JP5697157B2 - Core expansion single mode optical fiber and optical transmission system - Google Patents

Core expansion single mode optical fiber and optical transmission system Download PDF

Info

Publication number
JP5697157B2
JP5697157B2 JP2011228872A JP2011228872A JP5697157B2 JP 5697157 B2 JP5697157 B2 JP 5697157B2 JP 2011228872 A JP2011228872 A JP 2011228872A JP 2011228872 A JP2011228872 A JP 2011228872A JP 5697157 B2 JP5697157 B2 JP 5697157B2
Authority
JP
Japan
Prior art keywords
core
optical fiber
mode optical
refractive index
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011228872A
Other languages
Japanese (ja)
Other versions
JP2013088607A (en
Inventor
中島 和秀
和秀 中島
松井 隆
隆 松井
深井 千里
千里 深井
幸弘 五藤
幸弘 五藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011228872A priority Critical patent/JP5697157B2/en
Publication of JP2013088607A publication Critical patent/JP2013088607A/en
Application granted granted Critical
Publication of JP5697157B2 publication Critical patent/JP5697157B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

本発明は単一モード光ファイバ、および当該単一モード光ファイバ用いた光伝送システムに関する。   The present invention relates to a single mode optical fiber and an optical transmission system using the single mode optical fiber.

近年の高速大容量光伝送システムでは、波長分割多重(WDM)伝送方式が汎用的に用いられている。WDM伝送では光ファイバ中の光非線形性の低減が重要であり、当該目的の実現のため、使用波長帯における実効断面積を拡大した各種光ファイバが開発・実用化されている。また、信号光強度の低減による光非線形性の抑制、もしくは信号対雑音比特性の改善を目的とした分布ラマン増幅伝送方式も汎用的に用いられている。波長1550nm帯でのWDM伝送を、分布ラマン増幅伝送方式を用いて行う場合には、ラマン増幅の励起波長となる1460nm以上での単一モード動作性を保持し、かつ1550nm帯での実効断面積を拡大することが重要となる。   In recent high-speed and large-capacity optical transmission systems, a wavelength division multiplexing (WDM) transmission system is widely used. In WDM transmission, it is important to reduce optical nonlinearity in an optical fiber, and various optical fibers having an expanded effective cross-sectional area in a used wavelength band have been developed and put into practical use in order to achieve this purpose. In addition, a distributed Raman amplification transmission system for the purpose of suppressing optical nonlinearity by reducing signal light intensity or improving signal-to-noise ratio characteristics is also used for general purposes. When WDM transmission in the wavelength 1550 nm band is performed using the distributed Raman amplification transmission method, single mode operability at 1460 nm or more, which is the excitation wavelength of Raman amplification, is maintained, and effective area in the 1550 nm band is maintained. It is important to expand.

しかしながら、単一モード光ファイバの実効断面積の拡大では、屈折率分布を多層化し、より精密な屈折率分布制御を行うことが一般的であり、当該光ファイバ製造における困難性も増大するといった課題があった。例えば、非特許文献1では、コア中心から半径方向に対して、2層〜4層の屈折率変化を有する光ファイバを用いることにより、波長1550nmにおける曲げ損失を1dB/100turn以下に抑えつつ、当該波長における実効断面積を100μm2程度に拡大する技術が開示されている。 However, in increasing the effective area of a single-mode optical fiber, it is common to make the refractive index distribution multi-layered and perform more precise refractive index distribution control, which also increases the difficulty in manufacturing the optical fiber. was there. For example, in Non-Patent Document 1, by using an optical fiber having a refractive index change of two to four layers in the radial direction from the core center, the bending loss at a wavelength of 1550 nm is suppressed to 1 dB / 100 turn or less, while A technique for expanding the effective area at a wavelength to about 100 μm 2 is disclosed.

また、光ファイバの非線形性は非線形屈折率を低下させることでも実現できる。しかし、屈折率分布の多層化では、一般に±0.5%以上の比屈折率差の変化を得ることが必要であり、ゲルマニウム並びにフッ素等の添加剤の増加に伴い非線形屈折率も増大するといった課題があった。   The nonlinearity of the optical fiber can also be realized by reducing the nonlinear refractive index. However, when the refractive index distribution is multilayered, it is generally necessary to obtain a change in the relative refractive index difference of ± 0.5% or more, and the nonlinear refractive index increases as the number of additives such as germanium and fluorine increases. There was a problem.

