JP2010197676A - Fixing device and image forming apparatus - Google Patents

Fixing device and image forming apparatus Download PDF

Info

Publication number
JP2010197676A
JP2010197676A JP2009042065A JP2009042065A JP2010197676A JP 2010197676 A JP2010197676 A JP 2010197676A JP 2009042065 A JP2009042065 A JP 2009042065A JP 2009042065 A JP2009042065 A JP 2009042065A JP 2010197676 A JP2010197676 A JP 2010197676A
Authority
JP
Japan
Prior art keywords
fixing
temperature
fixing belt
disposed
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009042065A
Other languages
Japanese (ja)
Other versions
JP4893763B2 (en
Inventor
Eiichiro Tokuhiro
英一郎 徳弘
Shigehiko Hasenami
茂彦 長谷波
Takayuki Uchiyama
隆幸 内山
Motofumi Baba
基文 馬場
Nobuyoshi Komatsu
伸嘉 小松
Yasutaka Naito
康隆 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2009042065A priority Critical patent/JP4893763B2/en
Priority to US12/561,819 priority patent/US8295752B2/en
Publication of JP2010197676A publication Critical patent/JP2010197676A/en
Application granted granted Critical
Publication of JP4893763B2 publication Critical patent/JP4893763B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • General Induction Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly detect the abnormal temperature rise of a fixing member in a fixing device of an induction heating system. <P>SOLUTION: Thermistors 71 and 72 for detecting the temperature of a fixing belt 61 from the inside of the fixing belt 61 are disposed in an area which goes toward on one end part rather than a center position in the lengthwise direction of a thermosensitive magnetic member 64, and a thermoswitch 70 for cutting off power supplied to an IH heater by detecting that the temperature of the fixing belt 61 has exceeded a preliminarily determined temperature from inside the fixing belt 61 is disposed in an area opposite to the area where the thermistors 71 and 72 are disposed, with respect to the center position in the lengthwise direction of the thermosensitive magnetic member 64. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、定着装置、および画像形成装置に関する。   The present invention relates to a fixing device and an image forming apparatus.

電子写真方式を用いた複写機、プリンタ等の画像形成装置に搭載する定着装置として、電磁誘導加熱方式を用いたものが知られている。
例えば特許文献1には、磁束発生手段としての電磁誘導コイルが磁性金属製の芯金シリンダからなる定着ロールの内部に配置され、電磁誘導コイルにて生成した誘導磁界により定着ロールに渦電流を誘起させて、定着ロールを直接的に加熱する誘導加熱方式の定着装置が記載されている。
As a fixing device mounted on an image forming apparatus such as a copying machine or a printer using an electrophotographic system, an apparatus using an electromagnetic induction heating system is known.
For example, in Patent Document 1, an electromagnetic induction coil as a magnetic flux generating means is arranged inside a fixing roll made of a core metal cylinder made of magnetic metal, and an eddy current is induced in the fixing roll by an induced magnetic field generated by the electromagnetic induction coil. An induction heating type fixing device that directly heats the fixing roll is described.

特開2003−186322号公報JP 2003-186322 A

ここで一般に、電磁誘導方式により加熱される定着部材を熱容量の小さいベルト部材で構成することにより、定着部材を定着設定温度まで上昇させる時間(ウォームアップタイム)が短縮される。しかしその反面、ベルト部材で構成された定着部材は熱容量が小さいことから温度上昇し易いため、定着部材にて生じる定着設定温度を想定以上に超える異常な温度上昇は迅速に検知する必要がある。
本発明は、誘導加熱方式の定着装置における定着部材の異常な温度上昇の発生を迅速に検知することを目的とする。
Here, in general, the fixing member heated by the electromagnetic induction method is configured by a belt member having a small heat capacity, so that the time required to raise the fixing member to the fixing set temperature (warm-up time) is shortened. On the other hand, since the fixing member constituted by the belt member has a small heat capacity, the temperature is likely to rise. Therefore, it is necessary to quickly detect an abnormal temperature rise exceeding the preset fixing temperature generated in the fixing member.
An object of the present invention is to quickly detect the occurrence of an abnormal temperature rise of a fixing member in an induction heating type fixing device.

請求項1に記載の発明は、導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、前記定着部材を挟んで前記磁界生成部材と対向して配置され、透磁率が減少を開始する透磁率変化開始温度以下の温度範囲にて当該磁界生成部材で生成された交流磁界の磁路を形成し、当該透磁率変化開始温度を超える温度範囲にて当該磁界生成部材で生成された交流磁界を透過させる磁路形成部材と、前記磁路形成部材の長手方向中央位置よりも一方の端部側に向かう領域に配置され、前記定着部材の内側から当該定着部材の温度を検知する温度検知部材と、前記磁路形成部材の長手方向中央位置に対して前記温度検知部材が配置された領域とは反対側の領域に配置され、前記定着部材の内側から当該定着部材の温度が予め定めた温度を超えたことを検知して前記磁界生成部材に供給される電力を遮断する遮断部材とを備えたことを特徴とする定着装置である。   According to the first aspect of the present invention, there is provided a fixing member that has a conductive layer, the toner is fixed to the recording material by electromagnetically heating the conductive layer, and an alternating magnetic field that intersects the conductive layer of the fixing member. The magnetic field generating member to be generated is disposed opposite to the magnetic field generating member across the fixing member, and is generated by the magnetic field generating member in a temperature range equal to or lower than the permeability change start temperature at which the magnetic permeability starts decreasing. A magnetic path forming member that forms a magnetic path of an alternating magnetic field and transmits the alternating magnetic field generated by the magnetic field generating member in a temperature range that exceeds the permeability change start temperature, and a longitudinal center position of the magnetic path forming member And a temperature detection member that is disposed in a region toward one end side and detects the temperature of the fixing member from the inside of the fixing member, and the temperature detection member with respect to the longitudinal center position of the magnetic path forming member Area where is placed Is disposed in the opposite region, and includes a blocking member that detects that the temperature of the fixing member has exceeded a predetermined temperature from the inside of the fixing member and blocks power supplied to the magnetic field generating member. This is a fixing device.

