JP2010210510A - Insulation inspection apparatus and method - Google Patents

Insulation inspection apparatus and method Download PDF

Info

Publication number
JP2010210510A
JP2010210510A JP2009058486A JP2009058486A JP2010210510A JP 2010210510 A JP2010210510 A JP 2010210510A JP 2009058486 A JP2009058486 A JP 2009058486A JP 2009058486 A JP2009058486 A JP 2009058486A JP 2010210510 A JP2010210510 A JP 2010210510A
Authority
JP
Japan
Prior art keywords
current value
insulation inspection
time
threshold
unit time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009058486A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Fukami
美行 深見
Masahiko Takahashi
正彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micronics Japan Co Ltd
Original Assignee
Micronics Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micronics Japan Co Ltd filed Critical Micronics Japan Co Ltd
Priority to JP2009058486A priority Critical patent/JP2010210510A/en
Publication of JP2010210510A publication Critical patent/JP2010210510A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize high-speed and accurate insulation inspection of a circuit board. <P>SOLUTION: An insulation inspection apparatus and an insulation inspection method for inspecting insulation of the circuit board having a plurality of wiring patterns. The insulation inspection apparatus includes a voltage source applying a voltage to the inspection object wiring patterns of the circuit board; an ammeter measuring a current value of the wiring patterns for every unit time, to which the voltage has been applied by the voltage source; and a control section identifying for every wiring pattern a measurement wait time satisfying a condition of I ≤ a threshold, based on the current value measured by the ammeter for every unit time. The insulation inspection method includes a function to process the control section. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数の配線パターンを有する回路基板の絶縁検査を行う、絶縁検査装置及び絶縁検査方法に関するものである。   The present invention relates to an insulation inspection apparatus and an insulation inspection method for performing an insulation inspection of a circuit board having a plurality of wiring patterns.

プリント配線基板等を構成する複数の電気配線(配線パターン)間の絶縁性を確認する検査方法として、絶縁抵抗検査がある。その絶縁抵抗検査において、例えば、10GΩレベルという超絶縁性を正確に測定するためには、測定針を被試験パターンに接触させた後、電荷が十分にチャージする時間を待つ測定待機時間が必要である。そして、この測定待機時間が長いため、検査時間が長くなってしまう。   As an inspection method for confirming insulation between a plurality of electric wirings (wiring patterns) constituting a printed wiring board or the like, there is an insulation resistance inspection. In the insulation resistance test, for example, in order to accurately measure the super-insulating property of 10 GΩ level, a measurement waiting time is required to wait for the charge to be sufficiently charged after the measuring needle is brought into contact with the pattern under test. is there. And since this measurement waiting time is long, inspection time will become long.

このような絶縁検査装置の例として特許文献1の絶縁検査装置がある。この絶縁検査装置による絶縁抵抗検査では、各配線パターン間に比較的高い電圧(例えば、200V)を印加することによって、配線パターン間の抵抗値を算出し、この抵抗値を基に絶縁状態の良否を判定していた。   As an example of such an insulation inspection apparatus, there is an insulation inspection apparatus of Patent Document 1. In the insulation resistance inspection by this insulation inspection device, a relatively high voltage (for example, 200V) is applied between each wiring pattern to calculate a resistance value between the wiring patterns, and the quality of the insulation state is determined based on this resistance value. Was judged.

そして、この絶縁状態の良否(十分な絶縁性が確保されているか否か)の判定を行うことによって、この回路基板が良品であるか不良品であるかが判定されていた。   Then, by determining whether the insulation state is good (whether sufficient insulation is ensured), it is determined whether the circuit board is a good product or a defective product.

特許第3953087号公報Japanese Patent No. 3953087

しかしながら、前記特許文献1の絶縁抵抗検査では、スパーク発生について改良を行っているが、前記測定待機時間についての改良はされておらず、この点の改良が望まれる。   However, in the insulation resistance test of Patent Document 1, although improvement has been made with respect to the occurrence of sparks, the measurement standby time has not been improved, and an improvement in this respect is desired.

