JPH0446385B2 - - Google Patents

Info

Publication number
JPH0446385B2
JPH0446385B2 JP22752884A JP22752884A JPH0446385B2 JP H0446385 B2 JPH0446385 B2 JP H0446385B2 JP 22752884 A JP22752884 A JP 22752884A JP 22752884 A JP22752884 A JP 22752884A JP H0446385 B2 JPH0446385 B2 JP H0446385B2
Authority
JP
Japan
Prior art keywords
voltage
output
insulation resistance
amplifier
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22752884A
Other languages
Japanese (ja)
Other versions
JPS61105470A (en
Inventor
Taiichi Miho
Koichi Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Toa Electronics Ltd
Original Assignee
Fujitsu Ltd
Toa Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Toa Electronics Ltd filed Critical Fujitsu Ltd
Priority to JP22752884A priority Critical patent/JPS61105470A/en
Publication of JPS61105470A publication Critical patent/JPS61105470A/en
Publication of JPH0446385B2 publication Critical patent/JPH0446385B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁抵抗判定制御方式に関し、特に、
例えばプリント基板上の離隔された導体間の絶縁
抵抗を測定する試験装置における絶縁抵抗判定制
御方式に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an insulation resistance determination control method, and in particular,
For example, the present invention relates to an insulation resistance determination control method in a test device that measures insulation resistance between spaced apart conductors on a printed circuit board.

〔従来の技術〕[Conventional technology]

例えば、プリント基板の導体対導体間の絶縁を
電圧電流計法により測定するにあたつては、次の
点に留意する必要がある。
For example, when measuring the insulation between conductors of a printed circuit board using the voltammeter method, it is necessary to keep the following points in mind.

(a) 試験器のセンサ(測定部)とプリント板との
間には必然的にスキヤナ、装着治具等が介在
し、それらは漏れ電流と浮遊容量を持つ。
(a) A scanner, mounting jig, etc. are inevitably interposed between the sensor (measuring part) of the tester and the printed circuit board, and these have leakage current and stray capacitance.

(b) それらに流れる電流と本来のプリント板の漏
れ電流とを区別することが必要である。
(b) It is necessary to distinguish between the current flowing through them and the leakage current of the original printed board.

これらの点を解決するために、一般には、測定
ラインに印加される電圧の変化勾配を検出して、
その勾配がなくなつたことを充電完了と判断し
て、それ以後の判定結果を有効としている。勾配
検出には微分回路を使用している。
To solve these points, it is common to detect the change slope of the voltage applied to the measurement line,
When the slope disappears, it is determined that charging is complete, and subsequent determination results are valid. A differential circuit is used to detect the slope.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

電圧の勾配を検出する場合、電圧を微分してそ
の勾配を得るが、純粋なCR回路の場合には充放
電特性は電圧と電流の間に密接な関係があつて、 V=E・{1−exp(−t/cR)} dv/dt=exp(−t/cR) =K・I の関係が成り立ち、電圧の変化が一定値を下まわ
ると電流値も同様に下まわり、目的を達成するこ
とができる。
When detecting the gradient of a voltage, the gradient is obtained by differentiating the voltage, but in the case of a pure CR circuit, there is a close relationship between the voltage and current in charge/discharge characteristics, and V=E・{1 -exp(-t/cR)} dv/dt=exp(-t/cR)=K・I The relationship holds true, and when the voltage change falls below a certain value, the current value also falls below a certain value, achieving the purpose. can do.

しかし、実際のシステムの場合、ケーブル等の
容量に流れる電流としては電圧が安定した後も流
れ続ける吸収電流あるいは漏れ電流が存在する。
この場合電圧の勾配がないことと電流が流れない
こととは対応しない。
However, in the case of an actual system, there is an absorption current or leakage current that continues to flow even after the voltage has stabilized as a current flowing through the capacitance of a cable or the like.
In this case, the absence of a voltage gradient does not correspond to the absence of current flow.