また更に、単一モード光ファイバにおける実効遮断波長の短波長化と実効断面積の拡大はトレードオフの関係にあり、実効遮断波長を1460nm以下とし、かつ実効断面積の拡大を行う場合、波長1460nmから長波長側における実用的な実効断面積は100μm2程度に制限されるという課題もあった。例えば、非特許文献2のTable2では、実効遮断波長を1530nm以上とした汎用的なカットオフシフトファイバにおいて、波長1550nmのモードフィールド径(MFD)が9.5〜13.0μmの範囲となることが示されており、当該MFDの中心値(11.25μm)における実効断面積Aeffは、Aeff=π×(モードフィールド半径)2であるので、概ね100μm2程度となる。 Furthermore, there is a trade-off relationship between shortening the effective cutoff wavelength and increasing the effective cross-sectional area in a single-mode optical fiber. When the effective cut-off wavelength is 1460 nm or less and the effective cross-sectional area is increased, the wavelength is 1460 nm. Therefore, there is a problem that the practical effective area on the long wavelength side is limited to about 100 μm 2 . For example, in Table 2 of Non-Patent Document 2, in a general-purpose cutoff shift fiber having an effective cutoff wavelength of 1530 nm or more, the mode field diameter (MFD) at a wavelength of 1550 nm may be in the range of 9.5 to 13.0 μm. The effective area Aeff at the center value (11.25 μm) of the MFD is approximately 100 μm 2 because Aeff = π × (mode field radius) 2 .

P. Nouchi, et al., "Maximum effective area for non-zero dispersion-shifted fiber," in Proc. of OFC'98, ThK3, (1998).P. Nouchi, et al., "Maximum effective area for non-zero dispersion-shifted fiber," in Proc. Of OFC'98, ThK3, (1998). ITU-T Recommendation G.654, " Characteristics of a cut-off shifted, single-mode optical fibre and cable," (2010).ITU-T Recommendation G.654, "Characters of a cut-off shifted, single-mode optical fiber and cable," (2010).

前述したように、高速大容量光伝送システムには、波長分割多重(WDM)伝送方式が汎用的に用いられている。更に、WDM伝送においては、光ファイバ中の光非線形性の低減が重要であるため、使用波長帯における実効断面積を拡大した各種光ファイバが開発されている。また、信号光強度の低減による光非線形性の抑制、もしくは信号対雑音比特性の改善を目的とした分布ラマン増幅伝送方式も汎用的に用いられている。よって、これらを用い通信波長1550nm帯でのWDM伝送を、分布ラマン増幅伝送方式を用いて行う場合には、ラマン増幅の励起波長となる1460nm以上での単一モード動作性を保持し、かつ1550nm帯での実効断面積を拡大することが重要となる。   As described above, the wavelength division multiplexing (WDM) transmission method is widely used in high-speed and large-capacity optical transmission systems. Furthermore, in WDM transmission, since it is important to reduce optical nonlinearity in an optical fiber, various optical fibers having an expanded effective cross-sectional area in the used wavelength band have been developed. In addition, a distributed Raman amplification transmission system for the purpose of suppressing optical nonlinearity by reducing signal light intensity or improving signal-to-noise ratio characteristics is also used for general purposes. Therefore, when performing WDM transmission in the communication wavelength 1550 nm band using these using the distributed Raman amplification transmission method, single mode operability at 1460 nm or more, which is the excitation wavelength of Raman amplification, is maintained, and 1550 nm. It is important to increase the effective area of the belt.

しかしながら、従来の技術では、単一モード光ファイバの実効断面積を拡大するには、屈折率分布を多層化し精密な屈折率分布制御を行う必要がある事から、製造が困難であるという課題があった。更に、単一モード光ファイバにおける実効遮断波長の短波長化と実効断面積の拡大はトレードオフの関係にあるため、遮断波長を1460nm以下とし、かつ実効断面積の拡大を行う場合、波長1460nmから長波長側における実用的な実効断面積は100μm2程度に制限されるという課題もあった。 However, in the conventional technology, in order to increase the effective area of the single mode optical fiber, it is necessary to control the refractive index distribution by multilayering the refractive index distribution. there were. Further, since shortening the effective cutoff wavelength and increasing the effective cross-sectional area in a single mode optical fiber are in a trade-off relationship, when the cut-off wavelength is set to 1460 nm or less and the effective cross-sectional area is increased, the wavelength from 1460 nm is increased. There is also a problem that a practical effective area on the long wavelength side is limited to about 100 μm 2 .

本発明は以上のような背景に鑑みてなされたものであり、その目的とするところは、屈折率分布の多層化を行うことなく、波長1460nm以下の遮断波長特性を保持し、かつ波長1460nm以上における実効断面積を100μm2以上に拡大した、WDM伝送および分布ラマン増幅伝送に好適な、コア拡大単一モード光ファイバを提供することにある。 The present invention has been made in view of the background as described above, and the object of the present invention is to maintain a cutoff wavelength characteristic of a wavelength of 1460 nm or less without performing a multilayered refractive index distribution and to have a wavelength of 1460 nm or more. It is an object of the present invention to provide a core-enlarged single-mode optical fiber suitable for WDM transmission and distributed Raman amplification transmission, in which the effective cross-sectional area is expanded to 100 μm 2 or more.