この場合、検査時間を短縮するために単純に前記測定待機時間を短縮すると、電荷が十分にチャージしないうちに測定を行うこととなる。この結果、本来プリント基板の性能として十分な絶縁性を有しているにもかかわらず、あたかも絶縁性が悪いという測定の虚報が生じるという問題がある。   In this case, if the measurement standby time is simply shortened in order to shorten the inspection time, the measurement is performed before the charge is sufficiently charged. As a result, there is a problem that a false report of the measurement as if the insulation property is poor occurs despite the fact that the printed circuit board has a sufficient insulation property.

本発明は、これら従来技術の問題点を解決するものであり、複数の配線パターンを有する回路基板の超絶縁性を確認する検査の高速化と正確性を実現した絶縁検査装置及び絶縁検査方法を提供することを目的とする。   The present invention solves these problems of the prior art, and provides an insulation inspection apparatus and insulation inspection method that realizes high speed and accuracy of inspection for confirming super insulation of a circuit board having a plurality of wiring patterns. The purpose is to provide.

本発明は上述した課題に鑑みてなされたもので、本発明に係る絶縁検査装置は、複数の配線パターンを有する回路基板の絶縁検査を行う絶縁検査装置であって、前記回路基板の被検査配線パターンに電圧を印加する電圧源と、当該電圧源で電圧を印加された配線パターンの電流値を単位時間毎に測定する電流計と、当該電流計で単位時間毎に測定した電流値を基に、I≦閾値の条件を満たす測定待機時間を各配線パターン毎に特定する制御部とを備えたことを特徴とする。絶縁検査方法は、前記制御部の処理機能を備えたものである。   The present invention has been made in view of the above-described problems, and an insulation inspection apparatus according to the present invention is an insulation inspection apparatus that performs an insulation inspection of a circuit board having a plurality of wiring patterns, and is a wiring to be inspected of the circuit board. Based on the voltage source that applies voltage to the pattern, the ammeter that measures the current value of the wiring pattern to which the voltage is applied by the voltage source per unit time, and the current value that is measured per unit time by the ammeter And a control unit that specifies a measurement standby time that satisfies the condition of I ≦ threshold for each wiring pattern. The insulation inspection method is provided with the processing function of the control unit.

前記測定待機時間を、各配線パターン毎に特定することで短くでき、検査の高速化と正確性を実現することができる。   The measurement standby time can be shortened by specifying each wiring pattern, and inspection speed and accuracy can be realized.

本発明に係る絶縁検査装置の制御部の処理機能を示すフローチャートである。It is a flowchart which shows the processing function of the control part of the insulation test | inspection apparatus which concerns on this invention. 本発明に係る絶縁検査装置の制御システムの構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the control system of the insulation test | inspection apparatus which concerns on this invention. 電流値の変化に対して従来の測定タイミングを示すグラフである。It is a graph which shows the conventional measurement timing with respect to the change of an electric current value. 電流値の変化に対して本発明の測定タイミングを示すグラフである。It is a graph which shows the measurement timing of this invention with respect to the change of an electric current value.

以下、図面を参照して本願発明の実施形態について説明する。本実施形態に係る絶縁検査装置の全体構成は上述した特許文献1の絶縁検査装置とほぼ同様であるため、ここではその説明を省略し、制御システムを中心に説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Since the overall configuration of the insulation inspection apparatus according to the present embodiment is substantially the same as that of the above-described insulation inspection apparatus of Patent Document 1, the description thereof will be omitted here, and the description will focus on the control system.

本実施形態の絶縁検査装置の制御システム1は、図2に示すように、制御部2と、電圧源3と、電流計4と、判定部5とから構成されている。   As shown in FIG. 2, the control system 1 for the insulation inspection apparatus according to the present embodiment includes a control unit 2, a voltage source 3, an ammeter 4, and a determination unit 5.

制御部2は、電圧源3等を制御するための装置であり、後述するフローチャートに示す処理機能が格納されている。電圧源3は、回路基板の検査対象の配線パターン(被検査パターン容量6)に電圧を印加するための装置である。電流計4は、被検査パターン容量6の電流値を計測するための装置である。   The control unit 2 is a device for controlling the voltage source 3 and the like, and stores processing functions shown in a flowchart described later. The voltage source 3 is a device for applying a voltage to the wiring pattern (pattern to be inspected 6) to be inspected on the circuit board. The ammeter 4 is a device for measuring the current value of the pattern capacitance 6 to be inspected.

