JP2010199410A - Semiconductor device and method for manufacturing thereof - Google Patents

Semiconductor device and method for manufacturing thereof Download PDF

Info

Publication number
JP2010199410A
JP2010199410A JP2009044366A JP2009044366A JP2010199410A JP 2010199410 A JP2010199410 A JP 2010199410A JP 2009044366 A JP2009044366 A JP 2009044366A JP 2009044366 A JP2009044366 A JP 2009044366A JP 2010199410 A JP2010199410 A JP 2010199410A
Authority
JP
Japan
Prior art keywords
semiconductor device
step portion
semiconductor element
resin
transparent member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009044366A
Other languages
Japanese (ja)
Inventor
Tetsumasa Maruo
哲正 丸尾
Masato Kikuchi
真人 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009044366A priority Critical patent/JP2010199410A/en
Publication of JP2010199410A publication Critical patent/JP2010199410A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device and a method for manufacturing thereof, which improves quality by preventing disconnection. <P>SOLUTION: The semiconductor device includes: a semiconductor element having a light receiving/emitting region which receives/emits light and a plurality of bonding pads in a main plane; a recessed substrate having a recessed portion in which a first stepped portion serving as a step is formed in the side of the recessed portion, a plurality of connecting terminals being provided in the first stepped portion, and the semiconductor element is mounted on the bottom face of the recessed portion which is the plane opposite to the main plane; a wire which electrically connects the bonding pads and the connecting terminals; and a resin which covers the semiconductor element except the light receiving/emitting region and the wire. The recessed substrate is further provided with a second stepped portion serving as the step in the position different to the first stepped portion in the side of the recessed portion. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体装置およびその製造方法に関し、特に、受発光素子で構成される半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a semiconductor device including a light emitting / receiving element and a method for manufacturing the same.

近年、電子機器の小型化、薄型化および軽量化とともに半導体装置の高密度実装化の要求が強くなっている。さらに、微細加工技術の進歩による半導体素子の高集積化とあいまって、チップサイズパッケージまたはベアチップの半導体素子を直接実装する、いわゆるチップ実装技術が提案されている。   In recent years, there has been an increasing demand for high-density mounting of semiconductor devices as electronic devices become smaller, thinner, and lighter. Furthermore, in conjunction with the high integration of semiconductor elements due to advances in microfabrication techniques, so-called chip mounting techniques have been proposed in which semiconductor elements of chip size packages or bare chips are directly mounted.

このような動向は、受発光素子で構成される半導体装置においても同様であり、受発光素子で構成される半導体装置に対して種々の構成が提案されている。   Such a trend is the same in a semiconductor device including light emitting and receiving elements, and various configurations have been proposed for semiconductor devices including light receiving and emitting elements.

例えば、光を発光または受光する領域である受発光領域のマイクロレンズ上に透明部材を低屈折率の接着剤で直接貼り合わせることにより、半導体装置の薄型化と小型化とを実現しようとする素子構造およびその製造方法が提案されている(例えば特許文献1参照。)。   For example, an element intended to reduce the thickness and size of a semiconductor device by directly bonding a transparent member with a low refractive index adhesive on a microlens in a light emitting / receiving region that emits or receives light. A structure and a manufacturing method thereof have been proposed (see, for example, Patent Document 1).

この半導体装置の素子構造は、受発光領域を有する半導体素子上にマイクロレンズが直接形成され、さらにそのマイクロレンズ上に透明部材を撮像領域となる受発光領域と平行度を保ちつつ透明接着剤を介して直接貼り合わせる方法により製造される。このとき、マイクロレンズと透明部材との間に低屈折率の接着剤を隙間がないように充填することにより、この半導体装置を使用する環境条件の変化があっても、電気特性および光学特性を確保し信頼性を確保することができる。   The element structure of this semiconductor device is such that a microlens is directly formed on a semiconductor element having a light receiving / emitting region, and a transparent adhesive is applied on the microlens while maintaining parallelism with the light emitting / receiving region serving as an imaging region. It is manufactured by a method of directly bonding through. At this time, by filling an adhesive having a low refractive index between the microlens and the transparent member so that there is no gap, even if there is a change in the environmental conditions in which this semiconductor device is used, the electrical characteristics and optical characteristics are improved. It is possible to ensure reliability.

また、従来、セラミックパッケージに、受発光領域を有する半導体素子を実装する場合、マイクロレンズとパッケージの一部である透明部材との間に樹脂などが充填されていない空気の領域が一定の体積で存在してしまう。そのため、そのような半導体素子が実装された半導体装置は空気の領域分だけ厚くなってしまう。それに対して、液状の樹脂で透明部材を支えるリブを立てることにより、樹脂などが充填されていない空気層をできるだけ小さくした構造の半導体装置が提案されている。それにより、この半導体装置の底面から透明部材までを半導体装置の厚さとして、回路モジュール等に実装することができる。このように、受発光領域を有する半導体装置を直接回路モジュール等に実装できるので、低コストで、かつ薄型の受発光領域を有する半導体装置を実現することができる。   Conventionally, when a semiconductor element having a light receiving / emitting region is mounted on a ceramic package, an air region not filled with resin or the like between the microlens and a transparent member that is a part of the package has a constant volume. It will exist. For this reason, a semiconductor device on which such a semiconductor element is mounted becomes thicker by the air region. On the other hand, there has been proposed a semiconductor device having a structure in which an air layer not filled with resin or the like is made as small as possible by raising ribs that support a transparent member with a liquid resin. Thus, the thickness from the bottom surface of the semiconductor device to the transparent member can be mounted on the circuit module or the like as the thickness of the semiconductor device. As described above, since a semiconductor device having a light receiving / emitting region can be directly mounted on a circuit module or the like, a semiconductor device having a thin light receiving / emitting region can be realized at low cost.

上述した従来の半導体装置の製造方法を説明する。まず、受発光領域および複数のボンディングパッドを備える半導体素子にその受発光領域を上方にして接着剤を介して透明部材を貼り付ける。そして、凹状の基材面に、透明部材が貼り付けられた半導体素子を搭載(ダイボンド)する。次に、半導体素子上のボンディングパッドと凹状基板内の接続端子とをAu(金:Gold)ワイヤーで接続する。次に、半導体素子と、透明部材の側面と、Auワイヤーとを被覆するように樹脂を充填させる。このようにして、受発光領域を有する半導体装置が製造される。   A method for manufacturing the above-described conventional semiconductor device will be described. First, a transparent member is attached to a semiconductor element including a light emitting / receiving region and a plurality of bonding pads with the light emitting / receiving region facing upward via an adhesive. And the semiconductor element by which the transparent member was affixed on the concave base-material surface is mounted (die bond). Next, the bonding pad on the semiconductor element and the connection terminal in the concave substrate are connected by an Au (gold: Gold) wire. Next, a resin is filled so as to cover the semiconductor element, the side surface of the transparent member, and the Au wire. In this way, a semiconductor device having a light emitting / receiving region is manufactured.