本発明のコア拡大単一モード光ファイバでは、直径が125±1μmに設定されるとともに屈折率が均一なクラッド部と、直径が2aに設定されるとともに前記クラッド部に対する比屈折率差がΔに設定されている7個のコア部と、を有し、前記7個のコア部は、前記クラッド部の中心に配置された1つのコア部と、該1つのコア部の回りに6つのコア部が間隔Λで六方最密構造状に配設され、前記コア部の直径2aが3〜4μm、前記コア部の規格化周波数が0.7〜0.9、規格化コア間距離Λ/2aが1.2〜1.8の範囲にそれぞれ設定されている。   In the core-enlarged single mode optical fiber of the present invention, the diameter is set to 125 ± 1 μm and the refractive index is uniform, and the diameter is set to 2a and the relative refractive index difference with respect to the cladding is Δ. 7 core parts set, and the seven core parts are one core part arranged at the center of the clad part, and six core parts around the one core part Are arranged in a hexagonal close-packed structure with an interval Λ, the diameter 2a of the core portion is 3 to 4 μm, the normalized frequency of the core portion is 0.7 to 0.9, and the normalized inter-core distance Λ / 2a is The range is set to 1.2 to 1.8.

上記構成の本発明のコア拡大単一モード光ファイバによれば、簡易なステップ型の屈折率分布を有する7個のコアを適切に配列することにより、屈折率分布の多層化を行うことなく、波長1460nm以下の実効遮断波長特性と、かつ波長1460nm以上において100μm2以上となる実効断面積とを実現できるので、波長1460nm以上での単一モード動作を保持し、かつ波長1460nm以上における実効断面積が従来よりも簡易に拡大できるので、波長1550nm帯を用いたWDM伝送および分布ラマン増幅伝送における光ファイバ中の光非線形性を低減し、当該光伝送システムの伝送特性を改善することができるといった効果を奏する。 According to the core expansion single mode optical fiber of the present invention having the above-described configuration, by appropriately arranging seven cores having a simple step-type refractive index distribution, without performing multilayering of the refractive index distribution, Since an effective cutoff wavelength characteristic of a wavelength of 1460 nm or less and an effective cross-sectional area of 100 μm 2 or more at a wavelength of 1460 nm or more can be realized, a single mode operation at a wavelength of 1460 nm or more is maintained and an effective cross-sectional area at a wavelength of 1460 nm or more is maintained. Can be expanded more easily than in the past, so that the optical non-linearity in the optical fiber in WDM transmission and distributed Raman amplification transmission using the wavelength 1550 nm band can be reduced, and the transmission characteristics of the optical transmission system can be improved. Play.

また、本発明のコア拡大単一型光ファイバは規格化周波数が小さい範囲、即ち、比屈折率差が小さい範囲で構成できることとしたため、ゲルマニウムやフッ素の添加に伴う非線形屈折率の増加も低減できるといった効果も奏する。 In addition, since the core-enlarged single-type optical fiber of the present invention can be configured in a range where the normalized frequency is small, that is, in a range where the relative refractive index difference is small, an increase in the nonlinear refractive index due to the addition of germanium or fluorine can be reduced. There are also effects such as.

コア拡大単一モード光ファイバを用いた光通信システムの構成を示す概念図Conceptual diagram showing the configuration of an optical communication system using a core-enlarged single-mode optical fiber コア拡大単一モード光ファイバの断面構造を示す概念図Conceptual diagram showing the cross-sectional structure of an expanded core single-mode optical fiber コア拡大単一モード光ファイバの構造条件を、規格化周波数と規格化コア間距離の関数として示す図Diagram showing the structural conditions of a core-enlarged single-mode optical fiber as a function of normalized frequency and normalized inter-core distance コア拡大単一モード光ファイバにおいて曲げ損失特性の改善を実現する断面構造を示す概念図Conceptual diagram showing a cross-sectional structure that realizes improved bending loss characteristics in a core-enlarged single-mode optical fiber コア拡大単一モード光ファイバにおいて曲げ損失特性の改善を実現する断面構造を示す概念図Conceptual diagram showing a cross-sectional structure that realizes improved bending loss characteristics in a core-enlarged single-mode optical fiber

以下では、本発明のコア拡大単一モード光ファイバの一実施形態について図面を用いて説明する。   Below, one embodiment of the core expansion single mode optical fiber of the present invention is described using a drawing.

図1は、本発明の一実施形態におけるコア拡大単一モード光ファイバ10を用いた光伝送システムの構成を示す概念図である。本発明の一実施形態におけるコア拡大単一モード光ファイバを用いた光伝送システムは、波長1550nm帯の光信号を生成・送出する送信部(Tx)20と、波長1460nm以上で単一モード動作するコア拡大単一モード光ファイバ10と、コア拡大単一モード光ファイバ10からの信号光を受光・復調する受信部(Rx)30とにより構成される。   FIG. 1 is a conceptual diagram showing a configuration of an optical transmission system using a core expansion single mode optical fiber 10 according to an embodiment of the present invention. An optical transmission system using a core-enlarged single mode optical fiber according to an embodiment of the present invention operates in a single mode at a wavelength of 1460 nm or more with a transmission unit (Tx) 20 that generates and transmits an optical signal in a wavelength of 1550 nm. The core expansion single mode optical fiber 10 and a receiving unit (Rx) 30 that receives and demodulates signal light from the core expansion single mode optical fiber 10 are configured.