請求項2に記載の発明は、前記定着部材の内側に配置され、当該定着部材を当該定着部材に接触して配置されるロール部材に押圧させて当該定着部材と当該ロール部材との間に記録材が通過するニップ部を形成する押圧部材をさらに備え、前記温度検知部材と前記遮断部材とは、前記押圧部材の配置位置よりも前記定着部材の移動方向下流側であって前記磁路形成部材の配置位置よりも上流側の領域、または当該磁路形成部材が配置された領域に配置されたことを特徴とする請求項1記載の定着装置である。
請求項3に記載の発明は、前記温度検知部材は、前記定着部材の内周面に向けて押圧するように配置されたことを特徴とする請求項1記載の定着装置である。
請求項4に記載の発明は、前記遮断部材は、前記定着部材の内周面と対向する部分の全部または一部が前記磁路形成部材の当該定着部材の内周面と対向する面よりも当該定着部材側に位置するように配置されたことを特徴とする請求項1記載の定着装置である。
請求項5に記載の発明は、前記磁路形成部材は、前記定着部材と非接触に配置されたことを特徴とする請求項1記載の定着装置である。
According to a second aspect of the present invention, recording is performed between the fixing member and the roll member by being arranged on the inner side of the fixing member and pressing the fixing member against a roll member arranged in contact with the fixing member. A pressing member that forms a nip portion through which the material passes, wherein the temperature detection member and the blocking member are downstream in the moving direction of the fixing member with respect to the arrangement position of the pressing member, and the magnetic path forming member 2. The fixing device according to claim 1, wherein the fixing device is disposed in a region upstream of a position where the magnetic path forming member is disposed, or a region where the magnetic path forming member is disposed.
According to a third aspect of the present invention, in the fixing device according to the first aspect, the temperature detecting member is disposed so as to be pressed toward an inner peripheral surface of the fixing member.
According to a fourth aspect of the present invention, in the blocking member, the whole or part of the portion facing the inner peripheral surface of the fixing member is more than the surface facing the inner peripheral surface of the fixing member of the magnetic path forming member. The fixing device according to claim 1, wherein the fixing device is disposed on the fixing member side.
The invention according to claim 5 is the fixing device according to claim 1, wherein the magnetic path forming member is disposed in non-contact with the fixing member.

請求項6に記載の発明は、トナー像を形成するトナー像形成手段と、前記トナー像形成手段によって形成された前記トナー像を記録材上に転写する転写手段と、前記記録材上に転写された前記トナー像を当該記録材に定着する定着手段とを有し、前記定着手段は、導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、前記定着部材を挟んで前記磁界生成部材と対向して配置され、透磁率が減少を開始する透磁率変化開始温度以下の温度範囲にて当該磁界生成部材で生成された交流磁界の磁路を形成し、当該透磁率変化開始温度を超える温度範囲にて当該磁界生成部材で生成された交流磁界を透過させる磁路形成部材と、前記磁路形成部材の長手方向中央よりも一方の端部側に向かう領域に配置され、前記定着部材の内側から当該定着部材の温度を検知する温度検知部材と、前記磁路形成部材の長手方向中央位置に対して前記温度検知部材が配置された領域とは反対側の領域に配置され、前記定着部材の内側から当該定着部材の温度が予め定めた温度を超えたことを検知して前記磁界生成部材に供給される電力を遮断する遮断部材とを備えたことを特徴とする画像形成装置である。   According to a sixth aspect of the present invention, there is provided a toner image forming unit that forms a toner image, a transfer unit that transfers the toner image formed by the toner image forming unit onto a recording material, and a toner image that is transferred onto the recording material. Fixing means for fixing the toner image to the recording material, the fixing means including a conductive layer, and a fixing member for fixing the toner to the recording material by electromagnetically heating the conductive layer. A magnetic field generating member that generates an alternating magnetic field that intersects the conductive layer of the fixing member; and a magnetic permeability change start temperature that is disposed opposite the magnetic field generating member with the fixing member interposed therebetween, and at which the magnetic permeability starts decreasing. A magnetic path that forms a magnetic path of an AC magnetic field generated by the magnetic field generation member in the following temperature range and transmits the AC magnetic field generated by the magnetic field generation member in a temperature range that exceeds the permeability change start temperature. A forming member; A temperature detecting member that is disposed in a region toward one end side from the longitudinal center of the path forming member and detects the temperature of the fixing member from the inside of the fixing member; and a longitudinal center position of the magnetic path forming member The magnetic field generating member is disposed in a region opposite to the region where the temperature detecting member is disposed, and detects that the temperature of the fixing member exceeds a predetermined temperature from the inside of the fixing member. An image forming apparatus comprising: a blocking member that blocks power supplied to the printer.

請求項7に記載の発明は、前記定着手段は、前記定着部材の内側に配置され、当該定着部材を当該定着部材に接触して配置されるロール部材に押圧させて当該定着部材と当該ロール部材との間に記録材が通過するニップ部を形成する押圧部材をさらに備え、前記定着手段の前記温度検知部材と前記遮断部材とは、前記押圧部材の配置位置よりも前記定着部材の移動方向下流側であって前記磁路形成部材の配置位置よりも上流側の領域、または当該磁路形成部材が配置された領域に配置されたことを特徴とする請求項6記載の画像形成装置である。
請求項8に記載の発明は、前記定着手段の前記温度検知部材は、前記定着部材の内周面に向けて押圧するように配置されたことを特徴とする請求項6記載の画像形成装置である。
請求項9に記載の発明は、前記定着手段の前記遮断部材は、前記定着部材の内周面と対向する部分の全部または一部が前記磁路形成部材の当該定着部材の内周面と対向する面よりも当該定着部材側に位置するように配置されたことを特徴とする請求項6記載の画像形成装置である。
請求項10に記載の発明は、前記定着手段の前記磁路形成部材は、前記定着部材と非接触に配置されたことを特徴とする請求項6記載の画像形成装置である。
According to a seventh aspect of the present invention, the fixing unit is disposed inside the fixing member, and the fixing member and the roll member are pressed by pressing the fixing member against a roll member disposed in contact with the fixing member. A pressing member that forms a nip portion through which the recording material passes, and the temperature detecting member and the blocking member of the fixing unit are downstream of the fixing member in the moving direction with respect to the arrangement position of the pressing member. The image forming apparatus according to claim 6, wherein the image forming apparatus is disposed in a region upstream of a position where the magnetic path forming member is disposed, or in a region where the magnetic path forming member is disposed.
The invention according to claim 8 is the image forming apparatus according to claim 6, wherein the temperature detecting member of the fixing unit is disposed so as to be pressed toward an inner peripheral surface of the fixing member. is there.
According to a ninth aspect of the present invention, in the blocking member of the fixing unit, the whole or a part of the portion facing the inner peripheral surface of the fixing member is opposed to the inner peripheral surface of the fixing member of the magnetic path forming member. The image forming apparatus according to claim 6, wherein the image forming apparatus is disposed so as to be positioned closer to the fixing member than the surface to be fixed.
A tenth aspect of the present invention is the image forming apparatus according to the sixth aspect, wherein the magnetic path forming member of the fixing unit is disposed in a non-contact manner with the fixing member.