この結果正確な測定ができない。この対応関係
を第5図に示す。
As a result, accurate measurements cannot be made. This correspondence relationship is shown in FIG.

第5図1は、印加電圧の変化状態を示す図であ
り、第5図2は充電電流の変化状態を示す図であ
る。
FIG. 5 1 is a diagram showing changes in applied voltage, and FIG. 5 2 is a diagram showing changes in charging current.

第5図2において、は本来の充電電流を示
し、は本来の充電電流に吸収電流が加えられた
ものを示している。
In FIG. 5, 2 represents the original charging current, and represents the original charging current plus the absorption current.

そのため、従来方式の問題点を解決し、正確な
測定を可能にすることが望まれている。
Therefore, it is desired to solve the problems of the conventional method and enable accurate measurement.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために本発明は、被試験
物の絶縁抵抗測定端子に接続される第1および第
2の測定端子と、上記第1および第2の測定端子
を介して被試験物に絶縁抵抗測定用電圧を印加す
る測定用電源と、上記第1の測定端子に一端が接
続され他端が上記測定用電源に接続される第1の
抵抗と、上記第2の測定端子に一端が接続され他
端が上記測定用電源に接続される第2の抵抗と、
上記第1の抵抗の両端に接続され当該抵抗の両端
の電圧を検出する第1の増幅器と、上記第2の抵
抗の両端に接続され当該抵抗の両端の電圧を、上
記第1の増幅器への入力電圧とは逆方向の向きに
て検出する第2の増幅器と、上記第1の増幅器の
出力と上記第2の増幅器の出力とを加算する電圧
加算回路と、上記電圧加算回路の出力電圧の勾配
を検出し当該勾配が一定値以下であることを判定
する電圧勾配判定手段と、上記電圧加算回路の出
力電圧の絶対値を検出し当該絶対値が一定値以下
であることを判定する電圧絶対値判定手段と、上
記電圧勾配判定手段の出力と上記電圧絶対値判定
手段の出力にもとづき絶縁抵抗測定の可否を指示
する絶縁抵抗判定制御信号を作成する絶縁抵抗判
定制御信号作成手段とを少なくともそなえて絶縁
抵抗の判定制御を行なうことを特徴とするもので
ある。
In order to solve the above-mentioned problems, the present invention provides first and second measurement terminals connected to the insulation resistance measurement terminal of the test object, and a a measurement power supply for applying a voltage for insulation resistance measurement; a first resistor having one end connected to the first measurement terminal and the other end connected to the measurement power supply; and a first resistor having one end connected to the second measurement terminal. a second resistor connected and the other end connected to the measurement power supply;
a first amplifier connected to both ends of the first resistor to detect the voltage across the resistor; and a first amplifier connected to both ends of the second resistor to detect the voltage across the resistor to the first amplifier. a second amplifier that detects the input voltage in a direction opposite to that of the input voltage; a voltage addition circuit that adds the output of the first amplifier and the output of the second amplifier; Voltage gradient determining means for detecting a slope and determining that the slope is below a certain value; and voltage absolute determining means for detecting the absolute value of the output voltage of the voltage adding circuit and determining that the absolute value is below a certain value. and insulation resistance determination control signal generation means for generating an insulation resistance determination control signal for instructing whether or not insulation resistance measurement is possible based on the output of the voltage gradient determination means and the output of the voltage absolute value determination means. The invention is characterized in that the insulation resistance is determined and controlled using the method.