送信部20および受信部30には、分布ラマン増幅用の1460nm帯の励起光源と、当該光源からの励起光をコア拡大単一モード光ファイバ10に結合する結合素子とを具備する構成であっても構わない。また、コア拡大単一モード光ファイバ10により構成される光伝送路は、その途中にエルビウム添加光増幅器等を挿入し伝送距離を拡大することも可能である。   The transmission unit 20 and the reception unit 30 include a 1460 nm band excitation light source for distributed Raman amplification, and a coupling element that couples the excitation light from the light source to the core expansion single mode optical fiber 10. It doesn't matter. Further, the optical transmission line constituted by the core expansion single mode optical fiber 10 can be extended by inserting an erbium-doped optical amplifier or the like in the middle thereof.

第1の実施例では、前述したコア拡大単一モード光ファイバ10の実現方法について図面を用いて説明する。   In the first embodiment, a method for realizing the core expansion single mode optical fiber 10 described above will be described with reference to the drawings.

図2は、本実施例のコア拡大単一モード光ファイバ10Aの断面構造を示す概念図である。本実施例のコア拡大単一モード光ファイバは、屈折率が均一で直径Dが125±1μmに設定されているクラッド部101と、直径が2a(半径=a)に設定されているとともに、クラッド部101に対する比屈折率差がΔに設定されている7個のコア部102とを有し、7個のコア部102はクラッド部101の中心に間隔Λで六方最密構造状に配列されている。即ち、7個のコア部102はクラッド部101の中心に配置された1つのコア部102と、該1つのコア部102の回りに6つのコア部102が間隔Λで六方最密構造状に配設されている。   FIG. 2 is a conceptual diagram showing a cross-sectional structure of the core-enlarged single mode optical fiber 10A of the present embodiment. The core-enlarged single-mode optical fiber of the present example has a clad part 101 having a uniform refractive index and a diameter D set to 125 ± 1 μm, a diameter set to 2a (radius = a), and a cladding 7 core portions 102 having a relative refractive index difference with respect to the portion 101 set to Δ, and the seven core portions 102 are arranged in a hexagonal close-packed structure at intervals Λ at the center of the clad portion 101. Yes. That is, the seven core portions 102 are arranged in a hexagonal close-packed structure with a spacing Λ around one core portion 102 disposed at the center of the clad portion 101 and around the one core portion 102. It is installed.

図3は、本実施例のコア拡大単一モード光ファイバ10の構造条件を、規格化コア間距離Λ/2aと規格化周波数Vの関数として示す図面である。ここで、規格化周波数Vはコア部102の直径2aおよび比屈折率差Δ、並びにコア部102の屈折率n1を用いて、次式(1)により定義される。式(1)において、λは光ファイバ10Aを伝搬する光信号の波長である。   FIG. 3 is a drawing showing the structural conditions of the core expansion single mode optical fiber 10 of this embodiment as a function of the normalized inter-core distance Λ / 2a and the normalized frequency V. Here, the normalized frequency V is defined by the following equation (1) using the diameter 2a and relative refractive index difference Δ of the core portion 102 and the refractive index n1 of the core portion 102. In equation (1), λ is the wavelength of the optical signal propagating through the optical fiber 10A.

Figure 0005697157
Figure 0005697157

図中の実線501は遮断波長が1460nmとなる構造条件を示し、実線501より左側の領域で1460nm以下の遮断波長を実現することが可能となる。実線502、実線503および実線504は閉じ込め損失を示し、それぞれコア部102の直径2aが2μm、3μm、4μmの場合の閉じ込め損失の計算結果を示す。実線502,503,504より下(右)側の領域において閉じ込め損失を0.01dB/km以下に低減することが可能となる。従って、図3に示した実線501と実線502,503,504で囲まれる領域において規格化コア間距離と規格化周波数とを設定することにより、1460nm以下の遮断波長特性と、0.01dB/km以下の閉じ込め損失特性とを同時に実現することが可能となる。即ち、波長1460nm以上の波長帯において良好な単一モード動作を実現することが可能となる。   A solid line 501 in the figure indicates a structural condition in which the cutoff wavelength is 1460 nm, and a cutoff wavelength of 1460 nm or less can be realized in a region on the left side of the solid line 501. A solid line 502, a solid line 503, and a solid line 504 indicate the confinement loss, and the calculation results of the confinement loss when the diameter 2a of the core portion 102 is 2 μm, 3 μm, and 4 μm, respectively. It becomes possible to reduce the confinement loss to 0.01 dB / km or less in the region below (right) the solid lines 502, 503, and 504. Therefore, by setting the normalized inter-core distance and the normalized frequency in the region surrounded by the solid line 501 and the solid lines 502, 503, and 504 shown in FIG. 3, the cutoff wavelength characteristic of 1460 nm or less and the confinement loss of 0.01 dB / km or less are set. The characteristics can be realized at the same time. That is, it is possible to realize a good single mode operation in a wavelength band of 1460 nm or more.

