JPS61105470A - Control system for decision making of insulation resistance - Google Patents

Control system for decision making of insulation resistance

Info

Publication number
JPS61105470A
JPS61105470A JP22752884A JP22752884A JPS61105470A JP S61105470 A JPS61105470 A JP S61105470A JP 22752884 A JP22752884 A JP 22752884A JP 22752884 A JP22752884 A JP 22752884A JP S61105470 A JPS61105470 A JP S61105470A
Authority
JP
Japan
Prior art keywords
output
voltage
current
insulation resistance
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22752884A
Other languages
Japanese (ja)
Other versions
JPH0446385B2 (en
Inventor
Taiichi Miho
美保 泰一
Koichi Shimada
耕一 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Toa Electronics Ltd
Original Assignee
Fujitsu Ltd
Toa Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Toa Electronics Ltd filed Critical Fujitsu Ltd
Priority to JP22752884A priority Critical patent/JPS61105470A/en
Publication of JPS61105470A publication Critical patent/JPS61105470A/en
Publication of JPH0446385B2 publication Critical patent/JPH0446385B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the influence of the absorbed current of a connection cable and a changing current and the leak current of a stray capacitance by providing measurement terminals, resistances, amplifiers, an adder, resistance decision output signal line, etc., and detecting the absorbed current, charging current, and leak current. CONSTITUTION:The amplifiers 1 and 2, current detection resistances 3 and 4, adder 6, measurement terminals 16 and 17, and resistance decision output signal line 24, etc., are provided. Then, the output of the amplifier 1 and the output of the amplifier 2 are opposite in phase as to a current flowing through a printed board, and the output part of the adder 6 generates no output as to the current flowing through the printed board. Further, a signal corresponding to the unbalance between currents at a voltage application side and an earth side appear at the output. A comparator 22, on the other hand, outputs logic 0 when the insulation resistance 18 is larger than a specific value and logic 1 when not. An inhibition gate 23 is opened when the output 14 of an OR gate 13 is 0 to send the output of the comparator 22 to the resistance decision output line 24. Thus, an accurate measurement is taken.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁抵抗判定制御方式に関し、特に、例えばプ
リント基板上の離隔された導体間の絶縁抵抗を測定する
試験装置における絶縁抵抗判定制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an insulation resistance determination control method, and particularly to an insulation resistance determination control method in a test device that measures the insulation resistance between spaced conductors on a printed circuit board, for example. Regarding.

〔従来の技術〕[Conventional technology]

例えば、プリント基板の導体対導体間の絶縁を電圧電流
計法により測定するにあたっては、次の点に留意する必
要がある。
For example, when measuring the insulation between conductors of a printed circuit board using the voltammeter method, the following points need to be kept in mind.

(al  試験器のセンサ(測定部)とプリント板との
間には必然的にスキャナ、装着治具等が介在し、それら
は漏れ電流と浮遊容量を持つ。
(al) A scanner, mounting jig, etc. are inevitably interposed between the sensor (measuring unit) of the tester and the printed board, and these have leakage current and stray capacitance.

(bl  それらに流れる電流と本来のプリント板の漏
れ電流とを区別することが必要である。
(bl) It is necessary to distinguish between the current flowing through them and the leakage current of the original printed circuit board.

これらの点を解決するために、一般には、測定ラインに
印加される電圧の変化勾配を検出して、その勾配がなく
なったことを充電完了と判断して、それ以後の判定結果
を有効としている。勾配検出には微分回路を使用してい
る。
To solve these problems, generally, the gradient of change in the voltage applied to the measurement line is detected, and when the gradient disappears, charging is determined to be complete, and subsequent determination results are valid. . A differential circuit is used to detect the slope.

〔発明が解決しようとする問題点〕 電圧の勾配を検出する場合、電圧を微分してその勾配を
得るが、純粋なCR回路の場合には充放電特性は電圧と
電流の間に密接な関係があって、V  =E・(1−e
xp  (−t/cg  )  )の関係が成り立ち、
電圧の変化が一定値を下まわると電流値も同様に下まわ
り、目的を達成することができる。
[Problems to be solved by the invention] When detecting the gradient of voltage, the gradient is obtained by differentiating the voltage, but in the case of a pure CR circuit, the charge/discharge characteristics are closely related between voltage and current. , and V = E・(1-e
The relationship xp (-t/cg)) holds true,
When the change in voltage falls below a certain value, the current value also falls below, and the purpose can be achieved.

しかし、実際のシステムの場合、ケーブル等の容量に流
れる電流としては電圧が安定した後も流れ続ける吸収電
流あるいは漏れ電流が存在する。
However, in the case of an actual system, there is an absorption current or leakage current that continues to flow even after the voltage has stabilized as a current flowing through the capacitance of a cable or the like.

この場合電圧の勾配がないことと電流が流れないことと
は対応しない。
In this case, the absence of a voltage gradient does not correspond to the absence of current flow.

この結果正確な測定ができない。この対応関係を第5図
に示す。
As a result, accurate measurements cannot be made. This correspondence relationship is shown in FIG.

第5図(L)は、印加電圧の変化状態を示す図であり、
第5図(2)は充電電流の変化状態を示す図である。
FIG. 5(L) is a diagram showing changes in applied voltage;
FIG. 5(2) is a diagram showing changes in charging current.

第5図(2)において、■は本来の充電電流を示し、■
は本来の充電電流に吸収電流が加えられたもの碌 を示している。
In Figure 5 (2), ■ indicates the original charging current, and ■
indicates the value obtained by adding the absorbed current to the original charging current.

そのため、従来方式の問題点を解決し、正確な測定を可
能にすることが望まれている。
Therefore, it is desired to solve the problems of the conventional method and enable accurate measurement.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために本発明は、被試験物の絶縁
抵抗測定用端子に接続される第1およさ第2の測定端子
と、上記第1および第2の測定端子を介して被試験物に
絶縁抵抗測定用電圧を印加する測定用電源と、上記第1
の測定端子に一端が接続され他端が上記測定用電源に接
続される第1の抵抗と、上記第2の測定端子に一端が接
続され他端が上記測定用電源に接続される第2の抵抗と
、上記第1の抵抗の両端に接続され当該抵抗め両端の電
圧を検出する第1の増幅器と、上記第2の抵抗の両端に
接続され当該抵抗の両端の電圧を、上記第1の増幅器へ
の入力電圧とは逆方向の向きにて検出する第2の増幅器
と、上記第1の増幅器の出力と上記第2の増幅器の出力
とを加算する電圧加算回路と、上記電圧加算回路の出力
電圧の勾配を検出し当該勾配が一定値以下であることを
判定する電圧勾配判定手段と、上記電圧加算回路の出力
電圧の絶対値を検出し当該絶対値が一定値以下であるこ
とを判定する電圧絶対値判定手段と、上記電圧勾配判定
手段の出力と上記電圧絶対値判定手段の出力にもとづき
絶縁抵抗測定の可否を指示する絶縁抵抗判定制御信号を
作成する絶縁抵抗判定制御信号作成手段とを少な(とも
そなえて絶縁抵抗の判定制御を行なうことを特徴とする
ものである。
In order to solve the above problems, the present invention provides first and second measurement terminals that are connected to insulation resistance measurement terminals of a test object, and a measuring power source that applies a voltage for measuring insulation resistance to an object;
a first resistor having one end connected to the measurement terminal and the other end connected to the measurement power supply; and a second resistor having one end connected to the second measurement terminal and the other end connected to the measurement power supply. a resistor; a first amplifier connected to both ends of the first resistor to detect the voltage across the resistor; and a first amplifier connected to both ends of the second resistor to detect the voltage across the resistor. a second amplifier that detects the voltage in the opposite direction to the input voltage to the amplifier; a voltage adding circuit that adds the output of the first amplifier and the output of the second amplifier; and the voltage adding circuit of the voltage adding circuit. Voltage gradient determination means for detecting the slope of the output voltage and determining that the slope is below a certain value; and detecting the absolute value of the output voltage of the voltage adding circuit and determining that the absolute value is below the certain value. and insulation resistance determination control signal generating means for generating an insulation resistance determination control signal for instructing whether insulation resistance can be measured based on the output of the voltage gradient determining means and the output of the voltage absolute value determining means. It is characterized by having a small amount of insulation resistance and controlling the determination of insulation resistance.

〔作 用〕[For production]

本発明は、 (イ)接続ケーブルに流れる電流成分が所定値以下にな
ったことを検出する回路構成、 (Ll)接続ケーブルに流れる電流成分の変化(勾配)
が所定値以下になったことを検出する回路構成、 (ハ)接続ケーブルに流れる電流成分が所定値以下とな
り、かつ電流成分の変化(勾配)が所定値以下となった
とき充電完了と判断する回路構成、をそなえ、正確に絶
縁抵抗を測定できるタイミングを与えるものである。
The present invention provides: (a) a circuit configuration that detects when the current component flowing through the connection cable becomes less than a predetermined value; (Ll) a change (gradient) in the current component flowing through the connection cable;
A circuit configuration that detects when the current component that flows through the connecting cable becomes less than a predetermined value, and when the change (gradient) of the current component becomes less than a predetermined value, it is determined that charging is complete. It has a circuit configuration and provides timing that allows accurate measurement of insulation resistance.

〔実施例〕〔Example〕

第1図は本発明による1実施例の回路構成図であり、図
中1と2は増幅器、3と4は電流検出用抵抗、5は測定
用電源、6は加算器、7は減算器、8は微分回路、9と
10は絶対値増幅回路、11と12は比較器、13はオ
アゲート、14は禁止出力信号(線)、15は測定出力
信号(線)、16と17は測定端子、18は被測定抵抗
(絶縁抵抗)、19と20はケーブル容量、21は被測
定抵抗浮遊容量、22は比較器、23は禁止ゲート、2
4は抵抗測定出力信号(線)である。
FIG. 1 is a circuit configuration diagram of one embodiment according to the present invention, in which 1 and 2 are amplifiers, 3 and 4 are current detection resistors, 5 is a measurement power supply, 6 is an adder, 7 is a subtracter, 8 is a differentiation circuit, 9 and 10 are absolute value amplification circuits, 11 and 12 are comparators, 13 is an OR gate, 14 is a prohibition output signal (line), 15 is a measurement output signal (line), 16 and 17 are measurement terminals, 18 is the resistance to be measured (insulation resistance), 19 and 20 are the cable capacitances, 21 is the stray capacitance of the resistance to be measured, 22 is the comparator, 23 is the inhibition gate, 2
4 is a resistance measurement output signal (line).

図中、測定端子16.17を通る破線より左側ル容量C
L、21はプリント板の容量である。抵抗3と増幅器1
で電圧印加側の電流電圧変換増幅器を構成し、利得はG
である。
In the figure, the left side of the broken line passing through measurement terminals 16 and 17 has a capacitance C.
L, 21 is the capacity of the printed board. Resistor 3 and amplifier 1
constitutes a current-voltage conversion amplifier on the voltage application side, and the gain is G
It is.

抵抗4と増幅器2は、接地側の電流電圧変換増幅器を構
成し、利得はGである。抵抗3と4に流れる電流は、そ
れぞれ逆極性とされている。
The resistor 4 and the amplifier 2 constitute a ground-side current-voltage conversion amplifier, and the gain is G. The currents flowing through the resistors 3 and 4 have opposite polarities.

したがって、仮に、ケーブル容量19と20が存在しな
いならば、電圧印加源である測定用電源5の出力電流は
、抵抗3、被測定抵抗18、抵抗4の経路を通り、抵抗
3に流れる電流と抵抗4に流れる電流は同一である。さ
らに、増幅器1の出力と増数器2の出力は、プリント板
に流れる電流に関しては逆位相であり、加算器6の出力
部においては、プリント板に流れる電流に関しては出力
流の不平衡分だけが表われる。
Therefore, if the cable capacitances 19 and 20 do not exist, the output current of the measurement power supply 5, which is the voltage application source, will pass through the path of the resistor 3, the resistor to be measured 18, and the resistor 4, and the current will flow through the resistor 3. The current flowing through resistor 4 is the same. Furthermore, the output of amplifier 1 and the output of multiplier 2 are in opposite phase with respect to the current flowing to the printed board, and at the output section of adder 6, the current flowing to the printed board is equal to the unbalanced output current. appears.

逆に、減算器7の出力には、プリント板に流れる電流が
加え合わされて2倍の電流出力が得られる。
Conversely, the current flowing through the printed circuit board is added to the output of the subtractor 7 to obtain twice the current output.

符号8〜14の部分は不平衡分(ケーブル容量、漏れ)
を検出するための回路であって、微分回路8はCR時定
数によるもの、絶対値増幅回路9゜10は正、負いずれ
の入力に対してもその入力に比例した正の出力電圧を作
成するもの、比較器11.12は、アナログ電圧を一定
の値で比較してロジック信号に変換する判定機能を有す
る回路であって、入力電圧がある値を越すと(この場合
、比較器12は漏れ、充電電流のリミット値、比較器1
2は充電電流の変化のリミット値)正の論理出力を作成
するもの、オアゲート13は論理和回路である。
Parts numbered 8 to 14 are unbalanced portions (cable capacity, leakage)
The differential circuit 8 uses a CR time constant, and the absolute value amplification circuit 9-10 creates a positive output voltage proportional to the input, whether positive or negative. The comparators 11 and 12 are circuits that have a judgment function that compares analog voltages with a certain value and converts them into logic signals.If the input voltage exceeds a certain value (in this case, the comparator 12 , charging current limit value, comparator 1
2 is a limit value for the change in charging current) that creates a positive logic output, and the OR gate 13 is an OR circuit.

このように、絶対値増幅回路10、比較器12は、接続
ケーブルに流れる電流成分を、微分回路8、絶対値増幅
回路9、比較器11は接続ケーブルに流れる電流成分の
変化を検出する。
In this way, the absolute value amplifying circuit 10 and the comparator 12 detect the current component flowing through the connecting cable, and the differentiating circuit 8, the absolute value amplifying circuit 9, and the comparator 11 detect changes in the current component flowing through the connecting cable.

また、絶縁抵抗18を流れる電流に比例した電圧である
減算器7の出力は、比較器22により、あらかじめ設定
された所定値と、その大小が判定される。そして、比較
器22は、例えば、絶縁抵抗18が所定値以上大きいと
き論理“0”を、所定値以下のとき論理“1”を出力す
るように構成されている。次に、禁止ゲート23は、オ
アゲー ′ト13の出力14が“0”となったとき(す
なわち、漏れ、充電電流が所定値以下となり、かつ充電
電流の変化成分も所定値以下となったとき)、開状態と
され、比較器22の出力を抵抗判定出力信号線24上に
送出する。
Further, the output of the subtracter 7, which is a voltage proportional to the current flowing through the insulation resistor 18, is determined by the comparator 22 as to whether it is a predetermined value set in advance or not. The comparator 22 is configured to output logic "0" when the insulation resistance 18 is greater than a predetermined value, and output logic "1" when it is less than a predetermined value, for example. Next, the inhibition gate 23 is activated when the output 14 of the OR gate 13 becomes "0" (that is, when there is a leakage, the charging current is below a predetermined value, and the change component of the charging current is also below a predetermined value). ) is set in the open state and sends the output of the comparator 22 onto the resistance determination output signal line 24.

図示しない制御部では、オアゲート13の出力(信号線
14)が“O”のとき、禁止ゲート23の出力(抵抗判
定出力信号線24)の状態を監視し、“0”状態であれ
ば、絶縁抵抗は十分大であり絶縁良好と判定し、逆に“
1”状態であれば絶縁不良と判定する。
A control section (not shown) monitors the state of the output of the inhibit gate 23 (resistance judgment output signal line 24) when the output of the OR gate 13 (signal line 14) is "O", and if it is in the "0" state, the insulation The resistance was large enough and the insulation was judged to be good, and conversely, “
1”, it is determined that the insulation is defective.

さらに、絶縁抵抗18の値、そのものは、オアゲート1
3の出力(信号線14)が“0”のときにおける減算器
7の出力(測定出力信号線15)の電圧値を求め、これ
に所定の係数を乗することによって求めることができる
Furthermore, the value of the insulation resistance 18 is the same as that of the OR gate 1.
It can be determined by determining the voltage value of the output of the subtracter 7 (measurement output signal line 15) when the output of the subtractor 7 (signal line 14) is "0" and multiplying it by a predetermined coefficient.

この所定の係数は、増幅31.2の利得、抵抗3.4の
抵抗値等によって定められるものである。
This predetermined coefficient is determined by the gain of the amplifier 31.2, the resistance value of the resistor 3.4, etc.

次に、各部の動作をより明確にするために等価いる。Next, we will explain the equivalents to make the operation of each part clearer.

各素子のインビダンスをSを用いて表現すると、Zr2
−zト4−>   = (1)+ (2)=   (R
+  r  )(1+5−CL −r) ・ (l+S
−Cス ・RA )□(3) 2194ト4・λo・+q=(R+r)(1+Sr5 
 )  ・ (1+5rae  )□(4) ZIs−’2J・う4−1’?−21F  (R+  
2  r  )(1+Sτ7 )・ (1+Sτ? )
(1+SτS )・ (1+Sr&、)□(5) ただし、 τ1=CL+・r τz=Cに ・RX r4 =Cp−(RX +r) τラ +τb =τ1 +τ21−τ牛τ5 Φ τら
 =τL’  τλ +τ3 ・ τ4+ □ ・ (
T5+Tら ) R+2r 抵抗3に流れる電流lうは印加電圧が振巾Eのステップ
電圧であるから、               lS
・ (1+S・τ7)・ (1+S・1g)□(6) 抵抗4に流れる電流■4は、以下の手順で求められる。
When the impedance of each element is expressed using S, Zr2
-zt4-> = (1)+ (2)= (R
+ r )(1+5-CL -r) ・(l+S
-Csu・RA)□(3) 2194t4・λo・+q=(R+r)(1+Sr5
) ・ (1+5rae)□(4) ZIs-'2J・U4-1'? -21F (R+
2 r )(1+Sτ7 )・(1+Sτ? )
(1+SτS)・(1+Sr&,)□(5) However, τ1=CL+・r τz=C ・RX r4 =Cp−(RX +r) τra +τb =τ1 +τ21−τushiτ5 Φ τet al. =τL' τλ +τ3 ・τ4+ □ ・ (
T5+T et al.) R+2r The current flowing through the resistor 3 is the applied voltage, which is a step voltage with amplitude E, so it is
・(1+S・τ7)・(1+S・1g)□(6) The current ■4 flowing through the resistor 4 can be found by the following procedure.

Rz+’lr S  ・ (1+Srワ )  ・ (1+Sr8  
)□(7) ■19・λ1 = ■4・20”119・ニド4−・2
りS (1+Sr7 )  ・(1+Sτg )□(8
) 13 と■Φはそれぞれ3.4の抵抗rによって電圧に
変換されて増巾される。項中利得をGとして、 (1+Sτり)(1+Sτb) S(1+SτI?)(1+Sτ9) □(9) S・ (1+Sτ7)・ (1+Sで9)差の成分は、
V3 −V4で信号分が加算され、和の成分は、V3+
V4で充電電流が打消される。
Rz+'lr S ・ (1+Srwa) ・ (1+Sr8
)□(7) ■19・λ1 = ■4・20”119・nido4−・2
riS (1+Sr7) ・(1+Sτg)□(8
) 13 and ■Φ are each converted into voltage and amplified by a resistor r of 3.4. When the gain in the term is G, (1+Sτri) (1+Sτb) S (1+SτI?) (1+Sτ9) □ (9) S・ (1+Sτ7)・ (1+S = 9) The difference component is
Signals are added at V3 - V4, and the sum component is V3+
The charging current is canceled at V4.

S・ (1+Sで7)・ (1+SτB)−□ (11
) (1+−3τ7)・ (1+Sτ9) ただし、 τ9 ・τW= τs Iτ&/2 τ? +τto”<τλ +τζ +τら )/2K 
−τS+τムーτ2 τ11 ”  τタ °τb /(τ5 +でムーτ2) V3 +V4を時間に変換すると、 (13)式から導かれる通り、この中にはRxに流れる
定常電流成分は入ってこない。
S・ (1+S = 7)・ (1+SτB)−□ (11
) (1+-3τ7)・(1+Sτ9) However, τ9 ・τW= τs Iτ&/2 τ? +τto”<τλ +τζ +τ et al.)/2K
-τS + τmu τ2 τ11 ” τta °τb / (τ5 + mu τ2) When converting V3 +V4 into time, as derived from equation (13), the steady current component flowing through Rx does not enter into this.

また時定数τ9とて、、とτ7の関係によっては電圧印
加時の1=0からt=ωまで間に(13)式%式% た同−測定内に正の値から負の値、あるいは負の値から
正の値にと変化できる。
Also, depending on the relationship between time constant τ9, and τ7, between 1=0 and t=ω when voltage is applied, equation (13) (%) may change from a positive value to a negative value, or It can change from a negative value to a positive value.

プリント板等の絶縁試験器においては判定を良しとする
ためには充電電流が流れないことも当然ながら、負の電
流(見かけ上)が流れてもだめであり同一の条件で将来
にわたって充電電流が流れないことが必要である。
In an insulation tester for printed circuit boards, etc., it is natural that no charging current should flow in order to give a good judgment, but it is no good even if a negative current (apparently) flows; It is necessary that it does not flow.

従って(13)式の和の成分はこのままでは判定禁止信
号として使用することは不可であり、まず正の電圧の場
合でも負の電圧の場合でも正の信号とするために絶対値
回路を使用する。これは単純には両波整流回路でよく、
実際には帰還増中器に検波ダイオードを挿入することで
構成される。
Therefore, the sum component of equation (13) cannot be used as a judgment prohibition signal as it is, and first, an absolute value circuit is used to make it a positive signal whether it is a positive voltage or a negative voltage. . This can simply be a double-wave rectifier circuit,
In reality, it is constructed by inserting a detection diode into a feedback multiplier.

次に、この絶対値回路を使った場合でも、例えば第2図
(1))の如(、時間と共に0をクロスする信号の場合
、クロス点で充電終了と誤判定をすることを防ぐために
、(13)式の微分値をもって、その微分値が0になる
まで判定を待つ。この微分値は、充電電流の変化の有無
を判別するものであって、正の変化も負の変化もある。
Next, even when using this absolute value circuit, in the case of a signal that crosses 0 over time (for example, as shown in Fig. 2 (1)), in order to prevent erroneously determining that charging has ended at the cross point, Using the differential value of equation (13), the determination is waited until the differential value becomes 0. This differential value is used to determine whether or not there is a change in the charging current, and there can be either a positive change or a negative change.

微分値についても正の場合も負の場合もある。従って、
微分値も絶対値回路を使用する。
The differential value may also be positive or negative. Therefore,
The differential value also uses an absolute value circuit.

以上により得た充電電流の絶対値の有無と充電電流の変
化の有無をそれぞれ論理レベルに変換し、論理和をとる
ことで確実な判定禁止回路を構成できる。
By converting the presence or absence of the absolute value of the charging current obtained above and the presence or absence of a change in the charging current into logic levels, and taking the logical sum, a reliable judgment prohibition circuit can be constructed.

第3図は、本発明の1実施例を、被測定プリント板−切
換画一測定器と並べて図示したものである。
FIG. 3 illustrates one embodiment of the present invention side by side with a printed board-to-be-measured uniformity measuring device.

図中、番号16.17を通る破線の右側が測定器であり
、第1図図示のものと同一のもの、その左側が被測定プ
リント板27と測定器の間にあって、測定ポイントを選
択する切換器25と接続ケーブルである。
In the figure, the measuring device is on the right side of the broken line passing through numbers 16 and 17, which is the same as the one shown in FIG. 25 and a connecting cable.

第3図の例において、19’、20’、26は各ケーブ
ルの浮遊容量であるが、この値は特に2めである。
In the example of FIG. 3, 19', 20', and 26 are the stray capacitances of each cable, and this value is particularly the second.

またプリント板試験装置の場合、その接続される回路の
数は数千を越し数万に到る場合もある。
Furthermore, in the case of a printed circuit board testing device, the number of connected circuits may exceed several thousand and even reach tens of thousands.

また測定器側から見た容量も、印加側の容量(これをC
pとする)、接地側から見た容I(これをCムとする)
、さらに、印加側と接地側の間の容量(これをCcとす
る)の間はその大小関係において法則性はなく、容量C
L、CC,Cpの間に大きな不平衡を生じる可能性があ
る。このような不平衡のある場合、従来の方法では、測
定を開始して誤った結果を出す可能性が高い。
Also, the capacitance seen from the measuring instrument side is the capacitance on the application side (this is C
p), the dimension I seen from the ground side (this is taken as C)
, Furthermore, there is no regularity in the magnitude relationship between the capacitance between the application side and the ground side (this is referred to as Cc), and the capacitance C
A large imbalance may occur between L, CC, and Cp. In the presence of such an imbalance, conventional methods are likely to initiate measurements and produce erroneous results.

また、一般的な接続ケーブルの場合、吸収電流が流れ、
従来の印加電圧の微分による方法によると、吸収電流(
ケーブルの)を測定してしまう。
In addition, in the case of a general connection cable, an absorption current flows,
According to the conventional method of differentiating the applied voltage, the absorbed current (
) of the cable.

第4図は吸収電流の一例である。FIG. 4 shows an example of absorbed current.

第4図(alは比較的容量の少ない、もの、第4図(b
lは容量の多いもので、これらは第4図(a)が約20
0 (l p F、第4図(b)が約0.15μFの値
を示すものの例である。データから分かるとおり、時間
が0に近いときはコンデンサの充電電流が主であるが充
電し終ってからち、時間と共に減少していく電流が流れ
ている。これに対し印加電圧はすでに充電は終っている
ので電圧変化は起きない。
Figure 4 (al is one with relatively small capacity, Figure 4 (b)
1 has a large capacity, and these are approximately 20 in Figure 4 (a).
0 (l p F) Figure 4(b) shows an example of a value of approximately 0.15 μF.As can be seen from the data, when the time is close to 0, the main charging current is the capacitor, but when the charging is finished, After that, a current flows that decreases over time.On the other hand, the applied voltage does not change because charging has already been completed.

従って従来の方法ではプリント板の絶縁抵抗とケーブル
の吸収電流とを区別することができない。
Therefore, conventional methods cannot distinguish between the insulation resistance of the printed board and the absorbed current of the cable.

本発明は接続ケーブルに流れる電流成分とその変化して
いる事を検出し、その間、測定を行なわないので、測定
結果からケーブルの電流は排除される。
The present invention detects the current component flowing in the connecting cable and its change, and does not perform any measurement during this time, so the cable current is excluded from the measurement results.

〔効 果〕〔effect〕

本発明によれば、プリント基板上の導体パターン間等に
おける絶縁抵抗を測定する場合、(イ)接続ケーブルの
吸収電流、浮遊容量の充電電流、漏れ電流共に検出し、
その影響を排除できること、 (ロ)回路の過渡状態を検出し、その影響を排除できる
こと、 (ハ)各測定ラインの浮遊容量の比率に関係なく測定で
きること、 等のすぐれた効果をもたらすことができる。
According to the present invention, when measuring the insulation resistance between conductor patterns on a printed circuit board, (a) detecting the absorption current of the connection cable, the charging current of the stray capacitance, and the leakage current;
(b) It is possible to detect the transient state of the circuit and eliminate its influence; (c) It is possible to perform measurements regardless of the ratio of stray capacitance of each measurement line. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による1実施例の回路構成図、第2図(
a)は測定系の等価回路を示す図、第2図(blは測定
電流(電圧)の和の合成波形の例を示す図、第3図は本
発明の1実施例を被測定プリント板−切換器一例定器と
並べて図示した図0、第4図は吸収電流の一例を示す図
、第5図は印加電圧と吸収電流の関係を示す図である。 第1図において、lと2は増幅器、3と4は電流検出用
抵抗、5は測定用電源、6は加算器、7は減算器、8は
微分回路、9と10は絶対値増幅回路、11と12は比
較器、13はオアゲート、14は禁止出力信号(線)、
15は測定出力信号(線)、16と17は測定端子、1
8は被測定抵抗(絶縁抵抗)、19と20はケーブル容
量、21は被測定抵抗浮遊容量、22は比較器、23は
禁止ゲート、24は抵抗判定出力信号(線)であ   
   :)る。 (a) (b) (hn3   10FFIJ   ?OmS     
    10(hs3(a +           
 141110甫S      ID0y+5    
 ?lJOmS     3θ0−5(b)     
   −隣M 庵4凹 (Iン M−s囚
FIG. 1 is a circuit configuration diagram of one embodiment of the present invention, and FIG. 2 (
a) is a diagram showing an equivalent circuit of the measurement system, FIG. 2 (bl is a diagram showing an example of a composite waveform of the sum of measured currents (voltages), and FIG. FIG. 0 and FIG. 4, which show an example of a switching device and a regulator, are diagrams showing an example of the absorbed current, and FIG. 5 is a diagram showing the relationship between the applied voltage and the absorbed current. In FIG. 1, l and 2 are Amplifier, 3 and 4 are resistors for current detection, 5 is a power supply for measurement, 6 is an adder, 7 is a subtracter, 8 is a differentiation circuit, 9 and 10 are absolute value amplification circuits, 11 and 12 are comparators, 13 is OR gate, 14 is a prohibition output signal (line),
15 is the measurement output signal (line), 16 and 17 are the measurement terminals, 1
8 is the resistance to be measured (insulation resistance), 19 and 20 are the cable capacitances, 21 is the stray capacitance of the resistance to be measured, 22 is the comparator, 23 is the inhibition gate, and 24 is the resistance judgment output signal (line).
:) Ru. (a) (b) (hn3 10FFIJ ?OmS
10(hs3(a +
141110 S ID0y+5
? lJOmS 3θ0-5(b)
- Neighbor M Hermitage 4 (In M-s prisoner)

Claims (2)

【特許請求の範囲】[Claims] (1)被試験物の絶縁抵抗測定用端子に接続される第1
および第2の測定端子と、上記第1および第2の測定端
子を介して被試験物に絶縁抵抗測定用電圧を印加する測
定用電源と、上記第1の測定端子に一端が接続され他端
が上記測定用電源に接続される第1の抵抗と、上記第2
の測定端子に一端が接続され他端が上記測定用電源に接
続される第2の抵抗と、上記第1の抵抗の両端に接続さ
れ当該抵抗の両端の電圧を検出する第1の増幅器と、上
記第2の抵抗の両端に接続され当該抵抗の両端の電圧を
、上記第1の増幅器への入力電圧とは逆方向の向きにて
検出する第2の増幅器と、上記第1の増幅器の出力と上
記第2の増幅器の出力とを加算する電圧加算回路と、上
記電圧加算回路の出力電圧の勾配を検出し当該勾配が一
定値以下であることを判定する電圧勾配判定手段と、上
記電圧加算回路の出力電圧の絶対値を検出し当該絶対値
が一定値以下であることを判定する電圧絶対値判定手段
と、上記電圧勾配判定手段の出力と上記電圧絶対値判定
手段の出力にもとづき絶縁抵抗測定の可否を指示する絶
縁抵抗判定制御信号を作成する絶縁抵抗判定制御信号作
成手段とを少なくともそなえたことを特徴とする絶縁抵
抗判定制御方式。
(1) The first terminal connected to the insulation resistance measurement terminal of the test object.
and a second measurement terminal, a measurement power supply that applies an insulation resistance measurement voltage to the test object via the first and second measurement terminals, one end of which is connected to the first measurement terminal and the other end of which is connected to the first measurement terminal. a first resistor connected to the measurement power supply; and a second resistor connected to the measurement power supply.
a second resistor having one end connected to the measurement terminal and the other end connected to the measurement power source; a first amplifier connected to both ends of the first resistor and detecting the voltage across the resistor; a second amplifier connected to both ends of the second resistor to detect the voltage across the resistor in a direction opposite to the input voltage to the first amplifier; and an output of the first amplifier. and the output of the second amplifier, a voltage gradient determining means for detecting the slope of the output voltage of the voltage adding circuit and determining that the slope is below a certain value, and the voltage adding circuit. Voltage absolute value determining means for detecting the absolute value of the output voltage of the circuit and determining that the absolute value is below a certain value; and insulation resistance based on the output of the voltage gradient determining means and the output of the voltage absolute value determining means. 1. An insulation resistance determination control method comprising at least an insulation resistance determination control signal generating means for generating an insulation resistance determination control signal for instructing whether or not measurement is possible.
(2)上記第1の増幅器の出力と上記第2の増幅器の出
力との差電圧を作成する電圧減算回路と、上記電圧減算
回路の出力電圧の絶対値を検出し当該絶対値が一定値以
下であるか否かを指示する判定信号を出力する比較判定
手段と、上記判定信号と上記絶縁抵抗判定制御信号とに
もとづき絶縁抵抗良否判定信号を出力する判定出力手段
とをそなえたことを特徴とする特許請求の範囲第(1)
項記載の絶縁抵抗判定制御方式。
(2) A voltage subtraction circuit that creates a voltage difference between the output of the first amplifier and the output of the second amplifier, and a voltage subtraction circuit that detects the absolute value of the output voltage of the voltage subtraction circuit, and the absolute value is below a certain value. and a determination output means that outputs an insulation resistance quality determination signal based on the determination signal and the insulation resistance determination control signal. Claim No. (1)
Insulation resistance judgment control method described in section.
JP22752884A 1984-10-29 1984-10-29 Control system for decision making of insulation resistance Granted JPS61105470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22752884A JPS61105470A (en) 1984-10-29 1984-10-29 Control system for decision making of insulation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22752884A JPS61105470A (en) 1984-10-29 1984-10-29 Control system for decision making of insulation resistance

Publications (2)

Publication Number Publication Date
JPS61105470A true JPS61105470A (en) 1986-05-23
JPH0446385B2 JPH0446385B2 (en) 1992-07-29

Family

ID=16862313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22752884A Granted JPS61105470A (en) 1984-10-29 1984-10-29 Control system for decision making of insulation resistance

Country Status (1)

Country Link
JP (1) JPS61105470A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333465A (en) * 2006-06-13 2007-12-27 Hioki Ee Corp Inspection apparatus
JP2010210510A (en) * 2009-03-11 2010-09-24 Micronics Japan Co Ltd Insulation inspection apparatus and method
US10641817B2 (en) 2017-11-28 2020-05-05 Fanuc Corporation Motor driving device and measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333465A (en) * 2006-06-13 2007-12-27 Hioki Ee Corp Inspection apparatus
JP2010210510A (en) * 2009-03-11 2010-09-24 Micronics Japan Co Ltd Insulation inspection apparatus and method
US10641817B2 (en) 2017-11-28 2020-05-05 Fanuc Corporation Motor driving device and measuring method

Also Published As

Publication number Publication date
JPH0446385B2 (en) 1992-07-29

Similar Documents

Publication Publication Date Title
US20070103174A1 (en) Direct current test apparatus
US6255839B1 (en) Voltage applied type current measuring circuit in an IC testing apparatus
US5959463A (en) Semiconductor test apparatus for measuring power supply current of semiconductor device
KR930700855A (en) System and method for simultaneously executing electronic device test and lead inspection
KR101024220B1 (en) Power applying circuit and testing apparatus
US5448173A (en) Triple-probe plasma measuring apparatus for correcting space potential errors
US4985672A (en) Test equipment for a low current IC
KR20100039377A (en) Correction circuit and test device
US6803776B2 (en) Current-comparator-based four-terminal resistance bridge for power frequencies
JPS6325572A (en) Leakage current measuring system of electrometer amplifier
JPS61105470A (en) Control system for decision making of insulation resistance
US3448378A (en) Impedance measuring instrument having a voltage divider comprising a pair of amplifiers
US4022990A (en) Technique and apparatus for measuring the value of a capacitance in an electrical circuit such as a telephone communication line
CN114062764A (en) Direct current small current measuring system and method based on standard current
US6285206B1 (en) Comparator circuit
JP3283986B2 (en) Impedance measuring device
So et al. A computer-controlled current-comparator-based four-terminal resistance bridge for power frequencies
JPH05196678A (en) Electric-circuit testing apparatus
JPS5868615A (en) Output circuit of magnetic type rotary encoder
JPS649594B2 (en)
JP3143036B2 (en) Resistivity measurement circuit
SU712775A1 (en) Automatic meter of complex resistance components
JP2509631Y2 (en) Multi-channel resistance measuring device
JP2023147461A (en) Measurement circuit and measurement system using the same
JPH056670B2 (en)