JP2010219264A - 半導体発光装置 - Google Patents

半導体発光装置 Download PDF

Info

Publication number
JP2010219264A
JP2010219264A JP2009063915A JP2009063915A JP2010219264A JP 2010219264 A JP2010219264 A JP 2010219264A JP 2009063915 A JP2009063915 A JP 2009063915A JP 2009063915 A JP2009063915 A JP 2009063915A JP 2010219264 A JP2010219264 A JP 2010219264A
Authority
JP
Japan
Prior art keywords
adhesive
thermal conductivity
light emitting
wao
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009063915A
Other languages
English (en)
Inventor
Toshiya Ide
俊哉 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2009063915A priority Critical patent/JP2010219264A/ja
Publication of JP2010219264A publication Critical patent/JP2010219264A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】サブマウント基板と放熱基板の接着に必要な強度を確保しつつ、熱抵抗を下げて放熱性を高めることができる半導体発光装置を提供すること。
【解決手段】LED素子(発光素子)2が搭載されたサブマウント基板3を接着剤4によって放熱基板5上に接着して成る半導体発光装置1において、前記接着剤4は、熱伝導率の異なる複数の領域を有し、前記LED素子2の直下を含む領域の熱伝導率を他の領域の熱伝導率よりも高く設定する。例えば、接着剤4を、樹脂接着剤にこれよりも熱伝導率の高いフィラーを混合して成る熱伝導性接着剤で構成するとともに、前記LED素子2の直下を含む領域には高熱伝導率接着剤4Aを塗布し、他の領域にはフィラー濃度が高熱伝導率のそれよりも低い高接着力接着剤4Bする。
【選択図】図1