尚、規格化コア間距離Λ/2aが1となる場合には、隣接するコア部102が接してしまい、製造の困難性が増大する。このため、規格化コア間距離Λ/2aは1.2以上程度に設定されることが好ましい。ここで、配設されるコア部102の断面積が最も小さくなる場合、即ち、コア部102の直径2aが2μmであり、規格化周波数が0.58であり、規格化コア間距離が1.2である場合に着目すると、波長1460nmにおける実効断面積は約90μm2となる。また、コア部102の直径2aを3μmまで拡大し、規格化周波数を0.72、規格化コア間距離を1.2とした場合、波長1460nmにおける実効断面積は130μm2まで拡大される。また、コア部102の直径2aが4μmであり、規格化周波数が0.86であり、規格化コア間距離が1.2である場合、波長1460nmにおける実効断面積は約175μm2まで拡大でき、より好ましい特性を実現することが可能となる。 When the standardized inter-core distance Λ / 2a is 1, adjacent core portions 102 are in contact with each other, and manufacturing difficulty increases. For this reason, the standardized inter-core distance Λ / 2a is preferably set to about 1.2 or more. Here, when the cross-sectional area of the disposed core portion 102 is the smallest, that is, the diameter 2a of the core portion 102 is 2 μm, the normalized frequency is 0.58, and the normalized inter-core distance is 1. Focusing on the case of 2, the effective area at a wavelength of 1460 nm is about 90 μm 2 . When the diameter 2a of the core portion 102 is expanded to 3 μm, the normalized frequency is 0.72, and the distance between the normalized cores is 1.2, the effective area at the wavelength of 1460 nm is expanded to 130 μm 2 . Further, when the diameter 2a of the core portion 102 is 4 μm, the normalized frequency is 0.86, and the distance between the normalized cores is 1.2, the effective area at the wavelength of 1460 nm can be expanded to about 175 μm 2 , More preferable characteristics can be realized.

従って、本実施例の図2に示したコア拡大単一モード光ファイバ10Aにおいて、コア部102の直径2aを3〜4μm、規格化周波数を0.7〜0.9、規格化コア間距離を1.2〜2.5の範囲に設定することにより、波長1460nm以下の実効遮断波長特性を有し、かつ波長1460nm以上における実効断面積が100μm2以上となるので、波長1460nm以上における単一モード伝送性と、波長1460nm以上で100μm2以上となる実効断面積特性とを実現することが可能となる。ここで、コア部102の直径2aの範囲3〜4μmにおいて、前記規格化周波数の範囲0.7〜0.9を実現する場合、コア部102の比屈折率差Δは0.3%未満であり、ゲルマニウム等の添加による非線形屈折率の増加も抑制することができる。 Therefore, in the core expansion single mode optical fiber 10A shown in FIG. 2 of this embodiment, the diameter 2a of the core portion 102 is 3 to 4 μm, the normalized frequency is 0.7 to 0.9, and the normalized inter-core distance is By setting in the range of 1.2 to 2.5, it has an effective cut-off wavelength characteristic of wavelength 1460 nm or less, and the effective area at wavelength 1460 nm or more is 100 μm 2 or more. It becomes possible to realize the transmission property and the effective cross-sectional area characteristic of 100 μm 2 or more at a wavelength of 1460 nm or more. Here, when the normalized frequency range 0.7 to 0.9 is realized in the range 3 to 4 μm of the diameter 2a of the core portion 102, the relative refractive index difference Δ of the core portion 102 is less than 0.3%. In addition, an increase in the nonlinear refractive index due to the addition of germanium or the like can be suppressed.

第2の実施例では、第1の実施例において説明したコア拡大単一モード光ファイバ10Aについて、その伝送特性を劣化させることなく、曲げ損失特性を改善する技術について説明する。   In the second embodiment, a technique for improving the bending loss characteristic of the core expansion single mode optical fiber 10A described in the first embodiment without deteriorating the transmission characteristic will be described.

図4及び図5に、第2の実施例における曲げ損失特性を改善した断面構造を有する2種類のコア拡大単一モード光ファイバ10B,10Cの概念図を示す。   4 and 5 are conceptual diagrams of two types of core expansion single-mode optical fibers 10B and 10C having a cross-sectional structure with improved bending loss characteristics in the second embodiment.

第2の実施例における一方の種類のコア拡大単一モード光ファイバ10Bは、図4に示すように、クラッド部101の中心からの距離がxμmとなる円周に外接するように配置され且つクラッド部101よりも低い屈折率を有し厚みがz1μmである環状の低屈折領域103を有している。また、他方の種類のコア拡大単一モード光ファイバ10Cは、図5に示すように、クラッド部101の中心からの距離がxμmとなる円周に外接するように等間隔に配置され且つ直径がz2μmの空孔領域104を10個以上有する。 As shown in FIG. 4, one type of core expansion single mode optical fiber 10B in the second embodiment is arranged so as to circumscribe a circumference having a distance of x μm from the center of the cladding portion 101, and the cladding. An annular low refractive index region 103 having a refractive index lower than that of the portion 101 and a thickness of z 1 μm is provided. Further, as shown in FIG. 5, the other type of core-enlarged single mode optical fiber 10C is arranged at equal intervals so as to circumscribe a circumference having a distance of x μm from the center of the clad 101 and has a diameter. It has 10 or more hole regions 104 of z 2 μm.

尚、図5に示す実施例では空孔領域104を複数設けることによって図4に示した低屈折領域103と同じ効果を得るようにしているが、空孔領域104によって低屈折領域103と同等の効果を得るには空孔領域104を10個以上設けることが好ましい。また、空孔領域104の内部は空気で満たすことによって低屈折領域103と同等の低屈折率を示すが、空孔領域104内を満たす気体は空気に限定されることはなく、低屈折領域103と同等の低屈折率を示す気体であれば、空気以外の気体であっても良い。 Although so as to obtain the same effect as the low refractive index region 103 shown in FIG. 4 by providing a plurality of holes area 104 in the embodiment shown in FIG. 5, the low refractive index region 103 by vacancy region 104 In order to obtain the same effect, it is preferable to provide ten or more hole regions 104. In addition, the inside of the hole region 104 exhibits a low refractive index equivalent to that of the low refractive index region 103 by being filled with air, but the gas filling the hole region 104 is not limited to air and has a low refractive index. Any gas other than air may be used as long as it has a low refractive index equivalent to that of the region 103.

このように構成されたコア拡大単一モード光ファイバ10B,10Cは、伝搬する光の電界分布を、低屈折率領域103、もしくは複数の空孔領域104より内側のクラッド領域に閉じ込めることが可能となり、曲げ付与に伴う伝送損失の増加を低減することが可能となる。ここで、前記クラッド部101の中心からの距離xは、小さすぎると伝搬光の伝送特性を劣化させ、大きすぎると十分な閉じ込め効果を得ることが困難となる。このため、前記距離xはモードフィールド径(MFD)の1.0倍〜1.5倍に設定されることが好ましい。ここで、実効断面積Aはモードフィールド半径Wを用いてA=πW2の関係式で記述できる。 The thus configured core expansion single mode optical fibers 10B and 10C can confine the electric field distribution of propagating light in the low refractive index region 103 or the cladding region inside the plurality of hole regions 104. Thus, it is possible to reduce an increase in transmission loss accompanying bending. Here, if the distance x from the center of the clad 101 is too small, the transmission characteristic of the propagation light is deteriorated, and if it is too large, it is difficult to obtain a sufficient confinement effect. Therefore, the distance x is preferably set to 1.0 to 1.5 times the mode field diameter (MFD). Here, the effective area A can be described by a relational expression of A = πW 2 using the mode field radius W.

従って、実効断面積が100〜180μm2程度となる本実施例のコア拡大単一モード光ファイバ10B,10Cでは、前記モードフィールド半径Wが5〜8μm程度であり、前記クラッド部101の中心からの距離xは概ね10〜24μm程度に設定されることが好ましい。また、環状の低屈折領域103を設定する場合、当該低屈折領域103のクラッド部101に対する比屈折率差は概ね−0.2%以下とすれば十分な閉じ込め効果を得ることが可能となる。同様に、空孔領域104を設定する場合、当該空孔領域104のクラッド部101に対する屈折率差は概ね−0.2%以下とすれば十分な閉じこめ効果を得ることが可能となる。また更に、上述の低屈折領域103の厚みz1及び空孔領域104の直径z2は概ね波長と同等のオーダー以上、即ち1μm以上であれば良い。但し、z1,z2が大きすぎる場合には高次モードに対する閉じ込め効果も増大するため、z1,z2は概ね5μm程度以下であることが好ましい。 Therefore, in the core expansion single mode optical fibers 10B and 10C of the present embodiment in which the effective cross-sectional area is about 100 to 180 μm 2 , the mode field radius W is about 5 to 8 μm, and the distance from the center of the cladding portion 101 is increased. The distance x is preferably set to about 10 to 24 μm. Further, when the annular low refractive index region 103 is set, a sufficient confinement effect can be obtained if the relative refractive index difference of the low refractive index region 103 with respect to the cladding portion 101 is approximately −0.2% or less. Become. Similarly, when the hole region 104 is set, a sufficient confinement effect can be obtained if the relative refractive index difference of the hole region 104 with respect to the cladding portion 101 is approximately −0.2% or less. Furthermore, the thickness z 1 of the low-refractive index region 103 and the diameter z 2 of the hole region 104 may be approximately equal to or larger than the wavelength, that is, 1 μm or larger. However, if z 1 and z 2 are too large, the confinement effect for higher-order modes is also increased. Therefore, z 1 and z 2 are preferably about 5 μm or less.

以上説明したように、本実施形態のコア拡大単一モード光ファイバ10A,10B,10Cおよび光伝送システムによれば、波長1460nm以上における単一モード伝送性を保持し、かつ波長1460nm以上における実効断面積を100μm2以上に拡大したことにより、波長1550nm帯を用いたWDM伝送および分布ラマン増幅伝送における伝送特性の改善を可能とする。 As described above, according to the core expansion single mode optical fibers 10A, 10B, 10C and the optical transmission system of this embodiment, the single mode transmission property at the wavelength of 1460 nm or more is maintained and the effective interruption at the wavelength of 1460 nm or more is maintained. By expanding the area to 100 μm 2 or more, it is possible to improve transmission characteristics in WDM transmission and distributed Raman amplification transmission using the wavelength 1550 nm band.

