JP2010207947A - Diamond-coated tool - Google Patents

Diamond-coated tool Download PDF

Info

Publication number
JP2010207947A
JP2010207947A JP2009055865A JP2009055865A JP2010207947A JP 2010207947 A JP2010207947 A JP 2010207947A JP 2009055865 A JP2009055865 A JP 2009055865A JP 2009055865 A JP2009055865 A JP 2009055865A JP 2010207947 A JP2010207947 A JP 2010207947A
Authority
JP
Japan
Prior art keywords
diamond
crystal grains
film
oriented
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009055865A
Other languages
Japanese (ja)
Other versions
JP5246597B2 (en
Inventor
Ryuichi Matsuki
竜一 松木
Toshihiko Matsuo
俊彦 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009055865A priority Critical patent/JP5246597B2/en
Publication of JP2010207947A publication Critical patent/JP2010207947A/en
Application granted granted Critical
Publication of JP5246597B2 publication Critical patent/JP5246597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diamond-coated tool that has little initial stage cutting resistance and exhibits an excellent wear resistance. <P>SOLUTION: The diamond-coated tool is coated with a diamond coating on the surface of a tool base which is composed of a WC-based cemented carbide or TiCN-based cermet. The diamond coating has a film structure in which oriented diamond crystal grains with an average crystal grain diameter of 0.2-1.5 μm are dispersedly distributed in the matrix of non-oriented diamond crystal grains at 30-80 area% by mean area ratio. When viewed along the thickness direction of the diamond coating, the crystal grain diameter and the area ratio of the oriented diamond crystal grains gradually become smaller in value toward the front surface side. Furthermore, in at least either one of the (110) plane or (111) plane of the crystal grains of the diamond coating, the highest peak exists in an inclination angle section within the range of 0-10° in an inclination angle frequency distribution graph against a normal of the surface of the tool base and the total of the frequencies present within the range of 0-10° accounts for 30-60% of the overall frequency. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体にダイヤモンド皮膜を被覆したダイヤモンド被覆工具に関し、特に、金属材料よりも比強度、比剛性の高いCFRP(Carbon Fiber Reinforced Plastics。炭素繊維強化プラスチック)あるいは溶着性の高いAl合金等の高速切削に際し、切削初期の切削抵抗の低減を図るとともに、長期の使用に亘って、すぐれた耐摩耗性を発揮するダイヤモンド被覆工具に関するものである。   The present invention relates to a diamond coated tool in which a diamond coating is coated on a tool base made of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet. Carbon-fiber-reinforced plastic) or diamond-coated tools that provide excellent wear resistance over a long period of use while reducing cutting resistance at the beginning of cutting during high-speed cutting of highly weldable Al alloys, etc. It is.

従来、炭化タングステン基(WC基)超硬合金または炭窒化チタン基(TiCN基)サーメットなどの工具基体に、ダイヤモンド皮膜を被覆したダイヤモンド被覆工具が知られており、
例えば、工具基体表面に、ダイヤモンドの結晶成長の起点となる核付着工程およびダイヤモンドを結晶成長させる結晶成長工程とを繰り返し行うことにより、結晶粒径が2μm以下の微細なダイヤモンド皮膜を被覆したダイヤモンド被覆工具が知られており、そして、この被覆工具はダイヤモンド皮膜の凹凸が低減されることから、例えば、Al合金の切削加工で、すぐれた面精度を得られることが知られている。
特開2002−79406号公報
Conventionally, a diamond coated tool in which a diamond coating is coated on a tool substrate such as a tungsten carbide group (WC group) cemented carbide or a titanium carbonitride group (TiCN group) cermet is known.
For example, a diamond coating in which a fine diamond film having a crystal grain size of 2 μm or less is coated on the surface of a tool base by repeatedly performing a nucleus attaching step which is the starting point of diamond crystal growth and a crystal growing step of crystal growing diamond. A tool is known, and this coated tool is known to have excellent surface accuracy by, for example, cutting of an Al alloy because the unevenness of the diamond film is reduced.
JP 2002-79406 A

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴って、切削条件はますます高速化している。上記の従来被覆工具は、これを通常条件での切削加工に用いた場合には特段の問題は生じないが、これを、一般の金属材料に比して、比強度、比剛性にすぐれるCFRPの高速切削に用いたような場合には、CFRPは炭素繊維とエポキシ系樹脂の複合材であるため工具摩耗が激しいばかりか欠損が生じやすく、工具寿命が短命であるという問題点があった。
また、従来被覆工具を、軟質で溶着性の高いAl合金等の高速切削に用いた場合には、切削時の高熱発生により、溶着性の高い被削材(Al合金)の切粉が、工具切刃へ溶着することにより、シャープな切刃を維持することが困難になるばかりか、欠損が生じやすくなるという問題点があった。
この結果、CFRP、Al合金等の高速切削加工に用いた場合、ダイヤモンド被覆工具の寿命は短く、しかも、被削材のバリ発生のために仕上げ面精度が粗くなり、寸法精度も劣るという問題点があった。
In recent years, the FA of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and with this, cutting conditions are increasingly accelerated. The above-mentioned conventional coated tool does not cause any special problems when used for cutting under normal conditions. However, this is a CFRP that is superior in specific strength and specific rigidity as compared with general metal materials. When used for high-speed cutting, since CFRP is a composite material of carbon fiber and epoxy resin, not only the tool wear is severe, but also the chip tends to be broken, and the tool life is short.
In addition, when the conventional coated tool is used for high-speed cutting of soft and highly weldable Al alloy, etc., chips of highly weldable work material (Al alloy) are generated due to high heat generation during cutting. By welding to the cutting edge, not only is it difficult to maintain a sharp cutting edge, but there is a problem that defects are likely to occur.
As a result, when used for high-speed cutting of CFRP, Al alloy, etc., the life of diamond-coated tools is short, and the finished surface accuracy becomes rough due to the occurrence of burrs on the work material, resulting in poor dimensional accuracy. was there.

そこで、本発明者等は、上述のような観点から、特に難削材であるCFRPあるいは溶着性の高いAl合金等の高速切削加工で、切削初期の切削抵抗が小さく、シャープな切刃を維持しつつ、バリの発生を抑制し、長期の使用に亘って、すぐれた耐欠損性と耐摩耗性を備えたダイヤモンド被覆工具を開発すべく鋭意研究を行った結果、以下の知見を得た。
即ち、図1には、本発明のダイヤモンド被覆工具の側断面の概略図を示すが、図1において、工具基体1の表面に、例えば、マイクロ波プラズマCVD法、熱フィラメントCVD法、アークプラズマCVD法等のダイヤモンド気相合成法によって、所定条件で所定層厚の無配向ダイヤモンド皮膜2を形成し、ついで、成膜条件を変更し、平均結晶粒径0.2〜1.5μmの配向ダイヤモンド結晶粒が、無配向ダイヤモンド結晶粒のマトリックス中に平均面積割合で30〜80%分散分布するように、しかも、ダイヤモンド皮膜の厚さ方向に沿って、表面側に向かうほど、配向ダイヤモンド結晶粒の結晶粒径および面積割合が小さな値となるように膜を構成し、さらに、上記ダイヤモンド皮膜の(110)面または(111)面が、傾斜角度数分布グラフの0〜10度の傾斜角区分で30〜60%の度数を占めるような配向ダイヤモンド皮膜で構成した場合には、このダイヤモンド被覆工具は、切削初期の切削抵抗が小さく、シャープな切刃を維持しつつ、バリの発生が少なく、長期の使用に亘って、すぐれた耐欠損性と耐摩耗性を発揮するようになることを見出したのである。
In view of the above, the inventors of the present invention maintain a sharp cutting edge with a low cutting resistance at the initial stage of cutting, particularly in high-speed cutting of CFRP, which is a difficult-to-cut material, or a highly weldable Al alloy. However, as a result of diligent research to develop a diamond-coated tool that suppresses the generation of burrs and has excellent fracture resistance and wear resistance over a long period of use, the following knowledge was obtained.
That is, FIG. 1 shows a schematic diagram of a side cross section of the diamond-coated tool of the present invention. In FIG. 1, for example, a microwave plasma CVD method, a hot filament CVD method, an arc plasma CVD is applied to the surface of the tool base 1. The non-oriented diamond film 2 having a predetermined layer thickness is formed under a predetermined condition by a diamond vapor phase synthesis method such as a method, and then the film formation condition is changed to obtain an oriented diamond crystal having an average crystal grain size of 0.2 to 1.5 μm. Crystals of oriented diamond crystal grains are distributed toward the surface side along the thickness direction of the diamond film so that the grains are dispersed and distributed in an average area ratio of 30 to 80% in the matrix of non-oriented diamond crystal grains. The film is formed so that the particle size and the area ratio are small values, and the (110) plane or the (111) plane of the diamond film is the number of inclination angles. When configured with an oriented diamond coating that occupies 30 to 60% of the angle of inclination of 0 to 10 degrees in the fabric graph, this diamond-coated tool has a low cutting resistance at the beginning of cutting and a sharp cutting edge. It has been found that, while maintaining the above, the occurrence of burrs is small, and excellent chipping resistance and wear resistance are exhibited over a long period of use.