請求項1の発明によれば、本発明を採用しない場合に比べ、誘導加熱方式の定着装置における定着部材の異常な温度上昇の発生を迅速に検知することができる。
請求項2の発明によれば、本発明を採用しない場合に比べ、温度検知部材と定着部材との密着性を高めて定着部材の温度検知精度を向上させるとともに、遮断部材の応答性能を高めることができる。
請求項3の発明によれば、本発明を採用しない場合に比べ、温度検知部材と定着部材との密着性を高めて定着部材の温度検知精度を向上させることができる。
請求項4の発明によれば、本発明を採用しない場合に比べ、遮断部材の応答性能を高めることができる。
請求項5の発明によれば、本発明を採用しない場合に比べ、定着部材が定着設定温度まで加熱される際に、定着部材の熱が磁路形成部材に流入するのを抑制して、定着設定温度までの到達時間の短縮を図ることができる。
According to the first aspect of the present invention, it is possible to quickly detect the occurrence of an abnormal temperature rise of the fixing member in the induction heating type fixing device as compared with the case where the present invention is not adopted.
According to the second aspect of the present invention, compared to the case where the present invention is not adopted, the adhesion between the temperature detection member and the fixing member is improved to improve the temperature detection accuracy of the fixing member, and the response performance of the blocking member is improved. Can do.
According to the third aspect of the present invention, it is possible to improve the temperature detection accuracy of the fixing member by improving the adhesion between the temperature detection member and the fixing member, as compared with the case where the present invention is not adopted.
According to the invention of claim 4, the response performance of the blocking member can be enhanced as compared with the case where the present invention is not adopted.
According to the fifth aspect of the present invention, as compared with the case where the present invention is not adopted, when the fixing member is heated to the fixing set temperature, the heat of the fixing member is suppressed from flowing into the magnetic path forming member, thereby fixing the fixing member. The time to reach the set temperature can be shortened.

請求項6の発明によれば、本発明を採用しない場合に比べ、画像形成装置に搭載される誘導加熱方式の定着装置における定着部材の異常な温度上昇の発生を迅速に検知することができる。
請求項7の発明によれば、本発明を採用しない場合に比べ、温度検知部材と定着部材との密着性を高めて定着部材の温度検知精度を向上させるとともに、遮断部材の応答性能を高めることができる。
請求項8の発明によれば、本発明を採用しない場合に比べ、温度検知部材と定着部材との密着性を高めて定着部材の温度検知精度を向上させることができる。
請求項9の発明によれば、本発明を採用しない場合に比べ、遮断部材の応答性能を高めることができる。
請求項10の発明によれば、本発明を採用しない場合に比べ、定着部材が定着設定温度まで加熱される際に、定着部材の熱が磁路形成部材に流入するのを抑制して、定着設定温度までの到達時間の短縮を図ることができる。
According to the sixth aspect of the present invention, it is possible to quickly detect the occurrence of an abnormal temperature rise of the fixing member in the induction heating type fixing device mounted on the image forming apparatus, as compared with the case where the present invention is not adopted.
According to the invention of claim 7, compared with the case where the present invention is not adopted, the adhesion between the temperature detection member and the fixing member is improved to improve the temperature detection accuracy of the fixing member, and the response performance of the blocking member is improved. Can do.
According to the eighth aspect of the present invention, compared to the case where the present invention is not adopted, the adhesion between the temperature detection member and the fixing member can be improved and the temperature detection accuracy of the fixing member can be improved.
According to the ninth aspect of the present invention, the response performance of the blocking member can be improved as compared with the case where the present invention is not adopted.
According to the tenth aspect of the present invention, compared to the case where the present invention is not adopted, when the fixing member is heated to the fixing set temperature, the heat of the fixing member is suppressed from flowing into the magnetic path forming member, thereby fixing the fixing member. The time to reach the set temperature can be shortened.

本実施の形態の定着装置が適用される画像形成装置の構成例を示した図である。1 is a diagram illustrating a configuration example of an image forming apparatus to which a fixing device according to an exemplary embodiment is applied. 本実施の形態の定着ユニットの構成を示す正面図である。FIG. 2 is a front view illustrating a configuration of a fixing unit of the present embodiment. 図2における定着装置のX−X断面図である。FIG. 3 is an XX cross-sectional view of the fixing device in FIG. 2. 定着ベルトの断面層構成図である。FIG. 3 is a cross-sectional layer configuration diagram of a fixing belt. (a)がエンドキャップ部材の側面図であり、(b)がZ方向から見たエンドキャップ部材の平面図である。(a) is a side view of an end cap member, (b) is a top view of the end cap member seen from the Z direction. IHヒータの構成を説明する断面図である。It is sectional drawing explaining the structure of an IH heater. 定着ベルトの温度が透磁率変化開始温度以下の温度範囲にある場合の磁力線の状態を説明する図である。It is a figure explaining the state of a line of magnetic force in case the temperature of a fixing belt exists in the temperature range below the magnetic permeability change start temperature. 小サイズ紙を連続して通紙した際の定着ベルトの幅方向の温度分布の概略を示した図である。FIG. 6 is a diagram illustrating an outline of a temperature distribution in a width direction of a fixing belt when small-size paper is continuously passed. 非通紙領域での定着ベルトの温度が透磁率変化開始温度を超えた温度範囲にある場合の磁力線の状態を説明する図である。FIG. 6 is a diagram for explaining a state of magnetic lines of force when the temperature of the fixing belt in a non-sheet passing region is in a temperature range exceeding the permeability change start temperature. 感温磁性部材に形成されるスリットを示した図である。It is the figure which showed the slit formed in a temperature sensitive magnetic member. IHヒータに供給する電力を制御する回路構成の一例を示すブロック図である。It is a block diagram which shows an example of the circuit structure which controls the electric power supplied to an IH heater. 定着ベルトの内側の構成を示す斜視図である。FIG. 3 is a perspective view illustrating an inner configuration of a fixing belt. サーミスタが配置された位置における定着ベルトの内側の断面構成図である。FIG. 3 is a cross-sectional configuration diagram of the inside of a fixing belt at a position where a thermistor is disposed. サーモスイッチが配置された位置での定着ベルトの内側の断面構成図である。FIG. 6 is a cross-sectional configuration diagram of the inside of the fixing belt at a position where a thermo switch is disposed.

以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
<画像形成装置の説明>
図1は本実施の形態の定着装置が適用される画像形成装置の構成例を示した図である。図1に示す画像形成装置1は、所謂タンデム型のカラープリンタであり、画像データに基づき画像形成を行う画像形成部10、画像形成装置1全体の動作を制御する制御部31を備えている。さらには、例えばパーソナルコンピュータ(PC)3や画像読取装置(スキャナ)4等との通信を行って画像データを受信する通信部32、通信部32にて受信された画像データに対し予め定めた画像処理を施す画像処理部33を備えている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
<Description of Image Forming Apparatus>
FIG. 1 is a diagram illustrating a configuration example of an image forming apparatus to which the fixing device of the present embodiment is applied. An image forming apparatus 1 shown in FIG. 1 is a so-called tandem color printer, and includes an image forming unit 10 that forms an image based on image data and a control unit 31 that controls the operation of the entire image forming apparatus 1. Further, for example, a communication unit 32 that receives image data by communicating with a personal computer (PC) 3 or an image reading device (scanner) 4, and a predetermined image for the image data received by the communication unit 32. An image processing unit 33 that performs processing is provided.

画像形成部10は、一定の間隔を置いて並列的に配置されるトナー像形成手段の一例である4つの画像形成ユニット11Y,11M,11C,11K(「画像形成ユニット11」とも総称する)を備えている。各画像形成ユニット11は、静電潜像を形成してトナー像を保持する像保持体の一例としての感光体ドラム12、感光体ドラム12の表面を予め定めた電位で一様に帯電する帯電器13、帯電器13によって帯電された感光体ドラム12を各色画像データに基づき露光するLED(Light Emitting Diode)プリントヘッド14、感光体ドラム12上に形成された静電潜像を現像する現像器15、転写後の感光体ドラム12表面を清掃するドラムクリーナ16を備えている。
画像形成ユニット11各々は、現像器15に収納されるトナーを除いて略同様に構成され、それぞれがイエロー(Y)、マゼンタ(M)、シアン(C)、黒(K)のトナー像を形成する。
The image forming unit 10 includes four image forming units 11Y, 11M, 11C, and 11K (also collectively referred to as “image forming unit 11”), which are examples of toner image forming units arranged in parallel at a predetermined interval. I have. Each image forming unit 11 forms an electrostatic latent image and a photosensitive drum 12 as an example of an image holding body that holds a toner image, and charging that uniformly charges the surface of the photosensitive drum 12 with a predetermined potential. 13, an LED (Light Emitting Diode) print head 14 that exposes the photosensitive drum 12 charged by the charger 13 based on each color image data, and a developer that develops an electrostatic latent image formed on the photosensitive drum 12. 15. A drum cleaner 16 for cleaning the surface of the photosensitive drum 12 after transfer is provided.
Each of the image forming units 11 is configured in substantially the same manner except for the toner stored in the developing device 15, and each forms a toner image of yellow (Y), magenta (M), cyan (C), and black (K). To do.

また、画像形成部10は、各画像形成ユニット11の感光体ドラム12にて形成された各色トナー像が多重転写される中間転写ベルト20、各画像形成ユニット11にて形成された各色トナー像を中間転写ベルト20に順次転写(一次転写)する一次転写ロール21を備えている。さらに、中間転写ベルト20上に重畳して転写された各色トナー像を記録材(記録紙)である用紙Pに一括転写(二次転写)する二次転写ロール22、二次転写された各色トナー像を用紙P上に定着させる定着手段(定着装置)の一例としての定着ユニット60を備えている。なお、本実施の形態の画像形成装置1では、中間転写ベルト20、一次転写ロール21、および二次転写ロール22により転写手段が構成される。   The image forming unit 10 also receives the intermediate transfer belt 20 onto which the color toner images formed on the photosensitive drums 12 of the image forming units 11 are transferred, and the color toner images formed on the image forming units 11. A primary transfer roll 21 that sequentially transfers (primary transfer) to the intermediate transfer belt 20 is provided. Further, a secondary transfer roll 22 that batch-transfers (secondary transfer) each color toner image transferred and superimposed on the intermediate transfer belt 20 onto a sheet P that is a recording material (recording paper), and each color toner that is secondarily transferred. A fixing unit 60 is provided as an example of a fixing unit (fixing device) that fixes the image on the paper P. In the image forming apparatus 1 of the present embodiment, the intermediate transfer belt 20, the primary transfer roll 21, and the secondary transfer roll 22 constitute a transfer unit.

本実施の形態の画像形成装置1では、制御部31による動作制御の下で、次のようなプロセスによる画像形成処理が行われる。すなわち、PC3やスキャナ4からの画像データは通信部32にて受信され、画像処理部33により予め定めた画像処理が施された後、各色毎の画像データとなって各画像形成ユニット11に送られる。そして、例えば黒(K)色トナー像を形成する画像形成ユニット11Kでは、感光体ドラム12が矢印A方向に回転しながら帯電器13により予め定めた電位で一様に帯電され、画像処理部33から送信されたK色画像データに基づきLEDプリントヘッド14が感光体ドラム12を走査露光する。それにより、感光体ドラム12上にはK色画像に関する静電潜像が形成される。感光体ドラム12上に形成されたK色静電潜像は現像器15により現像され、感光体ドラム12上にK色トナー像が形成される。同様に、画像形成ユニット11Y,11M,11Cにおいても、それぞれイエロー(Y)、マゼンタ(M)、シアン(C)の各色トナー像が形成される。   In the image forming apparatus 1 of the present embodiment, under the operation control by the control unit 31, image forming processing is performed by the following process. That is, the image data from the PC 3 or the scanner 4 is received by the communication unit 32, subjected to predetermined image processing by the image processing unit 33, and then sent to each image forming unit 11 as image data for each color. It is done. For example, in the image forming unit 11K that forms a black (K) toner image, the photosensitive drum 12 is uniformly charged at a predetermined potential by the charger 13 while rotating in the arrow A direction, and the image processing unit 33 is charged. The LED print head 14 scans and exposes the photosensitive drum 12 based on the K-color image data transmitted from. As a result, an electrostatic latent image relating to the K color image is formed on the photosensitive drum 12. The K-color electrostatic latent image formed on the photosensitive drum 12 is developed by the developing unit 15, and a K-color toner image is formed on the photosensitive drum 12. Similarly, yellow (Y), magenta (M), and cyan (C) color toner images are formed in the image forming units 11Y, 11M, and 11C, respectively.

各画像形成ユニット11の感光体ドラム12に形成された各色トナー像は、一次転写ロール21により矢印B方向に移動する中間転写ベルト20上に順次静電転写(一次転写)され、各色トナーが重畳された重畳トナー像が形成される。中間転写ベルト20上の重畳トナー像は、中間転写ベルト20の移動に伴って二次転写ロール22が配置された領域(二次転写部T)に搬送される。重畳トナー像が二次転写部Tに搬送されると、そのタイミングに合わせて用紙保持部40から用紙Pが二次転写部Tに供給される。そして、重畳トナー像は、二次転写部Tにて二次転写ロール22が形成する転写電界により、搬送されてきた用紙P上に一括して静電転写(二次転写)される。   Each color toner image formed on the photosensitive drum 12 of each image forming unit 11 is sequentially electrostatically transferred (primary transfer) onto the intermediate transfer belt 20 that moves in the direction of arrow B by the primary transfer roll 21, and each color toner is superimposed. A superimposed toner image is formed. The superimposed toner image on the intermediate transfer belt 20 is conveyed to a region (secondary transfer portion T) where the secondary transfer roll 22 is disposed as the intermediate transfer belt 20 moves. When the superimposed toner image is conveyed to the secondary transfer unit T, the paper P is supplied from the paper holding unit 40 to the secondary transfer unit T in accordance with the timing. The superimposed toner image is collectively electrostatically transferred (secondary transfer) onto the conveyed paper P by the transfer electric field formed by the secondary transfer roll 22 in the secondary transfer portion T.

その後、重畳トナー像が静電転写された用紙Pは、定着ユニット60まで搬送される。定着ユニット60に搬送された用紙P上のトナー像は、定着ユニット60によって熱および圧力を受け、用紙P上に定着される。そして、定着画像が形成された用紙Pは、画像形成装置1の排出部に設けられた用紙積載部45に搬送される。
一方、一次転写後に感光体ドラム12に付着しているトナー(一次転写残トナー)、および二次転写後に中間転写ベルト20に付着しているトナー(二次転写残トナー)は、それぞれドラムクリーナ16、およびベルトクリーナ25によって除去される。
このようにして、画像形成装置1での画像形成処理がプリント枚数分のサイクルだけ繰り返し実行される。
Thereafter, the sheet P on which the superimposed toner image is electrostatically transferred is conveyed to the fixing unit 60. The toner image on the paper P conveyed to the fixing unit 60 receives heat and pressure by the fixing unit 60 and is fixed on the paper P. Then, the paper P on which the fixed image is formed is conveyed to a paper stacking unit 45 provided in the discharge unit of the image forming apparatus 1.
On the other hand, the toner (primary transfer residual toner) adhering to the photosensitive drum 12 after the primary transfer and the toner (secondary transfer residual toner) adhering to the intermediate transfer belt 20 after the secondary transfer are respectively drum cleaner 16. , And the belt cleaner 25.
In this way, the image forming process in the image forming apparatus 1 is repeatedly executed for the number of printed sheets.

<定着ユニットの構成の説明>
次に、本実施の形態の定着ユニット60について説明する。
図2および図3は本実施の形態の定着ユニット60の構成を示す図であり、図2は正面図、図3は図2におけるX−X断面図である。
まず、断面図である図3に示すように、定着ユニット60は、交流磁界を生成する磁界生成部材の一例としてのIH(Induction Heating)ヒータ80、IHヒータ80により電磁誘導加熱されてトナー像を定着する定着部材の一例としての定着ベルト61、定着ベルト61に対向するように配置された加圧ロール62、定着ベルト61を介して加圧ロール62から押圧される押圧パッド63を備えている。
さらに、定着ユニット60は、押圧パッド63等の構成部材を支持するホルダ65、IHヒータ80にて生成された交流磁界を誘導して磁路を形成する感温磁性部材64、感温磁性部材64を通過した磁力線を誘導する誘導部材66、定着ベルト61からの用紙Pの剥離を補助する剥離補助部材173を備えている。
<Description of fixing unit configuration>
Next, the fixing unit 60 of this embodiment will be described.
2 and 3 are views showing the configuration of the fixing unit 60 of the present embodiment, FIG. 2 is a front view, and FIG. 3 is a sectional view taken along line XX in FIG.
First, as shown in FIG. 3, which is a cross-sectional view, the fixing unit 60 is heated by electromagnetic induction by an IH (Induction Heating) heater 80 and an IH heater 80 as an example of a magnetic field generating member that generates an alternating magnetic field, thereby generating a toner image. A fixing belt 61 as an example of a fixing member to be fixed, a pressure roll 62 disposed so as to face the fixing belt 61, and a pressure pad 63 pressed from the pressure roll 62 via the fixing belt 61 are provided.
Further, the fixing unit 60 includes a holder 65 that supports constituent members such as the pressure pad 63, a temperature-sensitive magnetic member 64 that induces an alternating magnetic field generated by the IH heater 80 to form a magnetic path, and a temperature-sensitive magnetic member 64. A guide member 66 that guides the lines of magnetic force that have passed through the fixing belt 61, and a peeling auxiliary member 173 that assists in peeling the paper P from the fixing belt 61.

<定着ベルトの説明>
定着ベルト61は、原形が円筒形状の無端のベルト部材で構成され、例えば原形(円筒形状)時の直径が30mm、幅方向長が300mmに形成されている。また、図4(定着ベルト61の断面層構成図)に示したように、定着ベルト61は、基材層611、基材層611の上に積層された導電発熱層612、トナー像の定着性を向上させる弾性層613、最上層に被覆された表面離型層614からなる多層構造のベルト部材である。
<Description of fixing belt>
The fixing belt 61 is formed of an endless belt member having an original cylindrical shape. For example, the fixing belt 61 has a diameter of 30 mm and a length in the width direction of 300 mm in the original shape (cylindrical shape). Further, as shown in FIG. 4 (cross-sectional layer configuration diagram of the fixing belt 61), the fixing belt 61 includes a base material layer 611, a conductive heat generating layer 612 laminated on the base material layer 611, and a toner image fixability. The belt member has a multilayer structure including an elastic layer 613 for improving the surface and a surface release layer 614 coated on the uppermost layer.

基材層611は、薄層の導電発熱層612を支持するとともに、定着ベルト61全体としての機械的強度を形成する耐熱性のシート状部材で構成される。また、基材層611は、IHヒータ80にて生成された交流磁界が感温磁性部材64まで作用するように、磁界を通過させる物性(比透磁率、固有抵抗)を持った材質、厚さで形成される。一方、基材層611自身は、磁界の作用により発熱しないか、または発熱し難く構成される。
具体的には、基材層611として、例えば、厚さ30〜200μm(好ましくは50〜150μm)の非磁性ステンレススチール等の非磁性金属や、厚さ60〜200μmの樹脂材料等が用いられる。
The base material layer 611 is composed of a heat-resistant sheet-like member that supports the thin conductive heat generating layer 612 and forms the mechanical strength of the fixing belt 61 as a whole. In addition, the base material layer 611 is made of a material having a physical property (relative magnetic permeability, specific resistance) that allows the magnetic field to pass therethrough so that the AC magnetic field generated by the IH heater 80 acts to the temperature-sensitive magnetic member 64, and the thickness. Formed with. On the other hand, the base material layer 611 itself is configured not to generate heat or hardly generate heat due to the action of a magnetic field.
Specifically, as the base material layer 611, for example, a nonmagnetic metal such as nonmagnetic stainless steel having a thickness of 30 to 200 μm (preferably 50 to 150 μm), a resin material having a thickness of 60 to 200 μm, or the like is used.

導電発熱層612は、導電層の一例であって、IHヒータ80にて生成される交流磁界によって電磁誘導加熱される電磁誘導発熱体層である。すなわち、導電発熱層612は、IHヒータ80からの交流磁界が厚さ方向に通過することにより、渦電流を発生させる層である。
通常、IHヒータ80に交流電流を供給する励磁回路(後段の図6も参照)の電源として、安価に製造できる汎用電源が使用される。そのため、IHヒータ80により生成される交流磁界の周波数は、一般に、汎用電源による20k〜100kHzとなる。それにより、導電発熱層612は、周波数20k〜100kHzの交流磁界が侵入し通過するように構成される。
The conductive heating layer 612 is an example of a conductive layer, and is an electromagnetic induction heating element layer that is electromagnetically heated by an alternating magnetic field generated by the IH heater 80. That is, the conductive heat generating layer 612 is a layer that generates an eddy current when the AC magnetic field from the IH heater 80 passes in the thickness direction.
In general, a general-purpose power source that can be manufactured at low cost is used as a power source for an excitation circuit that supplies an alternating current to the IH heater 80 (see also FIG. 6 below). Therefore, the frequency of the alternating magnetic field generated by the IH heater 80 is generally 20 k to 100 kHz by a general-purpose power source. Thereby, the conductive heat generating layer 612 is configured such that an alternating magnetic field having a frequency of 20 k to 100 kHz enters and passes therethrough.

導電発熱層612に交流磁界が侵入できる領域は、交流磁界が1/eに減衰する領域である「表皮深さ(δ)」として規定され、次の(1)式から導かれる。(1)式において、fは交流磁界の周波数(例えば、20kHz)、ρは固有抵抗値(Ω・m)、μは比透磁率である。
そのため、導電発熱層612の厚さは、周波数20k〜100kHzの交流磁界が導電発熱層612を侵入し通過するように、(1)式で規定される導電発熱層612の表皮深さ(δ)よりも薄層に構成される。また、導電発熱層612を構成する材料として、例えば、Au,Ag,Al,Cu,Zn,Sn,Pb,Bi,Be,Sb等の金属や、これらの金属合金が用いられる。
The region where the alternating magnetic field can enter the conductive heat generating layer 612 is defined as “skin depth (δ)”, which is a region where the alternating magnetic field attenuates to 1 / e, and is derived from the following equation (1). (1) In the equation, f is the AC magnetic field frequency (e.g., 20 kHz), [rho is resistivity (Omega · m), the mu r is the relative permeability.
Therefore, the thickness of the conductive heat generating layer 612 is determined by the skin depth (δ) of the conductive heat generating layer 612 defined by the equation (1) such that an alternating magnetic field having a frequency of 20 k to 100 kHz penetrates and passes through the conductive heat generating layer 612. It is configured in a thinner layer. Further, as a material constituting the conductive heat generating layer 612, for example, a metal such as Au, Ag, Al, Cu, Zn, Sn, Pb, Bi, Be, Sb, or a metal alloy thereof is used.

Figure 2010197676
Figure 2010197676

具体的には、導電発熱層612として、厚さ2〜20μm、固有抵抗2.7×10−8Ω・m以下の例えばCu等の非磁性金属(比透磁率が概ね1の常磁性体)が用いられる。
また、定着ベルト61が定着設定温度まで加熱されるまでに要する時間(以下、「ウォームアップタイム」)を短縮する観点からも、導電発熱層612は、薄層に構成するのが好ましい。
Specifically, as the conductive heat generating layer 612, a nonmagnetic metal such as Cu having a thickness of 2 to 20 μm and a specific resistance of 2.7 × 10 −8 Ω · m or less (a paramagnetic material having a relative permeability of about 1). Is used.
Further, from the viewpoint of shortening the time required for the fixing belt 61 to be heated to the fixing set temperature (hereinafter referred to as “warm-up time”), the conductive heat generating layer 612 is preferably formed as a thin layer.

次に、弾性層613は、シリコーンゴム等の耐熱性の弾性体で構成される。定着対象となる用紙Pに保持されるトナー像は、粉体である各色トナーが積層して形成されている。そのため、ニップ部Nにおいてトナー像の全体に均一に熱を供給するには、用紙P上のトナー像の凹凸に倣って定着ベルト61表面が変形することが好ましい。そこで、弾性層613には、例えば厚みが100〜600μm、硬度が10°〜30°(JIS−A)のシリコーンゴムが好適である。
表面離型層614は、用紙P上に保持された未定着トナー像と直接接触するため、離型性の高い材質が使用される。例えば、PFA(テトラフルオロエチレンパーフルオロアルキルビニルエーテル重合体)、PTFE(ポリテトラフルオロエチレン)、シリコーン共重合体、またはこれらの複合層等が用いられる。表面離型層614の厚さとしては、薄すぎると、耐摩耗性の面で充分でなく、定着ベルト61の寿命を短くする。その一方で、厚すぎると、定着ベルト61の熱容量が大きくなりすぎ、ウォームアップタイムが長くなる。そこで、表面離型層614の厚さとして、耐摩耗性と熱容量とのバランスを考慮し、1〜50μmが好適である。
Next, the elastic layer 613 is composed of a heat-resistant elastic body such as silicone rubber. The toner image held on the sheet P to be fixed is formed by laminating each color toner as powder. Therefore, in order to supply heat uniformly to the entire toner image at the nip portion N, it is preferable that the surface of the fixing belt 61 is deformed following the unevenness of the toner image on the paper P. Therefore, for example, silicone rubber having a thickness of 100 to 600 μm and a hardness of 10 ° to 30 ° (JIS-A) is suitable for the elastic layer 613.
Since the surface release layer 614 is in direct contact with the unfixed toner image held on the paper P, a material having a high release property is used. For example, PFA (tetrafluoroethylene perfluoroalkyl vinyl ether polymer), PTFE (polytetrafluoroethylene), silicone copolymer, or a composite layer thereof is used. If the thickness of the surface release layer 614 is too thin, it is not sufficient in terms of wear resistance, and the life of the fixing belt 61 is shortened. On the other hand, if it is too thick, the heat capacity of the fixing belt 61 becomes too large and the warm-up time becomes long. Therefore, the thickness of the surface release layer 614 is preferably 1 to 50 μm in consideration of the balance between wear resistance and heat capacity.

<押圧パッドの説明>
押圧パッド63は、押圧部材の一例であって、シリコーンゴム等やフッ素ゴム等の弾性体で構成され、加圧ロール62と対向する位置にてホルダ65に支持される。そして、定着ベルト61を介して加圧ロール62から押圧される状態で配置され、加圧ロール62との間でニップ部Nを形成する。
また、押圧パッド63は、ニップ部Nの入口側(用紙Pの搬送方向上流側)のプレニップ領域63aと、ニップ部Nの出口側(用紙Pの搬送方向下流側)の剥離ニップ領域63bとで異なるニップ圧が設定されている。すなわち、プレニップ領域63aでは、加圧ロール62側の面がほぼ加圧ロール62の外周面に倣う円弧形状に形成され、均一で幅の広いニップ部Nを形成する。また、剥離ニップ領域63bでは、剥離ニップ領域63bを通過する定着ベルト61の曲率半径が小さくなるように、加圧ロール62表面から局所的に大きなニップ圧で押圧されるように形成される。それにより、剥離ニップ領域63bを通過する用紙Pに定着ベルト61表面から離れる方向のカール(ダウンカール)を形成して、用紙Pに対する定着ベルト61表面からの剥離を促進させている。
<Description of pressing pad>
The pressing pad 63 is an example of a pressing member, and is constituted by an elastic body such as silicone rubber or fluorine rubber, and is supported by the holder 65 at a position facing the pressure roll 62. Then, it is arranged in a state of being pressed from the pressure roll 62 via the fixing belt 61, and a nip portion N is formed with the pressure roll 62.
The pressing pad 63 includes a pre-nip region 63a on the inlet side of the nip portion N (upstream side in the conveyance direction of the paper P) and a peeling nip region 63b on the outlet side of the nip portion N (downstream side in the conveyance direction of the paper P). Different nip pressures are set. That is, in the pre-nip region 63 a, the surface on the pressure roll 62 side is formed in an arc shape that substantially follows the outer peripheral surface of the pressure roll 62, thereby forming a uniform and wide nip portion N. Further, the peeling nip region 63b is formed so as to be locally pressed from the surface of the pressure roll 62 with a large nip pressure so that the radius of curvature of the fixing belt 61 passing through the peeling nip region 63b becomes small. As a result, a curl (down curl) in a direction away from the surface of the fixing belt 61 is formed on the paper P passing through the peeling nip region 63b to promote the peeling of the paper P from the surface of the fixing belt 61.

なお、本実施の形態では、押圧パッド63による剥離の補助手段として、ニップ部Nの下流側に、剥離補助部材173を配置している。剥離補助部材173は、剥離バッフル171が定着ベルト61の回転移動方向と対向する向き(所謂カウンタ方向)に定着ベルト61と近接する状態でホルダ172によって支持される。そして、押圧パッド63の出口にて用紙Pに形成されたカール部分を剥離バッフル171により支持することで、用紙Pが定着ベルト61方向に向かうことを抑制する。   In the present embodiment, a peeling assisting member 173 is arranged on the downstream side of the nip portion N as a peeling assisting means by the pressing pad 63. The peeling auxiliary member 173 is supported by the holder 172 in a state where the peeling baffle 171 is close to the fixing belt 61 in a direction opposite to the rotational movement direction of the fixing belt 61 (so-called counter direction). The curled portion formed on the paper P at the outlet of the pressing pad 63 is supported by the peeling baffle 171 to suppress the paper P from moving toward the fixing belt 61.

