casting thermometer 4 and the temperature sensor 5 showed the example installed in the same horizontal surface, when installation on the same horizontal surface is difficult, install it shifting in the height direction. Also good.

本発明の効果を確証するため、出願人の加古川製鉄所内に設置されている高炉(内容積:4900m)のシャフト部最下段のステーブ鋳物に上記実施形態で説明したものと同様の温度センサを高炉の円周方向45°ごと8箇所に新設して、付着物層厚みの推定を試みた。なお、ステーブ鋳物温度計は、既設のもの(ステーブ鋳物表面から50〜100mm炉外側に測定部を有する;高炉円周方向の設置箇所により取り合いの都合上測定部の位置が異なる)を用いた。 In order to confirm the effect of the present invention, a temperature sensor similar to that described in the above embodiment is applied to the bottom stave casting of the shaft portion of the blast furnace (internal volume: 4900 m 3 ) installed in the applicant's Kakogawa Works. Attempted to estimate the thickness of the deposit layer was newly established at 8 locations every 45 ° in the circumferential direction of the blast furnace. As the stave casting thermometer, an existing one (having a measurement part on the outside of the furnace 50 to 100 mm from the surface of the stave casting; the position of the measurement part differs depending on the installation location in the circumferential direction of the blast furnace) was used.

温度センサとしては、ステンレス鋼製の保護管内に、充填剤としてMgO粉末を介して、該保護管の先端から5mm、25mm、45mmの各位置に測定部を有するように(すなわち、図1において、d0=5mm、d1=d2=20mm)、非接地型のシースK熱電対を内蔵したものを用いた。   As a temperature sensor, in a protective tube made of stainless steel, with a MgO powder as a filler, it has a measurement part at each position of 5 mm, 25 mm, 45 mm from the tip of the protective tube (that is, in FIG. 1, d0 = 5 mm, d1 = d2 = 20 mm), and a non-grounded sheath K thermocouple was used.

ここで、d1=d2=20mmとしたのは、図2に示す結果による。同図は、温度センサをステーブ鋳物に取り付けた際の伝熱状態を、小型加熱炉を用いて模擬した実験結果を示すものである。具体的には、測定部を2点有する温度センサを用い、測定部2点間の距離dを種々変更して、ステーブ鋳物と同等の熱伝導率(図2においてλと表示)を有する鋼材(同図(a))、または、付着物層と同等の熱伝導率を有する耐火モルタル(同図(b))の各内部に2点の測定部を配し、温度センサ先端側を一定温度に加熱した小型加熱炉内に挿入した状態で伝熱実験を行ったものである。同図に示すように、温度センサの周辺物質および温度センサ内の充填剤の熱伝導率の相違によらず、測定部2点間の温度勾配は、測定部2点間の距離d=20mmで最大値を示し、dが20mmから離れるほど低下する傾向を示すことがわかった。この結果に基づき、温度勾配が最も大きく出るd=20mmを採用した。   Here, d1 = d2 = 20 mm is based on the result shown in FIG. The figure shows the experimental results of simulating the heat transfer state when the temperature sensor is attached to the stave casting using a small heating furnace. Specifically, a steel material having a thermal conductivity equivalent to that of a stave casting (indicated as λ in FIG. 2) by using a temperature sensor having two measurement parts and variously changing the distance d between the two measurement parts. (A)), or refractory mortar (Fig. (B)) with the same thermal conductivity as that of the deposit layer, two measuring parts are arranged inside, and the temperature sensor tip side is kept at a constant temperature. The heat transfer experiment was conducted in a state where it was inserted into a heated small heating furnace. As shown in the figure, regardless of the difference in thermal conductivity between the surrounding material of the temperature sensor and the filler in the temperature sensor, the temperature gradient between the two measurement parts is the distance d = 20 mm between the two measurement parts. It was found that the maximum value was exhibited, and d tended to decrease as the distance from 20 mm increased. Based on this result, d = 20 mm where the temperature gradient was the largest was adopted.

休風時に上記温度センサを設置した後、一定期間高炉操業を行い、次の休風直前に上記式(1)〜(5)にて補正係数αを用いずに付着物層厚みLを推定するとともに、該次の休風時に上記実施形態で説明した手段により付着物層厚みLmを実測した。そして、この付着物層厚みの推定値Lと実測値Lmとを比較して補正係数α=0.45と決定した。この補正係数α=0.45を用いて修正した付着物層厚みの推定値Lc(=α×L)と、付着物層厚みの実測値Lmとの関係を図3のレーダーチャートに示す。同図に示すように、高炉の方位に拠らず、付着物層厚みの推定値Lcは実測値Lmと非常に良く一致することが確認された。   After the temperature sensor is installed during the rest period, the blast furnace is operated for a certain period, and the deposit layer thickness L is estimated without using the correction coefficient α in the above formulas (1) to (5) immediately before the next rest period. In addition, the deposit layer thickness Lm was measured by the means described in the above embodiment during the next wind break. Then, the estimated value L of the deposit layer thickness was compared with the actually measured value Lm, and the correction coefficient α = 0.45 was determined. The relationship between the estimated value Lc (= α × L) of the deposit layer thickness corrected using the correction coefficient α = 0.45 and the measured value Lm of the deposit layer thickness is shown in the radar chart of FIG. As shown in the figure, it was confirmed that the estimated value Lc of the deposit layer thickness matched the measured value Lm very well regardless of the orientation of the blast furnace.