この発明は、上記知見に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体表面に10〜30μmの膜厚のダイヤモンド皮膜が被覆されたダイヤモンド被覆工具において、
(a)上記ダイヤモンド皮膜は、平均結晶粒径0.2〜1.5μmの配向ダイヤモンド結晶粒が、無配向ダイヤモンド結晶粒のマトリックス中に平均面積割合で30〜80%分散分布する膜構造からなり、
(b)上記配向ダイヤモンド結晶粒は、ダイヤモンド皮膜の厚さ方向に沿ってみた場合に、その結晶粒径及び面積割合が表面側に向かうほど小さな値となり、
(c)上記ダイヤモンド皮膜について、電界放出型走査電子顕微鏡を用い、基体表面に対し垂直な皮膜断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記基体表面の法線に対して、前記結晶粒の結晶面である(110)面および(111)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表した場合、(110)面または(111)面の少なくともいずれかの面について、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の30〜60%の割合を占める傾斜角度数分布グラフを示すダイヤモンド皮膜である、
ことを特徴とするダイヤモンド被覆工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
In a diamond-coated tool in which a diamond coating film having a thickness of 10 to 30 μm is coated on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) The diamond film has a film structure in which oriented diamond crystal grains having an average crystal grain size of 0.2 to 1.5 μm are dispersed and distributed in an average area ratio of 30 to 80% in a matrix of non-oriented diamond crystal grains. ,
(B) When the oriented diamond crystal grains are viewed along the thickness direction of the diamond film, the crystal grain size and the area ratio become smaller values toward the surface side,
(C) Using the field emission scanning electron microscope, the above-mentioned diamond film is irradiated with an electron beam on each crystal grain existing within the measurement range of the film cross-section polished surface perpendicular to the substrate surface. The inclination angle formed by the normal lines of the (110) plane and the (111) plane, which are crystal planes of the crystal grains, is measured with respect to the line, and the measurement is in the range of 0 to 45 degrees out of the measurement inclination angles. When the tilt angle is divided into pitches of 0.25 degrees, and when expressed in a tilt angle number distribution graph obtained by counting the frequencies existing in each section, at least one of (110) plane and (111) plane The maximum peak is present in the inclination angle section within the range of 0 to 10 degrees, and the sum of the frequencies existing within the range of 0 to 10 degrees is 30 to the entire frequency in the inclination angle frequency distribution graph. 60% of the trend A diamond film showing the angle frequency distribution graph,
A diamond-coated tool characterized by that. "
It has the characteristics.

つぎに、この発明のダイヤモンド被覆工具の被覆層について、詳細に説明する。   Next, the coating layer of the diamond-coated tool of the present invention will be described in detail.

本発明のダイヤモンド皮膜は、無配向ダイヤモンド結晶粒と配向ダイヤモンド結晶粒によって構成するが、無配向ダイヤモンド結晶粒は、従来から知られている成膜法で形成すればよい。
例えば、通常の熱フィラメント法による化学蒸着装置を用い、
フィラメント温度 1900〜2200℃、
フィラメント−基板間隔 10〜30mm、
基板温度 700〜850℃、
反応圧力 0.67〜6.7kPa、
反応ガス CH:3〜8vol%,H:残、
という条件の化学蒸着で成膜するが、この無配向ダイヤモンド皮膜は、それ自体が高硬度特性を備えるとともに、無配向ダイヤモンド皮膜中に分散分布する配向ダイヤモンド結晶粒が粗大化するのを抑制する作用を有する。
The diamond film of the present invention is composed of non-oriented diamond crystal grains and oriented diamond crystal grains. The non-oriented diamond crystal grains may be formed by a conventionally known film forming method.
For example, using a chemical vapor deposition apparatus by a normal hot filament method,
Filament temperature 1900-2200 ° C,
Filament-substrate spacing 10-30mm,
Substrate temperature 700-850 ° C,
Reaction pressure 0.67 to 6.7 kPa,
Reaction gas CH 4: 3~8vol%, H 2 : remainder,
The non-oriented diamond film itself has high hardness characteristics and suppresses the coarsening of oriented diamond crystal grains dispersed and distributed in the non-oriented diamond film. Have

本発明のダイヤモンド皮膜における配向ダイヤモンドは、例えば、
(110)面配向ダイヤモンドは、
フィラメント温度 2200〜2400℃、
フィラメント−基板間隔 10〜30mm、
基板温度 750〜900℃、
反応圧力 1.33〜13.3kPa、
反応ガス CH:0.5〜3vol%,H:残、
(111)面配向ダイヤモンドは、
フィラメント温度 2400〜2600℃、
フィラメント−基板間隔 10〜30mm、
基板温度 900〜1050℃、
反応圧力 1.33〜13.3kPa、
反応ガス CH:2〜6vol%,H:残、
という条件の化学蒸着で形成することができる。
ただ、本発明では、所定結晶粒径の配向ダイヤモンド結晶粒を、所定面積割合で無配向ダイヤモンド皮膜中に分散分布させるために、その成膜条件を、上記配向ダイヤモンドの成膜条件に加え、反応ガスとして、N:4.0〜15vol%を使用すると効果的である。
The oriented diamond in the diamond film of the present invention is, for example,
(110) plane-oriented diamond
Filament temperature 2200-2400 ° C
Filament-substrate spacing 10-30mm,
Substrate temperature 750-900 ° C,
Reaction pressure 1.33-13.3 kPa,
Reaction gas CH 4: 0.5~3vol%, H 2 : remainder,
(111) plane oriented diamond
Filament temperature 2400-2600 ° C
Filament-substrate spacing 10-30mm,
Substrate temperature 900-1050 ° C,
Reaction pressure 1.33-13.3 kPa,
Reaction gas CH 4: 2~6vol%, H 2 : remainder,
It can be formed by chemical vapor deposition under the conditions.
However, in the present invention, in order to disperse and distribute oriented diamond crystal grains having a predetermined crystal grain size in a non-oriented diamond film at a predetermined area ratio, the film forming conditions are added to the above-mentioned oriented diamond film forming conditions, and reaction is performed. It is effective to use N 2 : 4.0 to 15 vol% as the gas.

