JP2010199250A - 有機トランジスタ - Google Patents

有機トランジスタ Download PDF

Info

Publication number
JP2010199250A
JP2010199250A JP2009041623A JP2009041623A JP2010199250A JP 2010199250 A JP2010199250 A JP 2010199250A JP 2009041623 A JP2009041623 A JP 2009041623A JP 2009041623 A JP2009041623 A JP 2009041623A JP 2010199250 A JP2010199250 A JP 2010199250A
Authority
JP
Japan
Prior art keywords
group
acid
substituent
organic
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009041623A
Other languages
English (en)
Inventor
Hiroyuki Yanai
宏幸 矢内
Yuji Soneda
裕士 曽根田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2009041623A priority Critical patent/JP2010199250A/ja
Publication of JP2010199250A publication Critical patent/JP2010199250A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】無機半導体デバイスに比べて簡便なプロセスで素子を作製することが可能であり、かつ長時間安定したトランジスタ特性を示す有機トランジスタを提供する。
【解決手段】有機半導体層が、下式で表される化合物の重合体を含有する有機トランジスタ。
Figure 2010199250

(R〜R18は、それぞれ独立に、水素原子もしくは1価の有機残基を表し、R〜Rのうち少なくとも一つは水素原子であり、かつR6〜R10のうち少なくとも一つは水素原子である。)
【選択図】なし