そこで、以後の高炉操業においては、この補正係数α=0.45を用いて付着物層厚みLcの推定を行った。図4に、高炉操業中における、高炉のある方位の、ステーブ鋳物温度Tsと、温度センサ最先端側の温度T1と、付着物層厚みの推定値Lcの各経時変化を示す。同図(a)に示すように、ステーブ鋳物温度Tsは経時的に変動し、従来はこのTsの経時的変動のみから定性的に付着物層厚みの増減を推定していたが、本発明適用後は、同図(b)に示すように、高炉操業中においても、付着物層厚みを精度良く定量的に推定(測定)できるようになり、迅速なアクションが可能になった。   Therefore, in the subsequent blast furnace operation, the deposit layer thickness Lc was estimated using this correction coefficient α = 0.45. FIG. 4 shows changes over time of the stave casting temperature Ts, the temperature T1 on the most front side of the temperature sensor, and the estimated value Lc of the deposit layer thickness in a certain direction of the blast furnace during operation of the blast furnace. As shown in FIG. 6A, the stave casting temperature Ts fluctuates with time. Conventionally, the increase / decrease in the thickness of the deposit layer was estimated qualitatively only from the fluctuation with time of this Ts. Thereafter, as shown in FIG. 5B, the deposit layer thickness can be accurately and quantitatively estimated (measured) even during blast furnace operation, and a quick action can be performed.

また、図5は、以後の高炉操業における、上記式(1)で求めた貫流熱流束Qと、付着物層厚みLcとの関係を示したものである。同図中の曲線は、多項式近似(本例では3次式近似)した回帰曲線である。同図に示すように、貫流熱流束Qが高い側から減少していくと、上記回帰曲線の変曲点よりQが高い側では付着物層厚みLcは緩やかに増加していくが、該変曲点をQが低い側では付着物層厚みLcは急速に増加する傾向が認められる。上記変曲点の座標は、上記回帰曲線の多項式Fを2回微分して得られた2次微分F”=0と置くことにより求めることができ、その座標の値はQ=25700kcal/(m・h)、Lc=0.115mとなった。ここに、1kcal/(m・h)=1.163W/mである。 FIG. 5 shows the relationship between the once-through heat flux Q determined by the above formula (1) and the deposit layer thickness Lc in the subsequent blast furnace operation. The curve in the figure is a regression curve obtained by polynomial approximation (in this example, cubic approximation). As shown in the figure, when the through-flow heat flux Q decreases from the higher side, the deposit layer thickness Lc gradually increases on the higher Q side than the inflection point of the regression curve. On the side where Q is low, the deposit layer thickness Lc tends to increase rapidly. The coordinates of the inflection point can be obtained by placing the second derivative F ″ = 0 obtained by differentiating the polynomial F of the regression curve twice, and the value of the coordinate is Q = 25700 kcal / (m 2 · h) and Lc = 0.115 m, where 1 kcal / (m 2 · h) = 1.163 W / m 2 .

そこで、以後の操業においては、付着物層厚みLcの管理目標値として、この0.115mを用いることにより、付着物層厚みの急増を確実に防止できるようになり、長期に安定した高炉操業が継続できるようになった。   Therefore, in the subsequent operation, by using this 0.115 m as the management target value of the deposit layer thickness Lc, it becomes possible to reliably prevent a sudden increase in the deposit layer thickness, and stable blast furnace operation over a long period of time. I was able to continue.

1:鉄皮
2:断熱材
3:ステーブ鋳物
4:ステーブ鋳物温度計
40:先端位置
5:温度センサ
50:先端位置
51,52,53:測定部
6:付着物層
1: Iron skin 2: Thermal insulation material 3: Stave casting 4: Stave casting thermometer 40: Tip position 5: Temperature sensor 50: Tip position 51, 52, 53: Measuring unit 6: Deposited layer

Claims (2)