判定部5は、電流計4で計測した電流値に基づいて回路基板の良否を判定すると共に、後述する条件「I≦閾値」に基づいて、電流値の推移量の傾きが閾値以下になったか否かを判定する装置である。   The determination unit 5 determines the quality of the circuit board based on the current value measured by the ammeter 4, and whether the slope of the transition amount of the current value is equal to or less than the threshold value based on a condition “I ≦ threshold value” described later. It is an apparatus for determining whether or not.

次に、この制御システムを用いた絶縁検査方法について説明する。ここで、本実施形態の絶縁検査方法と、従来の絶縁検査方法とを比較しながら説明する。   Next, an insulation inspection method using this control system will be described. Here, the insulation inspection method according to the present embodiment and the conventional insulation inspection method will be described in comparison.

測定針を被検査配線パターンに接触すると、接触した瞬間に、その配線パターンの配線容量に応じた過渡電流が流れる。この過渡電流が流れる時間は、配線パターンの配線容量の大きさに比例して長くなる傾向となる。過渡電流が流れる時間は、配線パターンにもよるが、10〜100ms程度である。   When the measuring needle is brought into contact with the wiring pattern to be inspected, a transient current corresponding to the wiring capacity of the wiring pattern flows at the moment of contact. The time during which this transient current flows tends to increase in proportion to the size of the wiring capacitance of the wiring pattern. The time during which the transient current flows is about 10 to 100 ms, although it depends on the wiring pattern.

従来の絶縁検査方法では、配線パターンの配線容量に電荷が十分にチャージした後、電流値の測定等を行う。即ち、検査装置は、図3のグラフの従来の測定タイミングのように、過渡電流が収束した後である、配線パターンの配線容量に電荷が十分にチャージした後に、電流値を測定し、リーク抵抗値を計算する。   In the conventional insulation inspection method, the electric current value is measured after the electric charge is sufficiently charged in the wiring capacitance of the wiring pattern. That is, the inspection apparatus measures the current value after the electric charge is sufficiently charged in the wiring capacitance of the wiring pattern after the transient current has converged, as in the conventional measurement timing of the graph of FIG. Calculate the value.

このとき、測定待機時間は、絶縁抵抗を測定する被試験物(プリント配線基板)が持つ、最大電気容量に合わせた測定タイミングを基準にする必要がある。このため、本来、もっと短い測定待機時間で済む配線パターンに対しても、最大電気容量に合わせた測定待機時間だけ待機する必要がある。即ち、十分なチャージが早い段階で完了していても、その完了から測定待機時間経過まで待ち時間が生じる。その結果、被試験物全体を測定するのに長い検査時間を要することになる。仮に、測定待機時間を全体の平均値等に短縮すると、チャージが充分でないものも生じ、その場合は測定結果に虚報が生じる恐れがある。   At this time, the measurement standby time needs to be based on the measurement timing according to the maximum electric capacity possessed by the DUT (printed wiring board) for measuring the insulation resistance. For this reason, it is necessary to wait for the measurement standby time according to the maximum electric capacity even for a wiring pattern that essentially requires a shorter measurement standby time. That is, even if sufficient charging is completed at an early stage, there is a waiting time from the completion until the measurement waiting time elapses. As a result, it takes a long inspection time to measure the entire DUT. If the measurement standby time is shortened to the average value of the whole or the like, there are cases where the charge is not sufficient, and in that case, there is a risk of false information being generated in the measurement result.

これに対して本実施形態の絶縁検査方法では、電流値を設定した単位時間毎にサンプリングして最適な測定待機時間を特定する。測定針を配線パターンに接触して電圧を印加すると、接触して電圧を印加した瞬間に、その配線パターンの配線容量に応じた過渡電流が流れるので、電圧を印加した直後に、極めて短い周期(設定した単位時間)で電流値のサンプリングを繰り返し、微分によって電流値の推移量の傾きを検出する。このサンプリング周期(単位時間)は短くする。1周期中に、電流測定と計算を行うため、その限度内の最短の時間にして、電流値の推移量の傾きの変化をリアルタイムで正確に検出する。   On the other hand, in the insulation inspection method of this embodiment, the optimum measurement standby time is specified by sampling the current value every set unit time. When a voltage is applied while the measuring needle is in contact with the wiring pattern, a transient current corresponding to the wiring capacity of the wiring pattern flows at the moment when the voltage is applied by contact, so that a very short period ( The current value sampling is repeated for the set unit time), and the slope of the transition amount of the current value is detected by differentiation. This sampling period (unit time) is shortened. In order to perform current measurement and calculation during one cycle, the change in the slope of the transition amount of the current value is accurately detected in real time in the shortest time within the limit.

配線パターンに十分な電荷がチャージされれば、電流値の推移量が小さくなる。この電流値の推移量を、微分によってグラフの傾きに変換し、その値と閾値とを比較して、閾値以下になったか否かを判定することにより、配線パターンに十分な電荷がチャージされた否かが分かる。このため、絶縁抵抗測定時の過渡現象的な電流推移を微分して、十分な電荷がチャージされた状態を早く検出して、早く計測を完了させることで、チャージ完了時間に準じて、最短時間で測定を完了させることができるようにする。   If a sufficient charge is charged in the wiring pattern, the transition amount of the current value becomes small. The amount of transition of the current value is converted into the slope of the graph by differentiation, and the value is compared with the threshold value to determine whether or not the threshold value is not exceeded, so that the wiring pattern is charged sufficiently. I know if it's not. Therefore, by differentiating the transient current transition at the time of insulation resistance measurement, the state where sufficient charge is charged is detected early, and the measurement is completed early, so that the shortest time is achieved according to the charge completion time. To complete the measurement.

これを、図4のグラフに基づいて説明する。配線パターンに電圧が印加された直後から短い周期でサンプリングを繰り返し、電流値の推移量の傾きをリアルタイムで正確に検出する。即ち、電流値の推移を微分して推移量の傾きを求めてその傾きと閾値を比較し、その傾きが閾値以下になった時点をチャージ完了時点として検出する。このため、その時点を測定待機時間が経過した時点として電流値の測定を開始する。この測定待機時間経過時点は、各配線パターン毎に異なり、それぞれの配線パターンに応じた最適な測定待機時間を各配線パターン毎に逐次検出し、その測定待機時間を基に測定を開始する。この結果、その配線パターンに最適な測定待機時間を特定することが可能になる。   This will be described based on the graph of FIG. Sampling is repeated in a short cycle immediately after the voltage is applied to the wiring pattern, and the slope of the transition amount of the current value is accurately detected in real time. That is, the transition of the current value is differentiated to determine the slope of the transition amount, the slope is compared with the threshold value, and the time point when the slope becomes equal to or less than the threshold value is detected as the charge completion time point. For this reason, the measurement of the current value is started with that time as the time when the measurement standby time has elapsed. The measurement standby time elapses for each wiring pattern, and the optimum measurement standby time corresponding to each wiring pattern is sequentially detected for each wiring pattern, and measurement is started based on the measurement standby time. As a result, it becomes possible to specify the optimum measurement standby time for the wiring pattern.

これにより、従来のような、配線パターンの持つ電気容量に関係なしに一律とした測定待機時間とは異なり、各配線パターンの電気容量に応じた測定待機時間を選択することができ、総合的な検査時間を短縮することができる。   This makes it possible to select a measurement standby time according to the capacitance of each wiring pattern, unlike the conventional measurement standby time regardless of the capacitance of the wiring pattern. Inspection time can be shortened.

具体的には、以下の式に沿ってサンプリングを行い、測定待機時間経過時点の検出を行う。すなわち、電流値の推移量の傾き(微分値)をIとすると、
I=[(Tx電流値−Tx+1電流値)/周期]
によって電流値の推移量の傾きを検出する。xは図4においては1〜4となる。
Specifically, sampling is performed according to the following equation to detect the time when the measurement standby time has elapsed. That is, if the slope (differential value) of the transition amount of the current value is I,
I = [(Tx current value−Tx + 1 current value) / cycle]
Is used to detect the gradient of the transition amount of the current value. x is 1 to 4 in FIG.

次いで、
I≦閾値
に基づいて、電流値の推移量の傾きが閾値以下になった時点を、測定待機時間経過時点として検出する。
Then
Based on I ≦ threshold, a time point at which the slope of the transition amount of the current value becomes equal to or less than the threshold value is detected as a measurement standby time elapsed time point.

ここで、閾値は次の値に設定する。閾値としては、傾き0(水平状態)から数度傾いた状態までの範囲になる。閾値は、数度傾いた状態であることが望ましい。これは、電流値の測定開始時間が早くなるためである。図4のグラフの曲線は、絶縁基板の材料等の諸条件によって異なる。急峻な曲線の場合は、傾き角がある程度大きくても、測定開始時点で電流値が安定する場合がある。なだらかな曲線の場合は、傾き角がある程度小さくても、測定開始時点で電流値が安定していない場合がある。このため、実験的に、種々の材料を使った絶縁基板、配線パターン等の諸条件に応じて、何度の傾きのときに測定すると電流値が安定した状態で測定できるかを特定し、その傾きを閾値とする。   Here, the threshold value is set to the following value. The threshold value ranges from a tilt of 0 (horizontal state) to a state tilted several degrees. It is desirable that the threshold value be tilted several degrees. This is because the current value measurement start time is shortened. The curve in the graph of FIG. 4 varies depending on various conditions such as the material of the insulating substrate. In the case of a steep curve, the current value may stabilize at the start of measurement even if the inclination angle is large to some extent. In the case of a gentle curve, the current value may not be stable at the start of measurement even if the tilt angle is somewhat small. For this reason, experimentally, it was determined whether the current value can be measured in a stable state when measured at how many inclinations according to various conditions such as insulating substrates using various materials, wiring patterns, etc. Let the slope be a threshold.

以下、制御部2での具体的な制御について図1のフローチャートに基づいて説明する。なお、検査装置は、前記従来の検査装置と同様の装置を用い、その説明を省略する。   Hereinafter, specific control in the control unit 2 will be described based on the flowchart of FIG. The inspection apparatus uses the same apparatus as the conventional inspection apparatus, and a description thereof is omitted.

まず、設置された被検査対象の回路基板の上にプローブを移動させる(ステップS1)。次いで、回路基板の配線パターンにプローブを接触させ(ステップS2)、接触したか否かの確認を行う(ステップS3)。接触していなければ、接触動作(ステップS2)を繰り返して、プローブを配線パターンに接触さる。   First, the probe is moved onto the installed circuit board to be inspected (step S1). Next, the probe is brought into contact with the circuit board wiring pattern (step S2), and it is confirmed whether or not the probe is in contact (step S3). If not, the contact operation (step S2) is repeated to bring the probe into contact with the wiring pattern.

プローブが配線パターンに接触したら、電圧を印加し(ステップS4)、次いで電流値を測定する(ステップS5)。   When the probe contacts the wiring pattern, a voltage is applied (step S4), and then the current value is measured (step S5).

次いで、上述した「I≦閾値」の条件を満たすか否かを判定し(ステップS6)、満たさなければ上記式のxに1を加算して次のサンプリング期間に移って(ステップS7)、再び電流値を測定する(ステップS5)。次いで、再び「I≦閾値」の条件を満たすか否かを判定し(ステップS6)、「I≦閾値」の条件を満たすまで、ステップ5〜7を繰り返す。   Next, it is determined whether or not the above-mentioned condition of “I ≦ threshold” is satisfied (step S6). If not satisfied, 1 is added to x in the above formula and the next sampling period is started (step S7), and again. The current value is measured (step S5). Next, it is determined again whether or not the condition “I ≦ threshold” is satisfied (step S6), and steps 5 to 7 are repeated until the condition “I ≦ threshold” is satisfied.

