JP2010216295A - 可変容量ベーンポンプ - Google Patents

可変容量ベーンポンプ Download PDF

Info

Publication number
JP2010216295A
JP2010216295A JP2009061669A JP2009061669A JP2010216295A JP 2010216295 A JP2010216295 A JP 2010216295A JP 2009061669 A JP2009061669 A JP 2009061669A JP 2009061669 A JP2009061669 A JP 2009061669A JP 2010216295 A JP2010216295 A JP 2010216295A
Authority
JP
Japan
Prior art keywords
pressure
spool
vane pump
variable displacement
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009061669A
Other languages
English (en)
Other versions
JP5261235B2 (ja
Inventor
Hideo Konishi
英男 小西
Masaaki Iijima
正昭 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2009061669A priority Critical patent/JP5261235B2/ja
Publication of JP2010216295A publication Critical patent/JP2010216295A/ja
Application granted granted Critical
Publication of JP5261235B2 publication Critical patent/JP5261235B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

【課題】流体の圧力が高まるとともにより多くの流量を必要とする負荷を含むシステムに用いられる場合に、流体の無駄な吐出を抑制することが可能な可変容量ベーンポンプを得る。
【解決手段】スプール17とポンプボディ4との間に、スプール17に対して上流側の圧力が作用する方向(すなわち、図3の右方向)にのみ下流側の圧力より低い圧力を作用させる低圧作用室24を形成して、スプール17に対して下流側の圧力が作用する受圧面積(すなわち、図3の右側の膨出部17aの断面積)を、上流側の圧力が作用する受圧面積(すなわち、図3の左側の膨出部17aの断面積からピン26の断面積を引いた値)より大きくした。
【選択図】図3