高炉のステーブ鋳物の表面に付着した付着物層の厚みを測定する方法であって、
前記ステーブ鋳物内に測定部を有するステーブ鋳物温度計と、前記ステーブ鋳物の厚み方向に複数の測定部を有し、当該複数の測定部のうち少なくとも一の測定部が前記高炉内に突出するとともに、前記複数の測定部のうち少なくとも一の測定部が前記ステーブ鋳物内に位置するように、前記ステーブ鋳物を貫通して設置された温度センサとを備え、
前記ステーブ温度計と前記温度センサで測定された温度データを用いて、前記ステーブ温度計と前記温度センサの各設置場所における、前記付着物層の熱伝導率と厚みを未知数として含む複数の伝熱方程式を連立して解くことにより、前記付着物層の熱伝導率を算出するとともに前記付着物層の厚みを算出することを特徴とする高炉ステーブ付着物層厚みの測定方法。
A method for measuring the thickness of a deposit layer adhering to the surface of a blast furnace stave casting,
A stave casting thermometer having a measuring portion in the stave casting, a plurality of measuring portions in the thickness direction of the stave casting, and at least one measuring portion of the plurality of measuring portions protrudes into the blast furnace; A temperature sensor installed through the stave casting so that at least one of the plurality of measuring portions is located in the stave casting,
Using the temperature data measured by the stave thermometer and the temperature sensor, a plurality of heat transfer including the thermal conductivity and thickness of the deposit layer as unknowns at each installation location of the stave thermometer and the temperature sensor A method for measuring the thickness of a blast furnace stave deposit layer, wherein the thermal conductivity of the deposit layer is calculated and the thickness of the deposit layer is calculated by simultaneously solving equations.
請求項1に記載の測定方法において、
前記温度センサの、前記高炉内に突出した測定部が破損した後においては、
該高炉内に突出した測定部が破損する前に請求項1に記載の方法で算出した前記付着物層の熱伝導率を既知数として用い、
前記ステーブ温度計と前記温度センサで測定された温度データを用いて、ステーブ鋳物温度計と前記温度センサの各設置場所における、前記付着物層の厚みのみを未知数として含む複数の伝熱方程式を連立して解くことにより、前記付着物層の厚みを算出することを特徴とする高炉ステーブ付着物層厚みの測定方法。
The measurement method according to claim 1,
After the measurement part of the temperature sensor protruding into the blast furnace is broken,
Using the thermal conductivity of the deposit layer calculated by the method of claim 1 as a known number before the measurement part protruding into the blast furnace is damaged,
Using temperature data measured by the stave thermometer and the temperature sensor, a plurality of heat transfer equations including only the thickness of the deposit layer as unknowns at the installation locations of the stave casting thermometer and the temperature sensor are simultaneously provided. The method for measuring the thickness of the blast furnace stave deposit layer is characterized in that the thickness of the deposit layer is calculated by solving.
JP2009072375A 2009-03-24 2009-03-24 Method for measuring thickness of stuck-material layer of stave in blast furnace Pending JP2010222656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009072375A JP2010222656A (en) 2009-03-24 2009-03-24 Method for measuring thickness of stuck-material layer of stave in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009072375A JP2010222656A (en) 2009-03-24 2009-03-24 Method for measuring thickness of stuck-material layer of stave in blast furnace

Publications (1)

Publication Number Publication Date
JP2010222656A true JP2010222656A (en) 2010-10-07

Family

ID=43040159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009072375A Pending JP2010222656A (en) 2009-03-24 2009-03-24 Method for measuring thickness of stuck-material layer of stave in blast furnace

Country Status (1)

Country Link
JP (1) JP2010222656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961776A (en) * 2020-07-31 2020-11-20 中南大学 Thermocouple position mapping method for corner area of blast furnace hearth lining

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961776A (en) * 2020-07-31 2020-11-20 中南大学 Thermocouple position mapping method for corner area of blast furnace hearth lining

Similar Documents

Publication Publication Date Title
CN101275829B (en) Method for measuring blast furnace lining corroding thickness
WO2015098179A1 (en) Heat transfer tube life estimating system
CN104404187A (en) Blast furnace brickwork slag shell thickness monitoring system and method
JP2010222656A (en) Method for measuring thickness of stuck-material layer of stave in blast furnace
JP2007078287A (en) Furnace interior situation monitoring method, and furnace interior monitor
JP5487730B2 (en) Refractory life prediction method and refractory residual thickness estimation method
CN203365358U (en) Experimental apparatus for adhering slag on blast furnace copper cooling stave
JP4391195B2 (en) Temperature measuring device
JP2008145141A (en) Method of estimating state in blast furnace
CN106687606B (en) Blast furnace cooling fin with integrated wear detecting system
JP4119620B2 (en) In-furnace situation estimation method for blast furnace
CN105004756B (en) Burner flame strength detection method and device
Su-sen et al. Monitoring method for blast furnace wall with copper staves
JP5007945B2 (en) Estimation method of electric furnace slag coating thickness by unsteady heat transfer analysis
JP5381892B2 (en) Estimation method of bottom erosion line and bottom structure
JP2006257458A (en) Method for predicting wear of molten iron trough
JP5854200B2 (en) Blast furnace operation method
TWI450969B (en) Method for estimating termperature of iron water of a blast furnace
JP2011220933A (en) Estimation method for residual thickness of refractory material in pipeline
JP2005125402A (en) Method for continuously casting cast block, and method for judging quality of cast block
RU2044058C1 (en) Method for control of erosion of blast-furnace well
Swartling et al. Experimentally determined temperatures in blast furnace hearth
JP4664784B2 (en) Estimation method of hot metal temperature in blast furnace
JP2010025464A (en) Unit for measuring molten material surface level in vertical type furnace and measuring method therefor
RU2243265C2 (en) Method of detection of burn-out in cooled thermal unit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110414

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110414