配向ダイヤモンド結晶粒の、ダイヤモンド皮膜全体としての平均結晶粒径及び平均面積割合、さらには、ダイヤモンド皮膜の厚さ方向に沿ってみた場合の厚さ位置に応じた配向ダイヤモンド結晶粒の結晶粒径及び面積割合は、主として、反応圧力、Nガス量によって調整することができる。
例えば、本発明で規定する(110)面配向ダイヤモンド結晶粒を蒸着成膜するための一具体例は以下のとおりである。
蒸着初期(ダイヤモンド皮膜の膜厚0〜5μm)には、
フィラメント温度 2000〜2300 ℃、
フィラメント−基板間隔 5〜20 mm、
基板温度 800〜1000 ℃、
反応圧力 1.33〜6.67 kPa、
反応ガス CH:1〜5vol%,N:0〜1vol%,H:残、
という条件で蒸着し、工具基体近傍(工具基体表面から、5μmの領域。以下、基体側領域という)に、基体側領域結晶粒径0.5〜2μmかつ基体側領域面積割合60〜80%で配向ダイヤモンド結晶粒が分散分布するダイヤモンド皮膜を形成し、
蒸着中期(ダイヤモンド皮膜の膜厚2〜10μm)には、
フィラメント温度 1900〜2200 ℃、
フィラメント−基板間隔 5〜20 mm、
基板温度 750〜900 ℃、
反応圧力 1.33〜3.99 kPa、
反応ガス CH:3〜10vol%,N:0〜2vol%,H:残、
という条件で蒸着し、工具基体近傍(工具基体表面から、3〜8μmの領域。以下、中央部領域という)に、中央部領域結晶粒径0.3〜1μmかつ中央部領域面積割合40〜70%で配向ダイヤモンド結晶粒が分散分布するダイヤモンド皮膜を形成し、
蒸着後期(ダイヤモンド皮膜の膜厚2〜10μm)には、
フィラメント温度 1900〜2100 ℃、
フィラメント−基板間隔 5〜20 mm、
基板温度 700〜900 ℃、
反応圧力 0.6〜2.67 kPa、
反応ガス CH:5〜10vol%,N:0〜2vol%,H:残、
という条件で蒸着し、ダイヤモンド皮膜表面近傍(皮膜表面から、5μmまでの領域。以下、表面側領域という)に、表面側領域結晶粒径0.1〜0.5μmかつ表面側領域面積割合30〜50%で配向ダイヤモンド結晶粒が分散分布するダイヤモンド皮膜を形成する。
上記条件で蒸着形成した配向ダイヤモンド結晶粒の結晶粒径は、1.5(μm)≧基体側領域結晶粒径(μm)>中央部領域結晶粒径(μm)>表面側領域結晶粒径(μm)≧0.2(μm)であって、また、同じく上記条件で蒸着形成した配向ダイヤモンド結晶粒の面積割合についても、80%≧基体側領域面積割合(%)>中央部領域面積割合(%)>表面側領域面積割合(%)≧30%となっており、“ダイヤモンド皮膜の厚さ方向に沿ってみた場合に、その結晶粒径及び面積割合が表面側に向かうほど小さな値となり”という本発明で規定する要件を満足している。
The average crystal grain size and average area ratio of the oriented diamond crystal grain as a whole diamond film, and the crystal grain size of the oriented diamond crystal grain according to the thickness position when viewed along the thickness direction of the diamond film and The area ratio can be adjusted mainly by the reaction pressure and the amount of N 2 gas.
For example, a specific example for depositing a (110) plane oriented diamond crystal grain defined in the present invention is as follows.
In the initial stage of deposition (diamond film thickness 0-5 μm)
Filament temperature 2000-2300 ° C,
Filament-substrate spacing 5-20 mm,
Substrate temperature 800-1000 ° C,
Reaction pressure 1.33 to 6.67 kPa,
Reaction gas CH 4: 1~5vol%, N 2 : 0~1vol%, H 2: remainder,
In the vicinity of the tool substrate (5 μm region from the tool substrate surface; hereinafter referred to as the substrate side region), the substrate side region crystal grain size is 0.5 to 2 μm and the substrate side region area ratio is 60 to 80%. Form a diamond film in which oriented diamond crystal grains are dispersed and distributed,
In the middle of vapor deposition (diamond film thickness 2-10 μm)
Filament temperature 1900-2200 ° C,
Filament-substrate spacing 5-20 mm,
Substrate temperature 750-900 ° C,
Reaction pressure 1.33 to 3.99 kPa,
Reaction gas CH 4: 3~10vol%, N 2 : 0~2vol%, H 2: remainder,
In the vicinity of the tool base (a region of 3 to 8 μm from the tool base surface; hereinafter referred to as the center region), the center region crystal grain size is 0.3 to 1 μm and the center region area ratio is 40 to 70. % To form a diamond film in which oriented diamond crystal grains are dispersed and distributed,
In the late stage of deposition (diamond film thickness 2-10 μm)
Filament temperature 1900-2100 ° C,
Filament-substrate spacing 5-20 mm,
Substrate temperature 700-900 ° C,
Reaction pressure 0.6-2.67 kPa,
Reaction gas CH 4: 5~10vol%, N 2 : 0~2vol%, H 2: remainder,
In the vicinity of the surface of the diamond film (area from the film surface to 5 μm; hereinafter referred to as surface side area), the surface side region crystal grain size is 0.1 to 0.5 μm and the surface side region area ratio is 30 to A diamond film in which oriented diamond crystal grains are dispersed and distributed is formed at 50%.
The crystal grain size of oriented diamond crystal grains formed by vapor deposition under the above conditions is 1.5 (μm) ≧ base-side region crystal grain size (μm)> central region crystal grain size (μm)> surface-side region crystal grain size ( μm) ≧ 0.2 (μm), and the area ratio of the oriented diamond crystal grains deposited under the same conditions is also 80% ≧ the substrate side region area ratio (%)> the central region area ratio ( %)> Surface-side area area ratio (%) ≧ 30%, “when viewed along the thickness direction of the diamond film, the crystal grain size and area ratio become smaller as going to the surface side” This satisfies the requirement defined in the present invention.

(111)面配向ダイヤモンド結晶粒の(平均)結晶粒径(μm)、(平均)面積割合(%)についても、前記(110)面配向ダイヤモンド結晶粒の場合と同様なことを確認している。
即ち、(111)面配向ダイヤモンド結晶粒を蒸着形成する際に、主として、反応圧力、Nガス量を調整することによって、1.5(μm)≧基体側領域結晶粒径(μm)>中央部領域結晶粒径(μm)>表面側領域結晶粒径(μm)≧0.2(μm)を満足する(111)面配向ダイヤモンド結晶粒の結晶粒径分布を形成することが可能であり、また、同時に、(111)面配向ダイヤモンド結晶粒の密度について、80%≧基体側領域面積割合(%)>中央部領域面積割合(%)>表面側領域面積割合(%)≧30%とすることが可能である。
The (average) crystal grain size (μm) and (average) area ratio (%) of the (111) plane-oriented diamond crystal grains are confirmed to be the same as those of the (110) plane-oriented diamond crystal grains. .
That is, when vapor-depositing (111) plane oriented diamond crystal grains, the reaction pressure and N 2 gas amount are mainly adjusted, so that 1.5 (μm) ≧ substrate side region crystal grain size (μm)> center It is possible to form a crystal grain size distribution of (111) plane oriented diamond crystal grains satisfying a partial region crystal grain size (μm)> surface side region crystal grain size (μm) ≧ 0.2 (μm), At the same time, the density of the (111) -oriented diamond crystal grains is 80% ≧ the substrate side region area ratio (%)> the central region area ratio (%)> the surface side region area ratio (%) ≧ 30%. It is possible.

無配向ダイヤモンド皮膜中に分散分布する配向ダイヤモンド結晶粒の平均結晶粒径が0.2μm未満あるいは同結晶粒の平均面積割合が30面積%未満の場合には、ダイヤモンド皮膜の強度の向上を期待することはできないため耐欠損性の向上を望めず、一方、配向ダイヤモンド結晶粒の平均結晶粒径が1.5μmを超える場合あるいは同結晶粒の平均面積割合が80面積%を超える場合には、ダイヤモンド皮膜からの配向ダイヤモンド結晶粒の剥離、欠落が生じやすくなるため欠損が発生しやすくなるとともに、ダイヤモンド皮膜の表面粗さが大になるため平滑性が低下し、初期切削抵抗が増大し、切削時のバリが発生しやすくなるので、配向ダイヤモンド結晶粒の平均結晶粒径は0.2〜1.5μm、また、配向ダイヤモンド結晶粒の平均面積割合は30〜80面積%と定めた。   When the average crystal grain size of the oriented diamond crystal grains dispersed and distributed in the non-oriented diamond film is less than 0.2 μm or the average area ratio of the crystal grains is less than 30% by area, an improvement in the strength of the diamond film is expected. If the average crystal grain size of the oriented diamond crystal grains exceeds 1.5 μm or the average area ratio of the crystal grains exceeds 80 area%, the diamond cannot be improved. Delamination and chipping of oriented diamond crystal grains from the film are likely to occur, and defects are likely to occur. Also, the surface roughness of the diamond film increases, resulting in reduced smoothness and increased initial cutting resistance. Therefore, the average crystal grain size of the oriented diamond crystal grains is 0.2 to 1.5 μm, and the average grain size of the oriented diamond crystal grains is Product ratio is defined as 30 to 80 area%.

さらに、本発明では、ダイヤモンド皮膜の厚さ方向に沿って、表面側に向かうほど、配向ダイヤモンド結晶粒の結晶粒径及び面積割合は小さな値となるようにしていることから、ダイヤモンド皮膜表面は、特に、表面粗さが小さく平滑であるため、初期切削抵抗は小さく、仕上げ面精度の向上を図ることができ、その一方、ダイヤモンド皮膜の基体側には、結晶粒径及び面積割合の大きい配向ダイヤモンド結晶粒が存在することによって、長期の使用に亘って、十分な耐摩耗性を確保することができる。   Furthermore, in the present invention, since the crystal grain size and the area ratio of the oriented diamond crystal grains become smaller toward the surface side along the thickness direction of the diamond film, the diamond film surface is In particular, since the surface roughness is small and smooth, the initial cutting resistance is small and the finished surface accuracy can be improved. On the other hand, oriented diamond with a large crystal grain size and area ratio is formed on the substrate side of the diamond film. Due to the presence of crystal grains, sufficient wear resistance can be ensured over a long period of use.