Description

本発明は、発光源としてLED素子等の発光素子を用いる半導体発光装置に関するものである。
この種の半導体発光装置は、LED素子等の発光素子が搭載されたサブマウント基板を接着剤によって放熱基板上に接着して構成されており、携帯電話や液晶テレビ等のバックライト等の用途に供されている。
ところで、近年の半導体発光装置の高輝度化に伴ってその発熱量も大きくなり、該発光素子への供給電流の絶対最大定格には余裕があっても、発光素子を基板に搭載した際の熱抵抗が高いと放熱が十分行われず、発光素子の供給電流が絶対最大定格に達する前にジャンクション温度が許容値を超えてしまうため、供給電流を抑えて使用しなければならない状況が発生している。
斯かる半導体発光装置のサブマウント基板には絶縁性が高いAlN等のセラミック基板が用いられることが多いが、このセラミック基板と金属製の放熱基板とは熱膨張係数の差が大きいため、両者を接着する接着剤としてはんだやAuSn等の硬い無機接着剤を用いると、熱衝撃によって接着剤にクラックが発生し易い。その対策の1つとして、熱膨張差を吸収することができるゴム特性を示す樹脂接着剤を用いることが考えられる。
而して、樹脂接着剤に使用されるシリコーン等の有機高分子材料は一般的には熱伝導率が極めて低いため、これに熱伝導率の高いAg等の無機フィラーを混ぜて熱伝導率を高めることが行われている。
しかし、接着剤の熱伝導率を高めるために無機フィラーの混合量を多くしてフィラー濃度を上げると、接着剤の粘度が高くなって作業性が悪くなる。逆に、希釈剤等の割合を増やして接着剤の粘度を下げると、接着強度が低下してしまう。このため、接着力と粘度(作業性)及び熱伝導率の兼ね合いからフィラー濃度には上限があり、その上限値は一般的には80〜90重量%とされている。
ところで、サブマウント基板と放熱基板との接着において、放熱に対する影響が大きいのは発熱源である発光素子の直下であるため、サブマウント基板の発光素子の直下を高熱伝導率とすることによって放熱性の向上を図る提案が特許文献1,2においてなされている。
又、特許文献3には、複数の粒径の無機フィラーが混合された熱伝導性接着剤を用いることを前提として、金属製の放熱基板の発光素子の直下に加工を施して無機フィラーの最蜜充填を行ったり、放熱基板の発光素子の直下の部分に突出部を形成し、その部分の接着剤の厚さを周囲の厚さよりも薄くすることによって熱抵抗を下げる技術が提案されている。
特開2006−041230号公報 特開2007−220830号公報 特開2008−010564号公報
しかしながら、熱伝導率の高いAg等の無機フィラーを含有した熱伝導性接着剤であっても、その熱伝導率は、サブマウント基板に用いられているAlNやアルミナ等のセラミック及び放熱基板に用いられているCuやAl等の熱伝導率よりも桁のオーダーで低いため、半導体発光装置の放熱性を高めるためには熱伝導性接着剤の熱抵抗を改善する方が特許文献1〜3における提案よりも効果的である。
又、特許文献3において提案されているように放熱基板を加工すると加工工数が増えるとともに、フィラーを含有する熱伝導性接着剤ではフィラーのサイズによって接着層の厚さに下限が生じるため、放熱基板を加工しても接着剤の厚さは変わらないという問題がある。
本発明は上記問題に鑑みてなされたもので、その目的とする処は、サブマウント基板と放熱基板の接着に必要な強度を確保しつつ、熱抵抗を下げて放熱性を高めることができる半導体発光装置を提供することにある。
上記目的を達成するため、請求項1記載の発明は、発光素子が搭載されたサブマウント基板を接着剤によって放熱基板上に接着して成る半導体発光装置において、前記接着剤は、熱伝導率の異なる複数の領域を有し、前記発光素子直下を含む領域の熱伝導率を他の領域の熱伝導率よりも高く設定したことを特徴とする。
請求項2記載の発明は、請求項1記載の発明において、前記接着剤を、樹脂接着剤にこれよりも熱伝導率の高いフィラーを混合して成る熱伝導性接着剤で構成するとともに、前記発光素子直下を含む領域には高熱伝導率接着剤を塗布し、他の領域にはフィラー濃度が高熱伝導率のそれよりも低い高接着力接着剤を配置したことを特徴とする。
請求項3記載の発明は、請求項1又は2記載の発明において、前記接着剤の前記発光素子直下を含む領域は、前記発光素子の底面の外縁から前記放熱基板の上面への垂線に対して外側へ45°の角度で広がる高熱伝導率部の内側に配置されていることを特徴とする。