本発明のコア拡大単一モード光ファイバによれば、波長1460nm以下の実効遮断波長特性を有し、かつ波長1460nm以上における実効断面積が100μm2以上となるため、波長1460nm以上での単一モード動作を保持し、かつ波長1460nm以上における実効断面積が従来よりも拡大されるので、波長1550nm帯を用いたWDM伝送および分布ラマン増幅伝送における光ファイバ中の光非線形性を低減し、当該光伝送システムの伝送特性を改善することができる According to the core-enlarged single mode optical fiber of the present invention, since it has an effective cutoff wavelength characteristic of a wavelength of 1460 nm or less and an effective cross-sectional area of a wavelength of 1460 nm or more is 100 μm 2 or more, a single mode at a wavelength of 1460 nm or more is obtained. Since the effective area at the wavelength of 1460 nm or more is maintained as compared with the conventional one, the optical nonlinearity in the optical fiber in the WDM transmission using the wavelength 1550 nm band and the distributed Raman amplification transmission is reduced, and the optical transmission is performed. The transmission characteristics of the system can be improved

10,10A、10B、10C…コア拡大単一モード光ファイバ、20…送信部(Tx)、30…受信部(Rx)、101…クラッド部、102…コア部、103…低屈折領域、104…空孔領域。 DESCRIPTION OF SYMBOLS 10,10A, 10B, 10C ... Core expansion single mode optical fiber, 20 ... Transmission part (Tx), 30 ... Reception part (Rx), 101 ... Cladding part, 102 ... Core part, 103 ... Low refractive index area, 104 ... hole area.

Claims (4)

直径が125±1μmに設定されるとともに屈折率が均一なクラッド部と、直径が2aに設定されるとともに前記クラッド部に対する比屈折率差がΔに設定されている7個のコア部と、を有し、
前記7個のコア部は、前記クラッド部の中心に配置された1つのコア部と、該1つのコア部の回りに6つのコア部が中心間隔Λで六方最密構造状に配設され、
前記コア部の直径2aが3〜4μm、前記コア部の規格化周波数が0.7〜0.9、規格化コア間距離Λ/2aが1.2〜1.8の範囲にそれぞれ設定され
波長1460nm以下の実効遮断波長特性を有し、
波長1460nm以上における実効断面積が100μm 2 以上であり、閉じ込め損失が0.01dB/km以下である
ことを特徴とするコア拡大単一モード光ファイバ。
A clad portion having a diameter of 125 ± 1 μm and a uniform refractive index, and seven core portions having a diameter of 2a and a relative refractive index difference with respect to the clad portion set to Δ; Have
The seven core parts are arranged in a hexagonal close-packed structure with a center interval Λ around one core part arranged at the center of the clad part, and around the one core part,
The diameter 2a of the core part is set to 3 to 4 μm, the normalized frequency of the core part is set to 0.7 to 0.9, and the normalized inter-core distance Λ / 2a is set to a range of 1.2 to 1.8, respectively .
Having an effective cutoff wavelength characteristic of a wavelength of 1460 nm or less,
An expanded core single-mode optical fiber characterized by having an effective area of 100 μm 2 or more at a wavelength of 1460 nm or more and a confinement loss of 0.01 dB / km or less .
請求項1に記載のコア拡大単一モード光ファイバにおいて、
前記クラッド部の中心からの距離がxとなる円周に外接するように配置され、前記クラッド部よりも低い屈折率を有する厚みがz1に設定されている環状の低屈折領域を有し、
前記距離xがモードフィールド径の1.0倍〜1.5倍に設定され、前記低屈折率領域の前記クラッド部に対する比屈折率差が−0.2%以下に設定され、前記低屈折率領域の厚みz1が1〜5μmに設定されている
ことを特徴とするコア拡大単一モード光ファイバ。
The core expanded single mode optical fiber of claim 1,
An annular low-refractive- index region having a refractive index lower than that of the cladding part and having a thickness set to z 1 is arranged so as to circumscribe a circumference having a distance x from the center of the cladding part; ,
The distance x is set to 1.0 to 1.5 times the mode field diameter, the relative refractive index difference of the low refractive index region with respect to the cladding portion is set to −0.2% or less, and the low refractive index The core expansion single mode optical fiber, wherein the thickness z 1 of the region is set to 1 to 5 μm.
請求項1に記載のコア拡大単一モード光ファイバにおいて、
前記クラッド部の中心からの距離がxとなる円周に外接するように等間隔に配置されているとともに、それぞれの直径がz2に設定されている空孔領域を10個以上有し、
前記距離xがモードフィールド径の1.0倍〜1.5倍に設定され、前記空孔領域の前記クラッド部に対する屈折率差が−0.2%以下に設定され、前記空孔領域の直径z2が1〜5μmに設定されている
ことを特徴とするコア拡大単一モード光ファイバ。
The core expanded single mode optical fiber of claim 1,
It is arranged at equal intervals so as to circumscribe the circumference where the distance from the center of the cladding part is x, and has 10 or more hole regions each having a diameter set to z 2 ,
The distance x is set to 1.0 to 1.5 times the mode field diameter, the relative refractive index difference of the hole region with respect to the cladding part is set to −0.2% or less, A diameter-enlarged single-mode optical fiber having a core z 2 set to 1 to 5 μm.
波長1550nm帯における信号光を生成・送出する送信部と、
前記送信部からの信号光を伝搬するコア拡大単一モード光ファイバと、
前記コア拡大単一モード光ファイバからの信号光を受光・復調する受信部と、により構成される光伝送システムであって、
前記コア拡大単一モード光ファイバとして、請求項1乃至請求項3の何れかに記載のコア拡大単一モード光ファイバを用いている
ことを特徴とする光伝送システム。
A transmitter that generates and transmits signal light in a wavelength band of 1550 nm;
A core expansion single mode optical fiber that propagates signal light from the transmitter; and
An optical transmission system including a receiving unit that receives and demodulates signal light from the core-enlarged single-mode optical fiber,
The core expansion single mode optical fiber in any one of Claims 1 thru | or 3 is used as said core expansion single mode optical fiber. The optical transmission system characterized by the above-mentioned.
JP2011228872A 2011-10-18 2011-10-18 Core expansion single mode optical fiber and optical transmission system Expired - Fee Related JP5697157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011228872A JP5697157B2 (en) 2011-10-18 2011-10-18 Core expansion single mode optical fiber and optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011228872A JP5697157B2 (en) 2011-10-18 2011-10-18 Core expansion single mode optical fiber and optical transmission system