〔作用〕[Effect]

本発明は、 (イ) 接続ケーブルに流れる電流成分が所定値以下
になつたことを検出する回路構成、 (ロ) 接続ケーブルに流れる電流成分の変化(勾
配)が所定値以下になつたことを検出する回路
構成、 (ハ) 接続ケーブルに流れる電流成分が所定値以下
となり、かつ電流成分の変化(勾配)が所定値
以下となつたとき充電完了と判断する回路構
成、 をそなえ、正確に絶縁抵抗を測定できるタイミン
グを与えるものである。
The present invention provides: (a) a circuit configuration that detects when the current component flowing through the connection cable becomes less than a predetermined value; and (b) a circuit configuration that detects when the change (gradient) of the current component flowing through the connection cable becomes less than the predetermined value. Accurate insulation with the following circuit configuration: (c) A circuit configuration that determines that charging is complete when the current component flowing through the connecting cable is less than a predetermined value and the change (gradient) of the current component is less than a predetermined value. This provides the timing at which resistance can be measured.

〔実施例〕〔Example〕

第1図は本発明による1実施例の回路構成図で
あり、図中1と2は増幅器、3と4は電流検出用
抵抗、5は測定用電源、6は加算器、7は減算
器、8は微分回路、9と10は絶対値増幅回路、
11と12は比較器、13はオアゲート、14は
禁止出力信号(線)、15は測定出力信号(線)、
16と17は測定端子、18は被測定抵抗(絶縁
抵抗)、19と20はケーブル容量、21は被測
定抵抗浮遊容量、22は比較器、23は禁止ゲー
ト、24は抵抗測定出力信号(線)である。
FIG. 1 is a circuit configuration diagram of one embodiment according to the present invention, in which 1 and 2 are amplifiers, 3 and 4 are current detection resistors, 5 is a measurement power supply, 6 is an adder, 7 is a subtracter, 8 is a differentiation circuit, 9 and 10 are absolute value amplification circuits,
11 and 12 are comparators, 13 is an OR gate, 14 is a prohibition output signal (line), 15 is a measurement output signal (line),
16 and 17 are measurement terminals, 18 is the resistance to be measured (insulation resistance), 19 and 20 are the cable capacitances, 21 is the stray capacitance of the resistance to be measured, 22 is the comparator, 23 is the inhibition gate, 24 is the resistance measurement output signal (wire ).

図中、測定端子16,17を通る破線より左側
が被測定物とケーブルを含むもの、19は電圧印
加側のケーブル容量Cp、20は接地側のケーブ
ル容量CL、21はプリント板の容量である。抵
抗3と増幅器1で電圧印加側の電流電圧変換増幅
器を構成し、利得はGである。
In the figure, the left side of the broken line passing through the measurement terminals 16 and 17 includes the object to be measured and the cable, 19 is the cable capacity Cp on the voltage application side, 20 is the cable capacity C L on the ground side, and 21 is the capacitance of the printed board. be. The resistor 3 and the amplifier 1 constitute a current-voltage conversion amplifier on the voltage application side, and the gain is G.

抵抗4と増幅器2は、接地側の電流電圧変換増
幅器を構成し、利得はGである。抵抗3と4に流
れる電流は、それぞれ逆極性とされている。
The resistor 4 and the amplifier 2 constitute a ground-side current-voltage conversion amplifier, and the gain is G. The currents flowing through the resistors 3 and 4 have opposite polarities.

したがつて、仮に、ケーブル容量19と20が
存在しないならば、電圧印加減である測定用電源
5の出力電流は、抵抗3、被測定抵抗18、抵抗
4の経路を通り、抵抗3に流れる電流と抵抗4に
流れる電流は同一である。さらに、増幅器1の出
力と増破器2の出力は、プリント板に流れる電流
に関しては逆位相であり、加算器6の出力部にお
いては、プリント板に流れる電流に関しては出力
を出さない。
Therefore, if the cable capacitances 19 and 20 do not exist, the output current of the measurement power supply 5, which is a voltage application decrease, flows to the resistor 3 through the path of the resistor 3, the resistor to be measured 18, and the resistor 4. The current and the current flowing through the resistor 4 are the same. Further, the output of the amplifier 1 and the output of the intensifier 2 are in opposite phase with respect to the current flowing to the printed board, and the output section of the adder 6 does not output an output regarding the current flowing to the printed board.

加算器6の出力には、電圧印加側と接地側の電
流の不平衡分だけが表われる。
The output of the adder 6 shows only the unbalanced portion of the current between the voltage application side and the ground side.

逆に、減算器7の出力には、プリント板に流れ
る電流が加え合わされて2倍の電流出力が得られ
る。
Conversely, the current flowing through the printed circuit board is added to the output of the subtractor 7 to obtain twice the current output.

符号8〜14の部分は不平衡分(ケーブル容
量、漏れ)を検出するための回路であつて、微分
回路8はCR時定数によるもの、絶対値増幅回路
9,10は正、負いずれの入力に対してもその入
力に比例した正の出力電圧を作成するもの、比較
器11,12は、アナログ電圧を一定の値で比較
してロジツク信号に変換する判定機能を有する回
路であつて、入力電圧がある値を越すと(この場
合、比較器12は漏れ、充電電流のリミツト値、
比較器12は充電電流の変化のリミツト値)正の
論理出力を作成するもの、オアゲート13は論理
和回路である。
The parts 8 to 14 are circuits for detecting unbalanced components (cable capacitance, leakage), the differentiating circuit 8 uses a CR time constant, and the absolute value amplifying circuits 9 and 10 detect either positive or negative input. The comparators 11 and 12 are circuits that have a judgment function of comparing analog voltages at a constant value and converting them into logic signals. When the voltage exceeds a certain value (in this case, the comparator 12 leaks, the charging current limit value,
The comparator 12 is a device that creates a positive logic output (limit value of change in charging current), and the OR gate 13 is a logical sum circuit.

このように、絶対値増幅回路10、比較器12
は、接続ケーブルに流れる電流成分を、微分回路
8、絶対値増幅回路9、比較器11は接続ケーブ
ルに流れる電流成分の変化を検出する。
In this way, the absolute value amplifier circuit 10, the comparator 12
The differential circuit 8, the absolute value amplifying circuit 9, and the comparator 11 detect changes in the current component flowing through the connecting cable.

また、絶縁抵抗18を流れる電流に比例した電
圧である減算器7の出力は、比較器22により、
あらかじめ設定された所定値と、その大小が判定
される。そして、比較器22は、例えば、絶縁抵
抗18が所定値以上大きいとき論理“0”を、所
定値以下のとき論理“1”を出力するように構成
されている。次に、禁止ゲート23は、オアゲー
ト13の出力14が“0”となつたとき(すなわ
ち、漏れ、充電電流が所定値以下となり、かつ充
電電流の変化成分も所定値以下となつたとき)、
開状態とされ、比較器22の出力を抵抗判定出力
信号線24上に送出する。
Further, the output of the subtracter 7, which is a voltage proportional to the current flowing through the insulation resistor 18, is determined by the comparator 22 as follows.
A predetermined value set in advance and its magnitude are determined. The comparator 22 is configured to output logic "0" when the insulation resistance 18 is greater than a predetermined value, and output logic "1" when it is less than a predetermined value, for example. Next, the prohibition gate 23 operates when the output 14 of the OR gate 13 becomes "0" (that is, when there is a leakage, the charging current becomes less than a predetermined value, and the change component of the charging current also becomes less than a predetermined value).
It is set in the open state and sends the output of the comparator 22 onto the resistance judgment output signal line 24.

図示しない制御部では、オアゲート13の出力
(信号線14)が“0”のとき、禁止ゲート23
の出力(抵抗判定出力信号線24)の状態を監視
し、“0”状態であれば、絶縁抵抗は十分大であ
り絶縁良好と判定し、逆に“1”状態であれば絶
縁不良と判定する。
In the control section (not shown), when the output (signal line 14) of the OR gate 13 is "0", the inhibition gate 23
The state of the output (resistance judgment output signal line 24) is monitored, and if it is "0", it is determined that the insulation resistance is sufficiently large and the insulation is good, and if it is "1", it is determined that the insulation is poor. do.