請求項4記載の発明は、請求項2又は3記載の発明において、前記高熱伝導率接着剤の配置領域の短辺側の塗布幅Wa の前記高熱伝導率部の短辺長さWaoに対する比率Wa /Waoを、前記発光素子の短辺長さと長辺長さをそれぞれda ,db としたとき、
1≦db /da <4の場合 :Wa /Wao≧0.5
4≦db /da <15の場合:Wa /Wao≧0.4
15≦db /da の場合 :Wa /Wao≧0.3
に設定したことを特徴とする。
請求項5記載の発明は、請求項2〜4の何れかに記載の発明において、前記高熱伝導率接着剤の配置領域の短辺長さWaの前記高熱伝導率部の短辺長さWaoに対する比率Wa /Waoを、前記発光素子の短辺長さと長辺長さをそれぞれda ,db としたとき、0.5以上に設定したことを特徴とする。
請求項1記載の発明によれば、発光素子からの熱が通過する接着剤の発光素子直下を含む領域の熱伝導率を他の領域の熱伝導率よりも高く設定したため、熱抵抗が下がって放熱性が高められ、発光素子が効果的に冷却されるために該発光素子の駆動電流を高めることができ、発光素子の高輝度化を実現することができる。又、周辺領域では接着剤の熱伝導率を犠牲にして接着強度を高めることができるため、サブマウント基板と放熱基板の接着に必要十分な強度を確保することができる。
請求項2記載の発明によれば、高い放熱性が求められる発光素子の直下を含む領域にはフィラー濃度が高い高熱伝導性接着剤を配置し、周辺の領域には熱伝導率は比較的低いが接着強度の高い高接着力接着剤を塗布したため、サブマウント基板と放熱基板の接着に必要な強度を確保しつつ、熱抵抗を下げて放熱性を高めることができる。
請求項3記載の発明によれば、確実な接着強度を確保して高い放熱性を得ることができる。
請求項4記載の発明によれば、熱伝導率の異なる2種類の接着剤を塗り分けた場合、両接着剤の中間の熱伝導率及び接着力を有する接着剤を均一に塗布した場合よりも熱抵抗が下がる条件として比率Wa /Wao(高熱伝導性接着剤の塗布幅Wa /発光素子直下の領域長さWao)を、発光素子の種々のアスペクト比db /da (長辺長さ/短辺長さ)に対して実験的に求めた結果、
1≦db /da <4の場合 :Wa /Wao≧0.5
4≦db /da <15の場合:Wa /Wao≧0.4
15≦db /da の場合 :Wa /Wao≧0.3
が満足されれば良いことが分かったため、比率Wa /Waoを上記範囲内に設定することによって熱抵抗を下げて放熱性を高めることができる。
請求項5記載の発明によれば、Wa /Wao≧0.5に設定したため、2種の接着剤の中間の熱伝導率を有する接着剤のみを配置した場合よりも熱抵抗を低くすることができる。
(a)は単一のLED素子を配置して成る正方形の半導体発光装置の側面図、(b)は同半導体発光装置の平面図である。 (a)は複数のLED素子を配列して成る長方形の半導体発光装置の短辺側側面図、(b)は同半導体発光装置の長辺側側面図、(c)は同半導体発光装置の平面図である。 (a)〜(c)は熱伝導性接着剤の塗布要領をその工程順に示す平面図である。 (a)〜(c)は熱伝導性接着剤の塗布要領をその工程順に示す平面図である。 高熱伝導率部の幅と接着剤熱抵抗との関係を示す図である。 高熱伝導率接着剤の塗布幅の高熱伝導率部の幅に対する比率と熱抵抗の変化率との関係を示す図である。 発熱領域のアスペクト比と高熱伝導率接着剤の塗布幅の高熱伝導率部の幅に対する比率との関係を示す図である。
以下に本発明の実施の形態を添付図面に基づいて説明する。
図1(a)は単一のLED素子を配置して成る正方形の半導体発光装置の側面図、図1(b)は同半導体発光装置の平面図、図2(a)は複数のLED素子を配列して成る長方形の半導体発光装置の短辺側側面図、図2(b)は同半導体発光装置の長辺側側面図、図2(c)は同半導体発光装置の平面図である。
図1に示す正方形の半導体発光装置1は、発光素子として1つの正方形のLED素子2が搭載された正方形のサブマウント基板3を熱伝導性接着剤4によって正方形の放熱基板5上に接着して構成されている。ここで、サブマウント基板3は、AlNやアルミナ等のセラミックで構成されており、放熱基板5は熱伝導率の高いCuやAl等の金属によって構成されている。又、サブマウント基板3を放熱基板5に接着する熱伝導性接着剤4は、シリコーン等の樹脂接着剤に熱伝導率の高いAg、酸化アルミニウム等の無機フィラーを混ぜて構成されており、フィラーの含有量、つまりフィラー濃度によって熱伝導率が調整される。従って、フィラー濃度を上げれば熱伝導率が高い高熱伝導率接着剤4Aが得られ、フィラー濃度を下げれば接着力の高い高接着力接着剤4Bが得られる。
ところで、LED素子2において発生した熱の大部分は、図1(a)に矢印にて示すように、LED素子2の直下の領域を45°の角度で周囲に広がりながら放熱基板5に伝わっていくものと考えられる。サブマウント基板3及び熱伝導性接着剤4は、何れもLED素子2の外縁から放熱基板5への垂線に対して45°の角度で外側へ広がる領域(図1(a)の矢印)より外側まで位置するよう大きさと位置が設定されている。つまり、LED素子2の1辺の長さをd、サブマウント基板3の厚さをt、熱伝導性接着剤4の厚さをHとすると、サブマウント基板3の幅は(2t+d)よりも大きく、熱伝導性接着剤4の幅は(2(t+H)+d)よりも大きく設定されている。本実施の形態では、その45°の角度範囲、具体的にはLED素子2の最外側下端縁から鉛直線に対して45°外側に広がる領域(図1(a)の幅Wo の領域)内の幅Wの領域に高熱伝導率接着剤4Aを塗布し、それ以外の領域に高接着力接着剤4Bを塗布した。
ここで、図1(a)に示すように、LED素子2の1辺の長さをd、サブマウント基板3の厚さをtとすると、熱伝導性接着剤4で放熱への寄与の高い領域(高熱伝導部)の幅Wo は次式で表わされる。
Wo =d+t×2
而して、本実施の形態では、熱伝導性接着剤4として高熱伝導率接着剤4Aと高接着力接着剤4Bとを塗り分け、LED素子2からの熱が通過する熱伝導性接着剤4のLED素子直下の領域を含む幅Wの範囲に高熱伝導率接着剤4Aを塗布したため、その部分の熱抵抗が下がって放熱性が高められ、LED素子2が効果的に冷却されるために該LED素子2の駆動電流を高めることができ、該LED素子2の高輝度化を実現することができる。
そして、周辺領域では多少の熱伝導率を犠牲にして接着強度を高めるために高接着力接着剤4Bを塗布したため、サブマウント基板3と放熱基板5の接着に必要十分な強度を確保することができる。
次に、図2に示す複数のLED素子が配列された半導体発光装置について説明する。尚、図2においては、図1において示したものと同じ要素には同一符号を付している。
図2に示す長方形の半導体発光装置1は、発光素子として4つの正方形のLED素子2が1列に並んで搭載された長方形のサブマウント基板3を熱伝導性接着剤4によって長方形の放熱基板5上に接着して構成されている。
而して、図2に示す半導体発光装置1においても、熱伝導性接着剤4として高熱伝導率接着剤4Aと高接着力接着剤4Bとを塗り分け、LED素子2からの熱が通過する熱伝導性接着剤4のLED素子2の直下を含む領域、つまり熱伝導性接着剤4で放熱への寄与の高い領域(高熱伝導部)(短辺側の幅Wao、長辺側の幅Wbo)の領域内において、短辺側の幅Wa 、長辺側の幅Wb の範囲に高熱伝導率接着剤4Aを塗布し、それ以外の範囲には高接着力接着剤4Bを塗布している。尚、LED素子2の1辺の長さ(短辺側の長さ)をda (=d)、LED素子2の配列長さ(長辺側の長さ)をdb 、サブマウント基板3の厚さをtとすると、熱伝導性接着剤4で放熱への寄与の高い領域(高熱伝導部)の短辺側の幅Waoは次式で表わされる。
Wao=da +t×2
尚、高熱伝導部とは、熱伝導性接着剤4の一部領域であって、LED素子2の直下を含み、LED素子2からサブマウント基板3に対して45°の角度で広がる範囲に対応する領域である。又、本発明において、図2に示す半導体発光装置1のように、複数の発光素子が複数配列されて発光素子群を成している場合は、その発光素子群を前記実施の形態の1つの発光素子と見なし、発光素子の直下の領域とは、発光素子群の直下の領域、即ち、複数の発光素子の底面の外縁で囲まれる領域の直下の領域を示す。
ここで、高熱伝導率接着剤4Aと高接着力接着剤4Bの塗布要領を図3及び図4に従って説明する。
例えば、図3(a)に示すように、複数の孔が形成された不図示のマルチノズルによって放熱基板5上に先ず高熱伝導性接着剤4Aをスポット的に1列に打ち、次に、図3(b)に示すように、その両側に高接着力接着剤4Bを同じくスポット的に各1列に打つ。そして、図3(c)に示すように、最後にLED素子2が搭載されたサブマウント基板3を上から被せるように放熱基板5上に載置すれば、該サブマウント基板3が放熱基板5上に接着される。尚、高熱伝導率接着剤4A及び高接着力接着剤4Bは、LED素子2が搭載されたサブマウント基板3の荷重によって放熱基板5上に漏れ拡がり、高熱伝導性接着剤4Aの周囲を高接着力接着剤4Bが囲むように配置される。
或いは、図4(a)に示すように、不図示のディスペンサを用いて放熱基板5上に先ず高熱伝導性接着剤4Aを直線状に塗布し、次に、図4(b)に示すように、その両側に高接着力接着剤4Bを同じく直線状に塗布する。そして、図4(c)に示すように、最後にLED素子2が搭載されたサブマウント基板3を上から被せるように放熱基板5上に載置すれば、該サブマウント基板3が放熱基板5上に接着される。
而して、図2に示す長方形の半導体発光装置1においても、熱伝導性接着剤4として高熱伝導率接着剤4Aと高接着力接着剤4Bとを塗り分けたため、サブマウント基板3と放熱基板5の接着に必要な強度を確保しつつ、熱抵抗を下げて放熱性を高めることができるという効果が得られる。
ところで、接着強度を考えた場合、接着強度を犠牲にした高熱伝導率接着剤4Aの塗布幅W(Wa ,Wb )は狭い方が良いが、狭くすると熱抵抗が高くなってしまう。図5に図2に示す長方形の半導体発光装置1(da =1.0mm、db =4.3mm、t=1.0mm、接着剤厚さH=50μm)において熱伝導率12W/m・Kの高熱伝導率接着剤4Aと4W/m・Kの高接着力接着剤4Bを塗り分けた場合に高熱伝導率接着剤4Aの塗布幅Wa (mm)に対する接着剤熱抵抗Rth(/℃・W-1)の関係についてのシミュレーションを実線にて示すが、同図より明らかなように、塗布幅Wa が3mmを下回ると接着剤熱抵抗Rthは急激に大きくなる。尚、図5において破線は熱伝導率8W/m・Kの接着剤を均一に塗布した場合のシミュレーション結果を示す。又、図5中の●は実測データを示す。
そこで、熱が45°の角度範囲で広がりながら熱伝導性接着剤に到達した場合の幅Wo (Wao,Wbo)に対して、高熱伝導率接着剤の塗布幅W(Wa ,Wb )を変化させた場合の熱抵抗の変化を考える。
ここで、接着剤の熱抵抗率をλ、厚さをHとし、熱が45°に広がることを考慮した場合の熱抵抗Rthは一般的に次式によって求められる。
1)発熱領域が正方形である場合(1辺の長さW):
Rth=(1/λ)・H/(W・(2H+W))
高熱伝導率接着剤の熱伝導率をλhigh、高接着力接着剤の熱伝導率をλlow とし、高熱伝導率接着剤の塗布幅Wが高熱伝導率部の幅Wo よりも狭い場合(W<Wo )、熱抵抗Rthは、
((1/λlow )−(1/λhigh))・H/W2
だけ低くなる。
従って、全体の熱抵抗Rthは次式のようになる。
Rth=(1/λlow )・H/(Wo ・(2H+Wo ))
−((1/λlow )−(1/λhigh))・H/W2
2)発熱領域が長方形である場合(短辺の長さWa 、長辺の長さWb ):
熱が45°に広がることを考慮した場合の熱抵抗Rthは一般的に次式によって求められる。
Rth=[1/(2λ(Wb −Wa )]・ln[Wb (2H+Wa )
/(Wa ・(2H+Wb ))] 又、高熱伝導率接着剤の熱伝導率をλhigh、高接着力接着剤の熱伝導率をλlow とし、高熱伝導率接着剤の塗布幅Wa ,Wb が高熱伝導率部の幅Wao,Wboよりも狭い場合(Wa <Wao、Wb <Wbo)、全体の熱抵抗Rthは次式のようになる。
Rth=[(1/(2λlow (Wbo−Wao))]・ln[Wbo(2H+Wao)
/(Wao(2H+Wao))]−(1/λlow )−(1/λhigh)))・H(Wa ・Wb )
次に、以上の結果に基づいて熱伝導率が均一な場合とLED素子の直下の熱伝導率を上げてサブマウント基板周辺の熱伝導率を下げた場合とを比較する。
接着剤の熱伝導率がλhighで均一な場合の熱抵抗を(Rth)high、熱伝導率がλlow で均一な場合の熱抵抗を(Rth)low とし、熱抵抗の変化率ΔRthを次式で表すこととする。
ΔRth=((Rth)low
−Rth)/((Rth)low −(Rth)high)
上式によれば、Rth=(Rth)low
である場合にはΔRth=0、Rth=(Rth)highである場合にはΔRth=1となる。ここで、λlow =4W/m・K、λhigh=12W/m・K、d=da =1.0mm、db =4.3mm、t=1.0mm、H=50μmである場合にW/Wo ,Wa /Wao,Wb /Wboに対するΔRthの変化をプロットすると図6に示す結果が得られた。尚、図6において、長方形長辺の場合にWb /Wbo=0.5付近でΔRth=0となっているのは、Wa −Wao=Wb −Wboとなるように短辺と長辺の広がりを同時に変化させているためである。図6より明らかなように、長方形の場合は短辺側で評価した場合に正方形の場合に近い結果が得られる。
又、サブマウント基板の厚さtを変化させた場合に図6に示す結果にどのような影響が出るかを調べた結果、サブマウント基板の厚さtは図6に示す結果に殆ど影響を与えないことが確認された。
次に、熱伝導率の異なる接着剤を塗り分けた場合に、両者の中間の熱伝導率と接着力を有する接着剤を均一に塗布した場合よりも熱抵抗が低くなる場合について考える。ここでは、基準の熱抵抗を((Rth)low
+(Rth)high)/2とし、この基準値よりも熱抵抗が低い、つまりΔRth≧0.5となるWa /Waoを長方形の発熱領域のアスペクト比(db /da )に対して求めた結果を図7に示す。
図7より明らかなように、アスペクト比(db /da )=1である場合(発熱領域が正方形であって、da =db である場合)には、Wa /Wao≧0.51のときにΔRth=0.5となる。又、アスペクト比(db /da )=4である場合にはWa /Wao≧0.37のとき、アスペクト比(db /da )=15である場合にはWa /Wao≧0.29のときにそれぞれΔRth=0.5となり、アスペクト比(db /da )が大きくなる程(発熱領域が細長くなる程)、ΔRth=0.5となるWa /Waoの値が低くなることが分かる。即ち、高熱伝導率接着剤の幅が狭くても熱抵抗を下げる効果が得られることが分かる。又、熱伝導率の異なる2種の接着剤を配置する場合、少なくとも高熱伝導率部の幅に対する高熱伝導率接着剤の塗布幅の比率(Wa/Wao)を0.5以上に設定すれば、2種の接着剤の中間の熱伝導率を有する接着剤のみを配置した場合よりも熱抵抗を低くすることができることが分かった。
従って、図7に直線A,B,Cにて示すように、アスペクト比(db /da )の下記範囲に対してWa /Waoを、
1≦db /da <4の場合 :Wa /Wao≧0.5
4≦db /da <15の場合:Wa /Wao≧0.4
15≦db /da の場合 :Wa /Wao≧0.3
のように設定すれば、熱抵抗Rthを下げて放熱性を高めることができる。
つまり、アスペクト比に応じて高熱伝導率接着剤の幅を設定することができるとともに、その周囲に、高熱伝導率接着剤よりは熱伝導率が低いが接着力が高い熱伝導性接着剤を配置することができ、高い放熱性と高い接着強度を有する半導体発光装置を構成することができる。
以上のように、本発明に係る半導体発光装置1においては、高い放熱性が求められるLED素子2の直下を含む領域にはフィラー濃度が高い高熱伝導性接着剤4Aを塗布し、放熱には余り寄与しない周辺の領域には熱伝導率は比較的低いが接着強度の高い高接着力接着剤4Bを塗布するようにしたため、サブマウント基板3と放熱基板5の接着に必要な強度を確保しつつ、熱抵抗を下げて放熱性を高めることができる。この結果、LED素子2が効果的に冷却され、該LED素子2の駆動電流を高めることができるため、LED素子2の高輝度化を実現することができる。
尚、以上の実施の形態では、発光素子としてLED素子を用いたが、発光素子としてはLED素子以外の他の任意のものを使用することができる。又、以上の実施の形態においては、接着剤として流動性のあるものを用い、これを塗布して硬化させて使用したが、中央部の熱伝導率が高く周辺部の接着強度の高いシート状等の任意の形態の接着剤を配置して用いることができる。
1 半導体発光装置
2 LED素子(発光素子)
3 サブマウント基板
4 熱伝導性接着剤
4A 高熱伝導率接着剤
4B 高接着力接着剤
5 放熱基板

Claims (5)

  1. 発光素子が搭載されたサブマウント基板を接着剤によって放熱基板上に接着して成る半導体発光装置において、
    前記接着剤は、熱伝導率の異なる複数の領域を有し、前記発光素子直下を含む領域の熱伝導率を他の領域の熱伝導率よりも高く設定したことを特徴とする半導体発光装置。
  2. 前記接着剤を、樹脂接着剤にこれよりも熱伝導率の高いフィラーを混合して成る熱伝導性接着剤で構成するとともに、前記発光素子直下を含む領域には高熱伝導率接着剤を塗布し、他の領域にはフィラー濃度が高熱伝導率のそれよりも低い高接着力接着剤を配置したことを特徴とする請求項1記載の半導体発光装置。
  3. 前記接着剤の前記発光素子直下を含む領域は、前記発光素子の底面の外縁から前記放熱基板の上面への垂線に対して外側へ45°の角度で広がる高熱伝導率部の内側に配置されていることを特徴とする請求項1又は2記載の半導体発光装置。
  4. 前記高熱伝導率接着剤の配置領域の短辺側の塗布幅Wa の前記高熱伝導率部の短辺長さWaoに対する比率Wa /Waoを、前記発光素子の短辺長さと長辺長さをそれぞれda ,db としたとき、
    1≦db /da <4の場合 :Wa /Wao≧0.5
    4≦db /da <15の場合:Wa /Wao≧0.4
    15≦db /da の場合 :Wa /Wao≧0.3
    に設定したことを特徴とする請求項2又は3記載の半導体発光装置。
  5. 前記高熱伝導率接着剤の配置領域の短辺長さWaの前記高熱伝導率部の短辺長さWaoに対する比率Wa /Waoを、前記発光素子の短辺長さと長辺長さをそれぞれda ,db としたとき、0.5以上に設定したことを特徴とする請求項2〜4の何れかに記載の半導体発光装置。
JP2009063915A 2009-03-17 2009-03-17 半導体発光装置 Pending JP2010219264A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063915A JP2010219264A (ja) 2009-03-17 2009-03-17 半導体発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063915A JP2010219264A (ja) 2009-03-17 2009-03-17 半導体発光装置

Publications (1)

Publication Number Publication Date
JP2010219264A true JP2010219264A (ja) 2010-09-30

Family

ID=42977786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063915A Pending JP2010219264A (ja) 2009-03-17 2009-03-17 半導体発光装置

Country Status (1)

Country Link
JP (1) JP2010219264A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234910A (ja) * 2011-04-28 2012-11-29 Toshiba Corp 半導体装置およびその製造方法
CN107068591A (zh) * 2016-02-11 2017-08-18 米尔鲍尔有限两合公司 一种借助辐射源松开刚性基板上电子元件的工装和方法
CN107636812A (zh) * 2015-06-17 2018-01-26 英特尔公司 双材料高k热密封剂系统
WO2019163276A1 (ja) * 2018-02-26 2019-08-29 パナソニック株式会社 半導体発光装置
JP2019525389A (ja) * 2016-06-22 2019-09-05 ルミレッズ ホールディング ベーフェー 光変換パッケージ
JP2021114589A (ja) * 2020-01-21 2021-08-05 株式会社デンソー 電力変換装置
JPWO2020144794A1 (ja) * 2019-01-10 2021-09-09 三菱電機株式会社 半導体レーザ装置
JP2022089985A (ja) * 2019-01-10 2022-06-16 三菱電機株式会社 半導体レーザ装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234910A (ja) * 2011-04-28 2012-11-29 Toshiba Corp 半導体装置およびその製造方法
CN107636812A (zh) * 2015-06-17 2018-01-26 英特尔公司 双材料高k热密封剂系统
CN107068591A (zh) * 2016-02-11 2017-08-18 米尔鲍尔有限两合公司 一种借助辐射源松开刚性基板上电子元件的工装和方法
JP7114489B2 (ja) 2016-06-22 2022-08-08 ルミレッズ ホールディング ベーフェー 光変換パッケージ
JP2019525389A (ja) * 2016-06-22 2019-09-05 ルミレッズ ホールディング ベーフェー 光変換パッケージ
US11480316B2 (en) 2016-06-22 2022-10-25 Lumileds Llc Light conversion package
WO2019163276A1 (ja) * 2018-02-26 2019-08-29 パナソニック株式会社 半導体発光装置
JPWO2019163276A1 (ja) * 2018-02-26 2021-02-04 パナソニック株式会社 半導体発光装置
JP7232239B2 (ja) 2018-02-26 2023-03-02 パナソニックホールディングス株式会社 半導体発光装置
JPWO2020144794A1 (ja) * 2019-01-10 2021-09-09 三菱電機株式会社 半導体レーザ装置
JP2022089985A (ja) * 2019-01-10 2022-06-16 三菱電機株式会社 半導体レーザ装置
JP7145977B2 (ja) 2019-01-10 2022-10-03 三菱電機株式会社 半導体レーザ装置
JP7297121B2 (ja) 2019-01-10 2023-06-23 三菱電機株式会社 半導体レーザ装置
JP2021114589A (ja) * 2020-01-21 2021-08-05 株式会社デンソー 電力変換装置
JP7434920B2 (ja) 2020-01-21 2024-02-21 株式会社デンソー 電力変換装置

Similar Documents

Publication Publication Date Title
JP2010219264A (ja) 半導体発光装置
US8772817B2 (en) Electronic device submounts including substrates with thermally conductive vias
TWI343233B (en) Circuit board assembly and backlight module comprising the same
US10041663B2 (en) Light source and method of mounting light-emitting device
JP6131986B2 (ja) 発光装置の製造方法
JP6432416B2 (ja) 半導体装置
JP2011029634A (ja) 半導体発光素子搭載用基板、バックライトシャーシ、表示装置、及び、テレビ受信装置
US9365768B2 (en) White light emitting diode, manufacturing method and packaging material thereof
US20180182917A1 (en) Light emitting device and method for manufacturing the same
US20130328200A1 (en) Direct bonded copper substrate and power semiconductor module
JP2007194521A (ja) 発光モジュールとその製造方法
JP2007294506A (ja) 放熱基板とその製造方法及び、これを用いた発光モジュール及び表示装置
US20130280519A1 (en) Flexible ceramic substrate
KR102155811B1 (ko) 방열 점착제의 제조방법 및 이를 포함하는 방열 테이프
JP2007214475A (ja) 放熱発光部品とその製造方法
JP2007194519A (ja) 発光モジュールとその製造方法
JP2007165843A (ja) 発光モジュールとその製造方法並びにそれを用いたバックライト装置
TW201208108A (en) Chip-type LED package and light emitting apparatus having the same
US9705051B2 (en) Light emitting device
JP4923700B2 (ja) 放熱基板とその製造方法及び、これを用いた発光モジュール及び表示装置
KR102545636B1 (ko) 열전도성 복합신소재용 조성물, 이를 포함하는 등기구의 방열장치 및 등기구의 방열장치로 제작된 led 등기구
JP2007214471A (ja) 発光モジュールとその製造方法
JP2011101054A (ja) 半導体発光素子搭載用基板、バックライトシャーシ、表示装置、及び、テレビ受信装置
US20120275116A1 (en) Heat radiating substrate
KR20140086474A (ko) 열전도성 필름 및 회로 기판 모듈