また、上記配向ダイヤモンド結晶粒と無配向ダイヤモンド結晶粒からなるダイヤモンド皮膜について、電界放出型走査電子顕微鏡を用い、基体表面に対し垂直な皮膜断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記基体表面の法線に対して、前記結晶粒の結晶面である(110)面および(111)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成したところ、上記ダイヤモンド皮膜では、(110)面または(111)面の少なくともいずれかの面について、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の30〜60%の割合を占める傾斜角度数分布グラフを示すのに対して、無配向ダイヤモンド結晶粒では、(110)面、(111)面のいずれの面についても、0〜10度の範囲内の傾斜角区分に最高ピークは存在せず、かつに、前記0〜10度の範囲内に存在する度数の合計は、傾斜角度数分布グラフにおける度数全体の30%未満という小さな割合を占めるに過ぎなかった。
そして、上記(110)面、(111)面への配向を示す配向ダイヤモンド結晶粒は、無配向ダイヤモンド結晶粒に比して、すぐれた高硬度と高強度を相兼ね備えている。
In addition, with respect to the diamond film composed of the above-mentioned oriented diamond crystal grains and non-oriented diamond crystal grains, a field emission scanning electron microscope is used. And measuring the inclination angle formed by the normal lines of the (110) plane and the (111) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the substrate surface, When the measured inclination angle in the range of 0 to 45 degrees is divided into 0.25 degree pitches, and the inclination angle number distribution graph is formed by counting the frequencies existing in each division, the diamond In the coating, at least one of the (110) plane and the (111) plane has the highest peak in the tilt angle section within the range of 0 to 10 degrees, and exists within the range of 0 to 10 degrees. In contrast, the non-oriented diamond crystal grains have a (110) plane, (111), while the non-oriented diamond crystal grains show a tilt angle frequency distribution graph that occupies 30 to 60% of the total frequency in the tilt angle frequency distribution graph. For any of the planes, the highest peak does not exist in the inclination angle section within the range of 0 to 10 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees is an inclination angle number distribution. It accounted for only a small percentage of less than 30% of the total frequency in the graph.
The oriented diamond crystal grains exhibiting orientation to the (110) plane and the (111) plane have both excellent high hardness and high strength as compared with non-oriented diamond crystal grains.

本発明では、上記の配向ダイヤモンド結晶粒と無配向ダイヤモンド結晶粒とからなるダイヤモンド皮膜の膜厚を、10〜30μmとしているが、ダイヤモンド皮膜の膜厚が10μm未満では長期の使用に亘っての耐摩耗性を確保することができないばかりか、厚膜化による長寿命化を図ることもできず、一方、膜厚が30μmを超えると、ダイヤモンド皮膜の強度が低下するとともに、皮膜表面の平滑性も低下するようになるため、切刃の欠損や切削時のバリが発生しやすくなることから、ダイヤモンド皮膜の膜厚を、10〜30μmと定めた。   In the present invention, the film thickness of the diamond film composed of the above-mentioned oriented diamond crystal grains and non-oriented diamond crystal grains is set to 10 to 30 μm. However, when the film thickness of the diamond film is less than 10 μm, it has a long-term durability. In addition to not being able to ensure wearability, it is not possible to extend the life by increasing the film thickness. On the other hand, when the film thickness exceeds 30 μm, the strength of the diamond film decreases and the smoothness of the film surface also decreases. Since it is likely to be reduced, chipping of the cutting edge and burrs at the time of cutting are likely to occur, so the film thickness of the diamond film was determined to be 10 to 30 μm.

この発明のダイヤモンド被覆工具は、平均粒径0.2〜1.5μmの配向ダイヤモンド結晶粒が、無配向ダイヤモンド皮膜中に平均面積割合で30〜80面積%分散分布し、かつ、ダイヤモンド皮膜の厚さ方向に沿ってみた場合に、ダイヤモンド皮膜の表面側に向かうほど、配向ダイヤモンド結晶粒の結晶粒径及び面積割合が小さくなるように分散分布し、さらに、ダイヤモンド皮膜の結晶粒の(110)面あるいは(111)面が、皮膜の厚さ方向に強配向していることにより、ダイヤモンド皮膜が高硬度、高強度を有し、特にダイヤモンド皮膜の表面側は平滑性にすぐれ、一方、基体側は十分な耐摩耗性を保持し、さらに配向ダイヤモンド結晶粒の粗大化の防止も図られる結果、厚膜化を行った場合でも、ダイヤモンド皮膜の剥離、欠落が生じることはなく、ダイヤモンド皮膜の備えるすぐれた特性(高硬度、高強度)の劣化が生じることはない。
したがって、この発明のダイヤモンド被覆工具を、CFRP、Al合金等の高速切削加工に用いた場合であっても、初期切削抵抗が小さく、シャープな切刃を維持したまま、バリを発生することもなく、すぐれた仕上げ面精度を確保することができ、さらに、すぐれた耐欠損性および耐摩耗性を長期の使用に亘って発揮するものである。
In the diamond-coated tool of the present invention, oriented diamond crystal grains having an average grain size of 0.2 to 1.5 μm are distributed and distributed in an average area ratio of 30 to 80 area% in the non-oriented diamond film, and the thickness of the diamond film When viewed along the vertical direction, it is dispersed and distributed such that the crystal grain size and area ratio of the oriented diamond crystal grains become smaller toward the surface side of the diamond film, and the (110) plane of the crystal grains of the diamond film is further distributed. Alternatively, since the (111) plane is strongly oriented in the thickness direction of the film, the diamond film has high hardness and high strength, and in particular, the surface side of the diamond film is excellent in smoothness, while the substrate side is As a result of maintaining sufficient wear resistance and preventing coarsening of oriented diamond crystal grains, even when the film thickness is increased, the diamond film is peeled off or missing. Never occur, excellent characteristics (high hardness, high strength) provided in the diamond film does not occur degradation of.
Therefore, even when the diamond-coated tool of the present invention is used for high-speed cutting of CFRP, Al alloy, etc., the initial cutting resistance is small, and a sharp cutting edge is maintained and no burrs are generated. Thus, excellent finished surface accuracy can be ensured, and excellent chipping resistance and wear resistance can be exhibited over a long period of use.

つぎに、この発明のダイヤモンド被覆工具を実施例により具体的に説明する。
ここでは、ダイヤモンド被覆工具を、エンドミル、ドリルに適用した場合について述べるが、本発明はこれに限定されるものではなく、各種の切削工具に適用することが可能である。
Next, the diamond-coated tool of the present invention will be specifically described with reference to examples.
Here, although the case where a diamond covering tool is applied to an end mill and a drill is described, the present invention is not limited to this, and can be applied to various cutting tools.

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の2枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powder was prepared, each of these raw material powders was blended in the blending composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressed into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Then, a tool bar forming round bar sintered body having a diameter of 13 mm is formed, and further, the above-mentioned round bar sintered body is subjected to grinding, so that the cutting blade portion diameter × length is 10 mm × 22 mm, and Tool bases (end mills) C-1 to C-8 made of a WC-based cemented carbide having a two-blade square shape with a twist angle of 30 degrees were produced.

ついで、これらの工具基体(エンドミル)C−1〜C−4の表面をアセトン中で超音波洗浄し、乾燥した後、酸溶液によるエッチングおよび/またはアルカリ溶液によるエッチング処理を行い、さらに、ダイヤモンド粉末スラリー液を用いて超音波洗浄器で超音波処理を行なった後、
(a)まず、
フィラメント温度 2000℃、
フィラメント−基板間隔 15mm、
基板温度 800℃、
反応圧力 2.66kPa、
反応ガス CH:4.5vol%,H:残、
という条件で蒸着し、工具基体の表面に、無配向ダイヤモンド皮膜を成膜し、
(b)ついで、成膜条件を変更し、上記配向ダイヤモンド皮膜の表面に、
フィラメント温度 2300℃、
フィラメント−基板間隔 15mm、
基板温度 850℃、
反応圧力 2.0kPa、
反応ガス CH:1.5vol%,N:0.5vol%,H:残、
という条件で、配向ダイヤモンド結晶粒を形成し、
(c)上記(a)、(b)の成膜工程を繰り返し行い、さらに、成膜の進行とともに、(b)の成膜工程における反応ガス成分であるNの含有割合を2vol%までに次第に増加させていくことにより、
(d)表2に示される平均結晶粒径、平均面積割合の配向ダイヤモンド結晶粒が無配向ダイヤモンド皮膜中に分散分布し、かつ、同じく表2に示されるようにダイヤモンド皮膜の厚さ方向に沿って、表面側に向かうほど、配向ダイヤモンド結晶粒の結晶粒径及び面積割合が小さくなるように分散分布した目標膜厚のダイヤモンド皮膜を成膜することにより、本発明のダイヤモンド被覆エンドミル(以下、本発明エンドミルという)1〜4をそれぞれ製造した。
Next, the surfaces of these tool bases (end mills) C-1 to C-4 are ultrasonically cleaned in acetone and dried, and then etching with an acid solution and / or etching with an alkali solution is performed. After performing ultrasonic treatment with an ultrasonic cleaner using the slurry liquid,
(A) First,
Filament temperature 2000 ° C
Filament-substrate spacing 15mm,
Substrate temperature 800 ° C
Reaction pressure 2.66 kPa,
Reaction gas CH 4: 4.5vol%, H 2 : remainder,
Vapor deposition under the condition of, a non-oriented diamond film is formed on the surface of the tool base,
(B) Next, the film forming conditions are changed, and the surface of the oriented diamond film is changed to
Filament temperature 2300 ° C
Filament-substrate spacing 15mm,
Substrate temperature 850 ° C
Reaction pressure 2.0 kPa,
Reaction gas CH 4: 1.5vol%, N 2 : 0.5vol%, H 2: remainder,
Under these conditions, oriented diamond crystal grains are formed,
(C) The film forming steps (a) and (b) are repeated, and the content ratio of N 2 which is a reactive gas component in the film forming step (b) is increased to 2 vol% as the film formation proceeds. By gradually increasing it,
(D) Oriented diamond crystal grains having an average crystal grain size and an average area ratio shown in Table 2 are dispersed and distributed in the non-oriented diamond film, and also along the thickness direction of the diamond film as shown in Table 2. The diamond coated end mill (hereinafter referred to as the present invention) is formed by forming a diamond film having a target film thickness that is dispersed and distributed so that the grain size and area ratio of the oriented diamond crystal grains become smaller toward the surface side. Inventive end mills (1-4) were produced.