Description

本発明は、可変容量ベーンポンプに関する。
従来の可変容量ベーンポンプとして、特許文献1に開示されるものが知られている。この特許文献1に開示される可変容量ベーンポンプは、回転軸回りに回転する略円柱状の外周面を有する回転部と、外周面に形成された複数のスリットのそれぞれに突没可能に収容された複数のベーンと、回転部を取り囲むように配置されるリングと、当該リングを取り囲むように配置されてポンプボディに形成された収容凹部に嵌挿されるアダプタリングと、を備えている。
そして、回転部の外周面とリングの内周面との間に形成される環状室を、その先端を内周面に接触させた複数のベーンによって複数の容積室に区画するとともに、リングを回転軸に対して偏心して配置した状態で回転部を回転させることにより、容積室を回転軸回りに回転させつつ周期的に拡縮して、各容積室に吸入した流体を吐出するようになっている。
さらに、ポンプボディに形成された流体通路とアダプタリングを貫通して当該流体通路に連通する連通路とを経由してアダプタリングとリングとの間に形成された加圧室内に流体を導入し、その導入した流体の圧力によって回転軸に対するリングの偏心量を変化させ、これにより流体の吐出容量(一回転あたりの吐出量)を変化させるようになっている。
このとき、加圧室内の圧力は、スプール弁として構成される制御弁によって生成される。特許文献1では、吐出側の流路に設けた差圧発生部の上流側の圧力と下流側の圧力を、スプール弁の両端部に導入して、その差圧に応じてスプール弁の位置を変化させ、これにより調圧部における流路抵抗を変化させて、加圧室の圧力を変化させるようになっている。
差圧発生部の差圧は流量が多いほど大きくなる。このため、特許文献1の可変容量ベーンポンプは、スプール弁によって、差圧が大きいほど加圧室の圧力を高くしてポンプ部の吐出容量を小さくするように制御することで、吐出流量を略一定に制御する。
特開2001−304139号公報
ところで、上記従来の可変容量ベーンポンプは、流体の圧力が高まるとともにより多くの流量を必要とする負荷(アクチュエータ)を含むシステムにおいて、流体の供給源として用いられることがある。
この場合、スプール弁によって略一定に制御される通常の吐出流量を、上記負荷で多くの流量が必要となる状況での流量に合わせて設定すれば、流量の不足が生じることは無いが、当該負荷でそれほど多くの流量が必要でない状況では、吐出流量を略一定に制御する上記従来の可変容量ベーンポンプでは、無駄な吐出流量が増えて、システムとしてのエネルギロスが増大することになる。
そこで、本発明は、流体の圧力が高まるとともにより多くの流量を必要とする負荷を含むシステムに用いられる場合に、流体の無駄な吐出を抑制することが可能な可変容量ベーンポンプを得ることを目的とする。
本発明にあっては、吐出容量を変化可能なベーンポンプとして構成されるポンプ部と、差圧発生部の上流側および下流側の圧力を相反する方向に作用させてスプールの位置を変化させるスプール弁としての制御弁部と、を備えた可変容量ベーンポンプにおいて、スプールに対して差圧発生部の下流側の圧力が作用する受圧面積を、上流側の圧力が作用する受圧面積より大きくしたことを特徴とする。
本発明によれば、スプールに対して差圧発生部の下流側の圧力が作用する受圧面積を上流側の圧力が作用する受圧面積より大きくしているため、負荷での流体の圧力が高くなると、その流体の圧力によってスプールをポンプ部の吐出容量を増やす側に移動させ、これにより流量を増大させることができる。したがって、負荷で流体の圧力が高まったときに、その圧力の上昇に応じて、可変容量ベーンポンプからより多くの流量を吐出することができるようになるため、高負荷時に必要とされる流量に対応できる。したがって、従来の可変容量ベーンポンプに比べて吐出容量を小さく設定できるようになって、その分、流体の無駄な吐出を抑制することが可能となる。
図1は、本発明の実施形態にかかる可変容量ベーンポンプが用いられるシステムの一例を示すブロック図である。 図2は、本発明の第1実施形態にかかる可変容量ベーンポンプの内部構成を回転軸方向から見た側面図(一部断面図)である。 図3は、本発明の第1実施形態にかかる可変容量ベーンポンプの制御弁部の内部構成を回転軸方向から見た側面図(一部断面図)である。 図4は、図3の一部を拡大して示す図である。 図5は、本発明の第2実施形態にかかる可変容量ベーンポンプの制御弁部の内部構成を回転軸方向から見た側面図(一部断面図)である。 図6は、本発明の第3実施形態にかかる可変容量ベーンポンプの制御弁部の内部構成を回転軸方向から見た側面図(一部断面図)である。
以下、本発明の好適な実施形態について図面を参照しながら詳細に説明する。なお、以下の複数の実施形態には、同様の構成要素が含まれている。よって、それら同様の構成要素には共通の符号を付与するとともに、重複する説明を省略する。
(第1実施形態)図1〜図4は、本発明の第1実施形態を示している。なお、図2において、一部の流体通路等は模式化して示してある。
図1に示すように、本実施形態にかかる可変容量ベーンポンプ1は、ベルト駆動の連続可変トランスミッションシステム(ベルトCVTシステム100)の油圧供給源として使用することができる。可変容量ベーンポンプ1から吐出された作動油は、コントロールバルブ200を介して、ベルトCVTシステム100の各部(プライマリープーリー101や、セカンダリープーリー102、フォワードクラッチ103、リバースブレーキ104、トルクコンバーター105、潤滑・冷却系106等)に供給される。