このステップ5〜7を繰り返す回数は、各配線パターンによって異なる。配線パターンの電気容量が小さければ、ステップ5〜7を繰り返す回数は少なくなる。配線パターンの電気容量が大きければ、ステップ5〜7を繰り返す回数は多くなる。これにより、各配線パターン毎に最適な測定待機時間を特定する。   The number of times to repeat Steps 5 to 7 varies depending on each wiring pattern. If the electric capacity of the wiring pattern is small, the number of times of repeating steps 5 to 7 is reduced. If the electric capacity of the wiring pattern is large, the number of times of repeating steps 5 to 7 increases. Thereby, the optimum measurement standby time is specified for each wiring pattern.

次いで、最適な測定待機時間の経過後、絶縁抵抗を測定して(ステップS8)、測定結果を記録する(ステップS9)。   Next, after the optimum measurement standby time has elapsed, the insulation resistance is measured (step S8), and the measurement result is recorded (step S9).

この処理を全ての配線パターンに施して、全体として回路基板の良否を判定する。   This process is performed on all the wiring patterns to determine whether the circuit board is good or bad as a whole.

これにより、各配線パターン毎に最適な測定待機時間を特定して、全ての配線パターンで待ち時間が生じないようにしているため、迅速に測定をすることができ、絶縁検査の高速化を図ることができる。即ち、時系列的な電流値推移を微分して、その値から最適な測定タイミングを求めることで、検査時間を短縮して、絶縁検査の高速化を図ることができ、複数の配線パターンを有する基板の検査を、より短時間で効率的に行うことができる。   As a result, the optimum measurement standby time is specified for each wiring pattern so that no waiting time is generated in all the wiring patterns, so that the measurement can be performed quickly and the insulation test can be speeded up. be able to. That is, the time-series current value transition is differentiated, and the optimum measurement timing is obtained from the value, thereby reducing the inspection time and speeding up the insulation inspection, and having a plurality of wiring patterns. The substrate can be inspected efficiently in a shorter time.

また、各配線パターン毎に最適な測定待機時間を特定しているため、十分にチャージする前に電流値を測定することがなくなり、絶縁検査の正確性を実現することができる。   In addition, since the optimum measurement standby time is specified for each wiring pattern, the current value is not measured before it is fully charged, and the accuracy of the insulation inspection can be realized.

本発明は、互いに導通されていない回路配線間の絶縁性を検査する装置全てに適用することができる。即ち、上述した特許文献1の絶縁検査装置に限らず、絶縁検査を行うための装置全般に本発明を適用することができる。   The present invention can be applied to all apparatuses for inspecting insulation between circuit wirings that are not electrically connected to each other. That is, the present invention can be applied not only to the above-described insulation inspection apparatus disclosed in Patent Document 1 but also to all apparatuses for performing an insulation inspection.

なお、前記実施形態では、電流値の推移量の傾きを用いて最適な測定待機時間を特定したが、Tx電流値とTx+1電流値の差分の値を用いても良い。この場合、差分の値が設定値以下になった時点を、各配線パターンに最適な測定待機時間として処理する。   In the embodiment, the optimum measurement standby time is specified using the slope of the transition amount of the current value. However, a difference value between the Tx current value and the Tx + 1 current value may be used. In this case, the time when the difference value becomes equal to or less than the set value is processed as the optimum measurement standby time for each wiring pattern.

1:制御システム、2:制御部、3:電圧源、4:電流計、5:判定部、6:被検査パターン容量。   1: control system, 2: control unit, 3: voltage source, 4: ammeter, 5: determination unit, 6: pattern capacity to be inspected.

Claims (6)

複数の配線パターンを有する回路基板の絶縁検査を行う絶縁検査装置であって、
前記回路基板の被検査配線パターンに電圧を印加する電圧源と、
当該電圧源で電圧を印加された配線パターンの電流値を単位時間毎に測定する電流計と、
当該電流計で単位時間毎に測定した電流値を基に、I≦閾値の条件を満たす測定待機時間を各配線パターン毎に特定する制御部とを備えたことを特徴とする絶縁検査装置。
An insulation inspection apparatus for performing an insulation inspection of a circuit board having a plurality of wiring patterns,
A voltage source for applying a voltage to the wiring pattern to be inspected on the circuit board;
An ammeter that measures the current value of the wiring pattern to which a voltage is applied by the voltage source every unit time; and
An insulation inspection apparatus comprising: a control unit that specifies, for each wiring pattern, a measurement standby time that satisfies a condition of I ≦ threshold based on a current value measured per unit time by the ammeter.
請求項1に記載の絶縁検査装置において、
前記制御部が、前記電流計で単位時間毎に測定する電流値の1つに対してI≦閾値の条件を満たさなければ、次の単位時間の電流値に対して前記I≦閾値の条件を満たすか否か判定して、前記I≦閾値の条件を満たした時点を測定待機時間経過時点とすることを特徴とする絶縁検査装置。
The insulation inspection apparatus according to claim 1,
If the control unit does not satisfy the condition of I ≦ threshold for one of the current values measured per unit time by the ammeter, the condition of I ≦ threshold is satisfied for the current value of the next unit time. An insulation inspection apparatus characterized in that it is determined whether or not it is satisfied, and a time when the condition of I ≦ threshold is satisfied is set as a measurement standby time elapsed time.
請求項1または2に記載の絶縁検査装置において、
前記I≦閾値の条件のIが
I=[(Tx電流値−Tx+1電流値)/周期]
Tx電流値:X単位時間の電流値
Tx+1電流値:X+1単位時間の電流値
であることを特徴とする絶縁検査装置。
In the insulation inspection apparatus according to claim 1 or 2,
The above I ≦ threshold condition is I = [(Tx current value−Tx + 1 current value) / cycle]
Tx current value: current value in X unit time Tx + 1 current value: current value in X + 1 unit time
複数の配線パターンを有する回路基板の絶縁検査を行う絶縁検査方法であって、
電圧源で、前記回路基板の被検査配線パターンに電圧を印加する工程と、
電流計で、前記電圧を印加された配線パターンの電流値を単位時間毎に測定する工程と、
制御部で、前記単位時間毎に測定された電流値を基に、I≦閾値の条件を満たす測定待機時間を各配線パターン毎に特定する工程とを備えたことを特徴とする絶縁検査方法。
An insulation inspection method for performing an insulation inspection of a circuit board having a plurality of wiring patterns,
Applying a voltage to the circuit pattern to be inspected on the circuit board with a voltage source;
With an ammeter, measuring the current value of the wiring pattern to which the voltage is applied every unit time; and
And a step of specifying, for each wiring pattern, a measurement standby time satisfying a condition of I ≦ threshold based on a current value measured every unit time in the control unit.
請求項4に記載の絶縁検査方法において、
前記電流計で単位時間毎に測定する電流値の1つに対してI≦閾値の条件を満たさなければ、次の単位時間の電流値に対して前記I≦閾値の条件を満たすか否か判定して、前記I≦閾値の条件を満たした時点を測定待機時間経過時点とすることを特徴とする絶縁検査方法。
In the insulation inspection method according to claim 4,
If one of the current values measured per unit time by the ammeter does not satisfy the condition of I ≦ threshold, it is determined whether or not the condition of I ≦ threshold is satisfied for the current value of the next unit time. Then, the time point when the condition of I ≦ threshold value is satisfied is set as the measurement standby time point.
請求項4または5に記載の絶縁検査方法において、
前記I≦閾値の条件のIが
I=[(Tx電流値−Tx+1電流値)/周期]
Tx電流値:X単位時間の電流値
Tx+1電流値:X+1単位時間の電流値
であることを特徴とする絶縁検査方法。
In the insulation inspection method according to claim 4 or 5,
The above I ≦ threshold condition is I = [(Tx current value−Tx + 1 current value) / cycle]
Tx current value: current value in X unit time Tx + 1 current value: current value in X + 1 unit time
JP2009058486A 2009-03-11 2009-03-11 Insulation inspection apparatus and method Pending JP2010210510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009058486A JP2010210510A (en) 2009-03-11 2009-03-11 Insulation inspection apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009058486A JP2010210510A (en) 2009-03-11 2009-03-11 Insulation inspection apparatus and method

Publications (1)

Publication Number Publication Date
JP2010210510A true JP2010210510A (en) 2010-09-24

Family

ID=42970833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009058486A Pending JP2010210510A (en) 2009-03-11 2009-03-11 Insulation inspection apparatus and method

Country Status (1)

Country Link
JP (1) JP2010210510A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117423A (en) * 2011-12-02 2013-06-13 Hioki Ee Corp Apparatus and method for inspecting circuit boards
JP2014154293A (en) * 2013-02-06 2014-08-25 Toyota Motor Corp Insulation resistance inspection method of battery pack
US20150084643A1 (en) * 2012-05-08 2015-03-26 Nidec-Read Corporation Insulation inspection method and insulation inspection apparatus
JP2016003988A (en) * 2014-06-18 2016-01-12 日置電機株式会社 Inspection equipment
US10641817B2 (en) 2017-11-28 2020-05-05 Fanuc Corporation Motor driving device and measuring method
JP7368801B2 (en) 2019-06-26 2023-10-25 国立大学法人千葉大学 measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105470A (en) * 1984-10-29 1986-05-23 Fujitsu Ltd Control system for decision making of insulation resistance
JP2007315981A (en) * 2006-05-29 2007-12-06 Hioki Ee Corp Measuring device and inspection device
JP2007333465A (en) * 2006-06-13 2007-12-27 Hioki Ee Corp Inspection apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105470A (en) * 1984-10-29 1986-05-23 Fujitsu Ltd Control system for decision making of insulation resistance
JP2007315981A (en) * 2006-05-29 2007-12-06 Hioki Ee Corp Measuring device and inspection device
JP2007333465A (en) * 2006-06-13 2007-12-27 Hioki Ee Corp Inspection apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117423A (en) * 2011-12-02 2013-06-13 Hioki Ee Corp Apparatus and method for inspecting circuit boards
US20150084643A1 (en) * 2012-05-08 2015-03-26 Nidec-Read Corporation Insulation inspection method and insulation inspection apparatus
US9606162B2 (en) * 2012-05-08 2017-03-28 Nidec-Read Corporation Insulation inspection method and insulation inspection apparatus
JP2014154293A (en) * 2013-02-06 2014-08-25 Toyota Motor Corp Insulation resistance inspection method of battery pack
JP2016003988A (en) * 2014-06-18 2016-01-12 日置電機株式会社 Inspection equipment
US10641817B2 (en) 2017-11-28 2020-05-05 Fanuc Corporation Motor driving device and measuring method
JP7368801B2 (en) 2019-06-26 2023-10-25 国立大学法人千葉大学 measuring device

Similar Documents

Publication Publication Date Title
JP2010210510A (en) Insulation inspection apparatus and method
JP5391869B2 (en) Board inspection method
JP2007333465A (en) Inspection apparatus
JP2009168643A (en) Insulation inspection method and insulation inspection device
JP2008203077A (en) Circuit inspection device and method
JP5215148B2 (en) Insulation inspection device and insulation inspection method
JP5507363B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP2009258099A (en) Method for inspecting insulation property of capacitor
JP4259692B2 (en) Circuit board inspection equipment
JP2010204021A (en) Apparatus and method for inspecting circuit board
CN103576058A (en) Insulation detection device and insulation detection method of PCB
JP2011185625A (en) Inspection device
JPH09203765A (en) Substrate inspecting device which includes visual inspection
JP2014219335A (en) Inspection apparatus and inspection method
JP6008493B2 (en) Substrate inspection apparatus and substrate inspection method
KR101961536B1 (en) Substrate inspection apparatus and substrate inspection method
JP4255775B2 (en) Circuit board inspection equipment
JP5420303B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP2017101947A (en) Substrate inspection device and substrate inspection method
JP6943648B2 (en) Board inspection equipment and board inspection method
JP5485099B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP4999143B2 (en) Board inspection equipment
JP5485100B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP2005055210A (en) Method and device for inspecting circuit board
KR20200135982A (en) Self-test device using actual Gaussian magnetic measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130820