また、前記工具基体(エンドミル)C−5〜C−8の表面に上記と同様のコーティング前処理を行なった後、
(e)まず、
フィラメント温度 2000℃、
フィラメント−基板間隔 15mm、
基板温度 800℃、
反応圧力 2.66kPa、
反応ガス CH:4.5vol%,H:残、
という条件で蒸着し、工具基体の表面に、無配向ダイヤモンド皮膜を成膜し、
(f)ついで、成膜条件を変更し、上記配向ダイヤモンド皮膜の表面に、
フィラメント温度 2500℃、
フィラメント−基板間隔 15mm、
基板温度 950℃、
反応圧力 2.0kPa、
反応ガス CH:3.5vol%,N:1.0vol%,H:残、
という条件で、配向ダイヤモンド結晶粒を形成し、
(g)上記(e)、(f)の成膜工程を繰り返し行い、さらに、成膜の進行とともに、(f)の成膜工程における反応ガス成分であるNの含有割合を2vol%までに次第に増加させていくことにより、
(h)表2に示される平均結晶粒径、平均面積割合の配向ダイヤモンド結晶粒が無配向ダイヤモンド皮膜中に分散分布し、かつ、同じく表2に示されるようにダイヤモンド皮膜の厚さ方向に沿って、表面側に向かうほど、配向ダイヤモンド結晶粒の結晶粒径及び面積割合が小さくなるように分散分布した目標膜厚のダイヤモンド皮膜を成膜することにより、本発明のダイヤモンド被覆エンドミル(以下、本発明エンドミルという)5〜8をそれぞれ製造した。
Moreover, after performing the same coating pretreatment as the above on the surface of the tool base (end mill) C-5 to C-8,
(E) First
Filament temperature 2000 ° C
Filament-substrate spacing 15mm,
Substrate temperature 800 ° C
Reaction pressure 2.66 kPa,
Reaction gas CH 4: 4.5vol%, H 2 : remainder,
Vapor deposition under the condition of, a non-oriented diamond film is formed on the surface of the tool base,
(F) Next, the film forming conditions are changed, and the surface of the oriented diamond film is changed to
Filament temperature 2500 ° C,
Filament-substrate spacing 15mm,
Substrate temperature 950 ° C
Reaction pressure 2.0 kPa,
Reaction gas CH 4: 3.5vol%, N 2 : 1.0vol%, H 2: remainder,
Under these conditions, oriented diamond crystal grains are formed,
(G) The film forming steps (e) and (f) are repeated, and the content ratio of N 2 which is a reactive gas component in the film forming step (f) is increased to 2 vol% as the film formation proceeds. By gradually increasing it,
(H) Oriented diamond crystal grains having an average crystal grain size and an average area ratio shown in Table 2 are dispersed and distributed in the non-oriented diamond film, and also along the thickness direction of the diamond film as shown in Table 2. The diamond coated end mill (hereinafter referred to as the present invention) is formed by forming a diamond film having a target film thickness that is dispersed and distributed so that the grain size and area ratio of the oriented diamond crystal grains become smaller toward the surface side. Inventive end mills (5-8) were produced.

比較の目的で、上記の工具基体(エンドミル)C−1〜C−4の表面に上記と同様のコーティング前処理を施した状態で、上記実施例1の(a)と同一の条件で、上記工具基体(エンドミル)の表面に、表3に示される目標膜厚の無配向ダイヤモンド結晶粒のみからなるダイヤモンド皮膜を成膜することにより、比較ダイヤモンド被覆エンドミル(以下、比較エンドミルという)1〜4をそれぞれ製造した。   For the purpose of comparison, the surface of the tool base (end mill) C-1 to C-4 was subjected to the same coating pretreatment as described above, under the same conditions as in Example 1 (a). Comparative diamond-coated end mills (hereinafter referred to as “comparative end mills”) 1 to 4 are formed on the surface of the tool base (end mill) by forming a diamond film consisting only of non-oriented diamond crystal grains having the target film thickness shown in Table 3. Each was manufactured.

さらに比較の目的で、上記の工具基体(エンドミル)C−5〜C−8の表面に上記と同様のコーティング前処理を施した状態で、上記実施例1の(b)と同一の条件で、上記工具基体(エンドミル)の表面に、表3に示される目標膜厚の配向ダイヤモンド皮膜のみを蒸着形成することにより、比較ダイヤモンド被覆工具としての比較ダイヤモンド被覆エンドミル(以下、比較エンドミルという)5〜8をそれぞれ製造した。   Furthermore, for the purpose of comparison, in the state where the coating pretreatment similar to the above was applied to the surface of the tool base (end mill) C-5 to C-8, under the same conditions as in Example 1 (b), Comparative diamond-coated end mills (hereinafter referred to as comparative end mills) 5 to 8 as comparative diamond-coated tools are formed by depositing only an oriented diamond film having a target film thickness shown in Table 3 on the surface of the tool base (end mill). Were manufactured respectively.

つぎに、上記本発明エンドミル1〜8および上記比較エンドミル1〜8のダイヤモンド皮膜について、電界放出型走査電子顕微鏡を用い、基体表面に対し垂直な皮膜断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記基体表面の法線に対して、前記結晶粒の結晶面である(110)面および(111)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した。   Next, with respect to the diamond films of the present invention end mills 1 to 8 and the comparative end mills 1 to 8, using a field emission scanning electron microscope, the crystal grains present in the measurement range of the film cross-section polished surface perpendicular to the substrate surface Individually irradiated with an electron beam, the inclination angle formed by the normal lines of the (110) plane and (111) plane, which are crystal planes of the crystal grains, is measured with respect to the normal line of the substrate surface. Among the angles, the measured inclination angle within the range of 0 to 45 degrees was divided for each pitch of 0.25 degrees, and an inclination angle number distribution graph was created by counting the frequencies existing in each division.