コントロールバルブ200内には、電動式、手動式、油圧式の各種バルブ(シフトコントロールバルブ201や、セカンダリーバルブ202、セカンダリー圧ソレノイドバルブ203、ライン圧ソレノイドバルブ204、プレッシャーレギュレーターバルブ205、マニュアルバルブ206、ロックアップ/セレクト切替ソレノイドバルブ207、クラッチレギュレーターバルブ208、セレクトコントロールバルブ209、ロックアップソレノイドバルブ210、トルクコンバーターレギュレーターバルブ211、ロックアップコントロールバルブ212、セレクトSWバルブ213等)が設けられている。
なお、コントロールバルブ200に含まれる電動式のバルブは、ベルトCVTシステム100用のコントロールユニット300によって制御される。
図2に示すように、本実施形態にかかる可変容量ベーンポンプ1は、ポンプ部2と制御弁部3とを備えており、これらポンプ部2および制御弁部3は、いずれもポンプボディ4内に形成されている。ポンプ部2は、可変容量型のベーンポンプとして構成され、制御弁部3はスプール弁として構成されている。
ポンプ部2は、ポンプボディ4に形成された略円筒状の収容凹部4a内に収容されており、回転軸Ax回りに回転する略円柱状の外周面5aを有する回転部5と、外周面5aに形成された複数のスリット5bのそれぞれに突没可能に収容された複数のベーン6と、回転部5を取り囲むように配置されるリング7と、当該リング7を取り囲むように配置されて収容凹部4aに嵌挿されるアダプタリング8と、を備えている。なお、アダプタリング8は図示しない係止手段によって、収容凹部4a内で回転しないようにしてある。
そして、回転部5の外周面5aとリング7の内周面7aとの間に形成される環状室Rを、その先端をリング7の内周面7aに摺接させた複数のベーン6によって複数の容積室Vに区画してある。
さらに、本実施形態では、リング7を回転軸Axに対して図2の左側に偏心して配置した状態で回転部5を回転させることで、容積室Vを回転軸Ax回りに回転させつつ周期的に拡縮して、各容積室Vに吸入した流体を吐出するように構成されている。
回転部5は、シャフト9と例えばスプライン結合されており、シャフト9とともに回転する。回転軸Axはシャフト9の回転軸でもある。本実施形態では、回転部5およびシャフト9の回転方向は、図2の反時計回り方向となっている。
スリット5bは、本実施形態では、回転軸Axの径方向に沿って放射状に形成されており、回転部5を周方向に11箇所等分割する位置に形成されている。スリット5bの奥側(回転軸Ax側)には、略筒状の与圧室5cが形成されており、ここに導入した流体の圧力によって、ベーン6が径方向外側に向けて押されるようにしてある。なお、ベーン6には回転による遠心力が作用するため、与圧は必須では無い。また、スプリング等の付勢機構によってベーン6を径方向外側に付勢してもよい。
ベーン6は、略矩形板状の部材として構成されており、本実施形態では、その先端部は、リング7の内周面7aに対応して曲面状に形成されている。
リング7は、半径一定の円環状に形成されており、その内周面7aに回転するベーン6の先端部が摺接することになる。
アダプタリング8の外周面8aはほぼ円柱面状に形成される一方、内周面8bは図2の左右方向に長いやや扁平な略円筒面状に形成されている。内周面8bは、より詳しくは、図2の下方、左方、および上方に三つの平面状の対向面8c,8d,8eを有し、対向面間に凹曲面8f,8g,8hを有して形成されている。そして、図2に示すように、内周面8b内でリング7が最も左側に位置する状態では、凹曲面8f,8gとリング7の外周面7bとの間に隙間が形成されるようになっており、これらの隙間が加圧室10となる。
図2で下側に位置する対向面8cには半円筒状の凹溝8iが形成されるとともに、この凹溝8iに対向するリング7の外周面7bにはやや浅い凹溝7cが形成され、これら凹溝8i,7cで挟み込むように、ピン11がそれら凹溝8i,7c内に収容されている。リング7は、アダプタリング8の内周面8bの内側で、このピン11を支点として図2の左右方向に揺動するようになっている。
回転軸Axに対して加圧室10の反対側(図2では右側)には、リング7を図2の左方向に付勢する付勢機構としてのコイルスプリング12が介装されており、加圧室10からの加圧に対向する圧縮反力をリング7に与えるようになっている。なお、本実施形態では、アダプタリング8には、コイルスプリング12を貫通させる貫通孔8jが形成されており、コイルスプリング12の一端部(図2では左側の端部)はリング7の外周面7bに当接される一方、他端部(図2では右側の端部)は、ポンプボディ4に形成された収容凹部4aと外部とを連通する貫通孔4bを塞ぐプラグ13に支持されている。
さらに、回転軸Axに対してピン11の反対側(図2では上側)に位置する対向面8eには、略矩形断面の凹溝8kが形成されており、この凹溝8k内に、略棒状のシール部材14が挿入されている。シール部材14の突出側(図2では下側)の端面は、リング7の外周面7bに当接されており、リング7が揺動する際には、リング7の外周面7bにシール部材14が摺接するようになっている。本実施形態では、このシール部材14とピン11とによって、加圧室10とコイルスプリング12が配置される側の側面視で三日月状の対向室15とがシールされるようになっている。
そして、本実施形態では、図3に示すように、加圧室10および対向室15には、ポンプボディ4に形成された流体通路4cおよびアダプタリング8に形成された連通路8mを介して、制御弁部3から流体が導入されるようになっている。