次に、このようにして製造された従来の半導体装置の構成について説明する。   Next, the configuration of the conventional semiconductor device manufactured as described above will be described.

図5は、従来の半導体装置の断面図および俯瞰図である。   FIG. 5 is a sectional view and an overhead view of a conventional semiconductor device.

図5に示す半導体装置500は、透明部材501と、半導体素子502と、凹状基板503と、樹脂504と、Auワイヤー505と、接続端子506とを備える。   A semiconductor device 500 illustrated in FIG. 5 includes a transparent member 501, a semiconductor element 502, a concave substrate 503, a resin 504, an Au wire 505, and a connection terminal 506.

透明部材501は、透明接着剤512を介して半導体素子502の受発光領域に取り付けられている。   The transparent member 501 is attached to the light receiving / emitting region of the semiconductor element 502 via the transparent adhesive 512.

半導体素子502は、複数のボンディングパッドを備え、透明接着剤512を介して透明部材501が取り付けられている。   The semiconductor element 502 includes a plurality of bonding pads, and a transparent member 501 is attached via a transparent adhesive 512.

凹状基板503は、内部に形成されている段差部513に複数の接続端子506が設けられている。また、凹状基板503は、凹部底面に半導体素子502が搭載されている。   The concave substrate 503 is provided with a plurality of connection terminals 506 at a step portion 513 formed inside. The concave substrate 503 has a semiconductor element 502 mounted on the bottom surface of the recess.

Auワイヤー505は、凹状基板503内に設けられた複数の接続端子506と、半導体素子502上のボンディングパッドとを電気的に接続する。   The Au wire 505 electrically connects a plurality of connection terminals 506 provided in the concave substrate 503 and bonding pads on the semiconductor element 502.

樹脂504は、半導体素子502と、透明部材501の側面とAuワイヤー505とを充填被覆する。ここで、樹脂504は、受発光素子として機能させるために透明部材501の主面は露出する必要があり、透明部材501の主面以外の部分を被覆している。すなわち、樹脂504は、透明部材501の主面は被覆していない。   The resin 504 fills and covers the semiconductor element 502, the side surface of the transparent member 501, and the Au wire 505. Here, the resin 504 needs to expose the main surface of the transparent member 501 in order to function as a light emitting / receiving element, and covers a portion other than the main surface of the transparent member 501. That is, the resin 504 does not cover the main surface of the transparent member 501.

以上のように、従来の半導体装置500は構成される。
特願2008−013049号
As described above, the conventional semiconductor device 500 is configured.
Japanese Patent Application No. 2008-013049

しかしながら、従来の半導体装置500には、以下の課題がある。すなわち、従来の半導体装置500は、受発光素子で構成される半導体装置であるため、透明部材501の主面は露出する必要があり、その主面は被覆されず主面以外が樹脂504で被覆されている。また、樹脂504は、凹状基板503と透明部材501との間に充填されている。そのため、熱による樹脂の応力は、樹脂504が解放されている透明部材501の主面側に逃げることになる。つまりは、熱による樹脂の応力は、上方向(図5で示す上方向、すなわち半導体素子502から透明部材501の方向)に大きく働くことになる。それにより、接続端子を有する段差部513で剥離が発生してしまい、Auワイヤー505およびボンディングパッドとの電気的な接合が断線してしまう。   However, the conventional semiconductor device 500 has the following problems. That is, since the conventional semiconductor device 500 is a semiconductor device including light emitting and receiving elements, the main surface of the transparent member 501 needs to be exposed, and the main surface is not covered and the other surfaces are covered with the resin 504. Has been. The resin 504 is filled between the concave substrate 503 and the transparent member 501. Therefore, the stress of the resin due to heat escapes to the main surface side of the transparent member 501 from which the resin 504 is released. That is, the stress of the resin due to heat works greatly in the upward direction (the upward direction shown in FIG. 5, that is, the direction from the semiconductor element 502 to the transparent member 501). As a result, peeling occurs at the step portion 513 having the connection terminal, and the electrical connection between the Au wire 505 and the bonding pad is broken.

上記の例に示すように、受発光素子で構成される従来の半導体装置500は、熱時の応力が加わった場合、熱による応力は凹状基板503の接続端子506を有する段差部513で剥離が発生する。それにより、Auワイヤー505と凹状基板503にある接続端子506との間で断線して電気的に不良になり、品質を低下させてしまうという課題がある。   As shown in the above example, in the conventional semiconductor device 500 including light receiving and emitting elements, when heat stress is applied, the heat stress is peeled off at the step portion 513 having the connection terminal 506 of the concave substrate 503. appear. As a result, there is a problem that the Au wire 505 and the connection terminal 506 on the concave substrate 503 are disconnected, resulting in an electrical failure and a reduction in quality.

本発明は、上記課題を解決するためになされたもので、断線を防止することで品質を向上させる半導体装置およびその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor device that improves quality by preventing disconnection and a manufacturing method thereof.

上記課題を解決するために、本発明の半導体装置は、光を発光または受光する領域である受発光領域と複数のボンディングパッドとを主面に有する半導体素子と、凹部を有する凹状基板であって、前記凹部内の側面に段差となる第1段差部が形成され、前記第1段差部に複数の接続端子が設けられ、前記半導体素子が前記主面と反対の面で前記凹部の底面に搭載される凹状基板と、前記ボンディングパッドおよび前記接続端子を電気的に接続するワイヤーと、前記受発光領域を除いた前記半導体素子および前記ワイヤーを被覆する樹脂とを備え、前記凹状基板には、さらに、段差となる第2段差部が前記凹部内の側面における前記第1段差部とは異なる位置に設けられている。ここで、前記第2段差部は、前記第1段差部と前記凹部の底面との間に設けられていることが好ましい。   In order to solve the above problems, a semiconductor device of the present invention includes a semiconductor element having a light receiving / emitting region that is a region that emits or receives light and a plurality of bonding pads on a main surface, and a concave substrate having a recess. A first step portion that forms a step on the side surface in the recess, and a plurality of connection terminals are provided on the first step portion, and the semiconductor element is mounted on the bottom surface of the recess on a surface opposite to the main surface. A concave substrate, a wire that electrically connects the bonding pad and the connection terminal, a resin that covers the semiconductor element excluding the light emitting and receiving region and the wire, and the concave substrate further includes: The second step portion which becomes a step is provided at a position different from the first step portion on the side surface in the recess. Here, it is preferable that the second step portion is provided between the first step portion and the bottom surface of the recess.