Description

本発明は、有機半導体を用いて形成された薄膜を有する有機トランジスタに関するものである。
電界効果トランジスタ(FET:Field Effect Transistor)は、バイポーラトランジスタと並んで重要なスイッチング素子、増幅素子として広く利用されている。これまで、シリコンを用いたトランジスタなどが実用化され、広い範囲にわたって応用されている。電界効果トランジスタは、ソース電極とドレイン電極との間にある半導体層中のキャリアの輸送を、絶縁層を介したゲート電極を用いて制御することにより、その特性を示す。キャリアが、電子の場合をn型、正孔の場合をp型という(モノポーラ素子)。また、モノポーラ素子に対して、電子と正孔の両方のキャリアを輸送することができるものはバイポーラ素子と呼ばれる。
特にMOS(Metal Oxide Semiconductor)構造と呼ばれる金属酸化物を絶縁層に用いた素子は、論理ゲート素子、インバータ回路、メモリ素子等幅広く応用されている。中でも、シリコン上に二酸化ケイ素の熱酸化膜を有するMOS−FETが良く知られている。
Siに代表される無機半導体素子は、非常に複雑な製造工程を何度も繰り返すため、その作製には膨大なコストがかかる。また、製造時に高温で処理をする過程が含まれるため、フレキシブルなプラスチック基板を用いたり、有機物の半導体を用いることが困難である。それと比較して、有機トランジスタの場合には、プラスチック基板を用いた素子の作製も可能であるので、フレキシブルかつ軽量なトランジスタとして期待されている。
近年、有機EL、有機レーザー、有機太陽電池、有機トランジスタなどといった、有機材料を活性な層に用いるデバイスが注目を集めている。有機半導体材料を用いる利点として、さまざまな材料を設計することが可能であり、数多くの付加価値を付与できるなどという点が挙げられる。有機トランジスタを例にとると、これまでのSiプロセスでは必要不可欠であった高温処理を必要としないため、プラスチック基板上に作製することが可能であり、フレキシブル・軽量・壊れにくいなどといった付加価値を付与することができる。また、作製プロセスも非常に簡便することができ、材料の設計次第では、溶剤に可溶な半導体材料を得ることができる。それによって、スクリーン印刷やインクジェット印刷といった印刷法を応用することも可能になり、生産性・コストといった面で無機半導体に比べ非常に有利である。
電界効果トランジスタの動作特性は、絶縁層の静電容量、素子構成(チャネル長、チャネル幅)、半導体層のキャリア移動度が大きく関与している。有機半導体材料においては、高い移動度を持つ材料の開発が活発に行われている。また、経年変化に対する素子特性の劣化も問題となっており、安定性の高い有機半導体材料の開発も重要である。
また、シリコンに代表される無機半導体デバイスは、その作製の過程において、エッチング、高温・高真空のプロセスの繰返しが必要とされる。そのため、巨額の設備投資が必要となり、多額のランニングコストも必要となる。有機半導体は、その物性故、真空蒸着や塗布・印刷法にてデバイスを作製できるという利点を持っている。
分子量が大きい有機物では、真空蒸着は困難となるため塗布法への応用が必須となる。また、塗布印刷法へ応用するためには、溶剤への高い溶解性が求められる。
さらに、実用のデバイスを考慮すると、デバイスの安定性(信頼性)、つまり、化合物の安定性が重要となる。その指標として、高温での安定性、大気下での保存安定性などが挙げられる。
特開2001−94107号公報 特開2002−198539号公報
Applied Physics Letters誌 2001年 78巻 228頁 Advanced Materials誌 1999年 11巻 480頁
本発明の目的は、無機半導体デバイスに比べて簡便なプロセスで素子を作製することが可能であり、かつ長時間安定したトランジスタ特性を示す有機トランジスタを提供することにある。
本発明は、ソース電極、ドレイン電極、ゲート電極、及び有機半導体層を有するトランジスタにおいて、前記有機半導体層が、下記一般式[1]で表される化合物の重合体を含有することを特徴とする有機トランジスタに関する。
一般式[1]
Figure 2010199250
(式中、R1〜R18は、それぞれ独立に、水素原子もしくは1価の有機残基を表し、R1〜R5のうち少なくとも一つは水素原子であり、かつR6〜R10のうち少なくとも一つは水素原子である。)
また本発明は、一般式[1]で表される化合物をプロトン酸で処理し、酸化重合により製造されてなるか、または酸化重合し、プロトン酸で処理することで製造されてなる重合体を含有することを特徴とする。
また本発明は、R1〜R18が、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基、置換基を有してもよいアルコキシ基、ハロゲン基、または、シアノ基である重合体を含有することが好ましく、さらに、R1〜R18が、水素原子であることがより好ましい。
本発明によれば、優れたON/OFF比と、高い経時安定性を併せ持つ有機トランジスタ素子を提供することができた。
図1は本発明の有機トランジスタの構成の一実施態様を示す概念図である。
本発明の、一般式[1]で示される化合物について説明する。
本発明において、1価の有機残基としては、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、置換基を有してもよいアシルオキシ基、置換基を有してもよいアルキルスルファニル基、置換基を有してもよいアリールスルファニル基、置換基を有してもよいアルキルスルフィニル基、置換基を有してもよいアリールスルフィニル基、置換基を有してもよいアルキルスルホニル基、置換基を有してもよいアリールスルホニル基、置換基を有してもよいアシル基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよいカルバモイル基、置換基を有してもよいスルファモイル基、置換基を有してもよいアミノ基、置換基を有してもよいホスフィノイル基、置換基を有してもよいシリル基、置換基を有してもよいシリルオキシ基、ハロゲン基、ニトロ基、スルホン酸基、ヒドロキシル基、シアノ基等が挙げられる。
置換基を有してもよいアルキル基としては、炭素数1〜20のアルキル基が好ましく、より好ましくは炭素数1〜6のアルキル基である。例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、オクダデシル基、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、1−エチルペンチル基、シクロペンチル基、シクロヘキシル基、トリフルオロメチル基、2−エチルヘキシル基、フェナシル基、1−ナフトイルメチル基、2−ナフトイルメチル基、4−メチルスルファニルフェナシル基、4−フェニルスルファニルフェナシル基、4−ジメチルアミノフェナシル基、4−シアノフェナシル基4−メチルフェナシル基、2−メチルフェナシル基、3−フルオロフェナシル基、3−トリフルオロメチルフェナシル基、3−ニトロフェナシル基等の鎖状又は分岐状のアルキル基が挙げられる。さらに、環状のアルキル基(シクロアルキル環)として、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基がある。