図2に、一例として、比較エンドミル1の無配向ダイヤモンド結晶粒の(110)面についての傾斜角度数分布グラフを示すが、比較エンドミル1〜4の無配向ダイヤモンド結晶粒の(110)面および111面の傾斜角度数分布グラフは、いずれもほぼ同様な傾斜角度数分布グラフを示し、0〜10度の範囲内の傾斜角区分には特段のピークが存在せず、0〜10度の範囲内に存在する度数の合計も、傾斜角度数分布グラフにおける度数全体の25%以下にすぎない小さな値であった。
図3には、一例として、本発明エンドミル3の配向ダイヤモンド結晶粒の(110)面についての傾斜角度数分布グラフを示すが、本発明エンドミル1〜4のダイヤモンド皮膜の(110)面の傾斜角度数分布グラフは、いずれもほぼ同様な傾斜角度数分布グラフを示し、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の30〜60%の割合を占めた。
図4には、一例として、本発明エンドミル6の配向ダイヤモンド結晶粒の(111)面についての傾斜角度数分布グラフを示すが、本発明エンドミル5〜8のダイヤモンド皮膜の(111)面の傾斜角度数分布グラフは、いずれもほぼ同様な傾斜角度数分布グラフを示しし、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の30〜60%の割合を占めた。
FIG. 2 shows, as an example, an inclination angle number distribution graph for the (110) plane of the non-oriented diamond crystal grains of the comparative end mill 1, and the (110) plane and 111 of the non-oriented diamond crystal grains of the comparative end mills 1 to 4. The surface inclination angle number distribution graphs show almost the same inclination angle number distribution graphs, and there is no special peak in the inclination angle division within the range of 0 to 10 degrees, and within the range of 0 to 10 degrees. The sum of the frequencies existing in the graph was also a small value that was only 25% or less of the total frequencies in the inclination angle frequency distribution graph.
FIG. 3 shows, as an example, an inclination angle number distribution graph for the (110) plane of the oriented diamond crystal grains of the end mill 3 of the present invention. The inclination angle of the (110) plane of the diamond film of the end mills 1 to 4 of the present invention. The number distribution graphs show almost the same inclination angle number distribution graphs, where the highest peak exists in the inclination angle section within the range of 0 to 10 degrees, and the frequency existing within the range of 0 to 10 degrees. The total accounted for 30-60% of the total frequency in the slope angle distribution graph.
FIG. 4 shows, as an example, a tilt angle number distribution graph for the (111) plane of the oriented diamond crystal grains of the end mill 6 of the present invention. The tilt angle of the (111) plane of the diamond film of the end mills 5 to 8 of the present invention. The number distribution graphs show almost the same inclination angle number distribution graphs. The highest peak is present in the inclination angle section within the range of 0 to 10 degrees, and the frequency is within the range of 0 to 10 degrees. Accounted for 30-60% of the total frequency in the slope angle distribution graph.

表2、表3に、本発明エンドミル1〜8および上記比較エンドミル1〜8のダイヤモンド皮膜について測定された最高ピークが存在する傾斜角区分、0〜10度の範囲内に存在する度数割合を示す。   Tables 2 and 3 show the inclination angle sections where the highest peaks exist for the diamond films of the present invention end mills 1 to 8 and the comparative end mills 1 to 8, and the frequency ratios existing in the range of 0 to 10 degrees. .

また、表2、表3には、本発明エンドミル1〜8および比較エンドミル5〜8のダイヤモンド皮膜について、上記皮膜断面の測定結果から得られる皮膜断面における配向ダイヤモンド結晶粒個々を画像解析装置により処理することによって算出したダイヤモンド皮膜の層厚方向の各位置(基体側、中央部、表面側)における配向ダイヤモンド結晶粒の結晶粒径を、また、ダイヤモンド皮膜全体としての配向ダイヤモンド結晶粒の平均結晶粒径を示した。
さらに、表2には、本発明エンドミル1〜8のダイヤモンド皮膜について、同様の処理によって算出したダイヤモンド皮膜の層厚方向の各位置(基体側、中央部、表面側)における配向ダイヤモンド結晶粒の面積割合(面積%)を、また、ダイヤモンド皮膜全体としての配向ダイヤモンド結晶粒の平均面積割合(面積%)を示した。
Tables 2 and 3 show that the diamond films of the present invention end mills 1 to 8 and comparative end mills 5 to 8 are each processed with an image analysis device on each of the oriented diamond crystal grains in the film cross section obtained from the measurement result of the film cross section. The crystal grain size of the oriented diamond crystal grains at each position in the layer thickness direction of the diamond film (substrate side, center part, surface side) calculated by the above, and the average grain size of the oriented diamond crystal grains as a whole diamond film The diameter is shown.
Further, Table 2 shows the area of the oriented diamond crystal grains at each position (substrate side, central portion, surface side) in the layer thickness direction of the diamond film calculated by the same process for the diamond films of the present invention end mills 1-8. The ratio (area%) is shown, and the average area ratio (area%) of the oriented diamond crystal grains as the whole diamond film is shown.

つぎに、上記本発明エンドミル1〜8および上記比較エンドミル1〜8のうち、
本発明エンドミル1、2、5、6および比較エンドミル1、2、5、6については、
被削材−平面寸法:100mm×250mm、厚さ:5mmの、炭素繊維と熱硬化型エポキシ系樹脂が直交積層構造を持つ炭素繊維強化樹脂複合材(CFRP)の板材、
切削速度: 240 m/min.、
切断加工:(5 mm)、
テーブル送り: 1500 mm/分、
エアブロー、
の条件(切削条件A)での上記CFRPの乾式高速切断加工試験、
本発明エンドミル3、4、7、8および比較エンドミル3、4、7、8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、JIS・ADC12の板材、
切削速度: 420 m/min.、
溝深さ(切り込み):径方向(ae)2.5mm,軸方向(ap)8mm、
テーブル送り: 1200 mm/分、
エアーブロー、
の条件(切削条件B)での上記Al合金の乾式高速側面切削加工試験、
をそれぞれ行い、いずれの切削加工試験でも切刃部に欠損が発生するまでの切削溝長、あるいは、被削材にバリが発生するまでの切削溝長を測定した。
これらの測定結果を表4にそれぞれ示した。
Next, of the present invention end mills 1-8 and the comparative end mills 1-8,
For the present invention end mills 1, 2, 5, 6 and comparative end mills 1, 2, 5, 6
Workpiece material-planar dimensions: 100 mm × 250 mm, thickness: 5 mm, carbon fiber reinforced resin composite material (CFRP) plate material having an orthogonal laminated structure of carbon fiber and thermosetting epoxy resin,
Cutting speed: 240 m / min. ,
Cutting process: (5 mm),
Table feed: 1500 mm / min,
Air blow,
The above-mentioned CFRP dry high-speed cutting test under the above conditions (cutting condition A),
For the present invention end mills 3, 4, 7, 8 and comparative end mills 3, 4, 7, 8
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm, JIS / ADC12 plate material,
Cutting speed: 420 m / min. ,
Groove depth (cut): radial direction (ae) 2.5 mm, axial direction (ap) 8 mm,
Table feed: 1200 mm / min,
Air blow,
Dry high-speed side cutting test of the above Al alloy under the following conditions (cutting condition B),
In each cutting test, the cutting groove length until the cutting edge portion was damaged or the cutting groove length until the burr was generated in the work material was measured.
These measurement results are shown in Table 4, respectively.

Figure 2010207947
Figure 2010207947

Figure 2010207947
Figure 2010207947

Figure 2010207947
Figure 2010207947

Figure 2010207947
Figure 2010207947

上記の実施例1で製造した直径が13mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。   Using the round bar sintered body with a diameter of 13 mm manufactured in Example 1 above, from this round bar sintered body, the diameter x length of the groove forming portion x 10 mm x 22 mm and twisting were performed by grinding. WC base cemented carbide tool bases (drills) D-1 to D-8 having a two-blade shape with a 30 degree angle were manufactured.

ついで、これらの工具基体(ドリル)D−1〜D−4の切刃に、ホーニングを施し、上記実施例1と同様のコーティング前処理を施した後、上記実施例1の(a)〜(c)と同一の条件で、工具基体(ドリル)D−1〜D−4の表面に、表5に示される(平均)結晶粒径、(平均)面積割合の配向ダイヤモンド結晶粒が無配向ダイヤモンド皮膜中に分散分布する、同じく表5に示される目標膜厚のダイヤモンド皮膜を成膜することにより、本発明のダイヤモンド被覆ドリル(以下、本発明ドリルという)1〜4をそれぞれ製造した。   Next, honing is performed on the cutting edges of these tool bases (drills) D-1 to D-4, and the same coating pretreatment as that in Example 1 is performed. Under the same conditions as in c), oriented diamond crystal grains having the (average) crystal grain size and (average) area ratio shown in Table 5 are formed on the surfaces of the tool bases (drills) D-1 to D-4. Diamond coated drills (hereinafter referred to as the present invention drills) 1 to 4 of the present invention were produced by depositing a diamond film having a target film thickness as shown in Table 5 dispersed and distributed in the film.

また、前記工具基体(ドリル)D−5〜D−8の切刃に、ホーニングを施し、上記実施例1と同様のコーティング前処理を施した後、上記実施例1の(e)〜(g)と同一の条件で、工具基体(ドリル)D−5〜D−8の表面に、表5に示される(平均)結晶粒径、(平均)面積割合の配向ダイヤモンド結晶粒が無配向ダイヤモンド皮膜中に分散分布する、同じく表5に示される目標膜厚のダイヤモンド皮膜を成膜することにより、本発明ドリル5〜8をそれぞれ製造した。   In addition, honing is performed on the cutting edges of the tool bases (drills) D-5 to D-8, and the same coating pretreatment as that in Example 1 is performed, and then (e) to (g) in Example 1 above. ) On the surfaces of the tool bases (drills) D-5 to D-8, the (average) crystal grain size and the (average) area ratio of oriented diamond crystal grains shown in Table 5 are non-oriented diamond films. The present invention drills 5 to 8 were manufactured by depositing a diamond film having a target thickness shown in Table 5 which is dispersed and distributed therein.