これら構成により、熱時の樹脂応力は凹状基板で上方向に強く働くにもかかわらず、第1段差部よりも凹状基板の下側に位置する第2段差部の段差部分から剥離が始まる。そして、一旦、剥離が発生すると樹脂の応力は解放され安定した状態となるので、さらなる剥離は発生しない。すなわち、剥離は、品質上問題のない部分で樹脂応力を開放させることで、Auワイヤーと凹状基板の接続部のところでは発生させないことができ、品質レベルの高い受発光素子で構成される半導体装置を得ることできる。このようにして、断線を防止することで品質を向上させる半導体装置を実現できる。   With these configurations, the resin stress during heating works strongly upward in the concave substrate, but peeling starts from the step portion of the second step portion located below the concave substrate relative to the first step portion. And once peeling occurs, the stress of the resin is released and becomes stable, so no further peeling occurs. In other words, peeling can be prevented from occurring at the connection portion between the Au wire and the concave substrate by releasing the resin stress at a portion where there is no problem in quality, and a semiconductor device composed of a light receiving and emitting element having a high quality level. Can get. In this way, it is possible to realize a semiconductor device that improves quality by preventing disconnection.

例えば、上記構成の半導体装置を用いてカメラモジュールとしてもよい。その場合、上記構成の半導体装置は小型薄型であるので、より小型薄型のカメラモジュールを実現することができる。また、例えば上記構成の半導体装置を用いて医療用内視鏡モジュールとしてもよい。その場合、上記構成の半導体装置は小型薄型かつ高信頼性であるので、小型で高信頼性の医療用内視鏡モジュールを実現することができる。   For example, a camera module may be formed using the semiconductor device having the above structure. In that case, since the semiconductor device having the above structure is small and thin, a smaller and thinner camera module can be realized. Further, for example, a medical endoscope module may be formed using the semiconductor device having the above configuration. In that case, since the semiconductor device having the above-described configuration is small, thin, and highly reliable, a small and highly reliable medical endoscope module can be realized.

また、上記課題を解決するために、本発明に係る半導体装置の製造方法は、凹部を有する凹状基板の前記凹部内側面の異なる位置に段差となる第1段差部および第2段差部を形成し、前記第1段差部に複数の接続端子を設ける第1工程と、光を発光または受光する領域である受発光領域と複数のボンディングパッドとを主面に有する半導体素子の前記受発光領域に透明接着剤を介して透明部材を取り付け、前記透明部材の取り付けられた前記主面と反対の面で前記半導体素子を前記凹状基板の前記凹部の底面に搭載する第2工程と、前記ボンディングパッドと前記接続端子とをワイヤーで電気的に接続する第3工程と、前記受発光領域に光を透過させる面を除いた前記透明部材を前記半導体素子および前記ワイヤーとともに液状樹脂で被覆する第4工程とを含む。   In addition, in order to solve the above problems, a method for manufacturing a semiconductor device according to the present invention forms a first step portion and a second step portion that form steps at different positions on the inner surface of the concave portion of a concave substrate having a concave portion. The first step of providing a plurality of connection terminals in the first step portion, and the light receiving / emitting region of the semiconductor element having a light emitting / receiving region and a plurality of bonding pads on the main surface are transparent in the light receiving / emitting region. A second step of attaching a transparent member via an adhesive, and mounting the semiconductor element on a bottom surface of the concave portion of the concave substrate on a surface opposite to the main surface to which the transparent member is attached; the bonding pad; A third step of electrically connecting the connection terminal with a wire, and covering the transparent member excluding a surface through which light is transmitted to the light receiving and emitting region with a liquid resin together with the semiconductor element and the wire And a fourth step.

本発明によれば、断線を防止することで品質を向上させる受発光素子で構成される半導体装置およびその製造方法を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the semiconductor device comprised with the light emitting / receiving element which improves quality by preventing a disconnection, and its manufacturing method are realizable.

具体的には、受発光素子で構成される半導体装置において、樹脂の熱時応力により断線不良を発生させない半導体装置およびその製造方法を実現することができる。   Specifically, in a semiconductor device including light emitting and receiving elements, it is possible to realize a semiconductor device that does not cause disconnection failure due to thermal stress of the resin and a method for manufacturing the same.

以下、本発明を実施するための最良の形態について図面を参照しながら説明する。なお、これらの図において、それぞれの構成部材の厚みや長さ等は図面の作成上から実際の形状とは異なる。また、各構成部材の電極や端子の個数も実際とは異なり、図示しやすい数量としている。また、各構成部材の材質も下記説明の材質に限定するものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. In these drawings, the thicknesses, lengths, and the like of the respective constituent members are different from the actual shapes in view of the creation of the drawings. In addition, the number of electrodes and terminals of each component is different from the actual number and is easy to show. Further, the material of each constituent member is not limited to the material described below.

(実施の形態1)
図1は、実施の形態1に係る半導体装置の構成を示す図である。図1(a)は、実施の形態1に係る半導体装置10の断面図を示しており、図1(b)は、実施の形態1に係る半導体装置10の俯瞰図を示している。
(Embodiment 1)
FIG. 1 is a diagram illustrating a configuration of a semiconductor device according to the first embodiment. FIG. 1A shows a cross-sectional view of the semiconductor device 10 according to the first embodiment, and FIG. 1B shows an overhead view of the semiconductor device 10 according to the first embodiment.

図1に示す半導体装置10は、透明部材1と、半導体素子2と、凹状基板3と、樹脂4と、Auワイヤー5と、接続端子6とを備える。   A semiconductor device 10 shown in FIG. 1 includes a transparent member 1, a semiconductor element 2, a concave substrate 3, a resin 4, an Au wire 5, and a connection terminal 6.

凹状基板3は、その凹部側面に段差となる第1段差部13と第2段差部14とが形成されている。凹状基板3では、第1段差部13上に複数の接続端子6が設けられている。また、凹状基板3は、凹部底面に、半導体素子2が搭載(ダイボンド)される。   The concave substrate 3 has a first step portion 13 and a second step portion 14 that form steps on the side surfaces of the recess. In the concave substrate 3, a plurality of connection terminals 6 are provided on the first step portion 13. The concave substrate 3 has the semiconductor element 2 mounted (die-bonded) on the bottom surface of the concave portion.

ここで、第1段差部13は、凹状基板3において、第2段差部14より上すなわち凹状基板3の凹部底面から離れた位置に設けられているのが好ましい。言い換えると、第2段差は、接続端子6を有する第1段差部13と半導体素子2を搭載する凹状基板3の凹部底面との間の位置に設けられている。   Here, the first step portion 13 is preferably provided in the concave substrate 3 above the second step portion 14, that is, at a position away from the bottom surface of the concave portion of the concave substrate 3. In other words, the second step is provided at a position between the first step 13 having the connection terminal 6 and the bottom surface of the concave substrate 3 on which the semiconductor element 2 is mounted.

Auワイヤー5は、凹状基板3の第1段差部13に設けられた複数の接続端子6と、半導体素子2上の複数のボンディングパッドとを電気的に接続する。   The Au wire 5 electrically connects the plurality of connection terminals 6 provided in the first step portion 13 of the concave substrate 3 and the plurality of bonding pads on the semiconductor element 2.

半導体素子2は、受発光素子で構成され、複数のボンディングパッドを備える。半導体素子2は、受光領域面のある主面とは逆の面において凹状基板3に実装され、受発光領域のある主面に透明接着剤512を介して透明部材501が取り付けられる。   The semiconductor element 2 is composed of a light emitting / receiving element and includes a plurality of bonding pads. The semiconductor element 2 is mounted on the concave substrate 3 on the surface opposite to the main surface having the light receiving region surface, and the transparent member 501 is attached to the main surface having the light receiving / emitting region via the transparent adhesive 512.

また、半導体素子2は、主面の中央近傍に複数の画素が整列配置され、各画素上にマイクロレンズが形成されている。半導体素子2は、マイクロレンズが形成されている受発光領域と素子電極を含む回路が形成されている周辺回路領域とを有する(図示せず)。   In the semiconductor element 2, a plurality of pixels are arranged in the vicinity of the center of the main surface, and a microlens is formed on each pixel. The semiconductor element 2 has a light emitting / receiving area where a microlens is formed and a peripheral circuit area where a circuit including an element electrode is formed (not shown).

なお、半導体素子2の材質は、シリコン(Si)であるとして以下説明をするが、それに限らない。半導体レーザや発光ダイオードへの適用も考慮してIII−V族化合物やII−VI
族化合物であってもよい。
In addition, although the following demonstrates that the material of the semiconductor element 2 is silicon (Si), it is not restricted to it. Considering application to semiconductor lasers and light-emitting diodes, III-V compounds and II-VI
It may be a group compound.

透明部材1は、透明接着剤12を介して半導体装置500の受発光領域に取り付けられる。   The transparent member 1 is attached to the light receiving / emitting region of the semiconductor device 500 via the transparent adhesive 12.

また、透明部材1は、半導体素子2の受発光領域の全面を覆って配置される大きさである。透明部材1は、上下の両面が平行で光学的平面に加工されており、側面はその両面に対して垂直な平面の矩形状の投影平面を有するように加工されている。ここで、透明部材1の投影平面は、4つのコーナーが略45°に切り落とされていてもよいし、加えて片面もしくは両面の各エッヂが面取りされたものであってもよい。   The transparent member 1 is sized to cover the entire surface of the light receiving / emitting region of the semiconductor element 2. The transparent member 1 is processed so that both upper and lower surfaces are parallel and processed into an optical plane, and the side surface is processed so as to have a rectangular projection plane perpendicular to the both surfaces. Here, the projection plane of the transparent member 1 may have four corners cut off at approximately 45 °, or in addition, one edge or both edges may be chamfered.

また、透明部材1の材質としては、例えば硼珪酸ガラス板が使用されていてもよく、特定方向の干渉縞によるモワレを防止するために複屈折特性をもつ水晶板または方解石板からなるローパスフィルタが使用されていてもよい。また、例えば赤外線カットフィルタの両側に複屈折特性が直交するように石英板または方解石板を貼り合わせたローパスフィルタが使用されていてもよい。さらに、透明部材1は、透明のエポキシ系樹脂板、アクリル系樹脂板または透明アルミナ板であってもよい。   Moreover, as a material of the transparent member 1, for example, a borosilicate glass plate may be used, and a low-pass filter made of a quartz plate or a calcite plate having a birefringence characteristic in order to prevent moire caused by interference fringes in a specific direction. It may be used. Further, for example, a low-pass filter in which a quartz plate or a calcite plate is bonded so that birefringence characteristics are orthogonal to both sides of the infrared cut filter may be used. Furthermore, the transparent member 1 may be a transparent epoxy resin plate, an acrylic resin plate, or a transparent alumina plate.

透明部材1に硼珪酸ガラス板を使用する場合、透明部材1の厚みは200μmから1000μmの範囲であり、好ましくは300μmから700μmの範囲である。ここで、厚みの下限(最低)を200μmとするのは、実装時の半導体装置10の取り付け高さが500μm以下となる小型かつ薄型化を実現するためである。また、厚みの上限(最高)を1000μmとするのは、波長が500nmの入射光に対して90%以上の透過率を実現するためである。また、好ましい厚みの範囲を300μmから700μmの範囲とするのは、現行の製造技術を用いて最も安定な半導体装置10の生産が可能になるからである。さらに、構成部材も廉価な汎用品を用いることで安価で小型かつ薄型の半導体装置を実現することができるからである。   When a borosilicate glass plate is used for the transparent member 1, the thickness of the transparent member 1 is in the range of 200 μm to 1000 μm, and preferably in the range of 300 μm to 700 μm. Here, the reason why the lower limit (minimum) of the thickness is set to 200 μm is to realize a small and thin thickness in which the mounting height of the semiconductor device 10 during mounting is 500 μm or less. The upper limit (maximum) of the thickness is set to 1000 μm in order to realize a transmittance of 90% or more for incident light having a wavelength of 500 nm. The reason why the preferable thickness range is 300 μm to 700 μm is that the most stable semiconductor device 10 can be produced using the current manufacturing technology. Furthermore, it is because an inexpensive, small and thin semiconductor device can be realized by using inexpensive general-purpose components.

なお、透明部材1に、透明のエポキシ系樹脂板、透明のアクリル系樹脂または板透明アルミナ板を使用する場合は、透過率を考慮して厚さを決定する必要がある。一方、透明部材1に水晶板または方解石を使用する場合、透過率の違いに加えて、複屈折による2重結像の間隔が透明部材1の厚みに関係するために受発光素子である半導体素子2の画素間隔を考慮して厚さを決定する必要がある。   In addition, when using a transparent epoxy resin board, a transparent acrylic resin, or a board | substrate transparent alumina board for the transparent member 1, it is necessary to determine thickness considering a transmittance | permeability. On the other hand, when a crystal plate or calcite is used for the transparent member 1, in addition to the difference in transmittance, the double imaging interval due to birefringence relates to the thickness of the transparent member 1. It is necessary to determine the thickness in consideration of the pixel interval of 2.

透明接着剤12は、半導体素子2の受発光領域上に透明部材1を固着する際に用いる光学的に透明な接着剤である。ここで、透明接着剤12は、例えばアクリル系樹脂であってもよく、可視光の波長範囲で吸収端をもたない樹脂配合がなされたエポキシ系樹脂またはポリイミド系樹脂であってもよい。   The transparent adhesive 12 is an optically transparent adhesive used when the transparent member 1 is fixed on the light emitting / receiving area of the semiconductor element 2. Here, the transparent adhesive 12 may be, for example, an acrylic resin, or may be an epoxy resin or a polyimide resin that is blended with a resin having no absorption edge in the visible light wavelength range.

また、透明接着剤12は、硬化後には、半導体素子2の受発光領域上に形成されたマイクロレンズより低屈折率という特性を有し、紫外線照射もしくは加熱または両方を併用することにより硬化される特性を有する。   Further, the transparent adhesive 12 has a property of lower refractive index than the microlens formed on the light emitting / receiving region of the semiconductor element 2 after curing, and is cured by ultraviolet irradiation or heating or a combination of both. Has characteristics.

樹脂4は、受発光領域に透明接着剤12を介して取り付けた透明部材1の側面と半導体素子2とAuワイヤー5を被覆する。すなわち、樹脂4は、半導体素子2の受発光領域上を除く透明部材1の主面全体と透明部材1の側面とを被覆する。また、樹脂4は、遮光性を有しており、上面が平面で、透明部材1とほぼ同じ厚さに形成されている。   The resin 4 covers the side surface of the transparent member 1 attached to the light receiving / emitting region via the transparent adhesive 12, the semiconductor element 2, and the Au wire 5. That is, the resin 4 covers the entire main surface of the transparent member 1 and the side surface of the transparent member 1 except on the light emitting / receiving region of the semiconductor element 2. Further, the resin 4 has a light shielding property, has a flat upper surface, and is formed to have substantially the same thickness as the transparent member 1.

以下、樹脂4の材質は、無機充填材と顔料とから構成されるエポキシ系樹脂であるとして説明するが、それに限らない。例えば、半導体素子2の基材の薄型化並びに半導体装置10としての熱衝撃耐性および耐湿性の向上を図るために低弾性硬化物を適用する場合は、ビフェニル系樹脂やシリコーン系樹脂であってもよい。   Hereinafter, although the material of the resin 4 is described as an epoxy resin composed of an inorganic filler and a pigment, it is not limited thereto. For example, in the case of applying a low-elasticity cured product in order to reduce the thickness of the base material of the semiconductor element 2 and improve the thermal shock resistance and moisture resistance as the semiconductor device 10, even if it is a biphenyl resin or a silicone resin Good.

なお、半導体装置10に使用される樹脂4を構成する無機充填材および顔料の選定および配合量は、半導体装置10の反りの抑制および遮光にとって重要である。   Note that the selection and blending amount of the inorganic filler and the pigment constituting the resin 4 used in the semiconductor device 10 are important for suppressing warpage of the semiconductor device 10 and shielding light.

例えば、半導体素子2における配線の腐食による断線不良を防止するために、樹脂4が硬化した樹脂硬化物の吸水率を低くするのが好ましいので、樹脂4の無機充填材には、溶融して結晶性を取り除いた高純度のシリカが種々の直径の球状に加工され、適正に配合される。   For example, in order to prevent disconnection failure due to wiring corrosion in the semiconductor element 2, it is preferable to reduce the water absorption rate of the cured resin obtained by curing the resin 4. Therefore, the inorganic filler of the resin 4 is melted and crystallized. High-purity silica from which properties are removed is processed into spheres of various diameters and blended appropriately.

また、透明部材1周辺の入射光が透明部材1の側面から侵入して迷光となるのを防止するため、顔料は、高温多湿環境中で樹脂硬化物中の電気抵抗が下がり半導体装置10の絶縁不良を誘発しない範囲で樹脂4の硬化物中に可能な限り多く配合されるのが好ましい。そのため、顔料は、硬化物中での配合量が高くなるよう粒径や低分極性の材料を選択することが重要である。   In addition, in order to prevent incident light around the transparent member 1 from entering from the side surface of the transparent member 1 and becoming stray light, the electrical resistance in the cured resin is lowered in the high-temperature and high-humidity environment. It is preferable that it is blended as much as possible in the cured product of the resin 4 as long as it does not induce defects. For this reason, it is important to select a material having a particle size and low polarizability so that the blending amount in the cured product is high.

そして、例えば、顔料は、遮光性の高い色調のカーボンブラックを用いる。そうすると樹脂4上からの入射光の一部が半導体素子2主面上の受動素子や能動素子のp−n接合部やゲート部に到達するのを防止することができるので、半導体素子2が誤動作するのを防止することができる。   For example, as the pigment, carbon black having a high light-shielding color tone is used. Then, a part of incident light from the resin 4 can be prevented from reaching the pn junction part or the gate part of the passive element or active element on the main surface of the semiconductor element 2, so that the semiconductor element 2 malfunctions. Can be prevented.

以上のように、凹状基板3内に第1段差部13と第2段差部14とを有する半導体装置10が構成される。   As described above, the semiconductor device 10 having the first step portion 13 and the second step portion 14 in the concave substrate 3 is configured.

このように構成される半導体装置10では、熱時の樹脂応力は凹状基板3で上方向に強く働くにもかかわらず、第1段差部13よりも下側に位置する第2段差部14から剥離が始まる。そして、一旦、剥離が発生すると樹脂の応力は解放されて安定した状態となるので、さらなる剥離(第1段差部13での剥離)は発生しない。すなわち、品質上問題のない部分で樹脂応力を開放させることで、第1段差部13のところすなわちAuワイヤー5と凹状基板3の接続端子6では剥離は発生させないことができる。   In the semiconductor device 10 configured as described above, the resin stress during heating works strongly upward in the concave substrate 3, but peels from the second step portion 14 located below the first step portion 13. Begins. Once the peeling occurs, the stress of the resin is released and becomes a stable state, so that further peeling (peeling at the first step portion 13) does not occur. That is, by releasing the resin stress at a portion where there is no problem in quality, peeling can be prevented from occurring at the first step portion 13, that is, at the connection terminal 6 of the Au wire 5 and the concave substrate 3.

次に、半導体装置10の製造方法について説明する。   Next, a method for manufacturing the semiconductor device 10 will be described.

図3は、実施の形態1における半導体装置の製造方法を説明するための図である。   FIG. 3 is a diagram for explaining the method of manufacturing the semiconductor device in the first embodiment.

まず、凹状基板3内に、接続端子6を有する第1段差部13と接続端子6を有しない第2段差部14を設ける(図3(a))。ここで、複数の接続端子6を有する第1段差部13は、第2段差部14よりも上に設けられる。言い換えると、第2段差部14は、接続端子6を有する第1段差部13と半導体素子2を搭載する凹状基板3との間に設けられる。   First, a first step portion 13 having a connection terminal 6 and a second step portion 14 not having a connection terminal 6 are provided in the concave substrate 3 (FIG. 3A). Here, the first step portion 13 having the plurality of connection terminals 6 is provided above the second step portion 14. In other words, the second step portion 14 is provided between the first step portion 13 having the connection terminal 6 and the concave substrate 3 on which the semiconductor element 2 is mounted.

次に、複数のボンディングパッドを備える半導体素子2の受発光領域に透明接着剤12を介して透明部材1を貼り付ける。そして、透明部材1が貼り付けられた半導体素子2を凹状基板3の凹部底面に搭載(ダイボンド)する(図3(b))。   Next, the transparent member 1 is attached to the light emitting / receiving area of the semiconductor element 2 having a plurality of bonding pads via the transparent adhesive 12. Then, the semiconductor element 2 with the transparent member 1 attached is mounted (die-bonded) on the bottom surface of the concave portion of the concave substrate 3 (FIG. 3B).

次に、凹状基板3内の第1段差部13に設けられた複数の接続端子6と半導体素子2上の複数のボンディングパッドとをAuワイヤー5を用いてワイヤーボンドし、電気的に接続する(図3(c))。   Next, a plurality of connection terminals 6 provided in the first step portion 13 in the concave substrate 3 and a plurality of bonding pads on the semiconductor element 2 are wire-bonded using Au wires 5 and electrically connected ( FIG. 3 (c)).

次に、受発光領域に透明接着剤12を介して取り付けた透明部材1の側面と半導体素子2とAuワイヤー5とを塗布ノズル15を用いて樹脂4により充填被覆する。ここで、樹脂4は液状である。そのため、ポッティングによる注入、スクリーン印刷、またはインクジェット工法を用いて樹脂4を充填被覆することができる。なお、図2(d)では、ポッティングによる樹脂4の充填被覆の例を示している。   Next, the side surface of the transparent member 1 attached to the light emitting / receiving region via the transparent adhesive 12, the semiconductor element 2, and the Au wire 5 are filled and covered with the resin 4 using the coating nozzle 15. Here, the resin 4 is liquid. Therefore, the resin 4 can be filled and coated by potting injection, screen printing, or an inkjet method. In addition, in FIG.2 (d), the example of the filling covering of the resin 4 by potting is shown.

次に、樹脂4による充填後に樹脂4を本硬化する。そして、本硬化後、半導体装置10は、透明部材1の主面を洗浄する。   Next, the resin 4 is fully cured after being filled with the resin 4. Then, after the main curing, the semiconductor device 10 cleans the main surface of the transparent member 1.

以上のようにして、半導体装置10を製造する。   The semiconductor device 10 is manufactured as described above.

以上、本実施の形態1によれば、品質上問題のない部分で樹脂応力を開放させることにより、第1段差部13のところすなわちAuワイヤー5と凹状基板3の接続端子6では剥離は発生させないことができる。それにより、断線を防止することで品質を向上させる半導体装置およびその製造方法を実現することができる。   As described above, according to the first embodiment, the resin stress is released at a portion where there is no problem in quality, so that no peeling occurs at the first step portion 13, that is, at the connection terminal 6 of the Au wire 5 and the concave substrate 3. be able to. As a result, it is possible to realize a semiconductor device and a method for manufacturing the same that improve quality by preventing disconnection.

(変形例)
実施の形態1では、半導体装置10において凹状基板3内で段差を形成する第1段差部13にさらに段差となる第2段差部14を形成し、第2段差部14の段差が1つであるような場合を説明したが、第2段差部14の態様は、それに限らない。例えば、第2段差部は、接続端子を有する第1段差部と半導体素子を搭載する凹状基板の間に複数存在してもよく、第2段差部が複数段からなっていてもよい。以下、それを説明する。
(Modification)
In the first embodiment, in the semiconductor device 10, the second stepped portion 14 that forms a step is further formed in the first stepped portion 13 that forms a step in the concave substrate 3, and the second stepped portion 14 has one step. Although such a case was demonstrated, the aspect of the 2nd level | step-difference part 14 is not restricted to it. For example, a plurality of second stepped portions may exist between the first stepped portion having the connection terminal and the concave substrate on which the semiconductor element is mounted, and the second stepped portion may be composed of a plurality of steps. This will be described below.

図2は、実施の形態1の変形例に係る半導体装置の断面を示す図である。なお、図1(a)および図1(b)と同様の要素には同一の符号を付しており、詳細な説明は省略する。   FIG. 2 is a diagram showing a cross section of a semiconductor device according to a modification of the first embodiment. In addition, the same code | symbol is attached | subjected to the element similar to Fig.1 (a) and FIG.1 (b), and detailed description is abbreviate | omitted.

図2に示す半導体装置20は、実施の形態1に係る半導体装置10に対して、第2段差部24の構成が異なる。   The semiconductor device 20 shown in FIG. 2 differs from the semiconductor device 10 according to the first embodiment in the configuration of the second step portion 24.

第2段差部24は、複数の段差を備え、接続端子6を有する第1段差部13と半導体素子2を搭載する凹状基板3の凹部の底との間の位置に設けられている。   The second step portion 24 includes a plurality of steps, and is provided at a position between the first step portion 13 having the connection terminal 6 and the bottom of the concave portion of the concave substrate 3 on which the semiconductor element 2 is mounted.

これにより、熱による樹脂応力は、品質上問題のない第2段差部24で確実に開放されることになる。   As a result, the resin stress due to heat is surely released at the second step portion 24 having no quality problem.

以上のように、凹状基板3内で第1段差部13と第2段差部24とを有する半導体装置20が構成される。   As described above, the semiconductor device 20 having the first step portion 13 and the second step portion 24 is formed in the concave substrate 3.

したがって、半導体装置10では、品質上問題のない部分で確実に樹脂応力を開放させることができるので、品質上問題のあるところ、すなわち第1段差部13では剥離を発生しないようにすることができる。   Therefore, in the semiconductor device 10, the resin stress can be surely released at a portion where there is no problem in quality, and therefore, where there is a problem in quality, that is, the first step portion 13 can be prevented from being peeled off. .

(実施の形態2)
実施の形態2では、実施の形態1における第2段差部14とは別の態様について説明する。以下、それを説明する。
(Embodiment 2)
In the second embodiment, a mode different from the second step portion 14 in the first embodiment will be described. This will be described below.

図4は、実施の形態2に係る半導体装置の構成を示す図である。図4(a)は、実施の形態2に係る半導体装置30の断面図を示しており、図4(b)は、実施の形態2に係る半導体装置30の俯瞰図を示している。なお、図1(a)および図1(b)と同様の要素には同一の符号を付しており、詳細な説明は省略する。   FIG. 4 is a diagram showing a configuration of the semiconductor device according to the second embodiment. FIG. 4A shows a cross-sectional view of the semiconductor device 30 according to the second embodiment, and FIG. 4B shows an overhead view of the semiconductor device 30 according to the second embodiment. In addition, the same code | symbol is attached | subjected to the element similar to Fig.1 (a) and FIG.1 (b), and detailed description is abbreviate | omitted.

図4に示す半導体装置30は、実施の形態1に係る半導体装置10に対して、第2段差部14にAuメッキ34されている点が異なる。   The semiconductor device 30 shown in FIG. 4 differs from the semiconductor device 10 according to the first embodiment in that the second step portion 14 is Au plated 34.

第2段差部14では、樹脂4と凹状基板3との剥離を発生させ易くするため、段差部にAuメッキ34が施されている。   In the second step portion 14, Au plating 34 is applied to the step portion in order to easily cause the resin 4 and the concave substrate 3 to be peeled off.

なお、施されるAuメッキ34は、樹脂4との接着性が悪いものであるならAuでない金属メッキであっても構わないし、金属メッキの代わりにフッ素系樹脂または界面活性剤が塗布されたものでも構わない。   Note that the Au plating 34 to be applied may be a metal plating that is not Au as long as the adhesion to the resin 4 is poor, and a fluorine-based resin or a surfactant is applied instead of the metal plating. It doesn't matter.

また、Auメッキ34は、半導体素子2が搭載された凹状基板3の凹部底面に対して、平行となる第2段差部14の面に構成されるだけでなく、垂直な部分すなわち、凹状基板3の凹部内側面と平行となる第2段差部14の面に構成されていても構わない。   The Au plating 34 is not only formed on the surface of the second step portion 14 that is parallel to the bottom surface of the concave portion 3 of the concave substrate 3 on which the semiconductor element 2 is mounted, but also a vertical portion, that is, the concave substrate 3. It may be configured on the surface of the second step portion 14 which is parallel to the inner surface of the recess.

また、Auメッキ34は連続、また不連続に複数にわかれて構成されていても構わない。   Further, the Au plating 34 may be constituted by a plurality of continuous or discontinuous parts.

以上のように、凹状基板3内に第1段差部13と第2段差部14とを有する半導体装置30が構成される。   As described above, the semiconductor device 30 having the first step portion 13 and the second step portion 14 in the concave substrate 3 is configured.

したがって、半導体装置30では、品質上問題のない部分で確実に樹脂応力を開放させることができるので、品質上問題のあるところ、すなわち第1段差部13では剥離を発生しないようにすることができる。   Therefore, in the semiconductor device 30, the resin stress can be reliably released at a portion where there is no problem in quality, and therefore, where there is a problem in quality, that is, the first step portion 13 can be prevented from being peeled off. .

以上、実施の形態2によれば、品質上問題のない部分で樹脂応力を開放させることにより、第1段差部13のところすなわちAuワイヤー5と凹状基板3の接続端子6では剥離は発生させないことができる。それにより、断線を防止することで品質を向上させる半導体装置およびその製造方法を実現することができる。   As described above, according to the second embodiment, the resin stress is released at a portion where there is no problem in quality, so that peeling does not occur at the first step portion 13, that is, at the connection terminal 6 between the Au wire 5 and the concave substrate 3. Can do. As a result, it is possible to realize a semiconductor device and a method for manufacturing the same that improve quality by preventing disconnection.

なお、第2段差部の態様は、実施の形態1同様に、接続端子を有する第1段差部と半導体素子を搭載する凹状基板の間に複数存在してもよく、第2段差部が複数段からなっていてもよい。   As in the first embodiment, a plurality of second stepped portions may exist between the first stepped portion having the connection terminal and the concave substrate on which the semiconductor element is mounted, and the second stepped portion has a plurality of steps. It may consist of

また、上述した構成の半導体装置を用いてカメラモジュールを構成してもよい。この半導体装置は小型薄型であるので、より小型薄型のカメラモジュールを実現することができる。   Further, the camera module may be configured using the semiconductor device having the above-described configuration. Since this semiconductor device is small and thin, a smaller and thinner camera module can be realized.

また、上述した構成の半導体装置を用いて医療用内視鏡モジュールを構成してもよい。この半導体装置は小型薄型かつ高信頼性であるので、小型で高信頼性の医療用内視鏡モジュールを実現することができる。   In addition, the medical endoscope module may be configured using the semiconductor device configured as described above. Since this semiconductor device is small, thin, and highly reliable, a small and highly reliable medical endoscope module can be realized.

以上、本発明の半導体装置およびその製造方法について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。   The semiconductor device and the manufacturing method thereof according to the present invention have been described based on the embodiment. However, the present invention is not limited to this embodiment. Unless it deviates from the meaning of this invention, the form which carried out the various deformation | transformation which those skilled in the art can think to this embodiment, and the structure constructed | assembled combining the component in different embodiment is also contained in the scope of the present invention. .

本発明は、半導体装置およびその製造方法に利用でき、特に、携帯電話およびデジタルカメラなどのイメージセンサを構成する半導体素子を搭載したモジュールがより小型薄型化される高信頼性の半導体装置およびその製造方法に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a semiconductor device and a manufacturing method thereof, and in particular, a highly reliable semiconductor device in which a module on which a semiconductor element constituting an image sensor such as a mobile phone and a digital camera is mounted is made smaller and thinner, and the manufacturing thereof Available in the way.

実施の形態1に係る半導体装置の構成を示す図である。1 is a diagram showing a configuration of a semiconductor device according to a first embodiment. 実施の形態1の変形例に係る半導体装置の断面を示す図である。FIG. 6 is a diagram showing a cross section of a semiconductor device according to a modification of the first embodiment. 実施の形態1における半導体装置の製造方法を説明するための図である。FIG. 10 is a diagram for illustrating the method for manufacturing the semiconductor device in the first embodiment. 実施の形態2に係る半導体装置の構成を示す図である。FIG. 4 is a diagram showing a configuration of a semiconductor device according to a second embodiment. 従来の半導体装置の構成を示す図である。It is a figure which shows the structure of the conventional semiconductor device.

1、501 透明部材
2、502 半導体素子
3、503 凹状基板
4、504 樹脂、封止樹脂
5、505 Auワイヤー
6、506 接続端子
10、20、30、500 半導体装置
12、512 透明接着剤
13 第1段差部
14、24 第2段差部
15 塗布ノズル
34 Auメッキ
513 段差部
DESCRIPTION OF SYMBOLS 1,501 Transparent member 2,502 Semiconductor element 3,503 Recessed substrate 4,504 Resin, sealing resin 5,505 Au wire 6,506 Connection terminal 10, 20, 30, 500 Semiconductor device 12, 512 Transparent adhesive 13 First 1 step portion 14, 24 second step portion 15 coating nozzle 34 Au plating 513 step portion

Claims (6)

光を発光または受光する領域である受発光領域と複数のボンディングパッドとを主面に有する半導体素子と、
凹部を有する凹状基板であって、前記凹部内の側面に段差となる第1段差部が形成され、前記第1段差部に複数の接続端子が設けられ、前記半導体素子が前記主面と反対の面で前記凹部の底面に搭載される凹状基板と、
前記ボンディングパッドおよび前記接続端子を電気的に接続するワイヤーと、
前記受発光領域を除いた前記半導体素子および前記ワイヤーを被覆する樹脂とを備え、
前記凹状基板には、さらに、段差となる第2段差部が前記凹部内の側面における前記第1段差部とは異なる位置に設けられている
半導体装置。
A semiconductor element having a light receiving / emitting region which is a region for emitting or receiving light and a plurality of bonding pads on a main surface;
A concave substrate having a concave portion, wherein a first step portion that is a step is formed on a side surface in the concave portion, a plurality of connection terminals are provided in the first step portion, and the semiconductor element is opposite to the main surface A concave substrate mounted on the bottom surface of the recess,
A wire for electrically connecting the bonding pad and the connection terminal;
The resin that covers the semiconductor element and the wire excluding the light emitting and receiving region,
A semiconductor device, wherein the concave substrate is further provided with a second step portion as a step at a position different from the first step portion on the side surface in the recess.
前記第2段差部は、前記第1段差部と前記凹部の底面との間に設けられている
請求項1に記載の半導体装置。
The semiconductor device according to claim 1, wherein the second step portion is provided between the first step portion and a bottom surface of the recess.
前記第2段差部は、複数の段差から構成される
請求項2に記載の半導体装置。
The semiconductor device according to claim 2, wherein the second step portion includes a plurality of steps.
前記第2段差部に、さらに金属メッキが施される
請求項2または請求項3に記載の半導体装置。
The semiconductor device according to claim 2, wherein the second step portion is further subjected to metal plating.
前記半導体素子は、光を透過する部材である透明部材が透明接着材を介して前記受発光領域に取り付けられ、
前記樹脂は、前記受発光領域に光を透過する面を除いた前記透明部材と前記半導体素子と前記ワイヤーとを被覆している
請求項1に記載の半導体装置。
In the semiconductor element, a transparent member that is a member that transmits light is attached to the light receiving and emitting region via a transparent adhesive,
The semiconductor device according to claim 1, wherein the resin covers the transparent member, the semiconductor element, and the wire except for a surface that transmits light to the light emitting / receiving region.
凹部を有する凹状基板の前記凹部内側面の異なる位置に段差となる第1段差部および第2段差部を形成し、前記第1段差部に複数の接続端子を設ける第1工程と、
光を発光または受光する領域である受発光領域と複数のボンディングパッドとを主面に有する半導体素子の前記受発光領域に透明接着剤を介して透明部材を取り付け、前記透明部材の取り付けられた前記主面と反対の面で前記半導体素子を前記凹状基板の前記凹部の底面に搭載する第2工程と、
前記ボンディングパッドと前記接続端子とをワイヤーで電気的に接続する第3工程と、
前記受発光領域に光を透過させる面を除いた前記透明部材を前記半導体素子および前記ワイヤーとともに液状樹脂で被覆する第4工程とを含む
ことを特徴とする半導体装置の製造方法。
A first step of forming a first step portion and a second step portion that are steps at different positions on the inner surface of the concave portion of the concave substrate having a concave portion, and providing a plurality of connection terminals on the first step portion;
A transparent member is attached to the light emitting / receiving region of the semiconductor element having a light emitting / receiving region and a plurality of bonding pads on the main surface through a transparent adhesive, and the transparent member is attached. A second step of mounting the semiconductor element on the bottom surface of the concave portion of the concave substrate on a surface opposite to the main surface;
A third step of electrically connecting the bonding pad and the connection terminal with a wire;
And a fourth step of covering the transparent member excluding a surface through which light is transmitted to the light emitting and receiving region with a liquid resin together with the semiconductor element and the wire.
JP2009044366A 2009-02-26 2009-02-26 Semiconductor device and method for manufacturing thereof Pending JP2010199410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009044366A JP2010199410A (en) 2009-02-26 2009-02-26 Semiconductor device and method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009044366A JP2010199410A (en) 2009-02-26 2009-02-26 Semiconductor device and method for manufacturing thereof

Publications (1)

Publication Number Publication Date
JP2010199410A true JP2010199410A (en) 2010-09-09

Family

ID=42823818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009044366A Pending JP2010199410A (en) 2009-02-26 2009-02-26 Semiconductor device and method for manufacturing thereof

Country Status (1)

Country Link
JP (1) JP2010199410A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206903A (en) * 2017-06-02 2018-12-27 日本精工株式会社 Proximity sensor and manufacturing method of proximity sensor
KR20220085510A (en) * 2020-12-15 2022-06-22 (주)파트론 Optical sensor package
JP7373030B1 (en) * 2022-07-28 2023-11-01 セイコーNpc株式会社 Optical device and method for manufacturing optical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206903A (en) * 2017-06-02 2018-12-27 日本精工株式会社 Proximity sensor and manufacturing method of proximity sensor
KR20220085510A (en) * 2020-12-15 2022-06-22 (주)파트론 Optical sensor package
KR102546105B1 (en) * 2020-12-15 2023-06-21 (주)파트론 Optical sensor package
JP7373030B1 (en) * 2022-07-28 2023-11-01 セイコーNpc株式会社 Optical device and method for manufacturing optical device

Similar Documents

Publication Publication Date Title
TWI666791B (en) Optical-semiconductor device and method for manufacturing the same
KR100652375B1 (en) Image sensor module structure comprising a wire bonding package and method of manufacturing the same
CN101241921B (en) Optical device and method for manufacturing optical device, and camera module and endoscope module
JP5746919B2 (en) Semiconductor package
JP2008092417A (en) Semiconductor imaging element, its manufacturing method, semiconductor imaging apparatus, and semiconductor imaging module
US9585287B2 (en) Electronic component, electronic apparatus, and method for manufacturing the electronic component
JP2010166021A (en) Semiconductor device, and manufacturing method thereof
US8928803B2 (en) Solid state apparatus
TW201426985A (en) Optoelectronic package and method of manufacturing the same
JP2007142058A (en) Semiconductor imaging element and manufacturing method thereof, and semiconductor imaging apparatus and manufacturing method thereof
US20090230408A1 (en) Optical device and method for manufacturing the same
JP2017168567A (en) Solid-state imaging device and method of manufacturing solid-state imaging device
JP2008270650A (en) Optical device, and manufacturing method thereof
JP2010206158A (en) Device
US20110049557A1 (en) Optical device and method of manufacturing the same
JP2010199410A (en) Semiconductor device and method for manufacturing thereof
JP2009171065A (en) Solid imaging apparatus, method for manufacturing solid imaging apparatus and photographing device using solid imaging apparatus
JP4730135B2 (en) Image sensor package
US20100181636A1 (en) Optical device, solid-state imaging device, and method of manufacturing optical device
JP2009158873A (en) Optical device and manufacturing method of optical device
JP2008182051A (en) Optical device, optical device apparatus, camera module and method for manufacturing the optical device apparatus
TW201409672A (en) Semiconductor device
WO2023162713A1 (en) Semiconductor device, electronic apparatus and method for manufacturing semiconductor device
JP2010273087A (en) Semiconductor device and method for manufacturing the same
JP2005217322A (en) Semiconductor element for solid-state imaging device and solid-state imaging device using it