さらに、絶縁抵抗18の値、そのものは、オア
ゲート13の出力(信号線14)が“0”のとき
における減算器7の出力(測定出力信号線15)
の電圧値を求め、これに所定の係数を乗ずること
によつて求めることができる。
Furthermore, the value of the insulation resistance 18 is the output of the subtracter 7 (measurement output signal line 15) when the output of the OR gate 13 (signal line 14) is "0".
It can be determined by determining the voltage value of and multiplying it by a predetermined coefficient.

この所定の係数は、増幅器1,2の利得、抵抗
3,4の抵抗値等によつて定められるものであ
る。
This predetermined coefficient is determined by the gains of the amplifiers 1 and 2, the resistance values of the resistors 3 and 4, and the like.

次に、各部の動作をより明確にするために等価
回路を用いて説明する。第2図aは測定系の等価
回路であり、第1図と同一番号のものは同一のも
のを表わしている。
Next, the operation of each part will be explained using an equivalent circuit to make it clearer. FIG. 2a shows an equivalent circuit of the measurement system, and the same numbers as in FIG. 1 represent the same parts.

各素子のインピダンスをSを用いて表現する
と、 Z4
Expressing the impedance of each element using S, Z 4

Claims (1)

【特許請求の範囲】 1 被試験物の絶縁抵抗測定用端子に接続される
第1および第2の測定端子と、上記第1および第
2の測定端子を介して被試験物に絶縁抵抗測定用
電圧を印加する測定用電源と、上記第1の測定端
子に一端が接続され他端が上記測定用電源に接続
される第1の抵抗と、上記第2の測定端子に一端
が接続され他端が上記測定用電源に接続される第
2の抵抗と、上記第1の抵抗の両端に接続され当
該抵抗の両端の電圧を検出する第1の増幅器と、
上記第2の抵抗の両端に接続され当該抵抗の両端
の電圧を、上記第1の増幅器への入力電圧とは逆
方向の向きにて検出する第2の増幅器と、上記第
1の増幅器の出力と上記第2の増幅器の出力とを
加算する電圧加算回路と、上記電圧加算回路の出
力電圧の勾配を検出し当該勾配が一定値以下であ
ることを判定する電圧勾配判定手段と、上記電圧
加算回路の出力電圧の絶対値を検出し当該絶対値
が一定値以下であることを判定する電圧絶対値判
定手段と、上記電圧勾配判定手段の出力と上記電
圧絶対値判定手段の出力にもとづき絶縁抵抗測定
の可否を指示する絶縁抵抗判定制御信号を作成す
る絶縁抵抗判定制御信号作成手段とを少なくとも
そなえたことを特徴とする絶縁抵抗判定制御方
式。 2 上記第1の増幅器の出力と上記第2の増幅器
の出力との差電圧を作成する電圧減算回路と、上
記電圧減算回路の出力電圧の絶対値を検出し当該
絶対値が一定値以下であるか否かを指示する判定
信号を出力する比較判定手段と、上記判定信号と
上記絶縁抵抗判定制御信号とにもとづき絶縁抵抗
良否判定信号を出力する判定出力手段とをそなえ
たことを特徴とする特許請求の範囲第1項記載の
絶縁抵抗判定制御方式。
[Claims] 1. First and second measurement terminals connected to the insulation resistance measurement terminal of the test object, and an insulation resistance measurement terminal connected to the test object via the first and second measurement terminals. a measurement power supply for applying a voltage; a first resistor having one end connected to the first measurement terminal and the other end connected to the measurement power supply; and one end connected to the second measurement terminal and the other end. a second resistor connected to the measurement power supply; a first amplifier connected to both ends of the first resistor to detect the voltage across the resistor;
a second amplifier connected to both ends of the second resistor to detect the voltage across the resistor in a direction opposite to the input voltage to the first amplifier; and an output of the first amplifier. and the output of the second amplifier, a voltage gradient determining means for detecting the slope of the output voltage of the voltage adding circuit and determining that the slope is below a certain value, and the voltage adding circuit. Voltage absolute value determining means for detecting the absolute value of the output voltage of the circuit and determining that the absolute value is below a certain value; and insulation resistance based on the output of the voltage gradient determining means and the output of the voltage absolute value determining means. 1. An insulation resistance determination control method comprising at least an insulation resistance determination control signal generating means for generating an insulation resistance determination control signal for instructing whether or not measurement is possible. 2. A voltage subtraction circuit that creates a voltage difference between the output of the first amplifier and the output of the second amplifier, and detects the absolute value of the output voltage of the voltage subtraction circuit, and the absolute value is less than or equal to a certain value. A patent characterized in that it is provided with a comparison judgment means for outputting a judgment signal instructing whether or not, and a judgment output means for outputting an insulation resistance quality judgment signal based on the judgment signal and the insulation resistance judgment control signal. An insulation resistance determination control method according to claim 1.
JP22752884A 1984-10-29 1984-10-29 Control system for decision making of insulation resistance Granted JPS61105470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22752884A JPS61105470A (en) 1984-10-29 1984-10-29 Control system for decision making of insulation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22752884A JPS61105470A (en) 1984-10-29 1984-10-29 Control system for decision making of insulation resistance

Publications (2)

Publication Number Publication Date
JPS61105470A JPS61105470A (en) 1986-05-23
JPH0446385B2 true JPH0446385B2 (en) 1992-07-29

Family

ID=16862313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22752884A Granted JPS61105470A (en) 1984-10-29 1984-10-29 Control system for decision making of insulation resistance

Country Status (1)

Country Link
JP (1) JPS61105470A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333465A (en) * 2006-06-13 2007-12-27 Hioki Ee Corp Inspection apparatus
JP2010210510A (en) * 2009-03-11 2010-09-24 Micronics Japan Co Ltd Insulation inspection apparatus and method
JP6603294B2 (en) 2017-11-28 2019-11-06 ファナック株式会社 Motor driving device and measuring method

Also Published As

Publication number Publication date
JPS61105470A (en) 1986-05-23

Similar Documents

Publication Publication Date Title
KR100314438B1 (en) Temperature Measurement Circuit Using Thermopile Sensor
AU7848600A (en) Measurement of current in a vehicle using battery cable as shunt
EP0382217B1 (en) Power source circuit and bridge type measuring device with output compensating circuit utilizing the same
US5416470A (en) Contact judging circuit and contact judging method for impedance measuring apparatus
JPH0720185A (en) Electric leakage detector
US5448173A (en) Triple-probe plasma measuring apparatus for correcting space potential errors
US5770956A (en) Measurement amplifier
JPH0446385B2 (en)
JPH07104366B2 (en) Current measurement circuit
JP2862296B2 (en) Voltage applied current measuring device and current applied voltage measuring device
JPS6325572A (en) Leakage current measuring system of electrometer amplifier
US5539320A (en) Method for determining the current flowing through a load in a motor vehicle
JP2774693B2 (en) Earth leakage breaker
US3940693A (en) Phase sensitive detector
JPH0152692B2 (en)
JP3048377B2 (en) Grain moisture meter
JPH05196678A (en) Electric-circuit testing apparatus
JPS649594B2 (en)
SU1185252A1 (en) Apparatus for measuring the incriment of resistance
JPH0634705Y2 (en) IC test equipment
JPH0854424A (en) Current application voltage measuring instrument
JP2827233B2 (en) Semiconductor test equipment
JPH095368A (en) Method for measuring resistance of wiring
KR0177361B1 (en) A telephone line test device using differential amplifier
JPS6250629A (en) Detecting circuit for input disconnection of resistance bulb