以上の構成を備えるポンプ部2では、回転部5が回転するのに伴って容積室Vも回転する。このとき、環状室Rは、リング7が回転軸Axに対して図2の左方に偏心しているため、図2の左側では広く、右側では狭くなっている。したがって、容積室Vは、回転部5およびベーン6とともに、図2の反時計回り方向に回転するのに伴って、図2の右端では最も狭く、図2の上側を経て左端に移動するにつれて広くなる。さらに、図2の左端では最も広く、図2の下側を経て右端に移動するにつれて狭くなる。したがって、本実施形態にかかるポンプ部2では、図2において、回転軸Axを含む左右線L(回転軸Axと垂直で、回転軸Axとリング7の中心Cとを含む直線)より上側では容積室Vの容積が拡大し、下側では容積室Vの容積が縮小することになる。そして、ポンプボディ4の収容凹部4aの側面4e(ベーン6の移動方向に対して側方となる面)には、容積室Vが拡大する区間に対応して当該容積室Vに臨む吸入開口4gが形成され、容積室Vが縮小する区間に対応して当該容積室Vに臨む吐出開口4fが形成されている。したがって、容積室Vは回転するのに伴って周期的に容積が拡縮して、回転軸Axを含む図2の左右線Lより上側を右から左へ移動する吸入ストローク区間Iで吸入開口4gを介して流体を吸入し、当該左右線Lより下側を左から右へ移動する吐出ストローク区間Oで吐出開口4fを介して流体を吐出することになる。
そして、上記構成では、加圧室10の流体の圧力が高くなると、当該流体の圧力によって押されたリング7は図2の右側へ移動する。すると、リング7の中心Cと回転軸Axとの偏心量δが小さくなって、容積室Vの縮小時と拡大時の容積の差が小さくなるから、ポンプ部2からの吐出容量(一回転あたりの吐出量)が減ることになる。逆に、加圧室10の流体の圧力が低くなると、流体の圧力によってリング7が図2の右側へ押圧される力が小さくなって、リング7はコイルスプリング12によって左側に押し戻されて左側へ移動する。すると、リングの中心Cと回転軸Axとの偏心量δが大きくなって、容積室Vの縮小時と拡大時の容積の差が大きくなるから、ポンプ部2からの吐出容量が増えることになる。したがって、本実施形態では、加圧室10に導入される流体の圧力を適宜に変化させることで、ポンプ部2の吐出容量を変化させることができる。なお、本実施形態では、対向室15にも流体を導入し、加圧室10および対向室15の流体の圧力と、付勢手段としてのコイルスプリング12の付勢力(圧縮反力)によって、ポンプ部2の吐出容量が変化することになる。
ここで、本実施形態では、加圧室10および対向室15の流体の圧力を制御弁部3を用いて調整している。制御弁部3は、スプール弁として構成されており、本実施形態では、図3に示すように、ポンプボディ4に形成された有底円筒状の収容孔16内に収容された断面略円形の棒状のスプール17を備えている。スプール17には、二箇所の膨出部17aとその間の狭窄部17bとが形成されており、収容孔16の内周面16aには、各膨出部17aに対応して、流体通路4cに連通する開口16bが形成されている。
本実施形態では、図2に示すように、吐出ライン18には、流量に応じて差圧を生じさせる差圧発生部(例えばオリフィスやチョーク絞り等)19を設けてあり、差圧発生部19の上流側と制御弁部3の図3の左側の内室3aとを通路20aを介して連通し、差圧発生部19の下流側と制御弁部3の図3の右側の内室3bとを通路20bを介して連通してある。差圧発生部19の上流側は下流側より圧力が高く、しかも流量が多くなるほど差圧が大きくなるから、吐出ライン18の流量が多くなるほど、左側の内室3aの圧力が右側の内室3bの圧力よりも高くなり、スプール17は、図3の右側に向かう力を受けることになる。このとき、スプール17の図3の右側の端部17dは、付勢手段としてのコイルスプリング21によって図3の左側に向けて押されている。よって、スプール17は、収容孔16内で、内室3a,3bの差圧(すなわち差圧発生部19の差圧)と、コイルスプリング21による圧縮反力とがバランスするところに位置することになる。
そして、スプール17の膨出部17aと、収容孔16の内周面16aに形成された開口16bとによって、調圧部22が構成されている。具体的には、各開口16bを、対応する膨出部17aの外周面17cによって少なくとも一部が塞がれるように構成し、各調圧部22において、開口16bの開口面積、あるいは開口16bより高圧側で外周面17cと内周面16aとが重なり合う長さ(オーバラップ長)に応じて、流体通路4c側の圧力が変化するようにしてある。なお、二つの膨出部17a,17a間の狭窄部17bによって収容孔16内に形成される内室3cは通路20cを介してリザーバタンク23に連通してある。
図3の左側の調圧部22は、加圧室10内の圧力を調整するものであり、この調圧部22では、スプール17が図3の左側に位置するほど、開口16bの開口面積が小さくなるか、あるいは開口16bとその左側の内室3aとの間で外周面17cと内周面16aとが対向する(重なり合う)長さ(オーバラップ長)が長くなって、内室3a内の圧力(≒差圧発生部19の上流側の圧力)に対する減圧代が大きくなり、加圧室10の圧力が低くなる。逆に、スプール17が図3の右側に位置するほど、開口16bの開口面積が大きくなるか、あるいはオーバラップ長が短くなって、減圧代が小さくなり、加圧室10の圧力が高くなる。
図3の右側の調圧部22は、対向室15内の圧力を調整するものであり、この調圧部22では、スプール17が図3の左側に位置するほど、開口16bの開口面積が大きくなるか、あるいは開口16bとその右側の内室3bとの間で外周面17cと内周面16aとが対向する(重なり合う)長さ(オーバラップ長)が短くなって、内室24a内の圧力(≒差圧発生部19の下流側の圧力)に対する減圧代が小さくなり、対向室15の圧力が高くなる。逆に、スプール17が図3の右側に位置するほど、開口16bの開口面積が小さくなるか、あるいはオーバラップ長が長くなって、減圧代が大きくなり、対向室15の圧力が低くなる。なお、本実施形態では、二つの膨出部17aの位置関係等を適宜に調整することで、加圧室10の圧力が対向室15の圧力より高くなるようにしてある。