Publications (2)

Publication Number Publication Date
JP2013088607A JP2013088607A (en) 2013-05-13
JP5697157B2 true JP5697157B2 (en) 2015-04-08

Family

ID=48532574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011228872A Expired - Fee Related JP5697157B2 (en) 2011-10-18 2011-10-18 Core expansion single mode optical fiber and optical transmission system

Country Status (1)

Country Link
JP (1) JP5697157B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9057817B2 (en) 2013-04-15 2015-06-16 Corning Incorporated Low diameter optical fiber
CN104360434B (en) * 2014-11-12 2017-02-01 长飞光纤光缆股份有限公司 Single mode fiber with ultralow-attenuation large effective area
JP7269569B2 (en) * 2019-07-22 2023-05-09 日本電信電話株式会社 Multi-core optical fiber and design method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3006476B2 (en) * 1996-03-28 2000-02-07 日立電線株式会社 Multi-core fiber, optical amplifier using the same, optical amplification repeater and optical amplification distributor using the optical amplifier
JP5102979B2 (en) * 2006-06-12 2012-12-19 三菱電線工業株式会社 Laser beam emission method
WO2008136918A2 (en) * 2007-05-07 2008-11-13 Corning Incorporated Large effective area fiber
WO2010122790A1 (en) * 2009-04-21 2010-10-28 株式会社フジクラ Holey single-mode optical fiber and optical transmission system using same

Also Published As

Publication number Publication date
JP2013088607A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
Takenaga et al. Reduction of crosstalk by trench-assisted multi-core fiber
JP5324012B2 (en) Multi-core optical fiber and optical transmission system
US10007055B2 (en) Few mode optical fiber links for space division multiplexing having trenched fibers with high leak losses for leaky modes and low bend losses
JP6177994B2 (en) Multi-core fiber
JP5242405B2 (en) Optical fiber and optical fiber transmission line
JP4496649B2 (en) Optical fiber and optical transmission line including the same
US7773845B2 (en) Optical fiber and optical-fiber transmission line
JPWO2008093870A1 (en) Optical transmission system and dispersion compensating optical fiber
JP2009093070A (en) Holey fiber
JP6265960B2 (en) Optical fiber and optical transmission system
JP5522696B2 (en) 4-core single-mode optical fiber and optical cable
US8811784B2 (en) Optical fiber and optical transmission system
JP5697157B2 (en) Core expansion single mode optical fiber and optical transmission system
JP6236638B2 (en) Multi-core fiber and optical cable
JP2008096933A (en) Optical communication system and dispersion compensating optical fiber
JP5697159B2 (en) High-strength optical fiber for passive optical transmission systems
JP2007041426A (en) Photonic crystal fiber and optical transmission system using the same
JP2008209654A (en) Optical communication system
JP2003107258A (en) Optical transmission line
JP5356466B2 (en) Holey fiber
JP5839393B2 (en) Parallel optical transmission system and optical fiber used therefor
JP5000363B2 (en) Hole dispersion control fiber and optical transmission system
JP2010217472A (en) Hole structure optical fiber and optical transmission system using the same
JP2006243423A (en) Photonick crystal fiber, optical transmission line and optical communication system
JP5697158B2 (en) Single mode optical fiber and optical transmission system for short wavelength transmission

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150205

R150 Certificate of patent or registration of utility model

Ref document number: 5697157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees