JP2010214217A - Catalyst for producing acrolein and method of producing acrolein and/or acrylic acid using the catalyst - Google Patents

Catalyst for producing acrolein and method of producing acrolein and/or acrylic acid using the catalyst Download PDF

Info

Publication number
JP2010214217A
JP2010214217A JP2009060398A JP2009060398A JP2010214217A JP 2010214217 A JP2010214217 A JP 2010214217A JP 2009060398 A JP2009060398 A JP 2009060398A JP 2009060398 A JP2009060398 A JP 2009060398A JP 2010214217 A JP2010214217 A JP 2010214217A
Authority
JP
Japan
Prior art keywords
catalyst
value
producing acrolein
propylene
molecular oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009060398A
Other languages
Japanese (ja)
Other versions
JP5582708B2 (en
Inventor
Nobuyuki Hakozaki
伸幸 箱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2009060398A priority Critical patent/JP5582708B2/en
Publication of JP2010214217A publication Critical patent/JP2010214217A/en
Application granted granted Critical
Publication of JP5582708B2 publication Critical patent/JP5582708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for producing acrolein and/or acrylic acid with high efficiency in a method of producing acrolein and/or acrylic acid by the catalytic gas phase oxidation of propylene-containing gas. <P>SOLUTION: The catalyst, for producing acrolein by the catalytic gas phase oxidation of propylene in the presence of molecular oxygen or molecular oxygen-containing gas, is an oxide catalyst containing molybdenum, bismuth, and iron as essential components. The catalytic component has an L<SP>*</SP>value, an a<SP>*</SP>value, and a b<SP>*</SP>value in the L<SP>*</SP>a<SP>*</SP>b<SP>*</SP>color system in the ranges of 30≤L<SP>*</SP>≤60, 0≤a<SP>*</SP>≤5, and 5≤b<SP>*</SP>≤14. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、プロピレンの接触気相酸化によりアクロレインを製造するための触媒およびこの触媒を用いたアクロレインおよび/またはアクリル酸を製造する方法に関する。   The present invention relates to a catalyst for producing acrolein by catalytic gas phase oxidation of propylene and a method for producing acrolein and / or acrylic acid using the catalyst.

アクリル酸は、各種合成樹脂、塗料、可塑剤の原料として工業的に重要であり、現在、全世界で数百万トン/年の規模で生産されている。また、近年では、吸水性樹脂の原料としてその重要性が高まり、需要はさらに伸び、工業的規模でアクリル酸収率のさらなる向上が望まれている。   Acrylic acid is industrially important as a raw material for various synthetic resins, paints, and plasticizers, and is currently produced on a scale of several million tons / year worldwide. In recent years, the importance has increased as a raw material for water-absorbent resins, and the demand has further increased, and further improvement in the yield of acrylic acid is desired on an industrial scale.

アクリル酸の工業的製法としては、接触気相酸化反応によりプロピレンからアクロレインを経てアクリル酸とする2段酸化方法が最も一般的であって、アクリル酸収率のさらなる向上のためには第1段目の反応であるプロピレンの接触気相酸化によるアクロレインの収率向上も必要となる。また、アクロレイン自体についても、メチオニン (医薬品や飼料の原料) の合成原料、グルタルアルデヒド、ピリジン、その他としてアリルアルコール、グリセリン等の合成原料として、また、架橋剤、繊維加工剤として有用な化合物であり、プロピレンからアクロレインへの収率向上は経済的に大きな意味がある。   The most common industrial process for producing acrylic acid is a two-stage oxidation process in which propylene is converted to acrylic acid via acrolein by a catalytic gas-phase oxidation reaction. It is also necessary to improve the yield of acrolein by catalytic vapor phase oxidation of propylene, which is the reaction of the eye. Acrolein itself is also a useful compound as a raw material for synthesis of methionine (raw materials for pharmaceuticals and feeds), glutaraldehyde, pyridine, other synthetic materials such as allyl alcohol and glycerin, and as a crosslinking agent and fiber processing agent. The improvement in yield from propylene to acrolein has great economic significance.

このようなプロピレンの接触気相酸化のための触媒に関して、アクロレインの収率や寿命等の触媒性能の改善を目的としてモリブデン−ビスマス系酸化物触媒を中心に各社で検討がなされ様々な提案がされている。   With regard to such a catalyst for the catalytic gas phase oxidation of propylene, various companies have been studied mainly by molybdenum-bismuth oxide catalysts for the purpose of improving the catalyst performance such as the yield and life of acrolein, and various proposals have been made. ing.

例えば、モリブデン−ビスマス系酸化物触媒として、主成分としてβ−XMoO、第2成分としてFe(MoOの結晶相を有し、MoOを含有しない触媒(特許文献1)、活性相中にBiFeMo12で表される結晶相を有する触媒(特許文献2)、含有水分の乾燥減量が0.5重量%以下である触媒(特許文献3)、比表面積が15〜18m/gである触媒(特許文献4)、特定のリング状の形状を有し、その触媒前駆成形体の側面圧縮強度が≧12N及び≦23Nである触媒(特許文献5)などが提案されている。 For example, as a molybdenum-bismuth oxide catalyst, a catalyst having a crystal phase of β-X 1 MoO 4 as a main component and Fe 2 (MoO 4 ) 3 as a second component and not containing MoO 3 (Patent Document 1) A catalyst having a crystal phase represented by Bi 2 Fe 2 Mo 2 O 12 in the active phase (Patent Document 2), a catalyst having a loss on drying of water content of 0.5% by weight or less (Patent Document 3), a ratio A catalyst having a surface area of 15 to 18 m 2 / g (Patent Document 4), a catalyst having a specific ring shape, and a side compression strength of the catalyst precursor molded body is ≧ 12N and ≦ 23N (Patent Document 5) Etc. have been proposed.

特開2000−169149号公報JP 2000-169149 A 特公昭56−28180号公報Japanese Patent Publication No. 56-28180 特開2005−186065号公報JP 2005-186065 A 特表2006−521916号公報JP-T-2006-521916 特表2007−505740号公報Special table 2007-505740 gazette

しかしながら、前記した触媒はいずれも目的とするアクロレインの収率や寿命等の触媒性能に幾分改善は見られているものの、工業的な規模から見てなお改善の余地を残すものである。   However, although all of the above-mentioned catalysts have improved somewhat in the catalyst performance such as the yield and life of the target acrolein, there is still room for improvement from the industrial scale.

かくして、本発明の目的は、プロピレンの接触気相酸化によってアクロレインおよび/またはアクリル酸を製造する方法において、活性、選択性等に優れた性能を示す触媒を提供することにある。   Thus, an object of the present invention is to provide a catalyst exhibiting performance excellent in activity, selectivity and the like in a method for producing acrolein and / or acrylic acid by catalytic vapor phase oxidation of propylene.

また、本発明のもう一つの目的は、プロピレンの接触気相酸化によりアクロレインおよび/またはアクリル酸を高収率で製造する方法を提供することにある。   Another object of the present invention is to provide a method for producing acrolein and / or acrylic acid in high yield by catalytic gas phase oxidation of propylene.

本発明者らは、上記課題を解決するため鋭意検討を行った結果、プロピレンを分子状酸素または分子状酸素含有ガスの存在下で接触気相酸化して主としてアクロレインを製造するためのモリブデン−ビスマス系酸化物触媒において、今まで全く着目されたことのない触媒性能と触媒の色との相関性を新たに見出した。具体的には、Mo(モリブデン)、Bi(ビスマス)、Fe(鉄)を必須成分として含有する酸化物触媒であり、かつ、触媒成分のL表色系におけるL値、a値、b値がそれぞれ30≦L≦60、0≦a≦5、5≦b≦14の範囲である触媒が、高収率でアクロレインを製造することができることを見出し、本発明に至った。その理由については明らかではないが、種々の検討によりL値、a値、b値がそれぞれ前記範囲外の触媒では、触媒活性および選択性が低下することがわかった。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that molybdenum-bismuth for mainly producing acrolein by catalytic vapor phase oxidation of propylene in the presence of molecular oxygen or a molecular oxygen-containing gas. In the system oxide catalyst, the correlation between the catalyst performance and the color of the catalyst, which has never been noticed at all, was newly found. Specifically, it is an oxide catalyst containing Mo (molybdenum), Bi (bismuth), Fe (iron) as essential components, and the L * value in the L * a * b * color system of the catalyst component, a catalyst having an a * value and a b * value of 30 ≦ L * ≦ 60, 0 ≦ a * ≦ 5, and 5 ≦ b * ≦ 14, respectively, can produce acrolein in a high yield; The present invention has been reached. Although the reason for this is not clear, it has been found by various studies that the catalyst activity and selectivity are reduced when the L * value, a * value, and b * value are outside the above ranges.

さらに、下記式で算出される彩度Eが7≦E≦14の範囲である触媒がより効果的であることであることも見出した。   Furthermore, it has also been found that a catalyst having a saturation E calculated by the following formula in a range of 7 ≦ E ≦ 14 is more effective.

Figure 2010214217
Figure 2010214217

本発明によれば、プロピレンの接触気相酸化によりアクロレインおよび/またはアクリル酸を製造する方法において、アクロレインおよび/またはアクリル酸を高収率で製造することが可能となる。   According to the present invention, in the method for producing acrolein and / or acrylic acid by catalytic gas phase oxidation of propylene, it becomes possible to produce acrolein and / or acrylic acid in high yield.

以下、本発明にかかるアクロレイン製造用触媒および該触媒を用いたアクロレインおよび/またはアクリル酸の製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。   Hereinafter, the acrolein production catalyst according to the present invention and the production method of acrolein and / or acrylic acid using the catalyst will be described in detail. However, the scope of the present invention is not limited to these descriptions, and the following examples are given. Other than the above, the present invention can be changed and implemented as appropriate without departing from the spirit of the present invention.

本発明におけるアクロレイン製造用の触媒としては、モリブデン、ビスマス、鉄を必須成分として含有する酸化物触媒であり、かつ、触媒成分のL表色系におけるL値、a値、b値がそれぞれ30≦L≦60、0≦a≦5、5≦b≦14の範囲であればよく、好ましくは35≦L≦55、1≦a≦4、7≦b≦13の範囲の触媒である。
また、下記式で算出される彩度Eが、7≦E≦14の範囲であることが好ましく、より好適には9≦E≦13の範囲である。
The catalyst for producing acrolein in the present invention is an oxide catalyst containing molybdenum, bismuth and iron as essential components, and the L * value and a * value in the L * a * b * color system of the catalyst component. , B * values may be in the range of 30 ≦ L * ≦ 60, 0 ≦ a * ≦ 5, 5 ≦ b * ≦ 14, preferably 35 ≦ L * ≦ 55, 1 ≦ a * ≦ 4, 7 It is a catalyst in the range of ≦ b * ≦ 13.
Further, the saturation E calculated by the following formula is preferably in the range of 7 ≦ E ≦ 14, and more preferably in the range of 9 ≦ E ≦ 13.

Figure 2010214217
Figure 2010214217

ここで、L表色系とは、JIS Z8729で規定される三次元の近似的な均等色空間における色座標a、b及び明度Lのことである。aは、プラス側で値が大きいほど赤味が強くマイナス側で値が大きいほど緑色味が強いことを表し、bはプラス側で値が大きいほど黄色味が強くマイナス側で値が大きいほど青味が強いことを表す。また、明度Lは、0に近づくほど黒色味が強く100に近づくほど白味が強いことを表し、彩度Eは、値が大きいほど色鮮やかであることを表す。 Here, the L * a * b * color system is color coordinates a * , b * and lightness L * in a three-dimensional approximate uniform color space defined by JIS Z8729. a * indicates that the greater the value on the plus side, the stronger the redness, and the greater the value on the minus side, the stronger the greenness. b * the greater the value on the plus side, the stronger the yellowness and the greater the value on the minus side. It shows that the bluish color is stronger. In addition, the lightness L * indicates that the blackness is stronger as the value approaches 0, and the whiteness is stronger as the value approaches 100, and the saturation E indicates that the larger the value is, the brighter the color is.

本発明の触媒は、触媒成分としてモリブデン、ビスマスおよび鉄を必須成分として含有する酸化物触媒であって、その触媒成分のL値、a値、b値が前記範囲を満たすことが重要である。モリブデン、ビスマスおよび鉄を必須成分として含有する酸化物触媒としては、下記一般式(1)
Mo12BiFe (1)
(ここで、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルから選ばれる少なくとも1種の元素、Bはアルカリ金属、アルカリ土類金属およびタリウムから選ばれる少なくとも1種の元素、Cはタングステン、ケイ素、アルミニウム、ジルコニウムおよびチタンから選ばれる少なくとも1種の元素、Dはリン、テルル、アンチモン、スズ、セリウム、鉛、ニオブ、マンガン、砒素、ホウ素および亜鉛から選ばれる少なくとも1種の元素、Oは酸素であり、a、b、c、d、e、fおよびxはそれぞれBi、Fe、A、B、C、DおよびOの原子比を表し、0<a≦10、0<b≦20、2≦c≦20、0<d≦10、0≦e≦30、0≦f≦4であり、xはそれぞれの元素の酸化状態によって定まる数値である。)で表される触媒が好適である。
The catalyst of the present invention is an oxide catalyst containing molybdenum, bismuth and iron as essential components as catalyst components, and it is important that the L * value, a * value, and b * value of the catalyst component satisfy the above ranges. It is. As an oxide catalyst containing molybdenum, bismuth and iron as essential components, the following general formula (1)
Mo 12 Bi a Fe b A c B d C e D f O x (1)
(Where Mo is molybdenum, Bi is bismuth, Fe is iron, A is at least one element selected from cobalt and nickel, B is at least one element selected from alkali metals, alkaline earth metals and thallium, C is at least one element selected from tungsten, silicon, aluminum, zirconium and titanium, D is at least one element selected from phosphorus, tellurium, antimony, tin, cerium, lead, niobium, manganese, arsenic, boron and zinc The element, O is oxygen, a, b, c, d, e, f and x represent the atomic ratios of Bi, Fe, A, B, C, D and O, respectively, and 0 <a ≦ 10, 0 < b ≦ 20, 2 ≦ c ≦ 20, 0 <d ≦ 10, 0 ≦ e ≦ 30, 0 ≦ f ≦ 4, and x is a numerical value determined by the oxidation state of each element. Suitable catalysts are preferred.

本発明の触媒は、この種の触媒の調製に一般的に用いられる方法を用いて製造することができ、下記に一例を示す。   The catalyst of this invention can be manufactured using the method generally used for preparation of this kind of catalyst, and an example is shown below.

触媒活性成分の原料として、各成分元素の酸化物、水酸化物、アンモニウム塩、硝酸塩、炭酸塩、硫酸塩、有機酸塩などの塩類や、それらの水溶液、ゾルなど、あるいは、複数の元素を含む化合物などを、例えば、水に混合して水溶液あるいは水性スラリー(以下、「出発原料混合液」)とする。   As raw materials for catalytically active components, oxides, hydroxides, ammonium salts, nitrates, carbonates, sulfates, organic acid salts, etc. of each component element, their aqueous solutions, sols, etc., or multiple elements The compound or the like is mixed with water to form an aqueous solution or an aqueous slurry (hereinafter referred to as “starting raw material mixture”).

次に、必要に応じて、得られた出発原料混合液を、加熱や減圧など各種方法により乾燥させて触媒前駆体とする。加熱による乾燥方法としては、例えば、スプレードライヤー、ドラムドライヤー等を用いて粉末状の触媒前駆体を得ることもできるし、箱型乾燥機、トンネル型乾燥機等を用いて気流中で加熱してブロック状またはフレーク状の触媒前駆体を得ることもできる。また、一旦、出発原料の混合液を濃縮、蒸発乾固してケーキ状の固形物を得て、この固形物をさらに上記加熱処理する方法も採用できる。減圧による乾燥方法としては、例えば、真空乾燥機を用いて、ブロック状または粉末状の触媒前駆体を得ることができる。   Next, if necessary, the obtained starting material mixture is dried by various methods such as heating and decompression to obtain a catalyst precursor. As a drying method by heating, for example, a powdered catalyst precursor can be obtained using a spray dryer, a drum dryer or the like, or heated in an air stream using a box-type dryer, a tunnel-type dryer or the like. Block or flake catalyst precursors can also be obtained. Alternatively, a method of once concentrating and evaporating and drying the mixture of starting materials to obtain a cake-like solid and further subjecting the solid to the above heat treatment can also be employed. As a drying method by reduced pressure, for example, a block or powdery catalyst precursor can be obtained using a vacuum dryer.

得られた乾燥物は、必要に応じて適当な粒度の粉体を得るための粉砕工程や分級工程を経て、続く成形工程に送られる。なお、上記触媒前駆体の粉体の粒度は、特に限定されないが、成形性に優れる点で500μm以下が好ましい。   The obtained dried product is sent to a subsequent molding step through a pulverization step and a classification step for obtaining a powder having an appropriate particle size as required. The particle size of the catalyst precursor powder is not particularly limited, but is preferably 500 μm or less in terms of excellent moldability.

触媒の成形方法としては、前記触媒前駆体あるいは前記触媒前駆体と粉体状の不活性担体との混合物を押し出し成形法や打錠成形法などにより一定の形状に成形する方法、触媒成分を一定の形状を有する任意の不活性担体上に担持する担持法がある。   As a method for molding the catalyst, a method of molding the catalyst precursor or a mixture of the catalyst precursor and a powdery inert carrier into a certain shape by an extrusion molding method or a tableting molding method, a constant catalyst component is used. There is a supporting method of supporting on an arbitrary inert carrier having the following shape.

押し出し成形法や打錠成形法等の場合、その形状に特に制限はなく、球状、円柱状、リング状、不定形などのいずれの形状でもよい。もちろん球状の場合、真球である必要はなく実質的に球状であればよく、円柱状およびリング状についても同様である。   In the case of an extrusion molding method or a tableting molding method, the shape is not particularly limited, and may be any shape such as a spherical shape, a cylindrical shape, a ring shape, and an indeterminate shape. Of course, in the case of a spherical shape, it does not need to be a true sphere, and may be substantially spherical, and the same applies to a cylindrical shape and a ring shape.

担持法としては、例えば、一定の形状を有する所望の不活性担体に、出発原料混合液を乾燥させずに水溶液あるいは水性スラリーのまま、加熱しながら塗布あるいは付着させて乾燥担持させる蒸発乾固法や、不活性担体に前記触媒前駆体を粉体状で担持させる造粒法にしたがって製造することができる。中でも、特に特開昭63−200839号公報に記載の遠心流動コーティング法、特開平10−28877号公報に記載の転動造粒法、特開2004−136267号公報に記載のロッキングミキサー法を用いて不活性担体に担持する造粒法が好ましい。   As the loading method, for example, an evaporation to dryness method in which a starting inert liquid mixture or an aqueous slurry is applied to or adhered to a desired inert carrier having a certain shape while being heated or dried while being dried and supported. Alternatively, it can be produced according to a granulation method in which the catalyst precursor is supported in powder form on an inert carrier. Among these, in particular, the centrifugal fluid coating method described in JP-A No. 63-200249, the rolling granulation method described in JP-A No. 10-28877, and the rocking mixer method described in JP-A No. 2004-136267 are used. Thus, a granulation method of supporting on an inert carrier is preferable.

不活性担体としては、アルミナ、シリカ、シリカ−アルミナ、チタニア、マグネシア、ステアタイト、コージェライト、シリカ−マグネシア、炭化ケイ素、窒化ケイ素、ゼオライト等が挙げられる。担持法で使用する場合、その形状についても特に制限はなく、球状、円柱状、リング状など公知の形状のものが使用できる。   Examples of the inert carrier include alumina, silica, silica-alumina, titania, magnesia, steatite, cordierite, silica-magnesia, silicon carbide, silicon nitride, zeolite, and the like. When used in the supporting method, the shape is not particularly limited, and known shapes such as a spherical shape, a cylindrical shape, and a ring shape can be used.

成形工程においては、成形性を向上させるための成形補助剤やバインダー、触媒に適度な細孔を形成させるための気孔形成剤などを用いることができる。具体例としては、エチレングリコール、グリセリン、プロピオン酸、マレイン酸、ベンジルアルコール、プロピルアルコール、ブチルアルコールまたはフェノール類の有機化合物や水、硝酸、硝酸アンモニウム、炭酸アンモニウムなどが挙げられる。   In the molding step, a molding aid or binder for improving moldability, a pore forming agent for forming appropriate pores in the catalyst, or the like can be used. Specific examples include organic compounds such as ethylene glycol, glycerin, propionic acid, maleic acid, benzyl alcohol, propyl alcohol, butyl alcohol or phenols, water, nitric acid, ammonium nitrate, and ammonium carbonate.

また、別に触媒の機械強度を向上させる目的で、セラミック繊維、ガラス繊維、炭化ケイ素、窒化ケイ素などの補強剤を用いることもできる。補強剤は、出発原料混合液に添加しておいてもよいし、触媒前駆体に配合してもよい。   In addition, for the purpose of improving the mechanical strength of the catalyst, reinforcing agents such as ceramic fibers, glass fibers, silicon carbide, and silicon nitride can be used. The reinforcing agent may be added to the starting raw material mixture or may be blended with the catalyst precursor.

上記成形工程で得られた成形体あるいは担持体は、続く焼成工程に送られる。焼成温度としては350℃〜600℃、好ましくは400℃〜550℃、更に好ましくは420℃〜490℃、焼成時間としては好ましくは1〜10時間である。焼成雰囲気としては、酸化雰囲気であれば良いが、分子状酸素含有ガス雰囲気が好ましく、特に、分子状酸素含有ガス流通下に焼成工程を行うのが好ましい。分子状酸素含有ガスとしては空気が好適に用いられる。   The molded body or carrier obtained in the molding process is sent to the subsequent firing process. The firing temperature is 350 ° C to 600 ° C, preferably 400 ° C to 550 ° C, more preferably 420 ° C to 490 ° C, and the firing time is preferably 1 to 10 hours. The firing atmosphere may be an oxidizing atmosphere, but a molecular oxygen-containing gas atmosphere is preferable, and it is particularly preferable to perform the firing step under the flow of the molecular oxygen-containing gas. Air is suitably used as the molecular oxygen-containing gas.

なお、焼成工程で用いる焼成炉としては特に制限はなく、一般に使用される箱型焼成炉あるいはトンネル型焼成炉等を用いればよい。   In addition, there is no restriction | limiting in particular as a baking furnace used by a baking process, What is necessary is just to use the box-type baking furnace or tunnel type baking furnace etc. which are generally used.

ここで、本発明の触媒を得る方法としては、例えば、前記焼成工程において、触媒成形体あるいは担持体と焼成する雰囲気ガスとの接触時間や雰囲気ガスの分子状酸素濃度をコントロールする方法などにより触媒成形体あるいは担持体と接触する分子状酸素の量をコントロールすることで達成される。   Here, as a method of obtaining the catalyst of the present invention, for example, in the calcination step, a catalyst is formed by a method of controlling the contact time between the catalyst molded body or the support and the atmosphere gas to be baked, the molecular oxygen concentration of the atmosphere gas, or the like. This is achieved by controlling the amount of molecular oxygen in contact with the molded body or the support.

具体的には、雰囲気ガスとして分子状酸素濃度が5〜25%の分子状酸素含有ガスを用い、触媒成形体あるいは担持体中の触媒前駆体の質量(W[kg])と焼成炉に導入される分子状酸素ガス流量(V[L(STP)/min])との比(V/W)を0.02〜0.20、好ましくは0.04〜0.15の範囲になるように調節すればよい。雰囲気ガスの分子状酸素濃度あるいは分子状酸素ガス流量が前記範囲を外れると、焼成後、好適なL値、a値、b値の範囲の触媒は得にくくなる。これはおそらく、分子状酸素濃度が5%未満の場合あるいはV/Wが0.02未満の場合は、触媒成形体や担持体に含まれる触媒活性成分以外の成分、例えば、原料化合物中のアンモニウム根や硝酸根、成形工程で用いる成形補助剤やバインダー、気孔形成剤などの分解が不十分であったり、分解時に触媒活性成分が還元されたりするためで、一方、分子状酸素濃度が25%を越える場合あるいはV/Wが0.20を超える場合では触媒活性成分が過度に酸化されたり、上記成分が急激に酸化分解されるためと考えられる。雰囲気ガスとして空気を用いる場合には、触媒成形体あるいは担持体中の触媒前駆体の質量1kg当たり凡そ0.10〜0.95L(STP)/min、好ましくは0.19〜0.72L(STP)/minの流量で焼成炉に導入すればよい。 Specifically, a molecular oxygen-containing gas having a molecular oxygen concentration of 5 to 25% is used as the atmospheric gas, and the mass of catalyst precursor in the catalyst molded body or carrier (W [kg]) and introduced into the firing furnace. The ratio (V / W) to the molecular oxygen gas flow rate (V [L (STP) / min]) is 0.02 to 0.20, preferably 0.04 to 0.15. Adjust it. If the molecular oxygen concentration or the molecular oxygen gas flow rate of the atmospheric gas is out of the above range, it is difficult to obtain a catalyst having a suitable L * value, a * value, or b * value range after firing. This is probably because when the molecular oxygen concentration is less than 5% or when V / W is less than 0.02, components other than the catalytically active component contained in the catalyst molded body or carrier, such as ammonium in the raw material compound This is because the decomposition of roots and nitrates, molding aids and binders used in the molding process, pore forming agents, etc. is insufficient, and the catalytically active components are reduced during decomposition, while the molecular oxygen concentration is 25%. This is probably because the catalytically active component is excessively oxidized or the above components are rapidly oxidized and decomposed when the V / W exceeds 0.20. When air is used as the atmospheric gas, about 0.10 to 0.95 L (STP) / min, preferably 0.19 to 0.72 L (STP) per kg of the mass of the catalyst molded body or catalyst precursor in the carrier. ) / Min at a flow rate.

なお、ここでいう触媒成形体あるいは担持体中の触媒前駆体の質量とは、触媒成形体あるいは担持体の質量から、触媒成形体あるいは担持体に含まれる不活性担体および補強材の質量を差し引いたものである。なお、成形体あるいは担持体とする前の触媒前駆体のみであらかじめ焼成を行う場合についても同様に触媒前駆体に含まれる不活性担体および補強材の質量を差し引いたものである。   Here, the mass of the catalyst precursor in the catalyst molded body or the carrier is the mass of the catalyst molded body or the carrier, and the mass of the inert carrier and the reinforcing material contained in the catalyst molded body or the carrier is subtracted. It is a thing. Note that, in the case where firing is performed in advance using only the catalyst precursor before forming the molded body or the support, the mass of the inert carrier and the reinforcing material contained in the catalyst precursor is similarly subtracted.

また、原因は不明であるが、焼成後、一部の触媒表面に色むらが生じる場合がある。そのような場合であっても、色むらの生じた触媒の表面を削りとった粉粒物を乳鉢などを用いて均一化し、その均一化した粉粒物を固形化させたもののL値、a値、b値が前記範囲内であれば本発明に包括される。 Further, although the cause is unknown, color unevenness may occur on some catalyst surfaces after calcination. Even in such a case, the L * value of the powder obtained by shaving the surface of the catalyst with uneven color using a mortar or the like, and solidifying the homogenized powder If the a * value and the b * value are within the above ranges, they are included in the present invention.

本発明におけるプロピレンを分子状酸素により接触気相酸化してアクロレインおよび/またはアクリル酸を製造するのに用いられる反応器については特段の制限はなく、固定床反応器、流動床反応器、移動床反応器のいずれも用いることができるが、通常、固定床反応器が用いられ、特に固定床多管式反応器が好ましい。その反応管の内径は通常15〜50mm、より好ましくは20〜40mm、さらに好ましくは22〜38mmである。   There are no particular limitations on the reactor used for producing acrolein and / or acrylic acid by catalytic vapor phase oxidation of propylene with molecular oxygen in the present invention, and there are no particular limitations. Fixed bed reactor, fluidized bed reactor, moving bed Although any of the reactors can be used, a fixed bed reactor is usually used, and a fixed bed multitubular reactor is particularly preferable. The inner diameter of the reaction tube is usually 15 to 50 mm, more preferably 20 to 40 mm, and still more preferably 22 to 38 mm.

固定床多管式反応器の各反応管器には、必ずしも単一な触媒を充填する必要はなく、複数種の触媒を充填することも可能である。例えば、特開平4−217932号公報、特開平10−168003号公報などに記載されたように活性の異なる複数種の触媒をそれぞれが層(以下、「反応帯」という)を成すように充填する方法、または、特開2005−320315号公報に記載のように触媒の一部を不活性な担体などで希釈する方法あるいは、これらを組み合わせる方法等により活性を制御する方法が好適に採用することができる。この時、反応帯の数は、反応条件や反応器の規模により適宜決定されるが、反応帯の数が多すぎると触媒の充填作業が煩雑になるなどの問題が発生するため工業的には2〜6程度までが望ましい。また、複数種の触媒を用いる場合、使用する触媒の少なくとも1種が前記L値、a値、b値の範囲を満足するものであればよいが、使用する触媒全てについてL値、a値、b値が前記範囲内のものとすることで本発明の効果が十分に達成され好ましい。 Each reaction tube of the fixed bed multitubular reactor does not necessarily need to be filled with a single catalyst, and can be filled with a plurality of types of catalysts. For example, as described in JP-A-4-217932, JP-A-10-168003, and the like, a plurality of types of catalysts having different activities are packed so as to form a layer (hereinafter referred to as “reaction zone”). Preferably, a method of controlling the activity by a method, a method of diluting a part of the catalyst with an inert carrier or the like as described in JP-A-2005-320315, or a method of combining them is preferably used. it can. At this time, the number of reaction zones is appropriately determined depending on the reaction conditions and the scale of the reactor. However, if the number of reaction zones is too large, problems such as complicated packing of the catalyst may occur. About 2-6 is desirable. In the case of using a plurality of kinds of catalyst, at least one said L * value of the catalyst used, a * value, b * as long as it satisfies the range of values, for all catalysts used L * value , A * value and b * value are within the above ranges, which is preferable because the effects of the present invention are sufficiently achieved.

本発明における反応条件には特に制限は無く、この種の反応に一般に用いられている条件であればいずれも実施することが可能である。例えば、原料ガスとして1〜15容量%、好ましくは4〜12容量%のプロピレン、0.5〜25容量%、好ましくは2〜20容量%の分子状酸素、0〜30容量%、好ましくは0〜25容量%の水蒸気、残部が窒素などの不活性ガスからなる混合ガスを280〜450℃の温度範囲で0.1〜1.0MPaの圧力下、300〜5,000h−1(STP)の空間速度で触媒に接触させればよい。 The reaction conditions in the present invention are not particularly limited, and any conditions generally used for this type of reaction can be used. For example, the raw material gas is 1-15% by volume, preferably 4-12% by volume propylene, 0.5-25% by volume, preferably 2-20% by volume molecular oxygen, 0-30% by volume, preferably 0 A mixed gas consisting of ˜25% by volume of water vapor and the balance consisting of an inert gas such as nitrogen is 300 to 5,000 h −1 (STP) at a temperature of 280 to 450 ° C. under a pressure of 0.1 to 1.0 MPa. What is necessary is just to contact a catalyst with space velocity.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれにより何ら限定されるものではない。なお、以下では、便宜上、「質量部」を単に「部」、と記すことがある。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Hereinafter, for convenience, “parts by mass” may be simply referred to as “parts”.

プロピレン転化率、アクロレイン収率およびアクリル酸収率は次式によって求めた。
プロピレン転化率[モル%]
=(反応したプロピレンのモル数)/(供給したプロピレンのモル数)×100
アクロレイン収率、アクリル酸収率[モル%]
=(生成したアクロレインまたはアクリル酸のモル数)/(供給したプロピレンのモル数)×100
[触媒のL値の測定]
日本電色工業株式会社製のSZ−Σ80 COLOR MEASURING SYSTEMを用いて、触媒のL値、a値、b値を測定した。具体的には、無作為に選んだ触媒20粒にて各値を測定し、その各平均値をその触媒のL値、a値、b値とした。
<実施例1>
〔触媒調製〕
蒸留水2000部を加熱攪拌しつつモリブデン酸アンモニウム500部を溶解した(A液)。別に500部の蒸留水に硝酸コバルト412部および硝酸ニッケル124部を溶解させた(B液)。また別に、100部の蒸留水に硝酸第二鉄191部を溶解させた(C液)。さらに別途、150部の蒸留水に濃硝酸(65wt%)25部を加えて酸性とした溶液に硝酸ビスマス172部を溶解させた(D液)。加熱攪拌しつつA液にB液、C液、D液を順次滴下した。さらに、硝酸カリウム1.2部、酸化アルミニウム48.1部および酸化ホウ素7.4部を加えて懸濁液を得た。このようにして得られた懸濁液を加熱、攪拌、蒸発せしめた。得られた乾燥物を200℃で乾燥後に250μm以下に粉砕し、触媒前駆体を得た。転動造粒機に平均粒径5.0mmのシリカ−アルミナ球状担体4kgを投入し、次いで結合剤として30質量%の硝酸アンモニウム水溶液と共に触媒前駆体を90℃の熱風を通しながら投入し、12kgの担持体を得た。得られた担持体全量を箱型焼成炉に仕込み、空気を1L/minで炉内に導入しながら480℃で6時間熱処理をして触媒1を得た。この触媒の担持率は約150質量%であり、担体を除いた酸素以外の金属元素の組成は原子比で次のとおりであった。
Mo12Bi1.5FeCoNi1.80.05Al0.9
なお、担持率は、下記式により求めた。
担持率[質量%]=(触媒質量[g]−担体質量[g])/担体質量[g]×100
この触媒のL値、a値、b値および彩度Eの値を表1に示す。
〔反応器〕
全長3000mm、内径25mmのSUS製反応管およびこれを覆う熱媒体を流すためのシェルからなる反応器を鉛直方向に用意した。反応管上部より触媒1を落下させ、層長が2700mmとなるように充填した。
〔酸化反応〕
熱媒体温度(反応温度)を320℃に保ち、触媒を充填した反応管に、プロピレン8容量%、酸素15容量%、水蒸気8容量%、窒素等からなる不活性ガス69容量%の混合ガスを空間速度2000hr−1(STP)で導入し、プロピレンの接触気相酸化反応を行った。その結果を表2に示す。
<実施例2>
蒸留水2000部を加熱攪拌しつつモリブデン酸アンモニウム500部を溶解した(A液)。別に500部の蒸留水に硝酸コバルト385部を溶解させた(B液)。また別に、100部の蒸留水に硝酸第二鉄277部を溶解させた(C液)。さらに別途、150部の蒸留水に濃硝酸(65wt%)25部を加えて酸性とした溶液に硝酸ビスマス115部を溶解させた(D液)。加熱攪拌しつつA液にB液、C液、D液を順次滴下した。さらに、硝酸セシウム1.84部、酸化アルミニウム36.1部および20質量%のシリカゾル128部を加えて懸濁液を得た。このようにして得られた懸濁液を加熱、攪拌、蒸発せしめた。得られた乾燥物を200℃で乾燥後に250μm以下に粉砕し、触媒前駆体を得た。得られた触媒前駆体8kgを箱型焼成炉に仕込み、空気を7.5L/minで炉内に導入しながら470℃で6時間熱処理をして触媒粉体を得た。転動造粒機に平均粒径5.0mmのシリカ−アルミナ球状担体4kgを投入し、次いで結合剤として35重量%の硝酸アンモニウム水溶液と共に触媒粉体を90℃の熱風を通しながら投入して担体に担持させた。得られた担持体を230℃で乾燥し触媒2を得た。この触媒の担持率は約150質量%であり、担体を除いた酸素以外の金属元素の組成は原子比で次のとおりであった。
Mo12Bi1.0Fe2.9Co5.6Cs0.04AlSi1.8
この触媒のL値、a値、b値および彩度Eの値を表1に示す。
The propylene conversion rate, acrolein yield and acrylic acid yield were determined by the following equations.
Propylene conversion [mol%]
= (Number of moles of propylene reacted) / (number of moles of supplied propylene) × 100
Acrolein yield, acrylic acid yield [mol%]
= (Mole number of produced acrolein or acrylic acid) / (Mole number of supplied propylene) × 100
[Measurement of L * a * b * value of catalyst]
The L * value, a * value, and b * value of the catalyst were measured using SZ-Σ80 COLOR MEASURING SYSTEM manufactured by Nippon Denshoku Industries Co., Ltd. Specifically, each value was measured with 20 randomly selected catalysts, and the average value was used as the L * value, a * value, and b * value of the catalyst.
<Example 1>
(Catalyst preparation)
While heating and stirring 2000 parts of distilled water, 500 parts of ammonium molybdate was dissolved (solution A). Separately, 412 parts of cobalt nitrate and 124 parts of nickel nitrate were dissolved in 500 parts of distilled water (Liquid B). Separately, 191 parts of ferric nitrate was dissolved in 100 parts of distilled water (solution C). Separately, 172 parts of bismuth nitrate was dissolved in a solution made acidic by adding 25 parts of concentrated nitric acid (65 wt%) to 150 parts of distilled water (solution D). Liquid B, liquid C, and liquid D were added dropwise to liquid A while heating and stirring. Further, 1.2 parts of potassium nitrate, 48.1 parts of aluminum oxide and 7.4 parts of boron oxide were added to obtain a suspension. The suspension thus obtained was heated, stirred and evaporated. The obtained dried product was dried at 200 ° C. and then pulverized to 250 μm or less to obtain a catalyst precursor. 4 kg of a silica-alumina spherical carrier having an average particle diameter of 5.0 mm was put into a rolling granulator, and then a catalyst precursor was put together with a 30% by mass ammonium nitrate aqueous solution as a binder while passing hot air at 90 ° C. A support was obtained. The entire amount of the obtained carrier was charged in a box-type firing furnace, and heat-treated at 480 ° C. for 6 hours while introducing air into the furnace at 1 L / min, to obtain catalyst 1. The catalyst loading was about 150% by mass, and the composition of metal elements other than oxygen excluding the carrier was as follows in terms of atomic ratio.
Mo 12 Bi 1.5 Fe 2 Co 6 Ni 1.8 K 0.05 Al 4 B 0.9
The loading rate was determined by the following formula.
Support rate [mass%] = (catalyst mass [g] −support mass [g]) / support mass [g] × 100
The L * value, a * value, b * value and saturation E value of this catalyst are shown in Table 1.
[Reactor]
A reactor composed of a SUS reaction tube having a total length of 3000 mm and an inner diameter of 25 mm and a shell for flowing a heat medium covering the SUS reaction tube was prepared in the vertical direction. The catalyst 1 was dropped from the upper part of the reaction tube and filled so that the layer length was 2700 mm.
[Oxidation reaction]
Maintaining the heat medium temperature (reaction temperature) at 320 ° C., a reaction tube filled with the catalyst was mixed with 8% by volume of propylene, 15% by volume of oxygen, 8% by volume of water vapor, 69% by volume of inert gas consisting of nitrogen, etc. Introduced at a space velocity of 2000 hr −1 (STP), a propylene catalytic gas phase oxidation reaction was carried out. The results are shown in Table 2.
<Example 2>
While heating and stirring 2000 parts of distilled water, 500 parts of ammonium molybdate was dissolved (solution A). Separately, 385 parts of cobalt nitrate was dissolved in 500 parts of distilled water (solution B). Separately, 277 parts of ferric nitrate was dissolved in 100 parts of distilled water (solution C). Separately, 115 parts of bismuth nitrate was dissolved in a solution made acidic by adding 25 parts of concentrated nitric acid (65 wt%) to 150 parts of distilled water (solution D). Liquid B, liquid C, and liquid D were added dropwise to liquid A while heating and stirring. Further, 1.84 parts of cesium nitrate, 36.1 parts of aluminum oxide and 128 parts of 20% by mass of silica sol were added to obtain a suspension. The suspension thus obtained was heated, stirred and evaporated. The obtained dried product was dried at 200 ° C. and then pulverized to 250 μm or less to obtain a catalyst precursor. 8 kg of the obtained catalyst precursor was charged into a box-type firing furnace, and heat-treated at 470 ° C. for 6 hours while introducing air into the furnace at 7.5 L / min to obtain catalyst powder. 4 kg of silica-alumina spherical carrier having an average particle size of 5.0 mm is put into a rolling granulator, and then catalyst powder is put together with 35 wt% ammonium nitrate aqueous solution as a binder while passing hot air at 90 ° C. to the carrier. Supported. The obtained carrier was dried at 230 ° C. to obtain catalyst 2. The catalyst loading was about 150% by mass, and the composition of metal elements other than oxygen excluding the carrier was as follows in terms of atomic ratio.
Mo 12 Bi 1.0 Fe 2.9 Co 5.6 Cs 0.04 Al 3 Si 1.8
The L * value, a * value, b * value and saturation E value of this catalyst are shown in Table 1.

得られた触媒2を用いて、実施例1同様にしてプロピレンの接触気相酸化反応を行った。その結果を表2に示す。
<実施例3>
蒸留水2000部を加熱攪拌しつつモリブデン酸アンモニウム500部を溶解した(A液)。別に500部の蒸留水に硝酸コバルト206部および硝酸ニッケル275部を溶解させた(B液)。また別に、100部の蒸留水に硝酸第二鉄143部を溶解させた(C液)。さらに別途、150部の蒸留水に濃硝酸(65wt%)25部を加えて酸性とした溶液に硝酸ビスマス115部を溶解させた(D液)。加熱攪拌しつつA液にB液、C液、D液を順次滴下した。さらに、硝酸カリウム2.4部、酸化アルミニウム240部および酸化タングステン71.1部を加えて懸濁液を得た。このようにして得られた懸濁液を加熱、攪拌、蒸発せしめた。得られた乾燥物を200℃で乾燥後に250μm以下に粉砕し、触媒前駆体を得た。転動造粒機に平均粒径5.0mmのシリカ−アルミナ球状担体4kgを投入し、次いで結合剤として30質量%の硝酸アンモニウム水溶液と共に触媒前駆体を90℃の熱風を通しながら投入し、12kgの担持体を得た。得られた担持体全量を箱型焼成炉に仕込み、空気を1L/minで炉内に導入しながら480℃で6時間熱処理をして触媒3を得た。この触媒の担持率は約150質量%であり、担体を除いた酸素以外の金属元素の組成は原子比で次のとおりであった。
Mo12Bi1.0Fe1.5CoNi0.10Al201.3
この触媒のL値、a値、b値および彩度Eの値を表1に示す。
Using the obtained catalyst 2, a catalytic gas phase oxidation reaction of propylene was carried out in the same manner as in Example 1. The results are shown in Table 2.
<Example 3>
While heating and stirring 2000 parts of distilled water, 500 parts of ammonium molybdate was dissolved (solution A). Separately, 206 parts of cobalt nitrate and 275 parts of nickel nitrate were dissolved in 500 parts of distilled water (Liquid B). Separately, 143 parts of ferric nitrate was dissolved in 100 parts of distilled water (solution C). Separately, 115 parts of bismuth nitrate was dissolved in a solution made acidic by adding 25 parts of concentrated nitric acid (65 wt%) to 150 parts of distilled water (solution D). Liquid B, liquid C, and liquid D were added dropwise to liquid A while heating and stirring. Further, 2.4 parts of potassium nitrate, 240 parts of aluminum oxide and 71.1 parts of tungsten oxide were added to obtain a suspension. The suspension thus obtained was heated, stirred and evaporated. The obtained dried product was dried at 200 ° C. and then pulverized to 250 μm or less to obtain a catalyst precursor. 4 kg of a silica-alumina spherical carrier having an average particle diameter of 5.0 mm was put into a rolling granulator, and then a catalyst precursor was put together with a 30% by mass ammonium nitrate aqueous solution as a binder while passing hot air at 90 ° C. A support was obtained. The entire amount of the obtained carrier was charged into a box-type firing furnace, and heat-treated at 480 ° C. for 6 hours while introducing air into the furnace at 1 L / min to obtain Catalyst 3. The catalyst loading was about 150% by mass, and the composition of metal elements other than oxygen excluding the carrier was as follows in terms of atomic ratio.
Mo 12 Bi 1.0 Fe 1.5 Co 3 Ni 4 K 0.10 Al 20 W 1.3
The L * value, a * value, b * value and saturation E value of this catalyst are shown in Table 1.

得られた触媒3を用いて、実施例1同様にしてプロピレンの接触気相酸化反応を行った
その結果を表2に示す。
<実施例4〜7、比較例1〜3>
実施例1において、焼成工程における焼成炉内へ導入する雰囲気ガスの種類および導入量を表1のように変更した以外は実施例1と同様にして触媒4〜10を得た。これら触媒のL値、a値、b値および彩度Eの値を表1に示す。
Table 2 shows the results of catalytic vapor phase oxidation reaction of propylene using the obtained catalyst 3 in the same manner as in Example 1.
<Examples 4-7, Comparative Examples 1-3>
In Example 1, catalysts 4 to 10 were obtained in the same manner as in Example 1 except that the type and amount of atmospheric gas introduced into the firing furnace in the firing step were changed as shown in Table 1. Table 1 shows the L * value, a * value, b * value and chroma E value of these catalysts.

得られた触媒4〜10を用いて、実施例1と同様にしてプロピレンの接触気相酸化反応を行った。その結果を表2に示す。   Using the obtained catalysts 4 to 10, a propylene catalytic gas phase oxidation reaction was carried out in the same manner as in Example 1. The results are shown in Table 2.

Figure 2010214217
Figure 2010214217

Figure 2010214217
Figure 2010214217

Claims (5)

プロピレンを分子状酸素または分子状酸素含有ガスの存在下で接触気相酸化してアクロレインを製造するための触媒であって、モリブデン、ビスマスおよび鉄を必須成分として含有する酸化物触媒であり、かつ、触媒成分のL表色系におけるL値、a値、b値がそれぞれ30≦L≦60、0≦a≦5、5≦b≦14の範囲であることを特徴とするアクロレイン製造用の触媒。 A catalyst for producing acrolein by catalytic vapor phase oxidation of propylene in the presence of molecular oxygen or a molecular oxygen-containing gas, an oxide catalyst containing molybdenum, bismuth and iron as essential components; and The L * value, a * value, and b * value in the L * a * b * color system of the catalyst component are in the range of 30 ≦ L * ≦ 60, 0 ≦ a * ≦ 5, and 5 ≦ b * ≦ 14, respectively. A catalyst for producing acrolein, wherein 下記式で算出される彩度Eが、7≦E≦14の範囲であることを特徴とする請求項1記載の触媒。
Figure 2010214217
The catalyst according to claim 1, wherein the saturation E calculated by the following formula is in the range of 7≤E≤14.
Figure 2010214217
前記触媒成分を不活性担体に担持させてなる請求項1または2に記載の触媒。   The catalyst according to claim 1 or 2, wherein the catalyst component is supported on an inert carrier. 前記触媒成分が下記の一般式(1)
Mo12BiFe (1)
(ここで、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルから選ばれる少なくとも1種の元素、Bはアルカリ金属、アルカリ土類金属およびタリウムから選ばれる少なくとも1種の元素、Cはタングステン、ケイ素、アルミニウム、ジルコニウムおよびチタンから選ばれる少なくとも1種の元素、Dはリン、テルル、アンチモン、スズ、セリウム、鉛、ニオブ、マンガン、砒素および亜鉛から選ばれる少なくとも1種の元素、Oは酸素であり、a、b、c、d、e、fおよびxはそれぞれBi、Fe、A、B、C、DおよびOの原子比を表し、0<a≦10、0<b≦20、2≦c≦20、0<d≦10、0≦e≦30、0≦f≦4であり、xはそれぞれの元素の酸化状態によって定まる数値である。)で表される請求項1〜3のいずれか1項に記載の触媒。
The catalyst component is represented by the following general formula (1)
Mo 12 Bi a Fe b A c B d C e D f O x (1)
(Where Mo is molybdenum, Bi is bismuth, Fe is iron, A is at least one element selected from cobalt and nickel, B is at least one element selected from alkali metals, alkaline earth metals and thallium, C is at least one element selected from tungsten, silicon, aluminum, zirconium and titanium; D is at least one element selected from phosphorus, tellurium, antimony, tin, cerium, lead, niobium, manganese, arsenic and zinc; O is oxygen, and a, b, c, d, e, f and x represent the atomic ratio of Bi, Fe, A, B, C, D and O, respectively, and 0 <a ≦ 10, 0 <b ≦ 20, 2 ≦ c ≦ 20, 0 <d ≦ 10, 0 ≦ e ≦ 30, 0 ≦ f ≦ 4, and x is a value determined by the oxidation state of each element. The catalyst according to any one of claims 1 to 3.
プロピレンの接触気相酸化によりアクロレインおよび/またはアクリル酸を製造する方法において、請求項1〜4のいずれか1項に記載の触媒の存在下にプロピレンの分子状酸素または分子状酸素含有ガスによる接触気相酸化反応を行うことを特徴とするアクロレインおよび/またはアクリル酸の製造方法。   In the method for producing acrolein and / or acrylic acid by catalytic vapor phase oxidation of propylene, the contact of propylene with molecular oxygen or a molecular oxygen-containing gas in the presence of the catalyst according to any one of claims 1 to 4. A method for producing acrolein and / or acrylic acid, comprising performing a gas phase oxidation reaction.
JP2009060398A 2009-03-13 2009-03-13 Catalyst for producing acrolein and method for producing acrolein and / or acrylic acid using the catalyst Active JP5582708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009060398A JP5582708B2 (en) 2009-03-13 2009-03-13 Catalyst for producing acrolein and method for producing acrolein and / or acrylic acid using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009060398A JP5582708B2 (en) 2009-03-13 2009-03-13 Catalyst for producing acrolein and method for producing acrolein and / or acrylic acid using the catalyst

Publications (2)

Publication Number Publication Date
JP2010214217A true JP2010214217A (en) 2010-09-30
JP5582708B2 JP5582708B2 (en) 2014-09-03

Family

ID=42973654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009060398A Active JP5582708B2 (en) 2009-03-13 2009-03-13 Catalyst for producing acrolein and method for producing acrolein and / or acrylic acid using the catalyst

Country Status (1)

Country Link
JP (1) JP5582708B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014082022A1 (en) 2012-11-26 2014-05-30 Ineos Usa Llc Pre calcination additives for mixed metal oxide ammoxidation catalysts
JP2015188800A (en) * 2014-03-27 2015-11-02 旭化成ケミカルズ株式会社 Molded catalyst and method for producing the same as well as method for producing unsaturated aldehyde
WO2018124035A1 (en) * 2016-12-26 2018-07-05 日本化薬株式会社 Catalyst for production of conjugated diolefin and method for producing same
US10857525B2 (en) 2013-05-24 2020-12-08 Lg Chem, Ltd. Catalyst for preparing acrolein and acrylic acid, and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628180B2 (en) * 1976-09-14 1981-06-30
JPH04293547A (en) * 1990-12-20 1992-10-19 Rhone Poulenc Chim Catalytic composition for manufacturing alpha, beta-unsaturated aldehyde by oxidation of olefin
JPH0538433A (en) * 1991-08-07 1993-02-19 Mitsubishi Rayon Co Ltd Preparation of catalyst for producing acrylic acid
JP2000325795A (en) * 1999-05-25 2000-11-28 Nippon Shokubai Co Ltd Composite oxide catalyst and manufacture of methacrolein and methacrylic acid
JP2003010700A (en) * 2001-06-27 2003-01-14 Sumitomo Chem Co Ltd Method for baking inorganic compound and method for manufacturing oxidizing catalyst using the same
JP2005187460A (en) * 2003-12-03 2005-07-14 Mitsubishi Chemicals Corp Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2008239336A (en) * 2007-03-28 2008-10-09 Sumitomo Chemical Co Ltd Powder collection device
JP2009213969A (en) * 2008-03-07 2009-09-24 Mitsubishi Rayon Co Ltd Catalyst for unsaturated carboxylic acid synthesis, method for manufacturing the same, and method for manufacturing unsaturated carboxylic acid using this catalyst

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628180B2 (en) * 1976-09-14 1981-06-30
JPH04293547A (en) * 1990-12-20 1992-10-19 Rhone Poulenc Chim Catalytic composition for manufacturing alpha, beta-unsaturated aldehyde by oxidation of olefin
JPH0538433A (en) * 1991-08-07 1993-02-19 Mitsubishi Rayon Co Ltd Preparation of catalyst for producing acrylic acid
JP2000325795A (en) * 1999-05-25 2000-11-28 Nippon Shokubai Co Ltd Composite oxide catalyst and manufacture of methacrolein and methacrylic acid
JP2003010700A (en) * 2001-06-27 2003-01-14 Sumitomo Chem Co Ltd Method for baking inorganic compound and method for manufacturing oxidizing catalyst using the same
JP2005187460A (en) * 2003-12-03 2005-07-14 Mitsubishi Chemicals Corp Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2008239336A (en) * 2007-03-28 2008-10-09 Sumitomo Chemical Co Ltd Powder collection device
JP2009213969A (en) * 2008-03-07 2009-09-24 Mitsubishi Rayon Co Ltd Catalyst for unsaturated carboxylic acid synthesis, method for manufacturing the same, and method for manufacturing unsaturated carboxylic acid using this catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014082022A1 (en) 2012-11-26 2014-05-30 Ineos Usa Llc Pre calcination additives for mixed metal oxide ammoxidation catalysts
EP2922633B1 (en) * 2012-11-26 2020-05-06 Ineos Europe AG Process for the preparation of mixed metal oxide ammoxidation catalysts
US10857525B2 (en) 2013-05-24 2020-12-08 Lg Chem, Ltd. Catalyst for preparing acrolein and acrylic acid, and preparation method thereof
JP2015188800A (en) * 2014-03-27 2015-11-02 旭化成ケミカルズ株式会社 Molded catalyst and method for producing the same as well as method for producing unsaturated aldehyde
WO2018124035A1 (en) * 2016-12-26 2018-07-05 日本化薬株式会社 Catalyst for production of conjugated diolefin and method for producing same
JP6392488B1 (en) * 2016-12-26 2018-09-19 日本化薬株式会社 Catalyst for producing conjugated diolefin and method for producing the same

Also Published As

Publication number Publication date
JP5582708B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5845337B2 (en) Method for producing acrylic acid using a fixed bed multitubular reactor
JP3892244B2 (en) Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
WO2016136882A1 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
KR101043400B1 (en) Catalyst system, oxidation reactor comprising the same, and process for producing acrolein and acrylic acid using the same
JP2007260588A (en) Method for producing catalyst for methacrylic acid production and method for producing methacrylic acid
JP5582708B2 (en) Catalyst for producing acrolein and method for producing acrolein and / or acrylic acid using the catalyst
WO2017010159A1 (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP5845338B2 (en) Method for producing acrolein and acrylic acid using fixed bed multitubular reactor
JP6504774B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
KR101925641B1 (en) Method of producing catalyst used in the production of methacrylic acid and method of producing methacrylic acid
JP2004002209A (en) Method for producing unsaturated aldehyde
JP5582709B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP5448331B2 (en) Acrylic acid production catalyst and method for producing acrylic acid using the catalyst
JP4970986B2 (en) Method for producing composite oxide catalyst and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JP2015120133A (en) Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst
JP6487242B2 (en) Method for producing acrylic acid production catalyst, catalyst therefor, and method for producing acrylic acid using the catalyst
JP6238354B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
US7279442B2 (en) Process for producing catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid
JP2005162744A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2004002323A (en) Method for producing unsaturated aldehyde
JP6534328B2 (en) Method of producing catalyst for producing acrylic acid, catalyst therefor, and method of producing acrylic acid using the catalyst
JP2011102247A (en) Method of producing acrolein and/or acrylic acid
JP2004244383A (en) Method for producing acrylic acid
JP2023140995A (en) Catalyst, manufacturing method of (meth)acrolein and (meth)acrylic acid therewith
JP2011102249A (en) Method of producing acrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140416

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

R150 Certificate of patent or registration of utility model

Ref document number: 5582708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150