置換基を有してもよいアリール基としては、炭素数6〜30のアリール基が好ましく、より好ましくは炭素数6〜14のアリール基である。フェニル基、ビフェニル基、1−ナフチル基、2−ナフチル基、9−アンスリル基、9−フェナントリル基、1−ピレニル基、5−ナフタセニル基、1−インデニル基、2−アズレニル基、9−フルオレニル基、ターフェニル基、クオーターフェニル基、o−、m−、およびp−トリル基、キシリル基、o−、m−、およびp−クメニル基、メシチル基、ペンタレニル基、ビナフタレニル基、ターナフタレニル基、クオーターナフタレニル基、ヘプタレニル基、ビフェニレニル基、インダセニル基、フルオランテニル基、アセナフチレニル基、アセアントリレニル基、フェナレニル基、フルオレニル基、アントリル基、ビアントラセニル基、ターアントラセニル基、クオーターアントラセニル基、アントラキノリル基、フェナントリル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基、プレイアデニル基、ピセニル基、ペリレニル基、ペンタフェニル基、ペンタセニル基、テトラフェニレニル基、ヘキサフェニル基、ヘキサセニル基、ルビセニル基、コロネニル基、トリナフチレニル基、ヘプタフェニル基、ヘプタセニル基、ピラントレニル基、オバレニル基等が挙げられる。
さらに、置換基を有してもよいアリール基としては、窒素原子、酸素原子、硫黄原子、リン原子を含む、芳香族あるいは脂肪族の複素環も挙げられ、例えば、チエニル基、ベンゾ[b]チエニル基、ナフト[2,3−b]チエニル基、ピロリル基、チアントレニル基、フリル基、ピラニル基、イソベンゾフラニル基、クロメニル基、キサンテニル基、フェノキサチイニル基、2H−ピロリル基、ピロリル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、インドリジニル基、イソインドリル基、3H−インドリル基、インドリル基、1H−インダゾリル基、プリニル基、4H−キノリジニル基、イソキノリル基、キノリル基、フタラジニル基、ナフチリジニル基、キノキサニリル基、キナゾリニル基、シンノリニル基、プテリジニル基、4aH−カルバゾリル基、カルバゾリル基、β−カルボリニル基、フェナントリジニル基、アクリジニル基、ペリミジニル基、フェナントロリニル基、フェナジニル基、フェナルサジニル基、イソチアゾリル基、フェノチアジニル基、イソキサゾリル基、フラザニル基、フェノキサジニル基、イソクロマニル基、クロマニル基、ピロリジニル基、ピロリニル基、イミダゾリジニル基、イミダゾリニル基、ピラゾリジニル基、ピラゾリニル基、ピペリジル基、ピペラジニル基、インドリニル基、イソインドリニル基、キヌクリジニル基、モルホリニル基、チオキサントリル基、カルバゾリル基、アクリジニル基、フェナジニル基、ベンゾフリル基、イソチアゾリル基、イソキサゾリル基、フラザニル基、フェノキサジニル基、ベンゾチアゾリル基、ベンゾオキサゾリル基、ベンゾイミダゾリル基、ベンゾトリアゾリル基、ピラニル基等がある。
置換基を有してもよいアルケニル基としては、炭素数2〜10のアルケニル基が好ましく、例えば、ビニル基、アリル基、スチリル基等が挙げられる。
置換基を有してもよいアルキニル基としては、炭素数2〜10のアルキニル基が好ましく、例えば、エチニル基、プロピニル基、プロパルギル基等が挙げられる。
置換基を有してもよいアルコキシ基としては、炭素数1〜20のアルコキシ基が好ましく、より好ましくは炭素数1〜6のアルコキシ基である。例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ヘキシルオキシキ、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、デシルオキシ基、ドデシルオキシ基、オクタデシルオキシ基、エトキシカルボニルメチル基、2−エチルヘキシルオキシカルボニルメチルオキシ基、アミノカルボニルメチルオキシ基、N,N−ジブチルアミノカルボニルメチルオキシ基、N−メチルアミノカルボニルメチルオキシ基、N−エチルアミノカルボニルメチルオキシ基、N−オクチルアミノカルボニルメチルオキシ基、N−メチル−N−ベンジルアミノカルボニルメチルオキシ基、ベンジルオキシ基、シアノメチルオキシ基等が挙げられる。
置換基を有してもよいアリールオキシ基としては、炭素数6〜30のアリールオキシ基が好ましく、より好ましくは炭素数6〜14のアリールオキシ基である。例えば、フェニルオキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、2−クロロフェニルオキシ基、2−メチルフェニルオキシ基、2−メトキシフェニルオキシ基、2−ブトキシフェニルオキシ基、3−クロロフェニルオキシ基、3−トリフルオロメチルフェニルオキシ基、3−シアノフェニルオキシ基、3−ニトロフェニルオキシ基、4−フルオロフェニルオキシ基、4−シアノフェニルオキシ基、4−メトキシフェニルオキシ基、4−ジメチルアミノフェニルオキシ基、4−メチルスルファニルフェニルオキシ基、4−フェニルスルファニルフェニルオキシ基等が挙げられる。
置換基を有してもよいアシルオキシ基としては、炭素数2〜20のアシルオキシ基が好ましく、例えば、アセチルオキシ基、プロパノイルオキシ基、ブタノイルオキシ基、ペンタノイルオキシ基、トリフルオロメチルカルボニルオキシ基、ベンゾイルオキシ基、1−ナフチルカルボニルオキシ基、2−ナフチルカルボニルオキシ基等が挙げられる。
置換基を有してもよいアルキルスルファニル基としては、炭素数1〜20のアルキルスルファニル基が好ましく、例えば、メチルスルファニル基、エチルスルファニル基、プロピルスルファニル基、イソプロピルスルファニル基、ブチルスルファニル基、ヘキシルスルファニル基、シクロヘキシルスルファニル基、オクチルスルファニル基、2−エチルヘキシルスルファニル基、デカノイルスルファニル基、ドデカノイルスルファニル基、オクタデカノイルスルファニル基、シアノメチルスルファニル基、メトキシメチルスルファニル基等が挙げられる。
置換基を有してもよいアリールスルファニル基としては、炭素数6〜30のアリールスルファニル基が好ましく、より好ましくは炭素数6〜14のアリールスルファニル基である。例えば、フェニルスルファニル基、1−ナフチルスルファニル基、2−ナフチルスルファニル基、2−クロロフェニルスルファニル基、2−メチルフェニルスルファニル基、2−メトキシフェニルスルファニル基、2−ブトキシフェニルスルファニル基、3−クロロフェニルスルファニル基、3−トリフルオロメチルフェニルスルファニル基、3−シアノフェニルスルファニル基、3−ニトロフェニルスルファニル基、4−フルオロフェニルスルファニル基、4−シアノフェニルスルファニル基、4−メトキシフェニルスルファニル基、4−メチルスルファニルフェニルスルファニル基、4−フェニルスルファニルフェニルスルファニル基、4−ジメチルアミノフェニルスルファニル基等が挙げられる。
置換基を有してもよいアルキルスルフィニル基としては、炭素数1〜20のアルキルスルフィニル基が好ましく、より好ましくは炭素数1〜6のアルキルスルフィニル基である。例えば、メチルスルフィニル基、エチルスルフィニル基、プロピルスルフィニル基、イソプロピルスルフィニル基、ブチルスルフィニル基、ヘキシルスルフィニル基、シクロヘキシルスルフィニル基、オクチルスルフィニル基、2−エチルヘキシルスルフィニル基、デカノイルスルフィニル基、ドデカノイルスルフィニル基、オクタデカノイルスルフィニル基、シアノメチルスルフィニル基、メトキシメチルスルフィニル基等が挙げられる。
置換基を有してもよいアリールスルフィニル基としては、炭素数6〜30のアリールスルフィニル基が好ましく、より好ましくは炭素数6〜14のアリールスルフィニル基である。例えば、フェニルスルフィニル基、1−ナフチルスルフィニル基、2−ナフチルスルフィニル基、2−クロロフェニルスルフィニル基、2−メチルフェニルスルフィニル基、2−メトキシフェニルスルフィニル基、2−ブトキシフェニルスルフィニル基、3−クロロフェニルスルフィニル基、3−トリフルオロメチルフェニルスルフィニル基、3−シアノフェニルスルフィニル基、3−ニトロフェニルスルフィニル基、4−フルオロフェニルスルフィニル基、4−シアノフェニルスルフィニル基、4−メトキシフェニルスルフィニル基、4−メチルスルファニルフェニルスルフィニル基、4−フェニルスルファニルフェニルスルフィニル基、4−ジメチルアミノフェニルスルフィニル基等が挙げられる。
置換基を有してもよいアルキルスルホニル基としては、炭素数1〜20のアルキルスルホニル基が好ましく、より好ましくは炭素数1〜6のアルキルスルホニル基である。例えば、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、イソプロピルスルホニル基、ブチルスルホニル基、ヘキシルスルホニル基、シクロヘキシルスルホニル基、オクチルスルホニル基、2−エチルヘキシルスルホニル基、デカノイルスルホニル基、ドデカノイルスルホニル基、オクタデカノイルスルホニル基、シアノメチルスルホニル基、メトキシメチルスルホニル基等が挙げられる。
置換基を有してもよいアリールスルホニル基としては、炭素数6〜30のアリールスルホニル基が好ましく、より好ましくは炭素数6〜14のアリールスルホニル基である。例えば、フェニルスルホニル基、1−ナフチルスルホニル基、2−ナフチルスルホニル基、2−クロロフェニルスルホニル基、2−メチルフェニルスルホニル基、2−メトキシフェニルスルホニル基、2−ブトキシフェニルスルホニル基、3−クロロフェニルスルホニル基、3−トリフルオロメチルフェニルスルホニル基、3−シアノフェニルスルホニル基、3−ニトロフェニルスルホニル基、4−フルオロフェニルスルホニル基、4−シアノフェニルスルホニル基、4−メトキシフェニルスルホニル基、4−メチルスルファニルフェニルスルホニル基、4−フェニルスルファニルフェニルスルホニル基、4−ジメチルアミノフェニルスルホニル基等が挙げられる。
置換基を有してもよいアシル基としては、炭素数2〜20のアシル基が好ましく、例えば、アセチル基、プロパノイル基、ブタノイル基、トリフルオロメチルカルボニル基、ペンタノイル基、ベンゾイル基、1−ナフトイル基、2−ナフトイル基、4−メチルスルファニルベンゾイル基、4−フェニルスルファニルベンゾイル基、4−ジメチルアミノベンゾイル基、4−ジエチルアミノベンゾイル基、2−クロロベンゾイル基、2−メチルベンゾイル基、2−メトキシベンゾイル基、2−ブトキシベンゾイル基、3−クロロベンゾイル基、3−トリフルオロメチルベンゾイル基、3−シアノベンゾイル基、3−ニトロベンゾイル基、4−フルオロベンゾイル基、4−シアノベンゾイル基、4−メトキシベンゾイル基等が挙げられる。
置換基を有してもよいアルコキシカルボニル基としては、炭素数2〜20のアルコキシカルボニル基が好ましく、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基、ヘキシルオキシカルボニル基、オクチルオキシカルボニル基、デシルオキシカルボニル基、オクタデシルオキシカルボニル基、フェノキシカルボニル基、トリフルオロメチルオキシカルボニル基、1−ナフチルオキシカルボニル基、2−ナフチルオキシカルボニル基、4−メチルスルファニルフェニルオキシカルボニル基、4−フェニルスルファニルフェニルオキシカルボニル基、4−ジメチルアミノフェニルオキシカルボニル基、4−ジエチルアミノフェニルオキシカルボニル基、2−クロロフェニルオキシカルボニル基、2−メチルフェニルオキシカルボニル基、2−メトキシフェニルオキシカルボニル基、2−ブトキシフェニルオキシカルボニル基、3−クロロフェニルオキシカルボニル基、3−トリフルオロメチルフェニルオキシカルボニル基、3−シアノフェニルオキシカルボニル基、3−ニトロフェニルオキシカルボニル基、4−フルオロフェニルオキシカルボニル基、4−シアノフェニルオキシカルボニル基、4−メトキシフェニルオキシカルボニル基等が挙げられる。
置換基を有してもよいカルバモイル基としては、総炭素数1〜20のカルバモイル基が好ましく、より好ましくは炭素数1〜6のカルバモイル基である。例えば、N−メチルカルバモイル基、N−エチルカルバモイル基、N−プロピルカルバモイル基、N−ブチルカルバモイル基、N−ヘキシルカルバモイル基、N−シクロヘキシルカルバモイル基、N−オクチルカルバモイル基、N−デシルカルバモイル基、N−オクタデシルカルバモイル基、N−アセチルカルバモイル基、N−フェニルカルバモイル基、N−2−メチルフェニルカルバモイル基、N−2−クロロフェニルカルバモイル基、N−2−イソプロポキシフェニルカルバモイル基、N−2−(2−エチルヘキシル)フェニルカルバモイル基、N−3−クロロフェニルカルバモイル基、N−3−ニトロフェニルカルバモイル基、N−3−シアノフェニルカルバモイル基、N−4−メトキシフェニルカルバモイル基、N−4−シアノフェニルカルバモイル基、N−4−メチルスルファニルフェニルカルバモイル基、N−4−フェニルスルファニルフェニルカルバモイル基、N−メチル−N−フェニルカルバモイル基、N、N−ジメチルカルバモイル基、N、N−ジブチルカルバモイル基、N、N−ジフェニルカルバモイル基等が挙げられる。
置換基を有してもよいスルファモイル基としては、総炭素数0〜20のスルファモイル基が好ましく、例えば、スルファモイル基、N−アルキルスルファモイル基、N−アリールスルファモイル基、N、N−ジアルキルスルファモイル基、N、N−ジアリールスルファモイル基、N−アルキル−N−アリールスルファモオイル基等が挙げられる。より具体的には、N−メチルスルファモイル基、N−エチルスルファモイル基、N−プロピルスルファモイル基、N−ブチルスルファモイル基、N−ヘキシルスルファモイル基、N−シクロヘキシルスルファモイル基、N−オクチルスルファモイル基、N−2−エチルヘキシルスルファモイル基、N−デシルスルファモイル基、N−オクタデシルスルファモイル基、N−フェニルスルファモイル基、N−2−メチルフェニルスルファモイル基、N−2−クロロフェニルスルファモイル基、N−2−メトキシフェニルスルファモイル基、N−2−イソプロポキシフェニルスルファモイル基、N−3−クロロフェニルスルファモイル基、N−3−ニトロフェニルスルファモイル基、N−3−シアノフェニルスルファモイル基、N−4−メトキシフェニルスルファモイル基、N−4−シアノフェニルスルファモイル基、N−4−ジメチルアミノフェニルスルファモイル基、N−4−メチルスルファニルフェニルスルファモイル基、N−4−フェニルスルファニルフェニルスルファモイル基、N−メチル−N−フェニルスルファモイル基、N,N−ジメチルスルファモイル基、N,N−ジブチルスルファモイル基、N,N−ジフェニルスルファモイル基等が挙げられる。
置換基を有してもよいアミノ基としては、総炭素数0〜40のアミノ基が好ましく、より好ましくは炭素数1〜14のアミノ基である。例えば、−NH2,N−アルキルアミノ基、N−アリールアミノ基、N−アシルアミノ基、N−スルホニルアミノ基、N,N−ジアルキルアミノ基、N,N−ジアリールアミノ基、N−アルキル−N−アリールアミノ基、N、N−ジスルホニルアミノ基等が挙げられる。より具体的には、N−メチルアミノ基、N−エチルアミノ基、N−プロピルアミノ基、N−イソプロピルアミノ基、N−ブチルアミノ基、N−tert−ブチルアミノ基、N−ヘキシルアミノ基、N−シクロヘキシルアミノ基、N−オクチルアミノ基、N−2−エチルヘキシルアミノ基、N−デシルアミノ基、N−オクタデシルアミノ基、N−ベンジルアミノ基、N−フェニルアミノ基、N−2−メチルフェニルアミノ基、N−2−クロロフェニルアミノ基、N−2−メトキシフェニルアミノ基、N−2−イソプロポキシフェニルアミノ基、N−2−(2−エチルヘキシル)フェニルアミノ基、N−3−クロロフェニルアミノ基、N−3−ニトロフェニルアミノ基、N−3−シアノフェニルアミノ基、N−3−トリフルオロメチルフェニルアミノ基、N−4−メトキシフェニルアミノ基、N−4−シアノフェニルアミノ基、N−4−トリフルオロメチルフェニルアミノ基、N−4−メチルスルファニルフェニルアミノ基、N−4−フェニルスルファニルフェニルアミノ基、N−4−ジメチルアミノフェニルアミノ基、N−メチル−N−フェニルアミノ基、N、N−ジメチルアミノ基、N、N−ジエチルアミノ基、N、N−ジブチルアミノ基、N、N−ジフェニルアミノ基、N、N−ジアセチルアミノ基、N、N−ジベンゾイルアミノ基、N、N−(ジブチルカルボニル)アミノ基、N、N−(ジメチルスルホニル)アミノ基、N、N−(ジエチルスルホニル)アミノ基、N、N−(ジブチルスルホニル)アミノ基、N、N−(ジフェニルスルホニル)アミノ基等が挙げられる。
置換基を有してもよいホスフィノイル基としては、総炭素数2〜50のホスフィノイル基が好ましく、例えば、ジメチルホスフィノイル基、ジエチルホスフィノイル基、ジプロピルホスフィノイル基、ジフェニルホスフィノイル基、ジメトキシホスフィノイル基、ジエトキシホスフィノイル基、ジベンゾイルホスフィノイル基、ビス(2,4,6−トリメチルフェニル)ホスフィノイル基等が挙げられる。
置換基を有してもよいシリル基としては、メチルシリル基、ジメチルシリル基、トリメチルシリル基、エチルシリル基、ジエチルシリル基、トリエチルシリル基、tert−ブチルジメチルシリル基、トリイソプロピルシリル基、ジメチルビニルシリル基、ジメチルエチルシリル基、ジメチルプロピルシリル基、ジメチルイソプロピルシリル基、クロロメチルジメチルシリル基、ブチルジメチルシリル基、ジメチルフェニルシリル基、シクロヘキシルジメチルシリル基、クロロメチルジメチルシリル基、ベンジルジメチルシリル基、ジメチルフェネチルシリル基、ジメチルオクチルシリル基、メチルジフェニルシリル基、トリフェニルシリル基、トリベンジルシリル基等が挙げられる。
置換基を有してもよいシリルオキシ基としては、メチルシリルオキシ基、ジメチルシリルオキシ基、トリメチルシリルオキシ基、エチルシリルオキシ基、ジエチルシリルオキシ基、トリエチルシリルオキシ基、tert−ブチルジメチルシリルオキシ基、トリイソプロピルシリルオキシ基、ジメチルビニルシリルオキシ基、ジメチルエチルシリルオキシ基、ジメチルプロピルシリルオキシ基、ジメチルイソプロピルシリルオキシ基、クロロメチルジメチルシリルオキシ基、ブチルジメチルシリルオキシ基、ジメチルフェニルシリルオキシ基、シクロヘキシルジメチルシリルオキシ基、クロロメチルジメチルシリルオキシ基、ベンジルジメチルシリルオキシ基、ジメチルフェネチルシリルオキシ基、ジメチルオクチルシリルオキシ基、メチルジフェニルシリルオキシ基、トリフェニルシリルオキシ基、トリベンジルシリルオキシ基等が挙げられる。
ハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
さらに、前述した置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、置換基を有してもよいアシルオキシ基、置換基を有してもよいアルキルスルファニル基、置換基を有してもよいアリールスルファニル基、置換基を有してもよいアルキルスルフィニル基、置換基を有してもよいアリールスルフィニル基、置換基を有してもよいアルキルスルホニル基、置換基を有してもよいアリールスルホニル基、置換基を有してもよいアシル基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよいカルバモイル基、置換基を有してもよいスルファモイル基、置換基を有してもよいアミノ基、置換基を有してもよいホスフィノイル基、置換基を有してもよいヘテロアリール基、置換基を有してもよいシリル基および置換基を有してもよいシリルオキシ基の水素原子はさらに他の置換基で置換されていても良い。
そのような置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン基、メトキシ基、エトキシ基、tert−ブトキシ基等のアルコキシ基、フェノキシ基、p−トリルオキシ基等のアリールオキシ基、メトキシカルボニル基、ブトキシカルボニル基、フェノキシカルボニル基等のアルコキシカルボニル基、アセトキシ基、プロピオニルオキシ基、ベンゾイルオキシ基等のアシルオキシ基、アセチル基、ベンゾイル基、イソブチリル基、アクリロイル基、メタクリロイル基、メトキサリル基等のアシル基、メチルスルファニル基、tert−ブチルスルファニル基等のアルキルスルファニル基、フェニルスルファニル基、p−トリルスルファニル基等のアリールスルファニル基、メチルアミノ基、シクロヘキシルアミノ基等のアルキルアミノ基、ジメチルアミノ基、ジエチルアミノ基、モルホリノ基、ピペリジノ基等のジアルキルアミノ基、フェニルアミノ基、p−トリルアミノ基等のアリールアミノ基、メチル基、エチル基、tert−ブチル基、ドデシル基等のアルキル基、フェニル基、p−トリル基、キシリル基、クメニル基、ナフチル基、アンスリル基、フェナントリル基等のアリール基等の他、ヒドロキシ基、カルボキシ基、ホルミル基、メルカプト基、スルホ基、メシル基、p−トルエンスルホニル基、アミノ基、ニトロ基、シアノ基、トリフルオロメチル基、トリクロロメチル基、トリメチルシリル基、ホスフィニコ基、ホスホノ基、トリメチルアンモニウミル基、ジメチルスルホニウミル基、トリフェニルフェナシルホスホニウミル基等が挙げられる。
本発明の一般式[1]の化合物の代表例を例示化合物(1)〜(20)として具体的に以下に例示するが、これらに限られるものではない。なお、例示化合物中のMeはメチル基、Etはエチル基、Hexはヘキシル基を示す。
Figure 2010199250
Figure 2010199250
ここで、本発明における重合体の合成方法について説明する。
まず、プロトン酸による処理について説明する。プロトン酸による処理とは、プロトン酸をドーピング剤としてドープすることによって重合体に導電性をもたせるものである。これにより、推測ではあるが、下記に示すユニットように、重合体のアミン部分がプロトン化され、導電性が発現するものである。
Figure 2010199250


プロトン酸で処理する工程としては、先にモノマー(本発明の化合物[1])をプロトン酸処理し、重合を行う方法と、モノマーを重合してからプロトン酸処理を行う方法のどちらもとりうるが、工程の短縮を考えて、先にモノマーをプロトン酸処理し、重合を行う方法が好ましい。
本発明において用いるプロトン酸は、例えば、有機カルボン酸又はフェノール類である。このようなプロトン酸としては、脂肪族、芳香族、芳香脂肪族、脂環式等の一又は多塩基酸を含む。このようなプロトン酸は、水酸基、ハロゲン、ニトロ基、シアノ基、アミノ基等を有していてもよい。従って、かかるプロトン酸の具体例として、例えば、酢酸、n−酪酸、ペンタデカフルオロオクタン酸、ペンタフルオロ酢酸、トリフルオロ酢酸、トリクロロ酢酸、ジクロロ酢酸、モノフルオロ酢酸、モノブロモ酢酸、モノクロロ酢酸、シアノ酢酸、アセチル酢酸、ニトロ酢酸、トリフェニル酢酸、ギ酸、シュウ酸、安息香酸、m−ブロモ安息香酸、p−クロロ安息香酸、m−クロロ安息香酸、p−クロロ安息香酸、o−ニトロ安息香酸、2,4−ジニトロ安息香酸、3,5−ジニトロ安息香酸、ピクリン酸、o−クロロ安息香酸、p−ニトロ安息香酸、m−ニトロ安息香酸、トリメチル安息香酸、p−シアノ安息香酸、m−シアノ安息香酸、チモールブルー、サリチル酸、5−アミノサリチル酸、o−メトキシ安息香酸、1,6−ジニトロ−4−クロロフェノール、2,6−ジニトロフェノール、2,4−ジニトロフェノール、p−オキシ安息香酸、ブロモフェノールブルー、マンデル酸、フタル酸、イソフタル酸、マレイン酸、フマル酸、マロン酸、酒石酸、クエン酸、乳酸、コハク酸、α−アラニン、β−アラニン、グリシン、グリコール酸、チオグリコール酸、エチレンジアミン−N,N'−二酢酸、エチレンジアミン−N,N,N',N'−四酢酸等を挙げることができる。
また、プロトン酸は、スルホン酸又は硫酸基を有するものであつてもよい。このようなプロトン酸としては、例えば、アミノナフトールスルホン酸、メタニル酸、スルファニル酸、アリルスルホン酸、ラウリル硫酸、キシレンスルホン酸、クロロベンゼンスルホン酸、メタンスルホン酸、エタンスルホン酸、1−プロパンスルホン酸、1−ブタンスルホン酸、1−ヘキサンスルホン酸、1−ヘプタンスルホン酸、1−オクタンスルホン酸、1−ノナンスルホン酸、1−デカンスルホン酸、1−ドデカンスルホン酸、ベンゼンスルホン酸、スチレンスルホン酸、p−トルエンスルホン酸、ナフタレンスルホン酸、エチルベンゼンスルホン酸、プロピルベンゼンスルホン酸、ブチルベンゼンスルホン酸、ペンチルベンゼンスルホン酸、ヘキシルベンゼンスルホン酸、ヘプチルベンゼンスルホン酸、オクチルベンゼンスルホン酸、ノニルベンゼンスルホン酸、デシルベンゼンスルホン酸、ウンデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、ペンタデシルベンゼンスルホン酸、オクタデシルベンゼンスルホン酸、ジエチルベンゼンスルホン酸、ジプロピルベンゼンスルホン酸、ジブチルベンゼンスルホン酸、メチルナフタレンスルホン酸、エチルナフタレンスルホン酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸、ペンチルナフタレンスルホン酸、ヘキシルナフタレンスルホン酸、ヘプチルナフタレンスルホン酸、オクチルナフタレンスルホン酸、ノニルナフタレンスルホン酸、デシルナフタレンスルホン酸、ウンデシルナフタレンスルホン酸、ドデシルナフタレンスルホン酸、ペンタデシルナフタレンスルホン酸、オクタデシルナフタレンスルホン酸、ジメチルナフタレンスルホン酸、ジエチルナフタレンスルホン酸、ジプロピルナフタレンスルホン酸、ジブチルナフタレンスルホン酸、ジペンチルナフタレンスルホン酸、ジヘキシルナフタレンスルホン酸、ジヘプチルナフタレンスルホン酸、ジオクチルナフタレンスルホン酸、ジノニルナフタレンスルホン酸、トリメチルナフタレンスルホン酸、トリエチルナフタレンスルホン酸、トリプロピルナフタレンスルホン酸、トリブチルナフタレンスルホン酸、カンフアースルホン酸、アクリルアミド−t−ブチルスルホン酸等を挙げることができる。
また、本発明においては、分子内に2つ以上のスルホン酸基を有する多官能有機スルホン酸も用いることができる。このような多官能有機スルホン酸としては、例えば、エタンジスルホン酸、プロパンジスルホン酸、ブタンジスルホン酸、ペンタンジスルホン酸、ヘキサンジスルホン酸、ヘプタンジスルホン酸、オクタンジスルホン酸、ノナンジスルホン酸、デカンジスルホン酸、ベンゼンジスルホン酸、ナフタレンジスルホン酸、トルエンジスルホン酸、エチルベンゼンジスルホン酸、プロピルベンゼンジスルホン酸、ブチルベンゼンジスルホン酸、ジメチルベンゼンジスルホン酸、ジエチルベンゼンジスルホン酸、ジプロピルベンゼンジスルホン酸、ジブチルベンゼンジスルホン酸、メチルナフタレンジスルホン酸、エチルナフタレンジスルホン酸、プロピルナフタレンジスルホン酸、ブチルナフタレンジスルホン酸、ペンチルナフタレンジスルホン酸、ヘキシルナフタレンジスルホン酸、ヘプチルナフタレンジスルホン酸、オクチルナフタレンジスルホン酸、ノニルナフタレンジスルホン酸、ジメチルナフタレンジスルホン酸、ジエチルナフタレンジスルホン酸、ジプロピルナフタレンジスルホン酸、ジブチルナフタレンジスルホン酸、ナフタレントリスルホン酸、ナフタレンテトラスルホン酸、アントラセンジスルホン酸、アントラキノンジスルホン酸、フェナントレンジスルホン酸、フルオレノンジスルホン酸、カルバゾールジスルホン酸、ジフエニルメタンジスルホン酸、ビフエニルジスルホン酸、ターフェニルジスルホン酸、ターフェニルトリスルホン酸、ナフタレンスルホン酸−ホルマリン縮合物、フェナントレンスルホン酸−ホルマリン縮合物、アントラセンスルホン酸−ホルマリン縮合物、フルオレンスルホン酸−ホルマリン縮合物、カルバゾールスルホン酸−ホルマリン縮合物等を挙げることができる。芳香環におけるスルホン酸基の位置は任意である。
更に、本発明において、プロトン酸はポリマー酸であってもよい。このようなポリマー酸としては、例えば、ポリビニルスルホン酸、ポリビニル硫酸、ポリスチレンスルホン酸、スルホン化スチレン−ブタジエン共重合体、ポリアリルスルホン酸、ポリメタリルスルホン酸、ポリ−2−アクリルアミド−2−メチルプロパンスルホン酸、ポリハロゲン化アクリル酸、ポリイソプレンスルホン酸、N−スルホアルキル化ポリアニリン、核スルホン化ポリアニリン等を挙げることができる。ナフイオン(米国デュポン社登録商標)として知られている含フッ素重合体も、ポリマー酸として好適に用いられる。
その中でも、プロトン酸ドーピング剤としては、アニオン系界面活性剤を用いることが好ましい。アニオン系界面活性剤としては、例えば、スルホン酸系界面活性剤、カルボン酸系界面活性剤、リン酸エステル系界面活性剤、又は硫酸エステル系界面活性剤を挙げることができる。
プロトン酸ドーピング剤の中でも、アニオン系界面活性剤を用いることにより、塩酸又は硫酸などの無機酸と比べて、イオン半径が大きく嵩高いために熱などによる拡散による脱ドープが起こりにくい。また疎水性部分があるために、ドープされた重合体同士が凝集することなく有機溶剤に良分散することができる。
スルホン酸系界面活性剤は、例えば、アルキルベンゼンスルホン酸塩(例えば、ドデシルベンゼンスルホン酸ナトリウム)、ナフタレンスルホン酸塩−ホルムアルデヒド縮合物、又はスルホコハク酸ジアルキルエステル(例えば、スルホコハク酸ジ2−エチルヘキシルナトリウム)である。カルボン酸系界面活性剤は、例えば、脂肪族モノカルボン酸塩(例えば、ラウリン酸ナトリウム)又はN−アシロイルグルタミン酸塩(例えば、ラウロイルグルタミン酸ナトリウム)である。リン酸エステル系界面活性剤は、例えば、リン酸アルキル塩(例えば、モノラウリルレン酸ナトリウム)である。また、硫酸エステル系界面活性剤は、例えば、硫酸アルキル塩(例えば、硫酸ドデシルナトリウム)である。これらのアニオン系界面活性剤を1種単独で、あるいは2種以上を任意に組み合わせて用いることができる。
モノマーとプロトン酸ドーピング剤との重量比は、好ましくは1:20〜20:1、より好ましくは1:10〜10:1である。プロトン酸ドーピング剤の量がモノマーの量に対して少なくなりすぎると、重合体が良好な分散状態を得ることができずに凝集してしまい、逆に量が多すぎるとラジカル反応性化合物の相と水層との界面が分かれにくくなり、水層を除去する操作が煩雑となってしまう。
次にモノマーの重合方法について説明する。
重合方法としては、電解重合法、化学酸化重合法により実施することができる。工程の簡略化を考えて、重合方法は、化学酸化重合法で行うことが好ましい。
モノマーの化学酸化重合法としては、従来公知の重合開始用酸化剤を用いることができる。具体的には、過硫酸アンモニウム、過硫酸カリウム、過塩素酸カリウム、塩化カリウム、ヨウ化カリウム、又は塩化鉄(II)などを挙げることができ、特に過硫酸アンモニウムに代表される過硫酸類が好ましい。また、モノマーと酸化剤の重量比は、1:10〜10:1が好ましく、より好ましくは1:5〜5:1である。酸化剤の量がモノマーに対して少なすぎると、重合反応が十分に進行せず、また量が多すぎると重合反応時に副生成物が多量に生成してしまう。
モノマーの重合時の反応温度は−20℃〜80℃が好ましく、より好ましくは−10℃〜60℃である。また、反応時間は30分〜48時間の範囲であり、常圧下で、反応混合物を撹拌させて行うことができる。また、本発明における製造方法において、平均分子量を調整するために、連鎖移動剤を添加して行うこともできる。
また、本発明の重合体は、2種類以上のモノマーを共重合したものでもよい。
本発明の有機半導体層を使用できる有機トランジスタの具体的な構成および仕様は、公知の有機トランジスタのいずれも使用することができる。
好適な構成としては、図1に示すI〜Xの構成が挙げられる。
なお、図1中、Aはソース電極およびドレイン電極(2つの電極のうち一方がソース電極であり、もう一方がドレイン電極である。)、Bはゲート電極、Cは有機半導体層、Dはゲート絶縁膜、Eは基板を表す。図1中、II、IV、VI、VIIIは、基板がゲート電極を兼ねている例である。
一般式[1]で表される化合物を有機トランジスタ素子の活性層として利用するには、真空蒸着法によって基板上に成膜させることが望ましい。この際、基板を加熱しておくことにより特性を向上させることもできる。また、適切な有機溶媒に溶解させた溶液を用いて、スピンコート、ドロップキャスト、インクジェット法、スクリーン印刷法等によって基板上に成膜させることも可能である。
また、基板としてガラス基板やシリコン基板を用いることができるが、軽量・フレキシブルといった観点から、ポリエチレン、ポリエチレンテレフテレート、ポリエチレンナフタレート、ポリエーテルサルフォン、ポリプロピレン、ポリイミド、ボリカーボネート、セルローストリアセテートなどのプラスチックフィルムを用いることもできる。素子の構成によっては、基板そのものが電極を兼ねる場合がある。
本発明おいて、ソース電極、ドレイン電極及びゲート電極を形成する材料は導電性材料であれば特に限定されない。具体的には、金、白金、パラジウム、アルミニウム、インジウム、カルシウム、カリウム、マグネシウム、スズ、鉛、インジウム・スズ酸化物(ITO)、銀ペースト、カーボンペースト、グラファイト、グラッシーカーボン、リチウム、フッ化リチウム/アルミニウム積層、カルシウム/アルミニウム積層、シリコン、ルテニウム、マンガン、イットリウム、チタニウム等およびそれらの合金が用いられるが、これらに限定されるものではない。合金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げられるが、これらに限定されるものではない。合金の比率は、蒸着源の温度、雰囲気、真空度等により制御され、適切な比率に選択される。ソース電極、ドレイン電極及びゲート電極は、必要があれば二層以上の層構成により形成されていても良い。さらには、導電性ポリピロール、導電性ポリチオフェン、導電性ポリアニリン、PEDOT/PSSといった有機材料を用いた導電性電極を用いることもできる。
電極の作製方法としては、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法のいずれの方法を適用することができる。また、塗工膜からリソグラフやレーザーアブレーションなどにより形成してもよい。
また、電極表面を自己集合単分子膜(self−assembled monolayer:SAM)を用いて表面修飾することにより、電極表面の表面エネルギーを低下させ、有機半導体材料の結晶成長、結晶配列、有機半導体材料と電極との塗れ性などを改善することができる。たとえば、金電極を用いた場合には、アルカンチオールなどを用いて表面修飾することが望ましい。
ゲート絶縁層としては種々の絶縁膜を用いることができるが、特に、比誘電率の高い無機酸化物が好ましい。無機酸化物としては、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタン、酸化スズ、酸化バナジウム、チタン酸バリウムストロンチウム、ジルコニウム酸チタン酸バリウム、ジルコニウム酸チタン酸鉛、チタン酸鉛ランタン、チタン酸ストロンチウム、チタン酸バリウム、フッ化バリウムマグネシウム、チタン酸ビスマス、チタン酸ストロンチウムビスマス、タンタル酸ストロンチウムビスマス、タンタル酸ニオブ酸ビスマス、トリオキサイドイットリウムなどが挙げられる。より好ましくは、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタンである。窒化ケイ素、窒化アルミニウム等の無機窒化物も好適に用いることができる。
ゲート絶縁膜の形成方法としては、真空蒸着法、分子線エピタキシャル成長法、イオンクラスタービーム法、低エネルギーイオンビーム法、イオンプレーティング法、CVD法、スパッタリング法、大気圧プラズマ法などのドライプロセスや、スプレーコート法、スピンコート法、ブレードコート法、デイップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法などの塗布による方法、印刷やインクジェットなどのパターニングによる方法などのウェットプロセスが挙げられ、材料に応じて使用できる。
ウェットプロセスは、無機酸化物の微粒子を、任意の有機溶剤あるいは水に必要に応じて界面活性剤などの分散補助剤を用いて分散した液を塗布、乾燥する方法や、酸化物前駆体、例えばアルコキシ体の溶液を塗布、乾燥する、いわゆるゾルゲル法が用いられる。
親水性のゲート絶縁膜は、様々な化学的表面処理を行うことにより、その性質を親水性から疎水性へと変化させることができる。これにより、ゲート絶縁膜と疎水性の有機半導体層の塗れ性などを大きく改善したり、半導体材料の結晶性を向上させることができる。また、リーク電流を少なくするといった効果も得られる。代表的な表面処理材料としては、ヘキサメチルジシラザン(HMDS)、オクチルトリクロロシラン(OTS)、7−オクテニルトリクロロシラン(VTS)、トリデカフルオロ−1,1,2,2−テトラヒドロオクチルトリクロロシラン(FTS)、ベンジルトリクロロシラン(BTS)などのシラン系材料が好ましいが、これに限定されるものではない。
また、有機ゲート絶縁膜としては、ポリエチレン、塩化ビニル、ポリイミド、ポリアミド、ポリエステル、ポリビニルフェノール、ポリビニルアルコール、ノボラック樹脂、シアノエチルプルラン、アクリロニトリル、パリレンなどがある。また、それらの共重合体も同様に利用可能である。
以下、実施例を用いて本発明を更に具体的に説明するが、本発明はこれにより限定されるものではない。
<合成例> 化合物(1)の重合体(P1)の合成
機械式攪拌機、滴下ロートを備える1Lのガラスフラスコに、トルエン200mLを入れ、ジイソオクチルスルホコハク酸ナトリウム(東京化成工業社製)3.52gとモノマー(1)(N,N’−ジフェニルベンジジン、東京化成工業社製)6.53gを溶解させた。この溶液を撹拌しながら、1N塩酸200mLを加え、氷水浴にてフラスコを冷却した。ここに、過硫酸アンモニウム5.36g を1N塩酸200mLに溶解した溶液を、上記滴下ロートより滴下してモノマーの重合を開始させた。フラスコを氷水浴で冷却しながら重合反応させ、24時間後に撹拌を停止した。反応溶液を分液ロートに移し、二層に分離した反応溶液から水相を廃棄し、トルエン有機相をイオン交換水で2回洗浄した。目的物を含むトルエン溶液から揮発分(有機溶剤)を減圧留去して、プロトネーションされた固形状の重合体(P1)を得た。得られた重合体(P1)の赤外吸収スペクトル測定(パーキンエルマー社製、SPECTRUM ONE)、1H-NMRスペクトル測定(日本分光社製、ECX-400P)を行った結果、ジイソオクチルスルホコハク酸がドープされていることが確認できた。これらのスペクトルを図1、図2に示す。さらに、重合体(P1)からドーピング剤が脱離した脱ドープ体のGPC分析(東ソー社製、8020シリーズ、TskgelGMHHR-M)を行った。脱ドープ体は、重合体(P1)をトルエンに溶解し、1N水酸化ナトリウム水溶液と接触混合させ、ヘキサンで沈澱、ろ別することにより得た。重合体(P1)の脱ドープ体のPS換算重量平均分子量は819(g/mol)であることが分かった。
化合物(1)の代わりに、化合物(2)〜(20)を用いた他は、合成例と同様にして重合体(P2)〜(P20)を得た。
実施例1
ゲート電極としての抵抗率0.02Ω・cmのSiウェハーに、熱酸化膜を形成してゲート絶縁層とした後、ヘキサメチルジシラザン(HMDS)を用いて表面処理を行った。スピンコート法(クロロホルム:トルエン=1:1、2wt%、1000rpm)により、重合体(P1)を80nm積層させた。さらに、この膜の表面にマスクを用いて金を蒸着してソース電極およびドレイン電極を形成した。ソース電極およびドレイン電極の膜厚は300nmで、チャネル幅W=5mm、チャネル長L=20μmの有機トランジスタ素子を作製した。
実施例2〜20
重合体(P1)の代わりに、重合体(2)〜(20)を用いた他は、実施例1と同様にして有機トランジスタ素子を作製した。
比較例1
本発明の化合物の代わりに、下記化合物Aを用い、実施例1と同様の方法で有機トランジスタ素子を作製した。
化合物A
Figure 2010199250
以上のようにして作製した有機トランジスタ素子を用いて、大気下・40℃の条件においてトランジスタ素子を保管し、そのトランジスタ特性の経時変化を比較した。ソース電極とドレイン電極の間に30Vまたは−30Vの電圧を印加し、ゲート電極に−50Vから50Vの範囲で電圧を掃引させた際の、ソース電極とドレイン電極の間の最大電流値(ON電流)と最小電流値(OFF電流)の比をON/OFF比とした。それぞれの素子において、素子作成直後のON/OFF比を1としたときの、一日後、一週間後、一ヵ月後におけるON/OFF比の相対値を表1に示す。
表1
Figure 2010199250


従来までに知られている有機半導体材料は、大気下に放置した場合、その薄膜に対して酸素等のドーピング起こり、特性が低下することが知られている。しかし、本発明の半導体性材料を活性層に用いて作製した有機トランジスタ素子は、大気下においても経時に対して高い安定性を示すことがわかる。
A ソース電極またはドレイン電極
B ゲート電極
C 有機半導体層
D ゲート絶縁膜
E 基板

Claims (4)

  1. ソース電極、ドレイン電極、ゲート電極、及び有機半導体層を有する有機トランジスタにおいて、前記有機半導体層が、下記一般式[1]で表される化合物の重合体を含有することを特徴とする有機トランジスタ。
    一般式[1]
    Figure 2010199250


    (式中、R1〜R18は、それぞれ独立に、水素原子もしくは1価の有機残基を表し、R1〜R5のうち少なくとも一つは水素原子であり、かつR6〜R10のうち少なくとも一つは水素原子である。)
  2. 一般式[1]で表される化合物をプロトン酸で処理し、酸化重合により製造されてなるか、または酸化重合し、プロトン酸で処理することで製造されてなる重合体を含有することを特徴とする請求項1記載の有機トランジスタ。
  3. 1〜R18が、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基、置換基を有してもよいアルコキシ基、ハロゲン基、または、シアノ基である重合体を含有することを特徴とする請求項1または2記載の有機トランジスタ。
  4. 1〜R18が、水素原子である請求項1ないし3いずれか記載の有機トランジスタ。
JP2009041623A 2009-02-25 2009-02-25 有機トランジスタ Pending JP2010199250A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041623A JP2010199250A (ja) 2009-02-25 2009-02-25 有機トランジスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041623A JP2010199250A (ja) 2009-02-25 2009-02-25 有機トランジスタ

Publications (1)

Publication Number Publication Date
JP2010199250A true JP2010199250A (ja) 2010-09-09

Family

ID=42823691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041623A Pending JP2010199250A (ja) 2009-02-25 2009-02-25 有機トランジスタ

Country Status (1)

Country Link
JP (1) JP2010199250A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027258A1 (ja) * 2018-08-03 2020-02-06 日産化学株式会社 フッ化芳香族第二級アミン化合物の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027258A1 (ja) * 2018-08-03 2020-02-06 日産化学株式会社 フッ化芳香族第二級アミン化合物の製造方法
JP2020063296A (ja) * 2018-08-03 2020-04-23 日産化学株式会社 含フッ素アニリン誘導体および重合体

Similar Documents

Publication Publication Date Title
JP2008103474A (ja) 有機トランジスタ
JP5089986B2 (ja) 有機半導体層およびその改善
EP3540015B1 (en) Use of a coating composition and organic light-emitting device
US5347144A (en) Thin-layer field-effect transistors with MIS structure whose insulator and semiconductor are made of organic materials
Zou et al. Unexpected Propeller‐Like Hexakis (fluoren‐2‐yl) benzene Cores for Six‐Arm Star‐Shaped Oligofluorenes: Highly Efficient Deep‐Blue Fluorescent Emitters and Good Hole‐Transporting Materials
JP2004523623A (ja) 増加した粘度を有するポリアニリンの水性導電性分散液
US6414104B1 (en) Arylamine-substituted poly (arylene vinylenes) and associated methods of preparation and use
Okamoto et al. Synthesis of solution-soluble pentacene-containing conjugated copolymers
EP2715820B1 (en) Semiconductor compositions for organic transistors
KR101787121B1 (ko) 유기 반도체
JP2010225950A (ja) 重合体を用いた有機エレクトロルミネッセンス素子
EP2287936A1 (en) Carbon nanotube composite, organic semiconductor composite, and field-effect transistor
KR20010103759A (ko) 플루오렌 공중합체 및 이로부터 제조된 디바이스
EA008967B1 (ru) Лак, переносящий заряд
WO2016026123A1 (en) Compositions comprising oxygen substituted benzocyclobutenes and dienophiles, and electronic devices containing same
CN108912329B (zh) 一种图案化二维共轭微孔聚合物的制备方法和应用
JP2008103476A (ja) 有機トランジスタ
JP2008098453A (ja) 有機トランジスタ
JP2006036755A (ja) 二価結合を有する小分子チオフェン化合物を備える装置
TW200842141A (en) Derivatized monomers for making conductive polymers, and devices made with such polymers
JP2006013483A (ja) 小分子チオフェン化合物を備える装置
JP2008098222A (ja) 有機トランジスタ
JP2010192782A (ja) 光電変換素子用材料及び光電変換素子
Jo et al. Synthetic strategy for thienothiophene-benzotriazole-based polymers with high backbone planarity and solubility for field-effect transistor applications
JP2010199250A (ja) 有機トランジスタ