したがって、本実施形態では、図2の吐出ライン18における流量(=ポンプ部2の吐出流量)が増えて、差圧発生部19での差圧が大きくなると、スプール17が図2および図3の右側に移動し、二箇所の調圧部22での減圧代が変化して、加圧室10の圧力が高くなるとともに、対向室15の圧力が低くなる。よって、リング7が図2の右側に押圧されて、ポンプ部2の一回転あたりの吐出量(吐出容量)が減るように調整される。逆に、吐出ライン18における吐出流量が減ると、制御弁部3によりポンプ部2の一回転あたりの吐出量(吐出容量)が増えるように調整される。
すなわち、上記構成の制御弁部3は、吐出ライン18の流量(=ポンプ部2からの単位時間あたりの吐出流量)に応じて制御圧力を調整することにより当該ポンプ部2の吐出容量を変化させて当該吐出ライン18の流量(=ポンプ部2からの単位時間あたりの吐出流量)を制御する流量感応型フィードバック制御弁(定流量制御弁)として構成される。
したがって、本実施形態にかかる可変容量ベーンポンプ1は、吐出流量が略一定(あるいは一定幅)となるように、回転数に応じて一回転あたりの吐出量(吐出容量)を変化させることができる。このため、可変容量ベーンポンプ1は、シャフト9がエンジン等の回転数が変化する駆動源で回転駆動される場合において、当該回転数の変化に拘わらず一定範囲内の流量を得ることで、ポンプの仕事の無駄を少なくしたい場合に有用となる。具体的には、ベルトCVTシステムやパワーステアリングシステムに用いられるオイルポンプに適用することができる。
さらに、本実施形態では、スプール17とポンプボディ4との間に、スプール17に対して上流側の圧力が作用する方向(すなわち、本実施形態では図3の右方向)にのみ下流側の圧力より低い圧力を作用させる低圧作用室24が形成されている。
具体的には、スプール17の収容孔16を塞ぐポンプボディ4の一部となるプラグ25からスプール17に向けてその軸方向に沿って突出するピン26を取り付け、このピン26をスプール17の中心軸に沿って形成した孔17eに挿入してある。そして、この孔17eを、スプール17内に形成した通路17fを介して内室3cに連通してある。内室3cは、図示省略した開口部および通路20bを介してリザーバタンク23に連通してある。低圧作用室24は、リザーバタンク23に連通しているため、下流側の圧力より低い圧力(≒大気圧に近い圧力)となる。このとき、低圧作用室24の圧力は、スプール17に対しては、図3の右方向に向けてのみ作用することになる。なお、ピン26とプラグ25のピン収容孔25aとの間にはリング27を介在させ、ピン26に対して図3の左側で圧力が高くなるのを抑制するとともに、ピン26の孔17eに対する芯ずれを吸収できるようにしてある。
以上の構成では、低圧作用室24を形成した分、図3の左側の内室3aからスプール17に作用する上流側の圧力の受圧面積が小さくなっている。すなわち、本実施形態では、かかる構成により、スプール17に対して下流側の圧力が作用する受圧面積(すなわち、図3の右側の膨出部の断面積)が、上流側の圧力が作用する受圧面積(すなわち、図3の左側の膨出部の断面積からピン26の断面積を引いた値)より大きくなっている。
したがって、本実施形態では、負荷の圧力が高まると、上記受圧面積の差分に応じて、スプール17を、図3の左側、すなわち、ポンプ部2の吐出容量を増やす側に移動し、これにより、吐出流量を増大させることができる。よって、負荷で流体の圧力が高まったときに、その圧力上昇に応じて、可変容量ベーンポンプ1からより多くの流量を吐出できるようになるから、負荷で流体の圧力が高くなっていない状態での通常流量をより少なく設定できるようになって、その分、可変容量ベーンポンプ1からの流体の無駄な吐出を抑制することが可能となり、ポンプの駆動力が小さくてすみ、エンジンの負荷を低減でき、ひいては燃費を向上させることができる。
そして、高負荷時にも流量を増やすことができ、スプール17とこれを収容する収容孔16の内周面16aとの間のコンタミc(図4参照)を流しやすくなるため、スプール17が固着するのを抑制することができる。
また、かかる構成では、低圧作用室24を設けることによって、差圧発生部19の上流側と下流側とで受圧面積を異ならせるためにスプール17自体に径差を設ける必要が無くなって、スプール17の外周面を一定径として、比較的簡単に形成することができる。
なお、上記実施形態では、ポンプボディ4側から突出させたピン26と、スプール17に形成した孔17eとの間に低圧作用室24を形成したが、これに替えて、ボディに設けた孔にスプールから突出させた突起部を挿入してこれら孔と突起部とによって低圧作用室を形成した場合にも同様の効果を得ることができる。この場合、低圧作用室はボディ内に形成されることになる。
(第2実施形態)図5は、本実施形態にかかる可変容量ベーンポンプの制御弁部を示す側面図である。なお、本実施形態にかかる可変容量ベーンポンプ1Aのポンプ部は、上記第1実施形態と全く同じとすることができる。したがって、以下ではその説明を省略する。
本実施形態でも、制御弁部3Aについて、スプール17Aに対して差圧発生部19の下流側の圧力が作用する受圧面積を、上流側の圧力が作用する受圧面積より大きくした点では、上記第1実施形態と同じである。
しかし、本実施形態では、低圧作用室24を形成するのではなく、スプール17Aの上流側の圧力が作用する部分(左側の膨出部17aならびにそれより左側に吐出する部分)の直径D1と下流側の圧力が作用する部分(右側の膨出部17a)の直径D2とを異ならせることで受圧面積を異ならせた点が、上記第1実施形態と相違している。また、ポンプボディ4Aに形成される収容孔16Aについても、これら左右の膨出部17aの径差に対応させて、内径を変化させてある。そして、本実施形態でも、内室3aは、通路20a(図2)を介して差圧発生部19の上流側に連通され、内室3bは、通路20b(図2)を介して差圧発生部19の下流側に連通され、内室3cは、通路20c(図2)を介してリザーバタンク23に連通されている。
