JP2010218571A - 圧力式流量制御装置 - Google Patents

圧力式流量制御装置 Download PDF

Info

Publication number
JP2010218571A
JP2010218571A JP2010118206A JP2010118206A JP2010218571A JP 2010218571 A JP2010218571 A JP 2010218571A JP 2010118206 A JP2010118206 A JP 2010118206A JP 2010118206 A JP2010118206 A JP 2010118206A JP 2010218571 A JP2010218571 A JP 2010218571A
Authority
JP
Japan
Prior art keywords
pressure
temperature
fluid
flow rate
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010118206A
Other languages
English (en)
Other versions
JP4852654B2 (ja
Inventor
Tadahiro Omi
忠弘 大見
Koji Nishino
功二 西野
Atsushi Matsumoto
篤諮 松本
Ryosuke Doi
亮介 土肥
Shinichi Ikeda
信一 池田
Kazuhiko Sugiyama
一彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Fujikin Inc
Original Assignee
Tokyo Electron Ltd
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42977269&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2010218571(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tokyo Electron Ltd, Fujikin Inc filed Critical Tokyo Electron Ltd
Priority to JP2010118206A priority Critical patent/JP4852654B2/ja
Publication of JP2010218571A publication Critical patent/JP2010218571A/ja
Application granted granted Critical
Publication of JP4852654B2 publication Critical patent/JP4852654B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)
  • Flow Control (AREA)

Abstract

【課題】流体中の同一点の流体圧力と流体温度を同時に測定してオリフィス通過流量を高精度に制御できる圧力式流量制御装置を実現する。
【解決手段】圧力式流量制御装置に於いて、圧力センサ及び温度センサを、受圧面に形成した4個の抵抗を4辺とするブリッジ回路の入力端子間に定電流電源を接続してその出力端子間の電圧変化で流体圧力を検出すると共に、入力端子間の電圧変化で流体温度を検出する構成の温度と圧力を同時に検出する一つの圧力温度センサ10とし、流体温度Tに対応した補正を行ってこれを流体圧力Pに変換すると共に、温度変換手段からの流体温度Tに対応して流量演算式の比例定数Kの温度補正を行うガス温度補正手段と,補正後の後の演算流量Qと設定流量Qとの差を制御信号としてコントロールバルブへ出力する比較回路と,から構成する。
【選択図】図1

Description

本発明は主として半導体製造設備や化学プラント等で使用される圧力式流量制御装置に関し、更に詳細には、流体の圧力を計測する圧力センサを抵抗素子で構成し、同時にこの抵抗素子を流体温度計測用の温度センサとして使用する圧力式流量制御装置に関する。
半導体製造設備や化学プラントなどでは、原料となる複数のガスを所定の流量で供給し、原料ガスを反応炉の中で化学反応させて目的ガスを生成する場合が多い。このような場合に、原料ガスの供給流量が正確でないと化学反応に過不足が生じ、目的ガスの中に原料ガスが残留する事態が生じる。特に、この原料ガスが引火性の場合には爆発の危険性が付きまとう。
従来、ガス流量を正確に制御するために、配管内にオリフィスを配置し、このオリフィスを通過する理論流量として出来るだけ精度の良い流量式が選択されてきた。特に、ガス流の非圧縮性を考慮して、オリフィスを通過するガス流の流速を音速領域に設定して流量制御する方法が使用されている。
この流量制御方法では、オリフィスの上流側圧力Pと下流側圧力Pの圧力比P/Pを約0.5の臨界値より小さくしたとき、オリフィスを通過するガスの流速が音速に達し、この音速領域で理論流量式が高精度にQc=KPによって表現される性質が利用されている。ここで、比例係数Kは流体の種類と流体温度に依存することが分かっている。
この理論流量式によりオリフィス通過流量を制御するには、オリフィスの上流側圧力Pと上流側の流体温度Tを正確に測定することが必要となる。上流側圧力Pはダイヤフラムで受圧され、圧力伝達媒体を経由して抵抗素子で測定される。他方、流体温度Tはオリフィスを組み込んだ弁装置にサーミスタを別個に配置することにより測定されている。
特開平8−338546号 特開2000−322130号
上述したように、上流側圧力はダイヤフラムに直接接触して作用し、圧力伝達媒体を経由して圧力センサである抵抗素子で計測されるから、流体圧を正確に測定することができる。他方、温度センサであるサーミスタは流体に直接接触せず、前述した弁装置内のオリフィス近傍位置に配置されている。流体はオリフィスを継続的に通過するから、オリフィス近傍位置は流体と熱平衡状態に到達して温度が等しくなっていると考えられ、オリフィス近傍位置に配置されたサーミスタは流体温度を正確に再現できると考えられたからである。
ところが、弁装置は一般に金属により形成されるから、熱伝導性は極めて高い。流体からオリフィス位置で吸引された熱は、弁装置の外側表面へと急速に熱伝達し、この温度傾斜によりオリフィスから少し離れた位置の温度でも、流体温度と同一ではない。サーミスタは有限の幾何学的寸法を有しているから、サーミスタがオリフィス近傍に配置されたとしても、その測定温度は流体温度から僅かにずれていると考えられる。従って、このサーミスタ温度を流体温度として流量を計算した場合には、Qc=KPによる演算流量に誤差を誘導する第1の原因となる。
また、Qc=KPの演算に使用される上流側圧力Pと流体温度Tは、理論的には上流側流体の同一点における圧力と温度である。このことは流量式Qc=KPを導出する過程において、同一点の圧力Pと温度Tが使用されていることからも理解できる。
ところが、従来の圧力式流量制御装置では、前述したように、抵抗素子により流体圧力を測定し、別に配置されたサーミスタにより流体温度を測定している。抵抗素子とサーミスタが極小化されたとしても、両者は別体であるから、必然的に圧力と温度の測定点は異なってくる。両者が有限の大きさを有し、しかも取付位置が異なっている実情では、圧力と温度の測定位置が多少とも離間し、前記流量式に第2の誤差を誘導する原因となる。
従って、本発明に係る圧力式流量制御装置の温度測定装置は、流体圧力を測定する位置と同一位置の流体温度を直接測定することにより、流量式の理論的要請を満足させて、オリフィスを通過する流体の流量を高精度に制御することを目的とする。この目的を達成するために、本発明は下記の発明群から構成される。
本願発明は、流量制御用のオリフィスとオリフィスの上流側配管に設けたコントロールバルブと,コントロールバルブの下流側に設けてオリフィスの上流側の流体圧力Pを検出する圧力センサと,オリフィスの上流側の流体温度Tを検出する温度センサと,前記温度Tによる前記流体圧力Pの補正と演算式Q=KP(但しKは比例定数、Pは流体圧力)による流体のオリフィス通過流量の演算と前記流体温度Tによる前記オリフィス通過流量の演算の補正を行うと共に前記補正後の流量演算値に基づいて前記コントロールバルブへ制御信号を出力する制御回路とから構成され、前記制御回路からの制御信号によりコントロールバルブを開閉制御して流体のオリフィス通過流量を制御する圧力式流量制御装置に於いて、前記圧力センサ及び温度センサを、受圧面に形成した4個の抵抗を4辺とするブリッジ回路の入力端子間に定電流電源を接続してその出力端子間の電圧変化で流体圧力を検出すると共に、前記入力端子間の電圧変化で流体温度を検出する構成の温度と圧力を同時に検出する一つの圧力温度センサとし、また、前記制御回路を、固定増幅回路及びA/D変換器を通して入力された前記圧力温度センサの圧力Pに相当する出力電圧Vにメモリ手段のデータを用いてスパン補正手段により流体温度Tに対応した補正を行ってこれを流体圧力Pに変換すると共に、前記圧力Pが零の際に前記圧力温度センサに圧力のゼロ点ドリフト電圧が生じたときにはメモリ手段のデータを用いてゼロ点補正手段により流体温度Tに対応した補正すべきゼロ点ドリフト電圧Vを演算し、D/A変換器を介して前記圧力Pの出力電圧Vを増幅する固定増幅器のオフセット端子へ前記演算したゼロ点ドリフト電圧Vのマイナス値を出力する温度ドリフト補正手段と,固定増幅回路及びA/D変換器を通して入力された前記圧力温度センサの温度Tに相当する出力電圧Vを流体温度Tに変換すると共に、変換した流体温度Tを前記温度ドリフト補正手段へ出力する温度変換手段と,前記温度変換手段からの前記流体温度Tに対応して前記流量演算式の比例定数Kの温度補正を行うガス温度補正手段と,補正後の後の演算流量Qと設定流量Qとの差を制御信号としてコントロールバルブへ出力する比較回路と,から構成したことを特徴とする圧力式流量制御装置である。
また、上記圧力温度センサを形成する抵抗は、シリコン基板に抵抗が拡散形成された抵抗素子とするのが望ましい。
本願発明によれば、抵抗素子が流体圧力と流体温度を同時に測定できるという本発明者等の新規な発見に基づいて、抵抗素子単体で圧力センサ且つ温度センサとして活用できる。従って、オリフィスを通過する流体の速度が音速状態になる臨界膨張条件下において、この抵抗素子を上流側の圧力温度センサとして使用すれば、従来必要であった温度センサが不要となり、しかも流体の同一点の圧力と温度を同時に測定できるから、回路構成の簡単化と流量制御の高性能化を実現でき、装置全体の低価格化に寄与することができる。
また、本願発明では、制御回路の温度ドリフト補正手段60において、ゼロ点補正手段62とスパン補正手段62により流体温度Tに対応したゼロ点出力ドリフト電圧Vと圧力電圧VPのスパン出力ドリフトの補正をメモリ手段64のデータを活用しながら行うと共に、ガス温度補正手段68により流体温度Tに対応した流量演算式の比例定数Kの補正を行う構成としているため、極く簡単な構成でもって、流体の高精度な圧力式流量制御を行うことができる。
臨界条件を利用した圧力式流量制御装置による流量制御の構成図である。 抵抗素子からなる圧力温度センサ10の要部断面斜視図である。 図2に示す抵抗素子の等価回路図である。 圧力温度センサ10の圧力特性と温度特性測定用の実験装置図である。 3種類の圧力温度センサのブリッジ電圧―温度特性図である。 3種類の圧力温度センサの同一温度におけるブリッジ電圧―圧力特性図である。 本発明の圧力式流量制御装置の制御系の詳細ブロック構成図である。 本発明に係る非臨界膨張条件を利用した圧力式流量制御装置の流量制御の構成図である。 本発明に係る非臨界膨張条件を利用した改良型圧力式流量制御装置による流量制御の構成図である。
本発明者等は、流体中の同一位置における流体圧力と流体温度を同時に計測するために鋭意研究した結果、圧力センサと温度センサを別体で配置することを止め、圧力センサを同時に温度センサとして利用できないかという着想を得て本発明を想到するに到ったものである。
本発明者等は、従来より流体の流量制御を行なう場合に、圧力センサとして抵抗素子を使用している。この抵抗素子は、圧力を受けたときに抵抗が変化する性質を利用したもので、一般的には4個の抵抗をシリコン基板上に形成し、この4個の抵抗を4辺としたホイートストンブリッジが構成されている。
この圧力センサの原理は次の通りである。ホイートストンブリッジの入力端子間に接続された定電流電源により抵抗には定電流が流れる。圧力を受けると抵抗の抵抗値が変化するから、ブリッジの出力端子間の電圧が変化し、この出力端子間の電圧により流体圧力を測定することができる。
この圧力センサを同時に温度センサとして利用するために、本発明者等は、ホイートストンブリッジの入力端子に着目した。入力端子間には定電流電源が接続されているものの電圧電源は接続されていないから、入力端子間の電圧は抵抗変化に応じて当然に変化する。
本発明者等は、この抵抗素子を恒温槽に配置して、温度を変化させながら入力端子間の電圧を測定した結果、温度変化に対して広範囲に電圧が変化することを発見した。また、温度を一定に保持しながら圧力だけを変化させたとき、入力端子間の電圧はほとんど変化しないか、又は本発明装置が許す誤差範囲内の変化しか示さなかった。
以上の結果から、抵抗素子の入力端子間電圧により流体温度を測定することが可能であることが実証された。そこで、以下では、この入力端子間電圧をブリッジ電圧とも称し、流体温度測定に専用的に使用する。また、従来通り、出力端子間電圧は流体圧力の測定用に使用されるので、この抵抗素子は流体の同一点に対し機能する圧力センサ且つ温度センサであり、総合して圧力温度センサと称することもできる。
以下に、本発明に係る圧力式流量制御装置の実施形態を図面に従って詳細に説明する。
図1は臨界膨張条件を利用した圧力式流量制御装置による流量制御の構成図である。この圧力式流量制御装置2は、供給される流体が臨界膨張条件にある場合、即ちオリフィス4から流出する流体の速度が音速である場合を前提としているため、流量はQc=KPで表される。
この圧力式流量制御装置2には、オリフィス孔4aを形成したオリフィス4、上流側配管6、下流側配管8、上流側の圧力温度センサ10、制御回路16、バルブ駆動部20及びコントロールバルブ22が配置されている。
圧力温度センサ10は抵抗素子から構成され、後述するようにホイートストンブリッジの出力端子間電圧で上流側の流体圧力を検出し、またその入力端子間電圧(ブリッジ電圧とも云う)で流体中の同一点の流体温度を検出するように構成されている。
制御回路16は電子回路とマイクロコンピュータと内蔵プログラムを中心に構成されているが、電子回路だけで構成してもよいし、電子回路とパーソナルコンピュータで構成してもよい。この制御回路16は、図示しない増幅回路やA/D変換器などの電子回路系と、実験流量式による流量Qcを演算する流量演算手段17と、流すべき設定流量Qsを指令する流量設定手段18と、演算流量Qcと設定流量Qsの流量差ΔQ(=Qs−Qc)を計算する比較手段19から構成されている。流量差ΔQはQc−Qsにより算出されてもよい。
この圧力式流量制御装置2の上流側には、高圧ガスを内蔵するガスタンク24と、この高圧ガスのガス圧力を適度に調整するレギュレータ26と、このガスを供給側配管27からコントロールバルブ22に供給するバルブ28が接続されている。
また、圧力式流量制御装置2の下流側には、流量制御されたガスを流通させる制御側配管29と、このガスをチャンバー32に供給するバルブ30と、真空ポンプ34が連結されている。チャンバー32は供給される原料ガスから目的ガスを生成する反応室で、例えばHとOの原料ガスからHOの水分ガスを生成する反応室である。
次に、この圧力式流量制御装置2の制御動作を説明する。上流側では供給側配管27に所定圧力のガスが供給され、更にバルブ駆動部20により開閉制御されるコントロールバルブ22により上流側配管6への供給流量が制御される。同時に、下流側では真空ポンプ34により下流側配管8が低圧に設定されている。
真空ポンプ34による排気で、下流側配管8内の下流側圧力Pは上流側圧力Pよりもかなり小さく設定され、少なくともP/P<約0.5の臨界膨張条件が常に満足されるように自動的に設定されるから、オリフィス孔4aから流出するガス速度は音速となっている。従って、オリフィス4の通過流量はQc=KPで表現される。
上流側圧力Pは圧力温度センサ10により計測される。正確な圧力測定をするため、ガス圧力は耐食性に優れたダイヤフラムで直接受圧され、圧力伝達媒体を経由して圧力温度センサ10のセンサ部分で圧力計測されるように構成されている。しかも、ガス流を撹乱しないように、そのセンサ部分は極めて小さく設計されている。従って、センサ部分はガス温度Tに等しくなっている。
図2は抵抗素子からなる圧力温度センサ10の要部断面斜視図である。リードピン36、36を有したヘッダー35の上にガラス台座37が配置され、このガラス台座37の上に脚部38a、38aで両端支持されたシリコン基板38が固定されている。シリコン基板38の下面には隙間状の空間部39が形成され、この空間部39に連続して貫通孔41が穿孔されている。
シリコン基板38の上面には4個の抵抗41a、41b、41c、41dが熱拡散法で形成されている。この抵抗は、表面に応力が加えられると、この応力に相応して電気抵抗が変化する性質を有している。従って、定電流を流すと、応力に相応して電圧が変化し、この電圧変化により圧力測定が可能になる。
ガス圧力(流体圧力)は図示しないダイヤフラムで受圧されて圧力伝達媒体(流体)に圧力Pを生起させ、圧力伝達媒体に生じた圧力Pがシリコン基板38の上面を押圧して、圧力Pが抵抗41a〜41dに作用する。一方、空間部39を真空にすると、シリコン基板38は流体圧力Pだけで変形するから、流体の絶対圧力がシリコン基板38に作用し、絶対圧力センサとして機能する。また、貫通孔41が大気に開放されていると、流体圧力Pと大気圧の差圧がシリコン基板38を変形させるから、流体のゲージ圧力がシリコン基板38に作用し、ゲージ圧力センサとして機能する。
図3は図2に示す抵抗素子の等価回路図である。抵抗41a、41b、41c、41dはホイートストンブリッジの4辺を構成し、一方の対角点C・Dには入力端子42a・42bが連結され、この入力端子間に定電流電源43が接続されている。また、他方の対角点A・Bには出力端子44a、44bが連結されている。
4個の抵抗41a、41b、41c、41dは圧力Pを受けて抵抗値が変化する。定電流電源43から矢印方向に定電流Iが流され、前記抵抗変化によりAB間の電位差が変化し、出力端子44a・44bの間に流体圧力に相応した電圧Vが生じる。この明細書では、電圧Vを出力端子間電圧と呼び、流体圧力の検出電圧の意味で圧力電圧とも称する。
この抵抗素子を流体温度測定にも利用するために、本発明者等は他方の対角点C・Dに着目した。定電流Iにより点CD間にも電位差が発生し、この電位差は入力端子42a・42bの間で検出できるから、入力端子間電圧又はブリッジ電圧とも称される。本発明者等はこのブリッジ電圧Vが流体温度によってかなり変化すると予測した。
図4は圧力温度センサ10の圧力特性と温度特性測定用の実験装置図である。抵抗素子からなる圧力温度センサ10を装填した圧力式流量制御装置2が恒温槽CTの内部に配設され、基準圧力発生器PGと真空ポンプDPがバルブV、Vを介して配管系PSに接続されている。
まず、バルブVを閉鎖し、バルブVを開放して、真空ポンプDPにより配管系PSを真空状態、即ち内部圧力を0(kPa・abs)に設定する。この状態で恒温槽CTの内部温度を25℃から100℃まで変化させながら、各温度毎に圧力温度センサ10を作動させる。No.1、No.2及びNo.3の3種類の圧力温度センサに対し、絶対圧ゼロの状態で、各温度毎にブリッジ電圧Vが測定された。
図5は3種類の圧力温度センサのブリッジ電圧―温度特性図である。この特性図は絶対圧がゼロの真空状態で得られ、横軸は温度T(℃)、縦軸はブリッジ電圧V(V)を示す。
3種類の圧力温度センサ10はNo.1、No.2及びNo.3で示され、恒温槽CTの温度は25℃から100℃まで変化された。温度T(℃)に対するブリッジ電圧V(V)の依存性は、No.1は実線、No.2は鎖線及びNo.3は破線で示され、ほぼ直線になっている。
No.1、No.2及びNo.3において、25℃でのブリッジ電圧Vは7.295V、7.380V及び7.271Vであり、100℃でのブリッジ電圧Vは8.966V、9.076V及び8.925Vであった。圧力温度センサによる個性の違いは、同一温度で約0.15V程度あるが、個々のセンサで直線性は極めて高い。
25℃から100℃までの75℃の温度差で、ブリッジ電圧Vの変化量は2.228V(No.1)、2.205V(No.2)及び2.261V(No.3)である。従って、1℃当たりのブリッジ電圧Vの変化量は、22.28mV(No.1)、22.05mV(No.2)及び22.61mV(No.3)とかなり大きいことが分かる。1℃の変化でブリッジ電圧Vは約20mVも変化するから、ブリッジ電圧Vにより温度Tを測定できることが示される。
図6は3種類の圧力温度センサの同一温度におけるブリッジ電圧―圧力特性図である。圧力温度センサ10のブリッジ電圧Vが圧力によってどの程度変化するかが測定された。もし、ブリッジ電圧が圧力にほとんど依存しないならば、ブリッジ電圧Vは温度測定に使用できることが実証される。
図6には、温度を25℃に保持した場合と100℃に保持した場合の2通りの実験結果が示されている。両者とも、圧力Pを0〜700(kPa・abs)まで変化させた場合について、ブリッジ電圧Vが測定された。
25℃において圧力Pを0から700(kPa・abs)まで変化させると、ブリッジ電圧Vは7.295V→7.285V(No.1)、7.271V→7.261V(No.2)及び7.380V→7.370V(No.3)まで変化した。従って、700(kPa・abs)の圧力変化に対して、3種類の圧力温度センサともにブリッジ電圧Vの変化量は−10mVと極めて微小な変化を示したに過ぎなかった。
また、100℃において圧力Pを0から700(kPa・abs)まで変化させると、ブリッジ電圧Vは8.966V→8.956V(No.1)、8.925V→8.915V(No.2)及び9.076V→9.067V(No.3)まで変化した。従って、700(kPa・abs)の圧力変化に対して、3種類の圧力温度センサのブリッジ電圧Vの変化量は−10mV、−10mV及び−9mVとなり、センサの個性の違いが現れるものの、前述と同様に極めて微小な変化を示すに過ぎなかった。
以上をまとめると、700(kPa・abs)の圧力変化に対して、25℃では−10mV、100℃では約−10mVのブリッジ電圧Vの変化が見られる。ブリッジ電圧Vは75℃の温度変化に対して約2Vも変化するのであるから、10mVはその0.5%に過ぎない。
誤差についてもう少し議論する。ガス流体の実使用圧力を350(kPa・abs)とすると、ブリッジ電圧Vの変動は10mV/2=5mVとなる。No.1の圧力温度センサでは1℃当たり22.28mVも変化するから、前記の5mVは5/22.8より0.224℃の温度誤差を与えるに過ぎない。
この0.224℃の温度誤差は、ガス温度補正では所要の計算により0.04%の誤差を与えるに過ぎない。また圧力センサとしてのゼロ点温度ドリフトを1℃当たり0.1%とすると、0.224℃の温度誤差に対して0.1%×0.224=約0.02%の誤差を誘導する。従って、前記0.224℃の温度誤差は0・04%+0.02%=0.06%から0.06%の誤差を誘引するに過ぎない。この圧力式流量制御装置の誤差は例えば1%以下のように設計されるから、0.06%の誤差は全体誤差に埋没する程度に過ぎないものである。
従って、抵抗素子を用いた圧力温度センサは、圧力と温度を相関関係無く同時に測定でき、圧力センサであると同時に温度センサとしても機能することができる。従って、前述したように、抵抗素子の出力端子間電圧(圧力電圧)Vで圧力測定を行い、入力端子間電圧、即ちブリッジ電圧V(温度電圧とも云う)で温度測定を行なえるから、抵抗素子は圧力温度センサと呼ぶに相応しい素子であると言う事ができる。
図7は本発明の圧力式流量制御装置の制御系の詳細ブロック構成図である。上述した圧力温度センサ10は流体の上流側圧力Pとその同一点の流体温度Tを同時に測定する。この圧力温度センサ10の圧力Pに相当する圧力電圧(出力端子間電圧)Vが固定増幅回路45と可変増幅回路47により増幅され、A/D変換器48を介してCPU51に入力されて圧力Pに変換される。また、可変増幅回路46を通して上流側圧力Pを外部に表示する。
圧力温度センサ10は抵抗素子から構成され、圧力がゼロでも圧力電圧Vを出力する場合があり、このVをゼロ点ドリフト電圧という。この場合には、オフセット用D/A変換器49を介して、電圧−Vをオフセット端子45aに出力して、ゼロ点ドリフトを強制的にゼロに設定する。
他方、圧力温度センサ10は流体温度Tに相当するブリッジ電圧Vを出力し、このブリッジ電圧Vを固定増幅器56及びA/D変換器58を介してCPU51に出力する。このブリッジ電圧Vは温度変換手段50により流体温度Tに変換される。
この流体温度Tは温度ドリフト補正手段60とガス温度補正手段68に入力される。温度ドリフト補正手段60では、ゼロ点補正手段62とスパン補正手段66により流体温度Tに対応した補正がメモリ手段64のデータを活用しながら行なわれる。また、ガス温度補正手段68では、演算流量Qcの比例係数Kの補正が流体温度Tを用いて行なわれる。
このようにして、正確な上流側圧力Pと比例定数Kが算出され、これらデータから演算流量QcがQc=KPとして演算される。この演算流量QcはD/A変換器72と固定増幅回路74を介して出力され、図示しない外部表示装置に表示される。
流量設定手段18から目的流量として入力された設定流量Qsは、固定増幅回路76とA/D変換器78を介して比較手段19に入力される。一方、ガス温度補正手段68から演算流量Qcが比較手段19に入力され、流量差ΔQがΔQ=Qc−Qsとして計算され、バルブ駆動部20に出力される。
バルブ駆動部20は、この流量差ΔQをゼロにするようにコントロールバルブ22の弁開度を開閉調整し、この開閉によって上流側圧力Pが制御される。この結果、ΔQはゼロとなり、演算流量Qcは設定流量Qsに一致するように自動制御される。
本発明では、従来から圧力センサとして使用されてきた抵抗素子が温度センサとしても機能するという意外な発見から、一つの抵抗素子を圧力温度センサとして活用する道を開いたものである。従って、ブロック構成図から分るように、1個の圧力温度センサで圧力と温度の測定が可能となり、回路構成の簡単化と低価格化を同時に達成することに成功した。
図8は、本発明に係る非臨界膨張条件を利用した圧力式流量制御装置の構成図である。この圧力式流量制御装置2は、供給される流体が非臨界膨張条件にある場合、即ちオリフィス4から流出する流体の流体速度が音速より低い場合を前提としている。
流体が非臨界膨張条件にあるとき、オリフィス通過流量の理論流量式の一つは、非圧縮性流体に対して成立するベルヌーイの定理から導出したもので、Q=KP 1/2(P−P1/2で与えられる。但し、オリフィスの通過前後で流体温度は変化しないことを前提とする。図8では、この理論流量式を使用して、ガス流量を制御する。
この流量式では、オリフィス通過量Qは上流側圧力Pと下流側圧力Pの両方を使用して演算される。しかし、流体温度Tは上流側又は下流側のいずれを使用してもよいから、上流側に本発明の圧力温度センサ10を配置し、下流側には圧力センサ12だけを配置する。従って、圧力温度センサ10により上流側圧力Pと流体温度Tが測定され、圧力センサ12により下流側圧力Pが常に計測され、演算流量QcをQc=KP 1/2(P−P1/2で算出する。
図1との相違点は、下流側圧力Pを圧力センサ12により測定して制御回路16に入力する電子回路系及びソフト系が付加されることである。作用効果は図1とほぼ同様であるから、その詳細を省略する。
図9は、本発明に係る非臨界膨張条件を利用した改良型圧力式流量制御装置による流量制御の構成図である。この圧力式流量制御装置2は、供給される流体が非臨界膨張条件にある場合を前提としているが、改良された理論流量式を使用する。
実際のガス流体は膨張性と圧縮性を有しているため、非圧縮性を前提としたベルヌーイの定理は近似的にしか成立しない。従って、Qc=KP 1/2(P−P1/2で表される流量式は近似式でしかない。本発明者等は、この近似式を改良して実際の流量を高精度に再現できる流量式を検討した。
この改良された流量式として、Qc=KP (P−Pを使用することにした。従来は、指数として二つのパラメータm、nを使用し、実際の流量をこの流量式でフィットすることにより、mとnを導出した。これらのパラメータm、nを使用することにより、実際の流量を高精度に再現する事ができた。
この実施形態では、改良された流量式を用いて流量演算手段17を構成しており、この点を除けば図8に示す実施形態と全く同様である。即ち、上流側には本発明に係る圧力温度センサ10が配置され、下流側には圧力センサ12が配置されている。その他の構成と作用効果は図1と同様であるから、その説明は省略する。
本発明は上記実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々の変形例・設計変更などをその技術的範囲内に包含することは云うまでもない。
2は圧力式流量制御装置、4はオリフィス、4aはオリフィス孔、6は上流側配管、8は下流側配管、10は上流側の圧力温度センサ、12は下流側の圧力センサ、16は制御回路、17は流量演算手段、18は流量設定手段、19は比較手段、20はバルブ駆動部、22はコントロールバルブ、24はガスタンク、26はレギュレータ、27は供給側配管、28はバルブ、29は制御側配管、30はバルブ、32はチャンバー、34は真空ポンプ、35はヘッダー、36はリードピン、37はガラス台座、38はシリコン基板、38aは脚部、39は空間部、41a〜41dは抵抗、42a・42bは入力端子、43は定電流電源、44a・44bは出力端子、45は固定増幅回路、45aはオフセット端子、46は可変増幅回路、47は可変増幅回路、48はA/D変換器、49はオフセット用D/A変換器、50は温度変換手段、51はCPU、56は固定増幅回路、58はA/D変換器、60は温度ドリフト補正手段、62はゼロ点補正手段、64はメモリ手段、66はスパン補正手段、68はガス温度補正手段、72はD/A変換器、74は固定増幅回路、76は固定増幅回路、78はA/D変換器、CTは恒温槽、Pは上流側圧力、Pは下流側圧力、PGは基準圧力発生器、Qcは演算流量、Qsは設定流量、ΔQは流量差、Vはゼロ点出力ドリフト電圧、V・Vはバルブ、Vは圧力電圧、Vはブリッジ電圧(温度電圧)。

Claims (2)

  1. 流量制御用のオリフィスと,オリフィスの上流側配管に設けたコントロールバルブと,コントロールバルブの下流側に設けてオリフィスの上流側の流体圧力Pを検出する圧力センサと,オリフィスの上流側の流体温度Tを検出する温度センサと,前記温度Tによる前記流体圧力Pの補正と演算式Q=KP(但しKは比例定数、Pは流体圧力)による流体のオリフィス通過流量の演算と前記流体温度Tによる前記オリフィス通過流量の演算の補正を行うと共に前記補正後の流量演算値に基づいて前記コントロールバルブへ制御信号を出力する制御回路とから構成され、前記制御回路からの制御信号によりコントロールバルブを開閉制御して流体のオリフィス通過流量を制御する圧力式流量制御装置に於いて、前記圧力センサ及び温度センサを、受圧面に形成した4個の抵抗を4辺とするブリッジ回路の入力端子間に定電流電源を接続してその出力端子間の電圧変化で流体圧力を検出すると共に、前記入力端子間の電圧変化で流体温度を検出する構成の温度と圧力を同時に検出する一つの圧力温度センサとし、また、前記制御回路を、固定増幅回路及びA/D変換器を通して入力された前記圧力温度センサの圧力Pに相当する出力電圧Vにメモリ手段のデータを用いてスパン補正手段により流体温度Tに対応した補正を行ってこれを流体圧力Pに変換すると共に、前記圧力Pが零の際に前記圧力温度センサに圧力のゼロ点ドリフト電圧が生じたときにはメモリ手段のデータを用いてゼロ点補正手段により流体温度Tに対応した補正すべきゼロ点ドリフト電圧Vを演算し、D/A変換器を介して前記圧力Pの出力電圧Vを増幅する固定増幅器のオフセット端子へ前記演算したゼロ点ドリフト電圧Vのマイナス値を出力する温度ドリフト補正手段と,固定増幅回路及びA/D変換器を通して入力された前記圧力温度センサの温度Tに相当する出力電圧Vを流体温度Tに変換すると共に、変換した流体温度Tを前記温度ドリフト補正手段へ出力する温度変換手段と,前記温度変換手段からの前記流体温度Tに対応して前記流量演算式の比例定数Kの温度補正を行うガス温度補正手段と,補正後の後の演算流量Qと設定流量Qとの差を制御信号としてコントロールバルブへ出力する比較回路と,から構成したことを特徴とする圧力式流量制御装置。
  2. 温度圧力センサを形成する抵抗を、シリコン基板に抵抗が拡散形成された抵抗素子とするようにした請求項1に記載の圧力式流量制御装置。
JP2010118206A 2010-05-24 2010-05-24 圧力式流量制御装置 Expired - Lifetime JP4852654B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010118206A JP4852654B2 (ja) 2010-05-24 2010-05-24 圧力式流量制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010118206A JP4852654B2 (ja) 2010-05-24 2010-05-24 圧力式流量制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009025342A Division JP4852619B2 (ja) 2009-02-05 2009-02-05 圧力式流量制御装置

Publications (2)

Publication Number Publication Date
JP2010218571A true JP2010218571A (ja) 2010-09-30
JP4852654B2 JP4852654B2 (ja) 2012-01-11

Family

ID=42977269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010118206A Expired - Lifetime JP4852654B2 (ja) 2010-05-24 2010-05-24 圧力式流量制御装置

Country Status (1)

Country Link
JP (1) JP4852654B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034762A (ja) * 2013-08-09 2015-02-19 株式会社菊池製作所 差圧式流量計
WO2017150331A1 (ja) * 2016-02-29 2017-09-08 株式会社フジキン 流量制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790107A (en) * 1980-11-26 1982-06-04 Toyoda Mach Works Ltd Method for compensating temperature in semiconductor converter
JPH06229861A (ja) * 1993-01-29 1994-08-19 Yamatake Honeywell Co Ltd 温度特性補正付圧力センサ
JP2000137527A (ja) * 1998-10-30 2000-05-16 Esutekku:Kk 流量制御バルブとこれを用いたマスフローコントローラ
JP2000214029A (ja) * 1999-01-26 2000-08-04 Matsushita Electric Works Ltd 圧力センサ回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790107A (en) * 1980-11-26 1982-06-04 Toyoda Mach Works Ltd Method for compensating temperature in semiconductor converter
JPH06229861A (ja) * 1993-01-29 1994-08-19 Yamatake Honeywell Co Ltd 温度特性補正付圧力センサ
JP2000137527A (ja) * 1998-10-30 2000-05-16 Esutekku:Kk 流量制御バルブとこれを用いたマスフローコントローラ
JP2000214029A (ja) * 1999-01-26 2000-08-04 Matsushita Electric Works Ltd 圧力センサ回路

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034762A (ja) * 2013-08-09 2015-02-19 株式会社菊池製作所 差圧式流量計
WO2017150331A1 (ja) * 2016-02-29 2017-09-08 株式会社フジキン 流量制御装置
KR20180063261A (ko) 2016-02-29 2018-06-11 가부시키가이샤 후지킨 유량 제어 장치
TWI642909B (zh) * 2016-02-29 2018-12-01 日商富士金股份有限公司 Flow control device
JPWO2017150331A1 (ja) * 2016-02-29 2018-12-27 株式会社フジキン 流量制御装置
KR102056140B1 (ko) * 2016-02-29 2019-12-16 가부시키가이샤 후지킨 유량 제어 장치
US10641407B2 (en) 2016-02-29 2020-05-05 Fujikin Incorporated Flow rate control device
CN108780332B (zh) * 2016-02-29 2021-10-01 株式会社富士金 流量控制装置

Also Published As

Publication number Publication date
JP4852654B2 (ja) 2012-01-11

Similar Documents

Publication Publication Date Title
JP5337542B2 (ja) マスフローメータ、マスフローコントローラ、それらを含むマスフローメータシステムおよびマスフローコントローラシステム
KR100537445B1 (ko) 압력센서, 압력제어장치 및 압력식 유량제어장치의 온도드리프트 보정장치
CN101652591B (zh) 用于测量质量流控制器中的气体的温度的方法和装置
TWI444799B (zh) 流量控制裝置與流量測定裝置之校準方法、流量控制裝置之校準系統、及半導體製造裝置
KR101253543B1 (ko) 열 센서 코일 자세 감도 보상 방법 및 열 매스 플로우 측정 시스템
US8265795B2 (en) Mass flow controller
JP4669193B2 (ja) 圧力式流量制御装置の温度測定装置
JP5090559B2 (ja) マスフローコントローラ
JP2005024421A (ja) 差圧式流量計及び差圧式流量制御装置
US20050205774A1 (en) System and method for mass flow detection device calibration
CN102640070A (zh) 压力式流量控制装置
US20240160230A1 (en) Flow rate control device
JP4977669B2 (ja) 差圧式流量計
JP4852654B2 (ja) 圧力式流量制御装置
JP7131561B2 (ja) 質量流量制御システム並びに当該システムを含む半導体製造装置及び気化器
JP4852619B2 (ja) 圧力式流量制御装置
JP4763031B2 (ja) マスフローコントローラ
TWI470388B (zh) 質量流量控制器
JP2004280689A (ja) マスフローコントローラ
JP2024506807A (ja) ロードロックゲージ
KR101668483B1 (ko) 매스플로우 컨트롤러
TW201719131A (zh) 腔體壓力量測方法
CN117810130A (zh) 测量气体流量的方法和校准流量控制器的方法
JP2021148692A (ja) 熱式流量計および流量補正方法
JP2005293906A (ja) 燃料電池システムおよび燃料電池システムの温度制御方法、並びに結露検知装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

R150 Certificate of patent or registration of utility model

Ref document number: 4852654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term