比較の目的で、上記の工具基体(ドリル)D−1、D−2、D−5、D−6の表面に、ホーニングを施し、上記実施例1と同様のコーティング前処理を施した後、上記実施例1の(a)と同一の条件で、上記工具基体(ドリル)の表面に、表6に示される目標膜厚の無配向ダイヤモンド結晶粒のみからなるダイヤモンド皮膜を成膜することにより、比較ダイヤモンド被覆ドリル(以下、比較ドリルという)1、2、5、6をそれぞれ製造した。   For the purpose of comparison, honing was performed on the surface of the tool base (drill) D-1, D-2, D-5, D-6, and the same coating pretreatment as in Example 1 was performed. By depositing a diamond film consisting only of non-oriented diamond crystal grains having a target film thickness shown in Table 6 on the surface of the tool base (drill) under the same conditions as in Example 1 (a), Comparative diamond-coated drills (hereinafter referred to as comparative drills) 1, 2, 5, and 6 were produced.

さらに比較の目的で、上記の工具基体(ドリル)D−3、D−4、D−7、D−8の表面に上記実施例1と同様のコーティング前処理を施した後、上記実施例1の(b)と同一の条件で、上記工具基体(ドリル)の表面に、表6に示される目標膜厚の配向ダイヤモンド結晶粒のみからなるダイヤモンド皮膜を成膜することにより、比較ダイヤモンド被覆ドリル(以下、比較ドリルという)3、4、7、8をそれぞれ製造した。   Furthermore, for the purpose of comparison, the surface of the above-mentioned tool base (drill) D-3, D-4, D-7, D-8 was subjected to the same coating pretreatment as in Example 1, and then Example 1 In the same conditions as in (b) above, a diamond film consisting only of oriented diamond crystal grains having the target film thickness shown in Table 6 is formed on the surface of the tool base (drill), whereby a comparative diamond-coated drill ( (Hereinafter referred to as comparative drills) 3, 4, 7, and 8 were produced.

つぎに、上記本発明ドリル1〜8および上記比較ドリル1〜8のダイヤモンド皮膜について、電界放出型走査電子顕微鏡を用い、基体表面に対し垂直な皮膜断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記基体表面の法線に対して、前記結晶粒の結晶面である(110)面および(111)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成し、表5、6に、最高ピークが存在する傾斜角区分、0〜10度の範囲内に存在する度数割合を示した。   Next, with respect to the diamond films of the drills 1 to 8 of the present invention and the comparative drills 1 to 8, using a field emission scanning electron microscope, the crystal grains existing within the measurement range of the polished cross section of the film perpendicular to the substrate surface Individually irradiated with an electron beam, the inclination angle formed by the normal lines of the (110) plane and (111) plane, which are crystal planes of the crystal grains, is measured with respect to the normal line of the substrate surface. Among the angles, the measurement inclination angle within the range of 0 to 45 degrees is divided for each pitch of 0.25 degrees, and the inclination angle number distribution graph is created by counting the frequencies existing in each division, Tables 5 and 6 show the inclination angle division where the highest peak exists and the frequency ratio existing within the range of 0 to 10 degrees.

また、表5、表6には、本発明ドリル1〜8および比較ドリル5〜8のダイヤモンド皮膜について、上記皮膜断面の測定結果から得られる皮膜断面における配向ダイヤモンド結晶粒個々を画像解析装置により処理することによって算出した、ダイヤモンド皮膜の層厚方向の各位置(基体側、中央部、表面側)における配向ダイヤモンド結晶粒の結晶粒径を、また、ダイヤモンド皮膜全体としての配向ダイヤモンド結晶粒の平均結晶粒径を示した。
さらに、表5には、本発明ドリル1〜8のダイヤモンド皮膜について、同様の処理によって算出した、ダイヤモンド皮膜の層厚方向の各位置(基体側、中央部、表面側)における配向ダイヤモンド結晶粒の面積割合を、また、ダイヤモンド皮膜全体としての配向ダイヤモンド結晶粒の平均面積割合を示した。
Further, in Tables 5 and 6, with respect to the diamond coatings of the present invention drills 1 to 8 and comparative drills 5 to 8, each of the oriented diamond crystal grains in the coating cross section obtained from the measurement result of the coating cross section is processed by an image analyzer. The crystal grain size of the oriented diamond crystal grains at each position in the layer thickness direction of the diamond film (substrate side, center part, surface side) calculated by The particle size is shown.
Further, in Table 5, the diamond film of the drills 1 to 8 of the present invention was calculated by the same process, and the diamond crystal grains at each position in the layer thickness direction of the diamond film (substrate side, center part, surface side) were calculated. The area ratio and the average area ratio of oriented diamond crystal grains as a whole diamond film are shown.

つぎに、上記本発明ドリル1〜8および比較ドリル1〜8のうち、
本発明ドリル1〜4および比較ドリル1〜4については、
被削材−平面寸法:100mm×250mm、厚さ:8mmの、炭素繊維と熱硬化型エポキシ系樹脂が直交積層構造を持つ炭素繊維強化樹脂複合材(CFRP)の板材、
切削速度: 180 m/min.、
送り: 0.06 mm/rev、
貫通穴:(8 mm)、
の条件(切削条件C)での上記CFRPの乾式高速穴あけ切削加工試験、
本発明ドリル5〜8および比較ドリル5〜8については、
被削材−平面寸法:100mm×250mm、厚さ:15mmの、JIS・ADC12の板材
切削速度: 220 m/min.、
送り: 0.09 mm/rev、
貫通穴:(15 mm)、
の条件(切削条件D)での上記Al合金の乾式高速穴あけ切削加工試験、
をそれぞれ行い、いずれの乾式高速穴あけ切削加工試験でも、切刃部に欠陥が発生するまで、あるいは、被削材にバリが発生するまでの穴あけ加工数を測定した。
この測定結果を表7にそれぞれ示した。
Next, among the above-mentioned drills 1-8 and comparative drills 1-8,
About this invention drills 1-4 and comparative drills 1-4,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 8 mm, carbon fiber reinforced resin composite material (CFRP) plate material with carbon fiber and thermosetting epoxy resin having an orthogonal laminated structure,
Cutting speed: 180 m / min. ,
Feed: 0.06 mm / rev,
Through hole: (8 mm),
The above-mentioned CFRP dry high-speed drilling test under the above conditions (cutting condition C),
About this invention drill 5-8 and comparative drills 5-8,
Work Material-Plane Dimensions: 100mm x 250mm, Thickness: 15mm, JIS / ADC12 Plate Material
Cutting speed: 220 m / min. ,
Feed: 0.09 mm / rev,
Through hole: (15 mm),
Dry high-speed drilling test of the above Al alloy under the conditions (cutting condition D)
In each dry high-speed drilling test, the number of drilling operations until a defect occurred in the cutting edge or a burr occurred in the work material was measured.
The measurement results are shown in Table 7, respectively.

Figure 2010207947
Figure 2010207947

Figure 2010207947
Figure 2010207947

Figure 2010207947
Figure 2010207947

表2〜7に示される結果から、本発明ダイヤモンド被覆工具としての本発明エンドミル1〜8および本発明ドリル1〜8は、配向ダイヤモンド結晶粒がすぐれた高硬度、高強度を備えるとともに、無配向ダイヤモンド皮膜中に所定(平均)結晶粒径、所定(平均)面積割合、所定の配向性を有する配向ダイヤモンド結晶粒が分散分布しているため、配向ダイヤモンド結晶粒の粗大化が防止され、ダイヤモンド皮膜表面の平滑性にすぐれ、かつ、ダイヤモンド皮膜全体としての硬度、強度が向上し、しかも、厚膜化が可能であり、その結果、金属材料よりも比強度、比剛性の高いCFRPあるいは溶着性の高いAl合金等の高速切削に際し、切削初期抵抗が小さく、シャープな切刃を維持しつつ、バリの発生を抑制し、長期の使用に亘って、すぐれた耐欠損性と耐摩耗性を発揮するのに対して、無配向ダイヤモンド皮膜のみ、あるいは、配向ダイヤモンド皮膜のみを被覆した比較エンドミル1〜8、比較ドリル1〜8においては、強度が劣りまた厚膜化ができないため、切刃の劣化、バリの発生等が生じるとともに、欠損の発生、耐摩耗性の劣化により工具寿命が短命なものであった。   From the results shown in Tables 2 to 7, the present end mills 1 to 8 and the present drills 1 to 8 as the diamond coated tool of the present invention have high hardness and high strength with oriented diamond crystal grains, and are not oriented. Since the oriented diamond crystal grains having a predetermined (average) crystal grain size, a predetermined (average) area ratio, and a predetermined orientation are dispersed and distributed in the diamond film, coarsening of the oriented diamond crystal grains is prevented, and the diamond film Excellent surface smoothness, improved hardness and strength of the entire diamond film, and can be made thicker. As a result, CFRP or weldability has higher specific strength and specific rigidity than metal materials. In high-speed cutting of high Al alloys, etc., the initial resistance of cutting is small, while maintaining a sharp cutting edge, the generation of burrs is suppressed, and long-term use is ensured. The comparative end mills 1 to 8 and the comparative drills 1 to 8 coated with only the non-oriented diamond film or only the oriented diamond film are inferior in strength while exhibiting the fracture resistance and wear resistance. Since the film could not be thickened, the cutting edge was deteriorated, burrs were generated, and the tool life was short due to the occurrence of defects and the deterioration of wear resistance.

上述のように、この発明のダイヤモンド被覆工具は、通常条件での切削加工は勿論のこと、金属材料よりも比強度、比剛性の高いCFRPあるいは溶着性の高いAl合金等の高速切削においても、切刃の劣化、バリの発生を防止し、長期の使用に亘って、すぐれた耐欠損性と耐摩耗性を発揮するものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the diamond-coated tool of the present invention can be used not only for cutting under normal conditions but also for high-speed cutting such as CFRP having a higher specific strength and specific rigidity than a metal material or Al alloy having a high weldability. Prevents the deterioration of the cutting edge and the generation of burrs, and exhibits excellent chipping resistance and wear resistance over a long period of use. It can cope with energy saving and cost reduction sufficiently satisfactorily.

ダイヤモンド被覆工具の側断面概略図。The side cross-section schematic of a diamond coating tool. 比較エンドミル1の無配向ダイヤモンド結晶粒の(110)面についての傾斜角度数分布グラフ。The inclination angle number distribution graph about the (110) plane of the non-oriented diamond crystal grain of the comparison end mill. 本発明エンドミル3の配向ダイヤモンド結晶粒の(110)面についての傾斜角度数分布グラフ。The inclination angle number distribution graph about (110) plane of the oriented diamond crystal grain of this invention end mill 3. FIG. 本発明エンドミル6の配向ダイヤモンド結晶粒の(111)面についての傾斜角度数分布グラフ。The inclination angle number distribution graph about the (111) plane of the oriented diamond crystal grain of this invention end mill 6. FIG.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体表面に10〜30μmの膜厚のダイヤモンド皮膜が被覆されたダイヤモンド被覆工具において、
(a)上記ダイヤモンド皮膜は、平均結晶粒径0.2〜1.5μmの配向ダイヤモンド結晶粒が、無配向ダイヤモンド結晶粒のマトリックス中に平均面積割合で30〜80%分散分布する膜構造からなり、
(b)上記配向ダイヤモンド結晶粒は、ダイヤモンド皮膜の厚さ方向に沿ってみた場合に、その結晶粒径及び面積割合が表面側に向かうほど小さな値となり、
(c)上記ダイヤモンド皮膜について、電界放出型走査電子顕微鏡を用い、基体表面に対し垂直な皮膜断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記基体表面の法線に対して、前記結晶粒の結晶面である(110)面および(111)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表した場合、(110)面または(111)面の少なくともいずれかの面について、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の30〜60%の割合を占める傾斜角度数分布グラフを示すダイヤモンド皮膜である、
ことを特徴とするダイヤモンド被覆工具。
In a diamond-coated tool in which a diamond coating film having a thickness of 10 to 30 μm is coated on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
(A) The diamond film has a film structure in which oriented diamond crystal grains having an average crystal grain size of 0.2 to 1.5 μm are dispersed and distributed in an average area ratio of 30 to 80% in a matrix of non-oriented diamond crystal grains. ,
(B) When the oriented diamond crystal grains are viewed along the thickness direction of the diamond film, the crystal grain size and the area ratio become smaller values toward the surface side,
(C) Using the field emission scanning electron microscope, the above-mentioned diamond film is irradiated with an electron beam on each crystal grain existing within the measurement range of the film cross-section polished surface perpendicular to the substrate surface. The inclination angle formed by the normal lines of the (110) plane and the (111) plane, which are crystal planes of the crystal grains, is measured with respect to the line, and the measurement is in the range of 0 to 45 degrees out of the measurement inclination angles. When the tilt angle is divided into pitches of 0.25 degrees, and when expressed in a tilt angle number distribution graph obtained by counting the frequencies existing in each section, at least one of (110) plane and (111) plane The maximum peak is present in the inclination angle section within the range of 0 to 10 degrees, and the sum of the frequencies existing within the range of 0 to 10 degrees is 30 to the entire frequency in the inclination angle frequency distribution graph. 60% of the trend A diamond film showing the angle frequency distribution graph,
A diamond-coated tool characterized by that.
JP2009055865A 2009-03-10 2009-03-10 Diamond coated tools Active JP5246597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009055865A JP5246597B2 (en) 2009-03-10 2009-03-10 Diamond coated tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009055865A JP5246597B2 (en) 2009-03-10 2009-03-10 Diamond coated tools

Publications (2)

Publication Number Publication Date
JP2010207947A true JP2010207947A (en) 2010-09-24
JP5246597B2 JP5246597B2 (en) 2013-07-24

Family

ID=42968698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009055865A Active JP5246597B2 (en) 2009-03-10 2009-03-10 Diamond coated tools

Country Status (1)

Country Link
JP (1) JP5246597B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105081377A (en) * 2015-08-10 2015-11-25 江苏塞维斯数控科技有限公司 Boring tool for numerical control machine tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107068A (en) * 1985-10-31 1987-05-18 Kyocera Corp Diamond coated cutting tool
JPS63307196A (en) * 1987-06-05 1988-12-14 Kobe Steel Ltd Diamond multilayered thin film and its production
JPH05104307A (en) * 1991-10-07 1993-04-27 Mitsubishi Materials Corp Diamond covered cutting tool
JPH1071527A (en) * 1996-05-16 1998-03-17 Saint Goban Ind Ceramics Inc Abrasion member for synthetic diamond and its manufacture
JP2009248221A (en) * 2008-04-03 2009-10-29 Mitsubishi Materials Corp Diamond-coated tool having superior chipping resistance and abrasion resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107068A (en) * 1985-10-31 1987-05-18 Kyocera Corp Diamond coated cutting tool
JPS63307196A (en) * 1987-06-05 1988-12-14 Kobe Steel Ltd Diamond multilayered thin film and its production
JPH05104307A (en) * 1991-10-07 1993-04-27 Mitsubishi Materials Corp Diamond covered cutting tool
JPH1071527A (en) * 1996-05-16 1998-03-17 Saint Goban Ind Ceramics Inc Abrasion member for synthetic diamond and its manufacture
JP2009248221A (en) * 2008-04-03 2009-10-29 Mitsubishi Materials Corp Diamond-coated tool having superior chipping resistance and abrasion resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012062441; A. Guise, N. Bozzolo, S. Barrat, E. Bauer-Grosse: 'Crystal orientation distribution in highly oriented diamond films investigated by SEM and TEM' Diamond and Related Materials vol.15, 20060213, p531-535, Elsevier *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105081377A (en) * 2015-08-10 2015-11-25 江苏塞维斯数控科技有限公司 Boring tool for numerical control machine tool

Also Published As

Publication number Publication date
JP5246597B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5499650B2 (en) Diamond-coated tools with excellent peeling and wear resistance
JP5036338B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5207109B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2009056538A (en) Surface-coated cutting tool of which hard coating layer achieves excellent chipping resistance
JP2008100320A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP5488873B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP5935479B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting
JP5207105B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5163879B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP2009090395A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP5292900B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP5397689B2 (en) Diamond coated cutting tool
JP5499771B2 (en) Diamond coated cutting tool
JP2011104721A (en) Diamond coating tool showing excellent anti-defective property and abrasion resistance
JP2011104722A (en) Diamond coating tool excellent in chipping resistance and fusion-bond resistance
JP5287407B2 (en) Diamond coated tool with excellent wear resistance in heavy cutting
JP5246597B2 (en) Diamond coated tools
JP2011131347A (en) Diamond-coated cemented carbide cutting tool
JP5187572B2 (en) Diamond coated cemented carbide cutting tool
JP5397688B2 (en) Diamond coated cutting tool
JP2009090396A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP5163878B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP5099587B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287408B2 (en) Diamond coated tool with excellent surface finish accuracy
JP5499751B2 (en) Diamond-coated tools with excellent fracture resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130318

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130331

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3