したがって、本実施形態でも、負荷の圧力が高まると、スプール17Aの直径差(D1とD2との差)に応じて定まる受圧面積の差分に応じて、スプール17Aを、図5の左側、すなわち、ポンプ部2の吐出容量を増やす側に移動し、これにより、吐出流量を増大させることができる。よって、負荷で流体の圧力が高まったときには、その圧力上昇に応じて、可変容量ベーンポンプ1Aからより多くの流量を吐出できるようになるから、負荷で流体の圧力が高くなっていない状態での通常流量をより少なく設定できるようになって、その分、可変容量ベーンポンプ1Aからの流体の無駄な吐出を抑制することが可能となる。
また、かかる構成では、スプール17Aの膨出部17aの直径を変化させることによって、低圧作用室を形成するのに要する部品を減らすことができるとともに、その加工の手間を減らすことも可能となる。
(第3実施形態)図6は、本実施形態にかかる可変容量ベーンポンプの制御弁部を示す側面図である。なお、本実施形態にかかる可変容量ベーンポンプ1Bのポンプ部は、上記第1実施形態と全く同じとすることができる。したがって、以下ではその説明を省略する。
本実施形態では、制御弁部3Bにおいて、差圧発生部19の差圧をスプール17Bに作用させる第一の受圧部28と、差圧発生部19の上流側および下流側の圧力のうちいずれか一方を相反する方向に作用させる第二の受圧部29と、を設け、第二の受圧部29の直径D3,D4を、第一の受圧部28の直径D5より小さくしてある。もちろん、ポンプボディ4Bに形成される収容孔16Bについても、それら直径D3,D4,D5に対応させて内径を変化させてある。
第一の受圧部28は、本実施形態では円板状に形成されており、スプール17Bに対して図6の右側に連結されている。また、この第一の受圧部28は、コイルスプリング21の座板としても機能している。第一の受圧部28の右側の内室3bは、通路20b(図2)を介して差圧発生部19の下流側に連通してある。
一方、第二の受圧部29は、図6の左側の膨出部17aの左側の端面17gと、右側の膨出部17aの右側の端面17hと、を含んで構成されており、端面17gの左側の内室3aと端面17hの右側の内室28aとを通路17iで連通して、内室3a,28aの双方を通路20a(図2)を介して差圧発生部19の上流側に連通してある。さらに、右側の端面17hの直径D4を左側の端面17gの直径D3より大きくしてある。また、内室3cは、通路20c(図2)を介してリザーバタンク23に連通してある。
上記構成では、第一の受圧部28の受圧面積(π*(D5)/4)に対して、差圧発生部19の差圧が、図6の右側に向けて作用するとともに、第二の受圧部29の差分となる受圧面積(π*(D4−D3)/4)に対して、差圧発生部19の上流側の圧力が、図6の左側に向けて作用することになる。
したがって、スプール17Bは、上記第1および第2実施形態と同様に、吐出ライン18の流量が増大するほど図6の右側に位置することになる。よって、スプール17Bが右側に位置するほど、加圧室10の圧力が低くなるとともに、対向室15の圧力が高くなって、ポンプ部2の吐出容量が減り、吐出流量が減る。したがって、本実施形態にかかる可変容量ベーンポンプ1Bも、ほぼ一定の流量に制御される。
そして、本実施形態では、負荷の流体の圧力が高くなるほど、差圧発生部19の上流側の圧力が高まって、スプール17Bが図6の左側に位置することになる。よって、本実施形態によっても、上記第1および第2実施形態と同様に、負荷で流体の圧力が高まったときには、その圧力上昇に応じて、可変容量ベーンポンプ1Bからより多くの流量を吐出できるようになるから、負荷で流体の圧力が高くなっていない状態での通常流量をより少なく設定できるようになって、その分、可変容量ベーンポンプ1からの流体の無駄な吐出を抑制することが可能となる。
さらに、本実施形態では、一方に向けて受圧する部分の受圧面積と他方に向けて受圧する部分の受圧面積に差を与えることにより圧力に応じてスプール17Bを移動させる第二の受圧部29について、その直径を、差圧に応じてスプール17Bを移動させる第一の受圧部28の直径より小さくした。直径の大きい部分で受圧面積に差を与えようとすると、直径の差(段差)が小さくなって、精度を確保し難くなるが、本実施形態では、直径の小さい部分で受圧面積に差を与えることができるため、直径の差(段差)を大きくできて、精度を確保しやすくなる。
なお、上記実施形態では、第一の受圧部28をコイルスプリング21に近い側に配置し、第二の受圧部29をコイルスプリング21から遠い側に配置して、スプール17Bがコイルスプリングを圧縮させる方向に位置するほど、ポンプ部2の流量が減るように構成したが、これに替えて、第一の受圧部をコイルスプリングから遠い側に配置し、第二の受圧部をコイルスプリングに近い側に配置して、第二の受圧部に差圧発生部の下流側の圧力を作用させるように構成することも可能である。
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず、種々の変形が可能である。例えば、制御弁部の構成に加えてポンプ部の構成についても、上記実施形態には限定されず、種々の変形が可能である。
1,1A,1B 可変容量ベーンポンプ
2 ポンプ部
3,3A,3B 制御弁部
4 ポンプボディ(ボディ)
6 ベーン
17,17A,17B スプール
17a,17a 膨出部
18 吐出ライン(吐出側の流路)
19 差圧発生部
24 低圧作用室
28 第一の受圧部
29 第二の受圧部
D1 (上流側の圧力が作用する部分の)直径
D2 (下流側の圧力が作用する部分の)直径
D3,D4 (第二の受圧部の)直径
D5 (第一の受圧部の)直径

Claims (4)

  1. 吐出容量を変化可能なベーンポンプとして構成されるポンプ部と、
    吐出側の流路に設けた差圧発生部の上流側および下流側の圧力を相反する方向に作用させてスプールの位置を変化させることにより前記ポンプ部の吐出容量を変化させるための制御圧を調圧するスプール弁として構成される制御弁部と、
    を備える可変容量ベーンポンプにおいて、
    前記スプールに対して前記差圧発生部の下流側の圧力が作用する受圧面積を、前記スプールに対して前記差圧発生部の上流側の圧力が作用する受圧面積より大きくしたことを特徴とする可変容量ベーンポンプ。
  2. 前記スプールと当該スプールを収容するボディとの間に、当該スプールに対して前記上流側の圧力が作用する方向にのみ前記下流側の圧力より低い圧力を作用させる低圧作用室を形成したことを特徴とする請求項1に記載の可変容量ベーンポンプ。
  3. 前記スプールにおいて、前記差圧発生部の上流側の圧力が作用する部分の直径と前記差圧発生部の下流側の圧力が作用する部分の直径とを異ならせたことを特徴とする請求項1に記載の可変容量ベーンポンプ。
  4. 吐出容量を変化可能なベーンポンプとして構成されるポンプ部と、
    吐出側の流路に設けた差圧発生部の上流側および下流側の圧力を相反する方向に作用させてスプールの位置を変化させることにより前記ポンプ部の吐出容量を変化させるための制御圧を調圧するスプール弁として構成される制御弁部と、
    を備える可変容量ベーンポンプにおいて、
    前記スプールに、
    前記差圧発生部の上流側および下流側の圧力を相反する方向に作用させる第一の受圧部と、
    前記差圧発生部の上流側および下流側の圧力のうちいずれか一方を相反する方向に受圧する二つの受圧部分を有し、当該二つの受圧部分の直径を異ならせることにより、前記スプールに対して、前記第一の受圧部で当該スプールに対して下流側の圧力が作用する方向に、力を作用させる第二の受圧部と、
    を設け、
    前記第二の受圧部の直径を前記第一の受圧部の直径より小さくしたことを特徴とする可変容量ベーンポンプ。
JP2009061669A 2009-03-13 2009-03-13 可変容量ベーンポンプ Expired - Fee Related JP5261235B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009061669A JP5261235B2 (ja) 2009-03-13 2009-03-13 可変容量ベーンポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009061669A JP5261235B2 (ja) 2009-03-13 2009-03-13 可変容量ベーンポンプ

Publications (2)

Publication Number Publication Date
JP2010216295A true JP2010216295A (ja) 2010-09-30
JP5261235B2 JP5261235B2 (ja) 2013-08-14

Family

ID=42975396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009061669A Expired - Fee Related JP5261235B2 (ja) 2009-03-13 2009-03-13 可変容量ベーンポンプ

Country Status (1)

Country Link
JP (1) JP5261235B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235627A1 (ja) * 2017-06-22 2018-12-27 日立オートモティブシステムズ株式会社 可変容量形ポンプ及びその制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200240A (ja) * 1995-01-24 1996-08-06 Unisia Jecs Corp 可変容量型ポンプ
JP2002206489A (ja) * 2001-01-11 2002-07-26 Toyoda Mach Works Ltd 可変容量形ポンプ
JP2006348794A (ja) * 2005-06-14 2006-12-28 Jatco Ltd 流量制御装置
JP2007032520A (ja) * 2005-07-29 2007-02-08 Kayaba Ind Co Ltd 可変容量ベーンポンプ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200240A (ja) * 1995-01-24 1996-08-06 Unisia Jecs Corp 可変容量型ポンプ
JP2002206489A (ja) * 2001-01-11 2002-07-26 Toyoda Mach Works Ltd 可変容量形ポンプ
JP2006348794A (ja) * 2005-06-14 2006-12-28 Jatco Ltd 流量制御装置
JP2007032520A (ja) * 2005-07-29 2007-02-08 Kayaba Ind Co Ltd 可変容量ベーンポンプ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235627A1 (ja) * 2017-06-22 2018-12-27 日立オートモティブシステムズ株式会社 可変容量形ポンプ及びその制御方法
JP2019007377A (ja) * 2017-06-22 2019-01-17 日立オートモティブシステムズ株式会社 可変容量形ポンプ及びその制御方法

Also Published As

Publication number Publication date
JP5261235B2 (ja) 2013-08-14

Similar Documents

Publication Publication Date Title
US9534596B2 (en) Variable displacement pump
JP5116546B2 (ja) 可変容量型ベーンポンプ
JP5216397B2 (ja) 可変容量型ベーンポンプ
JP6251822B2 (ja) 可変容量形ベーンポンプ
US20090047147A1 (en) Variable displacement vane pump
JP2010038134A (ja) 可変容量型ベーンポンプ
JP2020034004A (ja) 可変容量形オイルポンプ
JP5371795B2 (ja) 可変容量型ベーンポンプ
US11268508B2 (en) Variable displacement pump
JP2012082762A (ja) 可変容量形ベーンポンプ
WO2013141010A1 (ja) 可変容量型ベーンポンプ
JP5261235B2 (ja) 可変容量ベーンポンプ
JP5583492B2 (ja) 可変容量型ベーンポンプ
JP5238482B2 (ja) 可変容量ベーンポンプ
WO2017047303A1 (ja) 可変容量形オイルポンプ
WO2019155758A1 (ja) ポンプ装置
JP2016211523A (ja) ポンプ装置
JP2011127431A (ja) 可変容量形ベーンポンプ
JP4499694B2 (ja) 可変容量形ポンプ
WO2024190591A1 (ja) 可変容量形ベーンポンプ
JP2011127556A (ja) 可変容量形ベーンポンプ
WO2023037875A1 (ja) 可変容量形オイルポンプ
JP3607306B2 (ja) 可変容量形ポンプ
JP2010255551A (ja) 可変容量型ベーンポンプ
JP2009013958A (ja) 可変容量型ベーンポンプ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5261235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees