JP2010217472A - Hole structure optical fiber and optical transmission system using the same - Google Patents
Hole structure optical fiber and optical transmission system using the same Download PDFInfo
- Publication number
- JP2010217472A JP2010217472A JP2009063898A JP2009063898A JP2010217472A JP 2010217472 A JP2010217472 A JP 2010217472A JP 2009063898 A JP2009063898 A JP 2009063898A JP 2009063898 A JP2009063898 A JP 2009063898A JP 2010217472 A JP2010217472 A JP 2010217472A
- Authority
- JP
- Japan
- Prior art keywords
- hole
- optical fiber
- optical
- holes
- optical transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
本発明は空孔構造光ファイバ及びこれを用いた光伝送システムに関する。 The present invention relates to a hole structure optical fiber and an optical transmission system using the same.
光伝送システムでは光パワーが大きくなると非線形効果による伝送品質の劣化があるため入力光パワーが制限され、伝送容量の大容量化や中継間隔の長距離化の妨げとなっている。ここで非線形効果の発生は光ファイバ中における光パワーの密度に反比例するため、光ファイバの実効断面積の拡大が非線形効果の抑圧に効果的である。 In the optical transmission system, when the optical power is increased, the transmission quality is deteriorated due to the nonlinear effect, so that the input optical power is limited, which hinders an increase in the transmission capacity and an increase in the relay interval. Here, since the occurrence of the nonlinear effect is inversely proportional to the optical power density in the optical fiber, an increase in the effective area of the optical fiber is effective for suppressing the nonlinear effect.
そのため非特許文献1に示されるような、実効断面積を拡大した単一モード光ファイバが開発され、主に海底系の伝送システムで使用されている。また従来の屈折率分布を制御した光ファイバ構造では実効断面積の拡大に限界があるため、最近では光ファイバ中に空孔構造を有するフォトニック結晶ファイバを用いた大コア化の検討が進んでいる。例えば非特許文献2では、従来の単一モードファイバと同等の単一モード動作領域および曲げ損失特性を有しながら、非特許文献1よりも大きな実効断面積を実現している。
Therefore, as shown in Non-Patent
図11(a)には従来の光ファイバ中に空孔構造を有するフォトニック結晶ファイバ(空孔構造光ファイバ)の断面構造を示し、図11(b)には前記フォトニック結晶ファイバの等価的な屈折率分布を示す。 FIG. 11A shows a cross-sectional structure of a photonic crystal fiber having a hole structure in a conventional optical fiber (hole structure optical fiber), and FIG. 11B shows an equivalent of the photonic crystal fiber. Refractive index distribution is shown.
図11(a)に示すように、従来のフォトニック結晶ファイバ1は、石英ガラスなどの均一な材料の光ファイバ内に、光ファイバの長手方向に一様な大きさで、且つ、一様な周期・大きさの複数の空孔2を有する。なお、図11(a)において、dは空孔2の直径、Λは複数の空孔2のうちの隣り合う空孔2の中心間隔である。
この従来のフォトニック結晶ファイバの等価的な屈折率分布は、図11(b)に示すようなステップ型となる。例えば従来の1.31μm帯零分散単一モードファイバに対する標準化勧告であるG.652の遮断波長及び曲げ損失特性を満足させる場合、非特許文献2に示されるように、従来のフォトニック結晶ファイバの実効断面積は光の波長1.55μmにおいて最大133μm2である。
As shown in FIG. 11A, a conventional
The equivalent refractive index profile of this conventional photonic crystal fiber is a step type as shown in FIG. For example, G.I. is a standardization recommendation for a conventional 1.31 μm band zero-dispersion single mode fiber. When the cutoff wavelength and bending loss characteristics of 652 are satisfied, as shown in
しかしながら、例えば従来の1.31μm帯零分散単一モードファイバと同等の単一モード動作領域および曲げ損失特性を維持する場合、均一な空孔構造のフォトニック結晶ファイバでは非特許文献2に示されるように、実効断面積にして133μm2が限界である。
However, for example, when maintaining a single-mode operating region and bending loss characteristics equivalent to those of a conventional 1.31 μm band zero-dispersion single-mode fiber,
従って、本発明は上記の事情に鑑み、単一モード動作を保証し、且つ曲げ損失の基準を維持しつつ、従来の光ファイバよりも大きな実効断面積を実現することができる空孔構造光ファイバ及びこれを用いた光伝送システムを提供することを課題とする。 Therefore, in view of the above circumstances, the present invention is a hole-structured optical fiber that can realize a larger effective area than a conventional optical fiber while guaranteeing single-mode operation and maintaining a standard of bending loss. It is another object of the present invention to provide an optical transmission system using the same.
上記課題を解決する第1発明の空孔構造光ファイバは、光ファイバ内に、光ファイバの長手方向に一様な大きさの直径を有する複数の空孔を有し、
前記複数の空孔がコア領域を中心に複数の層状に配置されて、複数の空孔層を形成し、
前記複数の空孔層のうちの最も内側の空孔層における空孔の直径が、前記複数の空孔層のうちの最も外側の空孔層の空孔の直径よりも大きいことを特徴とする。
The hole-structured optical fiber of the first invention that solves the above-mentioned problems has a plurality of holes having a uniform diameter in the longitudinal direction of the optical fiber in the optical fiber,
The plurality of holes are arranged in a plurality of layers around the core region to form a plurality of hole layers,
The hole diameter in the innermost hole layer of the plurality of hole layers is larger than the hole diameter of the outermost hole layer in the plurality of hole layers. .
また、第2発明の空孔構造光ファイバは、第1発明の空孔構造光ファイバにおいて、
前記複数の空孔のうちの隣り合う空孔の中心間間隔が12.8μm以上であり、
且つ、前記最も内側の空孔層における空孔の直径が、前記最も外側の空孔層における空孔の直径に対して1.37倍以上であることを特徴とする。
Further, the hole structure optical fiber of the second invention is the hole structure optical fiber of the first invention.
An interval between centers of adjacent holes among the plurality of holes is 12.8 μm or more,
And the diameter of the hole in the innermost hole layer is 1.37 times or more than the diameter of the hole in the outermost hole layer.
また、第3発明の空孔構造光ファイバは、第1又は第2発明の空孔構造光ファイバにおいて、
光の波長1.55μmにおける実効断面積が133μm2以上であり、
光の波長1.26〜1.625μmにおいて単一モード動作をし且つ曲げ半径30mmにおける曲げ損失が100巻きあたり0.1dB以下であることを特徴とする。
Further, the hole structure optical fiber of the third invention is the hole structure optical fiber of the first or second invention,
The effective area at a wavelength of 1.55 μm is 133 μm 2 or more,
A single mode operation is performed at a light wavelength of 1.26 to 1.625 μm, and a bending loss at a bending radius of 30 mm is 0.1 dB or less per 100 turns.
また、第3発明の光伝送システムは、第1〜第3発明の何れかの空孔構造光ファイバを含む光伝送路と、光の波長1550nmにおいて前記空孔構造光ファイバと符号が逆となる波長分散特性を有する分散補償光ファイバを有する光信号再生部とを有して成る光伝送系統と、
前記光伝送系統に光信号を入力する光送信部と、
前記光伝送系統によって伝送された光信号を受信する光受信部と、
を備えたことを特徴とする。
An optical transmission system according to a third aspect of the present invention is an optical transmission line including the hole-structured optical fiber according to any one of the first to third aspects, and the sign of the hole-structured optical fiber is reversed at a light wavelength of 1550 nm. An optical transmission system comprising an optical signal regeneration unit having a dispersion compensating optical fiber having chromatic dispersion characteristics;
An optical transmitter for inputting an optical signal to the optical transmission system;
An optical receiver for receiving an optical signal transmitted by the optical transmission system;
It is provided with.
本発明の空孔構造光ファイバによって、従来の光ファイバよりも大きな実効断面積を実現できることから、光伝送システムにおける入力パワー制限が緩和され、伝送システムの更なる大容量化や中継間隔の長距離化による管理の簡易化およびシステムの低コスト化、伝送システムの設計自由度の向上といった効果を奏する。 Since the hole structure optical fiber of the present invention can realize a larger effective area than that of the conventional optical fiber, the input power limitation in the optical transmission system is relaxed, and the transmission system is further increased in capacity and increased in the relay interval. This makes it possible to simplify management, reduce system costs, and improve the degree of freedom in designing transmission systems.
以下、本発明の実施の形態例を図面に基づいて詳細に説明する。 Embodiments of the present invention will be described below in detail with reference to the drawings.
図1(a)には本発明の実施の形態例に係る空孔構造光ファイバの断面構造を示し、図1(b)には前記空孔構造光ファイバの屈折率分布を示す。 FIG. 1A shows a cross-sectional structure of a hole structure optical fiber according to an embodiment of the present invention, and FIG. 1B shows a refractive index distribution of the hole structure optical fiber.
図1(a)に示すように、本実施の形態例の空孔構造光ファイバ11は、石英ガラスなどの均一な材料の光ファイバ内に複数の空孔12を有しており、これら複数の空孔12が光ファイバ中心部のコア領域13を中心にして複数の層状に配置されることにより、複数(図示例では3層)の空孔層14A,14B,14Cを形成している。複数の空孔12は何れも、光ファイバの長手方向(図1の紙面に対して垂直な方向)には一様な大きさの直径(空孔層14Aの空孔12は直径d1で一定、空孔層14B,14Bの空孔12は直径dで一定)となっている。また、複数の空孔12は一様な周期で形成され、複数の空孔12のうちの隣り合う空孔12の中心間間隔Λが一定になっている。
As shown in FIG. 1A, the hole-structured
そして、本実施の形態例の空孔構造光ファイバ11では、複数の空孔層14A,14B,14Cのうちの最も内側の空孔層14Aにおける空孔12の直径d1が、複数の空孔層14A,14B,14Cのうちの最も外側の空孔層14Cにおける空孔12の直径dよりも大きくなっている。
In the hole-structured
従って、この空孔構造光ファイバ11の等価的な屈折率分布は、図1(b)示すようにW型分布となる。
Therefore, the equivalent refractive index distribution of the hole structure
従来の空孔を用いない光ファイバでは、W型分布の光ファイバはステップ型分布の光ファイバに比べて、同等の遮断波長および曲げ損失特性を維持したとき、より大きな実効断面積を実現できることが知られている。また、同じステップ型分布で比べると、非特許文献2より、空孔構造を用いた光ファイバのほうが、空孔構造を用いない光ファイバよりも大きな実効断面積を実現できる。
従って、本実施の形態例の空孔構造光ファイバ11は、W型分布となる空孔構造を備えた光ファイバ構造とすることによって、従来の光ファイバよりも大きな実効断面積を実現できる。また、本実施の形態例の空孔構造光ファイバ11は、コア領域13が単一材料から構成され、且つ、コア領域13に空孔が形成されていないため、不純物や空孔境界面の散乱の影響がほとんどなく、低損失な光ファイバを実現できる。
In a conventional optical fiber that does not use holes, a W-type optical fiber can achieve a larger effective area when compared to a step-type optical fiber when maintaining the same cutoff wavelength and bending loss characteristics. Are known. Compared with the same step-type distribution, from
Therefore, the hole structure
なお、図1では空孔層数を3層としているが、これに限定するものではなく、空孔層数は2層または4層以上であってもよい。
また、図1では最も内側の1層目の空孔層14Aにおける空孔12の直径d1のみを、最も外側の空孔層14Cにおける空孔12の直径dよりも大きくしているが、これに限定するものではなく、3層以上の空孔層を有する空孔構造光ファイバでは、例えば最も内側(1層目)の空孔層とその隣り(2層目)の空孔層の2層の空孔の直径など、複数層の空孔層の空孔の直径を、最も外側の空孔層の空孔の直径よりも大きくした構造であってもよい。
In FIG. 1, the number of pore layers is three. However, the number of pore layers is not limited to this, and the number of pore layers may be two or four or more.
In FIG. 1, only the diameter d 1 of the hole 12 in the
図2には本発明の空孔構造光ファイバに関わる、数値計算によって求めた第1高次モードの閉込め損失特性を示している。図2において、横軸は最も内側の空孔層における空孔の直径d1と、最も外側の空孔層における空孔の直径dとの比d1/dであり、縦軸は閉込め損失である。 FIG. 2 shows the confinement loss characteristic of the first higher-order mode obtained by numerical calculation related to the hole structure optical fiber of the present invention. In FIG. 2, the horizontal axis is the ratio d 1 / d between the hole diameter d 1 in the innermost hole layer and the hole diameter d in the outermost hole layer, and the vertical axis is the confinement loss. It is.
ここでは本発明の空孔構造光ファイバの空孔構造に関し、空孔層数Nを3層、最も外側の空孔層における空孔の直径dと隣り合う空孔の中心間間隔Λとの比d/Λを0.5とした。
また、閉込め損失は短波長側ほど小さくなるため、光の波長λは通信波長帯である1.26〜1.625μmにおいて最も閉込め損失が小さくなる1.26μmとした。
Here, regarding the hole structure of the hole structure optical fiber of the present invention, the number N of hole layers is three, and the ratio between the hole diameter d in the outermost hole layer and the center interval Λ of adjacent holes. d / Λ was set to 0.5.
Further, since the confinement loss becomes smaller as the wavelength becomes shorter, the wavelength λ of light is set to 1.26 μm where the confinement loss becomes the smallest in the communication wavelength band of 1.26 to 1.625 μm.
図2より、本発明の空孔構造光ファイバは、最も内側の空孔層における空孔の直径d1を大きくするほど(即ち、d1/dを大きくするほど)、第1高次モードの閉込め損失が大きくなることがわかる。非特許文献3によれば、第1高次モードが0.8dB/m以上であれば単一モード動作をしているとみなせる。例えば図2でΛ=14μmの場合、d1/dを1.09以上にすると、1dB/m以上の閉込め損失が得られ、通信波長帯(1.26〜1.625μm)における単一モード動作を保証できる。
From FIG. 2, the pore structure optical fiber of the present invention, most of the inner air hole layer as to increase the diameter d 1 of the holes (i.e., the larger the d 1 / d), the first higher-order mode It can be seen that the confinement loss increases. According to
図3には本発明の空孔構造光ファイバに関わる、数値計算によって求めた曲げ損失特性を示している。図3において、横軸は最も内側の空孔層における空孔の直径d1と、最も外側の空孔層における空孔の直径dとの比d1/dであり、縦軸は曲げ損失である。 FIG. 3 shows bending loss characteristics obtained by numerical calculation related to the hole-structured optical fiber of the present invention. In FIG. 3, the horizontal axis is the ratio d 1 / d between the hole diameter d 1 in the innermost hole layer and the hole diameter d in the outermost hole layer, and the vertical axis is the bending loss. is there.
ここでも本発明の空孔構造光ファイバの空孔構造については、図2の場合と同様にした。
また、非特許文献4によれば、比較的実効断面積の大きい空孔構造では短波長になるほど曲げ損失が大きくなる。そのため、光の波長λを通信波長帯(1.26〜1.625μm)で最も短波長である1.26μmとした。
Here, the hole structure of the hole structure optical fiber of the present invention is the same as that shown in FIG.
Further, according to Non-Patent Document 4, in a hole structure having a relatively large effective area, bending loss increases as the wavelength becomes shorter. Therefore, the wavelength λ of light is set to 1.26 μm, which is the shortest wavelength in the communication wavelength band (1.26 to 1.625 μm).
図3より、本発明の空孔構造光ファイバは、d1/dを大きくするほど曲げ損失を低減できることがわかる。ここで図3中の一点鎖線はITU−T G.652における曲げ損失の勧告である、曲げ半径30mmで0.1dB/100巻きを表す。
図2及び図3から、ITU−T G.652の曲げ損失を満たすd1/dは単一モード動作を補償するd1/dよりも十分大きいため、曲げ損失の条件を満たすd1/dの構造にすることで同時に単一モード動作を保証できる。
FIG. 3 shows that the hole-structure optical fiber of the present invention can reduce bending loss as d 1 / d is increased. Here, an alternate long and short dash line in FIG. This is a recommendation of a bending loss at 652, and represents 0.1 dB / 100 winding at a bending radius of 30 mm.
From FIG. 2 and FIG. Since d 1 / d that satisfies the bending loss of 652 is sufficiently larger than d 1 / d that compensates for single mode operation, a single mode operation can be achieved simultaneously by using a d 1 / d structure that satisfies the bending loss condition. Can be guaranteed.
図4には本発明の空孔構造光ファイバに関わる、数値計算によって求めた実効断面積の特性を示している。図4において、横軸は最も内側の空孔層における空孔の直径d1と、最も外側の空孔層における空孔の直径dとの比d1/dであり、縦軸は実効断面積である。 FIG. 4 shows the characteristics of the effective area obtained by numerical calculation related to the hole structure optical fiber of the present invention. In FIG. 4, the horizontal axis represents the ratio d 1 / d between the hole diameter d 1 in the innermost hole layer and the hole diameter d in the outermost hole layer, and the vertical axis represents the effective area. It is.
なお、ここでも本発明の空孔構造光ファイバの空孔構造については、図2及び図3の場合と同様にした。
また、光の波長λは光伝送システムで一般的に用いられる1.55μmとした。
In this case, the hole structure of the hole structure optical fiber of the present invention is the same as that shown in FIGS.
The wavelength λ of light is 1.55 μm generally used in the optical transmission system.
図4より、本発明の空孔構造光ファイバの実効断面積は、d1/dを大きくすることで単調に減少することがわかる。 FIG. 4 shows that the effective area of the hole-structured optical fiber of the present invention decreases monotonously as d 1 / d is increased.
図5には本発明の空孔構造光ファイバに関わる、数値計算によって求めた設計例を示している。図5において、横軸は隣り合う空孔の中心間間隔Λであり、縦軸は最も内側の空孔層における空孔の直径d1と、最も外側の空孔層における空孔の直径dとの比d1/dである。 FIG. 5 shows a design example obtained by numerical calculation related to the hole structure optical fiber of the present invention. In FIG. 5, the horizontal axis is the distance Λ between adjacent holes, and the vertical axis is the hole diameter d 1 in the innermost hole layer and the hole diameter d in the outermost hole layer. The ratio d 1 / d.
図5中の実線と破線はそれぞれ、ITU−T G.652の曲げ損失の勧告である曲げ半径30mmで0.1dB/100巻きと、従来のフォトニック結晶ファイバの実効断面積の上限である133μm2を実現する構造を表す。
図5に示すように、曲げ損失はd1/dが大きいほど小さくなるため、実線よりも上側である必要があり、実効断面積はd1/dが小さいほど拡大するため、破線よりも下側である必要がある。即ち、光の波長1.55μmにおける実効断面積が133μm2以上であり、光の波長1.26〜1.625μmにおいて単一モード動作をし且つ曲げ半径30mmにおける曲げ損失が100巻きあたり0.1dB以下であることが必要である。
従って、所望の特性を実現するためには、隣り合う空孔の中心間間隔Λが12.8μm以上、d1/dが1.37以上であることが好ましい。
The solid line and the broken line in FIG. A structure that realizes a bending radius of 30 mm, 0.1 dB / 100 windings, which is a recommendation for a bending loss of 652, and 133 μm 2 that is the upper limit of the effective area of a conventional photonic crystal fiber is shown.
As shown in FIG. 5, since the bending loss becomes smaller as d 1 / d becomes larger, the bending loss needs to be above the solid line, and the effective area increases as d 1 / d becomes smaller. Need to be on the side. That is, the effective area at a light wavelength of 1.55 μm is 133 μm 2 or more, single mode operation is performed at a light wavelength of 1.26 to 1.625 μm, and the bending loss at a bending radius of 30 mm is 0.1 dB per 100 turns. It is necessary that:
Therefore, in order to achieve the desired properties, the center-to-center spacing of adjacent holes Λ is above 12.8, it is preferred d 1 / d is 1.37 or more.
また、参考のため、図5には第1高次モードの閉込め損失が光の波長1.26μm以上で1 dB/mとなり、通信波長帯(1.26〜1.625μm)で単一モード動作となる構造を点線で示している。
図5より、通信波長帯(1.26〜1.625μm)で単一モード動作となる構造は前記の曲げ損失の条件を満たす構造を包含していることが確認でき、前記の設計範囲において単一モード動作を保証できることが確認できる。
For reference, FIG. 5 shows that the confinement loss in the first higher-order mode is 1 dB / m at a light wavelength of 1.26 μm or more, and a single mode in the communication wavelength band (1.26-1.625 μm). The structure which becomes an operation | movement is shown with the dotted line.
From FIG. 5, it can be confirmed that the structure that operates in the single mode in the communication wavelength band (1.26-1.625 μm) includes a structure that satisfies the bending loss condition. It can be confirmed that one-mode operation can be guaranteed.
図6には本発明の空孔構造光ファイバにおける、図5によって設計した空孔構造光ファイバの一例を示している。図6において、横軸は光の波長であり、縦軸は左側が実効断面積、右側が曲げ損失である。 FIG. 6 shows an example of the hole structure optical fiber designed according to FIG. 5 in the hole structure optical fiber of the present invention. In FIG. 6, the horizontal axis represents the wavelength of light, and the vertical axis represents the effective area on the left side and the bending loss on the right side.
ここでは本発明の空孔構造光ファイバの空孔構造に関し、隣り合う空孔の中心間間隔Λを18μm、最も外側の空孔層における空孔の直径dと隣り合う空孔の中心間間隔Λとの比d/Λを0.5、最も内側の空孔層における空孔の直径d1と、最も外側の空孔層における空孔の直径dとの比d1/dを1.52とした。 Here, regarding the hole structure of the hole structure optical fiber of the present invention, the interval Λ between adjacent holes is 18 μm, the hole diameter d in the outermost hole layer and the interval Λ between adjacent holes Λ. D / Λ is 0.5, and the ratio d 1 / d of the hole diameter d 1 in the innermost hole layer and the hole diameter d in the outermost hole layer is 1.52. did.
図6中の実線と破線はそれぞれ、実効断面積と曲げ半径30mmにおける曲げ損失を表す。
図6より、本発明の空孔構造光ファイバの曲げ損失は、通信波長帯(1.26〜1.625μm)全域で0.1dB/100巻き以下であり、ITU−T G.652の勧告を満たしていることが確認できる。また、本発明の空孔構造光ファイバの実効断面積は、光の波長1.55μmで230μm2であり、一般的な1.31μm帯零分散単一モードファイバ(実効断面積80μm2)に比べて約3倍、均一な空孔のフォトニック結晶ファイバに比べて約2倍の実効断面積を実現している。
The solid line and the broken line in FIG. 6 represent the effective cross-sectional area and the bending loss at a bending radius of 30 mm, respectively.
6, the bending loss of the hole-structured optical fiber of the present invention is 0.1 dB / 100 or less in the entire communication wavelength band (1.26-1.625 μm). It can be confirmed that the recommendation of 652 is satisfied. The effective cross-sectional area of the hole-structure optical fiber of the present invention is 230 μm 2 at a light wavelength of 1.55 μm, which is compared with a general 1.31 μm-band zero-dispersion single mode fiber (effective cross-sectional area 80 μm 2 ). The effective cross-sectional area is about 3 times that of a photonic crystal fiber having a uniform hole.
図7には本発明の空孔構造光ファイバに関わる、波長分散特性の一例を示している。図7において、横軸は光の波長であり、縦軸は波長分散である。 FIG. 7 shows an example of chromatic dispersion characteristics related to the hole-structured optical fiber of the present invention. In FIG. 7, the horizontal axis represents the wavelength of light, and the vertical axis represents chromatic dispersion.
ここでも本発明の空孔構造光ファイバの空孔構造については、図6の場合と同様とした。 Here, the hole structure of the hole structure optical fiber of the present invention is the same as that of FIG.
図7中の実線と破線はそれぞれ、本発明の空孔構造光ファイバの波長分散と純石英の材料分散を表す。
図7より、本発明の空孔構造光ファイバは、純石英の材料分散と近い特性を有していることが確認できる。これは本発明の空孔構造光ファイバでは光波が純石英で構成されるコア領域に強く閉じ込められ、導波路分散の影響が小さくなるためである。光ファイバ中の波長分散は光伝送システムにおいて伝送特性の劣化を引き起こすため、光伝送システムにおいて波長分散を補償することが必要である。
The solid line and broken line in FIG. 7 represent the chromatic dispersion of the hole structure optical fiber of the present invention and the material dispersion of pure quartz, respectively.
From FIG. 7, it can be confirmed that the hole-structured optical fiber of the present invention has characteristics close to those of pure quartz material dispersion. This is because in the hole structure optical fiber of the present invention, the light wave is strongly confined in the core region made of pure quartz, and the influence of waveguide dispersion is reduced. Since chromatic dispersion in an optical fiber causes deterioration of transmission characteristics in an optical transmission system, it is necessary to compensate for chromatic dispersion in the optical transmission system.
図8(a),図8(b)及び図8(c)には本発明の空孔構造光ファイバを用いた光伝送システムの構成例を示している。 8 (a), 8 (b) and 8 (c) show a configuration example of an optical transmission system using the hole structure optical fiber of the present invention.
これらの図に示す本発明の実施の形態例に係る光伝送システムは何れも、本発明の空孔構造光ファイバ11(実線で示す)を含む光伝送路22と、光伝送路22に設けられ、光の波長1550nmにおいて前記空孔構造光ファイバ11と符号が逆となる波長分散特性を有する分散補償光ファイバ(DCF:Dispersion Compensating Fiber)23(破線で示す)を有する光信号再生部24と、光伝送路22に光信号を入力するための光送信部と、光伝送路22によって伝送された光信号を受信するための光受信部26とを備えた構成となっている。
Each of the optical transmission systems according to the embodiments of the present invention shown in these drawings is provided in the
従って、この光伝送システムでは、光伝送路22(空孔構造光ファイバ11)における波長分散が、光信号再生部24(DCF23)で補償される。 Therefore, in this optical transmission system, the chromatic dispersion in the optical transmission line 22 (hole structure optical fiber 11) is compensated by the optical signal regeneration unit 24 (DCF 23).
なお、空孔構造光ファイバ11と光信号再生部24(DCF23)とによって構成された光伝送路22において、光信号再生部24(DCF23)の配置は、図8(a)に示すように分散補償光ファイバ22の後(光信号出力側)でも、図8(b)に示すように分散補償光ファイバ22の前(光信号入力側)でも、図8(c)に示すように前(光信号入力側)の分散補償光ファイバ11と後(光信号出力側)の分散補償光ファイバ11との間でもよい。
In the
DCFは光伝送路との接続性に優れ、また波長分散補償を行える波長帯域が他の方式に比べて広くなることから、広く用いられている。従って、DCFのファイバ構造を適切に設計することによって、広い波長域で本発明の空孔構造光ファイバの波長分散を補償することができ、広い波長域で高速な光伝送を実現することができる。 The DCF is widely used because it has excellent connectivity with an optical transmission line and has a wider wavelength band for performing chromatic dispersion compensation than other systems. Therefore, by appropriately designing the fiber structure of the DCF, the chromatic dispersion of the hole structure optical fiber of the present invention can be compensated in a wide wavelength range, and high-speed optical transmission can be realized in a wide wavelength range. .
図9には本発明の空孔構造光ファイバの波長分散を補償するDCFの分散特性の一例を示している。図9において、横軸は光の波長であり、縦軸は左側が補償前の波長分散、右側が補償後の波長分散である。また、図10(a)には本発明の空孔構造光ファイバの波長分散補償を行なうDCFの断面構造を示し、図10(b)には前記DCFの屈折率分布を示す。 FIG. 9 shows an example of DCF dispersion characteristics for compensating the chromatic dispersion of the hole-structured optical fiber of the present invention. In FIG. 9, the horizontal axis is the wavelength of light, and the vertical axis is the chromatic dispersion before compensation and the right is chromatic dispersion after compensation. FIG. 10A shows a cross-sectional structure of a DCF that performs wavelength dispersion compensation of the hole-structure optical fiber of the present invention, and FIG. 10B shows a refractive index distribution of the DCF.
図10(a)に示すように、DCF23の構造は、DCFで一般的に用いられるW型分布とし、センターコア31の直径2a1を2μm、ディプレスト層32の直径2aを10μm、センターコア31の純石英の層33に対する比屈折率差Δを1.88%、ディプレスト層32の純石英の層33に対する比屈折率差Δ1を−0.3%とした。
As shown in FIG. 10A, the structure of the
図9中の実線と点線はそれぞれ、図7で示した本発明の空孔構造光ファイバの波長分散と、この空孔構造光ファイバの波長分散を補償するように設計したDCFの波長分散である。また、図9中の破線は本発明の空孔構造光ファイバの波長分散を、設計したDCFで補償した後の波長分散を表す。 The solid line and the dotted line in FIG. 9 are the chromatic dispersion of the hole structure optical fiber of the present invention shown in FIG. 7 and the chromatic dispersion of the DCF designed to compensate for the chromatic dispersion of the hole structure optical fiber. . Further, the broken line in FIG. 9 represents the chromatic dispersion after compensating the chromatic dispersion of the hole-structured optical fiber of the present invention with the designed DCF.
ここで本発明の空孔構造光ファイバとDCFの長さの割合は、補償後の波長分散が光の波長1550nmにおいて0となるように設定した。
図9より、設計したDCFの波長分散は、光の波長1300〜1600nmにおいて本発明の空孔構造光ファイバと逆符号の値及び逆の傾きを有していることが確認できる。また、本発明の空孔構造光ファイバの光の波長1550nmにおける波長分散が25.3ps/nm・kmであるのに対し、補償後の波長分散は光の波長1490nm以上において0〜−1ps/nm・kmにできていることが確認できる。
図9より、本発明の空孔構造光ファイバは一般的なDCFの構造を用いて、広い波長帯域で波長分散を低減し、高速伝送が実現できる。なお、ここではDCFの構造の一例を示したが、補償対象の空孔構造光ファイバの波長分散特性に合わせてDCFの構造を最適化することで、さらに広い波長域での波長分散補償を行うことも可能である。
Here, the ratio between the length of the hole structure optical fiber of the present invention and the DCF was set so that the chromatic dispersion after compensation becomes 0 at the wavelength of 1550 nm of light.
From FIG. 9, it can be confirmed that the chromatic dispersion of the designed DCF has a value opposite to that of the hole-structured optical fiber of the present invention and a reverse slope at a light wavelength of 1300 to 1600 nm. In addition, the chromatic dispersion at the wavelength of 1550 nm of the hole-structure optical fiber of the present invention is 25.3 ps / nm · km, whereas the chromatic dispersion after compensation is 0 to −1 ps / nm at the wavelength of 1490 nm or more of the light.・ It can be confirmed that it is made in km.
From FIG. 9, the hole-structure optical fiber according to the present invention uses a general DCF structure to reduce chromatic dispersion in a wide wavelength band and realize high-speed transmission. Although an example of the structure of the DCF is shown here, chromatic dispersion compensation is performed in a wider wavelength range by optimizing the structure of the DCF in accordance with the wavelength dispersion characteristics of the hole structure optical fiber to be compensated. It is also possible.
本発明の空孔構造光ファイバは光伝送システムにおける伝送媒体として利用できる。 The hole structure optical fiber of the present invention can be used as a transmission medium in an optical transmission system.
11 空孔構造光ファイバ
12 空孔
13 コア領域
14A,14B,14C 空孔層
22 光伝送路
23 分散補償光ファイバ(DCF)
24 光信号再生部
25 送信部
26 受信部
31 センターコア
32 ディプレスト層
33 純石英の層
DESCRIPTION OF
24 Optical
Claims (4)
前記複数の空孔がコア領域を中心に複数の層状に配置されて、複数の空孔層を形成し、
前記複数の空孔層のうちの最も内側の空孔層における空孔の直径が、前記複数の空孔層のうちの最も外側の空孔層における空孔の直径よりも大きいことを特徴とする空孔構造光ファイバ。 In the optical fiber, having a plurality of holes having a uniform diameter in the longitudinal direction of the optical fiber,
The plurality of holes are arranged in a plurality of layers around the core region to form a plurality of hole layers,
The hole diameter in the innermost hole layer of the plurality of hole layers is larger than the hole diameter in the outermost hole layer of the plurality of hole layers. Hole structure optical fiber.
前記複数の空孔のうちの隣り合う空孔の中心間間隔が12.8μm以上であり、
且つ、前記最も内側の空孔層における空孔の直径が、前記最も外側の空孔層における空孔の直径に対して1.37倍以上であることを特徴とする空孔構造光ファイバ。 The hole-structured optical fiber according to claim 1,
An interval between centers of adjacent holes among the plurality of holes is 12.8 μm or more,
The hole structure optical fiber is characterized in that the hole diameter in the innermost hole layer is 1.37 times or more than the hole diameter in the outermost hole layer.
光の波長1.55μmにおける実効断面積が133μm2以上であり、
光の波長1.26〜1.625μmにおいて単一モード動作をし且つ曲げ半径30mmにおける曲げ損失が100巻きあたり0.1dB以下であることを特徴とする空孔構造光ファイバ。 The hole-structure optical fiber according to claim 1 or 2,
The effective area at a wavelength of 1.55 μm is 133 μm 2 or more,
A hole-structured optical fiber that operates in a single mode at a light wavelength of 1.26 to 1.625 μm and has a bending loss of 0.1 dB or less per 100 turns at a bending radius of 30 mm.
前記光伝送路に設けられ、光の波長1550nmにおいて前記空孔構造光ファイバと符号が逆となる波長分散特性を有する分散補償光ファイバを有する光信号再生部と、
前記光伝送路に光信号を入力する光送信部と、
前記光伝送系統によって伝送された光信号を受信する光受信部と、
を備えたことを特徴とする光伝送システム。 An optical transmission line including the hole-structured optical fiber according to any one of claims 1 to 3,
An optical signal regeneration unit including a dispersion compensating optical fiber provided in the optical transmission line and having a wavelength dispersion characteristic having a sign opposite to that of the hole structure optical fiber at a light wavelength of 1550 nm;
An optical transmitter for inputting an optical signal to the optical transmission path;
An optical receiver for receiving an optical signal transmitted by the optical transmission system;
An optical transmission system comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009063898A JP2010217472A (en) | 2009-03-17 | 2009-03-17 | Hole structure optical fiber and optical transmission system using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009063898A JP2010217472A (en) | 2009-03-17 | 2009-03-17 | Hole structure optical fiber and optical transmission system using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010217472A true JP2010217472A (en) | 2010-09-30 |
Family
ID=42976409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009063898A Pending JP2010217472A (en) | 2009-03-17 | 2009-03-17 | Hole structure optical fiber and optical transmission system using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010217472A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012168448A (en) * | 2011-02-16 | 2012-09-06 | Nippon Telegr & Teleph Corp <Ntt> | Optical fiber |
JP2012168355A (en) * | 2011-02-15 | 2012-09-06 | Nippon Telegr & Teleph Corp <Ntt> | Optical fiber |
WO2017098878A1 (en) * | 2015-12-10 | 2017-06-15 | 日本電信電話株式会社 | Photonic crystal fiber and high-power light transmission system |
JP7552700B2 (en) | 2020-07-30 | 2024-09-18 | 日本電信電話株式会社 | Ultraviolet light irradiation system and decontamination method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003255153A (en) * | 2002-03-06 | 2003-09-10 | Nippon Telegr & Teleph Corp <Ntt> | Single-mode optical fiber |
WO2008093870A1 (en) * | 2007-02-02 | 2008-08-07 | The Furukawa Electric Co., Ltd. | Optical transmission system and dispersion-compensated optical fiber |
-
2009
- 2009-03-17 JP JP2009063898A patent/JP2010217472A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003255153A (en) * | 2002-03-06 | 2003-09-10 | Nippon Telegr & Teleph Corp <Ntt> | Single-mode optical fiber |
WO2008093870A1 (en) * | 2007-02-02 | 2008-08-07 | The Furukawa Electric Co., Ltd. | Optical transmission system and dispersion-compensated optical fiber |
Non-Patent Citations (1)
Title |
---|
JPN6011069382; 辻川恭三他: 'フォトニック結晶ファイバの2モード構造領域における実効断面積拡大の検討' 2009年電子情報通信学会総合大会講演論文集 通信2 , 20090304, 第516頁, B-13-28 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012168355A (en) * | 2011-02-15 | 2012-09-06 | Nippon Telegr & Teleph Corp <Ntt> | Optical fiber |
JP2012168448A (en) * | 2011-02-16 | 2012-09-06 | Nippon Telegr & Teleph Corp <Ntt> | Optical fiber |
CN108292010A (en) * | 2015-12-10 | 2018-07-17 | 日本电信电话株式会社 | Photonic crystal fiber and high power light conveyer system |
WO2017098876A1 (en) * | 2015-12-10 | 2017-06-15 | 日本電信電話株式会社 | Optical fiber design method |
JPWO2017098876A1 (en) * | 2015-12-10 | 2018-06-07 | 日本電信電話株式会社 | Optical fiber design method |
JPWO2017098878A1 (en) * | 2015-12-10 | 2018-06-07 | 日本電信電話株式会社 | Photonic crystal fiber and high power optical transmission system |
WO2017098878A1 (en) * | 2015-12-10 | 2017-06-15 | 日本電信電話株式会社 | Photonic crystal fiber and high-power light transmission system |
CN108292011A (en) * | 2015-12-10 | 2018-07-17 | 日本电信电话株式会社 | Fiber design method |
US10539784B2 (en) | 2015-12-10 | 2020-01-21 | Nippon Telegraph And Telephone Corporation | Photonic crystal fiber and high-power light transmission system |
US10545333B2 (en) | 2015-12-10 | 2020-01-28 | Nippon Telegraph And Telephone Corporation | Photonic crystal fiber and high-power light transmission system |
CN108292011B (en) * | 2015-12-10 | 2020-09-04 | 日本电信电话株式会社 | Optical fiber design method |
US10871648B2 (en) | 2015-12-10 | 2020-12-22 | Nippon Telegraph And Telephone Corporation | Optical fiber design method |
EP3929638A1 (en) * | 2015-12-10 | 2021-12-29 | Nippon Telegraph And Telephone Corporation | Photonic crystal fiber and high-power light transmission system |
EP3929639A1 (en) * | 2015-12-10 | 2021-12-29 | Nippon Telegraph And Telephone Corporation | Photonic crystal fiber and high-power light transmission system |
JP7552700B2 (en) | 2020-07-30 | 2024-09-18 | 日本電信電話株式会社 | Ultraviolet light irradiation system and decontamination method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6397899B2 (en) | Low mode fiber optic optical link for space division multiplexing. | |
JP6397898B2 (en) | Low-mode optical fiber for space division multiplexing. | |
JP5242405B2 (en) | Optical fiber and optical fiber transmission line | |
JP4851371B2 (en) | Optical fiber and optical fiber transmission line | |
JPWO2008093870A1 (en) | Optical transmission system and dispersion compensating optical fiber | |
JP5137492B2 (en) | Optical transmission line and optical transmission system | |
JP2008096933A (en) | Optical communication system and dispersion compensating optical fiber | |
JP2010217472A (en) | Hole structure optical fiber and optical transmission system using the same | |
JP5118107B2 (en) | Hole structure optical fiber | |
JP5279980B2 (en) | Single mode optical fiber | |
JP2012215696A (en) | Multi-core fiber, multi-core distribution management fiber, and optical fiber communication system including multi-core distribution management fiber | |
JP2012014081A (en) | Holey fiber | |
JP6258618B2 (en) | Multi-core optical fiber | |
JP5937974B2 (en) | Multimode optical fiber and optical fiber transmission system | |
JP5843366B2 (en) | Optical fiber | |
JP5697157B2 (en) | Core expansion single mode optical fiber and optical transmission system | |
JP2008209654A (en) | Optical communication system | |
JP6048890B2 (en) | Optical fiber | |
JP5875049B2 (en) | Multimode optical fiber and multimode optical fiber design method | |
Matsui et al. | Single-mode photonic crystal fiber with low bending loss and Aeff of> 200 μm2 for ultra high-speed WDM transmission | |
JP2006243423A (en) | Photonick crystal fiber, optical transmission line and optical communication system | |
JP5000363B2 (en) | Hole dispersion control fiber and optical transmission system | |
JP5771569B2 (en) | Optical fiber | |
JP2004226541A (en) | High anti-stress optical fiber | |
WO2023012879A1 (en) | Photonic crystal fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130129 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20130307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130325 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131001 |