<感温磁性部材の説明>
次に、感温磁性部材64は、定着ベルト61の内周面に倣った円弧形状で形成され、定着ベルト61の内周面とは予め定めた間隙(例えば、0.5〜1.5mm)を有するように近接させるが、非接触で配置される。感温磁性部材64を定着ベルト61と近接させて配置するのは、感温磁性部材64の温度が定着ベルト61の温度に対応して変化する、すなわち、感温磁性部材64の温度が定着ベルト61の温度と略同じ温度となるように構成するためである。また、感温磁性部材64を定着ベルト61と非接触で配置するのは、画像形成装置1のメインスイッチがオンされ、定着ベルト61が定着設定温度まで加熱される際に、定着ベルト61の熱が感温磁性部材64に流入するのを抑制して、ウォームアップタイムの短縮を図るためである。
<Description of temperature-sensitive magnetic member>
Next, the temperature-sensitive magnetic member 64 is formed in an arc shape that follows the inner peripheral surface of the fixing belt 61, and a predetermined gap (for example, 0.5 to 1.5 mm) from the inner peripheral surface of the fixing belt 61. Are arranged close to each other but in a non-contact manner. The temperature-sensitive magnetic member 64 is disposed close to the fixing belt 61 because the temperature of the temperature-sensitive magnetic member 64 changes corresponding to the temperature of the fixing belt 61, that is, the temperature of the temperature-sensitive magnetic member 64 is changed. This is because the temperature is substantially the same as the temperature 61. Further, the temperature-sensitive magnetic member 64 is disposed in a non-contact manner with the fixing belt 61 because the heat of the fixing belt 61 is increased when the main switch of the image forming apparatus 1 is turned on and the fixing belt 61 is heated to the fixing set temperature. This is to prevent the temperature from flowing into the temperature-sensitive magnetic member 64 and shorten the warm-up time.

また、感温磁性部材64は、「透磁率変化開始温度」(後段参照)が各色トナー像が溶融する定着設定温度以上であって、定着ベルト61の弾性層613や表面離型層614の耐熱温度よりも低い温度範囲内に設定された材質で構成される。すなわち、感温磁性部材64は、定着設定温度を含む温度領域において強磁性と常磁性との間を可逆的に変化する特性(「感温磁性」)を有する材質で構成される。そして、感温磁性部材64は、磁路形成部材として機能し、強磁性を呈する透磁率変化開始温度以下の温度範囲においてIHヒータ80にて生成され定着ベルト61を透過した磁力線を内部に誘導して、感温磁性部材64の内部を通過する磁路を形成する。それにより、感温磁性部材64は、定着ベルト61とIHヒータ80の励磁コイル82(後段の図6参照)とを内部に包み込むような閉磁路を形成する。一方、透磁率変化開始温度を超える温度範囲においては、感温磁性部材64は、IHヒータ80にて生成され定着ベルト61を透過した磁力線を、感温磁性部材64の厚さ方向に横切るように透過させる。それにより、IHヒータ80にて生成され定着ベルト61を透過した磁力線は、感温磁性部材64を透過し、誘導部材66の内部を通過してIHヒータ80に戻る磁路を形成する。
なお、ここでの「透磁率変化開始温度」とは、透磁率(例えば、JIS C2531で測定される透磁率)が連続的に低下を開始する温度であり、例えば感温磁性部材64等の部材を透過する磁束量(磁力線の数)が変化し始める温度点をいう。したがって、透磁率変化開始温度は、物質が磁性を失う境界となる温度であるキュリー点に近い温度となるが、キュリー点とは異なる概念を有するものである。
Further, the temperature-sensitive magnetic member 64 has a “permeability change start temperature” (see later stage) equal to or higher than a fixing set temperature at which each color toner image melts, and heat resistance of the elastic layer 613 and the surface release layer 614 of the fixing belt 61. It is composed of a material set within a temperature range lower than the temperature. That is, the temperature-sensitive magnetic member 64 is made of a material having a characteristic (“temperature-sensitive magnetism”) that reversibly changes between ferromagnetism and paramagnetism in a temperature range including the fixing set temperature. The temperature-sensitive magnetic member 64 functions as a magnetic path forming member, and induces magnetic lines of force that are generated by the IH heater 80 and transmitted through the fixing belt 61 in a temperature range equal to or lower than the magnetic permeability change start temperature exhibiting ferromagnetism. Thus, a magnetic path passing through the inside of the temperature-sensitive magnetic member 64 is formed. As a result, the temperature-sensitive magnetic member 64 forms a closed magnetic path that encloses the fixing belt 61 and the exciting coil 82 of the IH heater 80 (see FIG. 6 at a later stage). On the other hand, in the temperature range exceeding the permeability change start temperature, the temperature-sensitive magnetic member 64 crosses the magnetic field lines generated by the IH heater 80 and transmitted through the fixing belt 61 in the thickness direction of the temperature-sensitive magnetic member 64. Make it transparent. Thereby, the magnetic lines of force generated by the IH heater 80 and transmitted through the fixing belt 61 form a magnetic path that passes through the temperature-sensitive magnetic member 64, passes through the inside of the guide member 66, and returns to the IH heater 80.
The “permeability change start temperature” here is a temperature at which the magnetic permeability (for example, the magnetic permeability measured by JIS C2531) starts to decrease continuously. For example, a member such as the temperature-sensitive magnetic member 64 This is the temperature point at which the amount of magnetic flux that passes through (the number of lines of magnetic force) starts to change. Therefore, the permeability change start temperature is close to the Curie point, which is the temperature at which the substance loses magnetism, but has a different concept from the Curie point.

感温磁性部材64に用いる材質としては、透磁率変化開始温度が例えば140(定着設定温度)〜240℃の範囲内に設定された例えばFe−Ni合金(パーマロイ)等の二元系整磁鋼やFe−Ni−Cr合金等の三元系の整磁鋼等が用いられる。例えば、Fe−Niの二元系整磁鋼においては約Fe64%、Ni36%(原子数比)とすることで225℃前後に透磁率変化開始温度を設定することができる。このようなパーマロイや整磁鋼等の金属合金等は、成型性や加工性に優れ、熱伝導性も高く安価である等の理由から、感温磁性部材64に適する。その他の材質としては、Fe,Ni,Si,B,Nb,Cu,Zr,Co,Cr,V,Mn,Mo等からなる金属合金が用いられる。
また、感温磁性部材64は、IHヒータ80により生成された交流磁界(磁力線)に対する表皮深さδ(上記(1)式参照)よりも薄い厚さで形成される。具体的には、例えばFe−Ni合金を用いた場合には50〜300μm程度に設定される。なお、感温磁性部材64の構成や機能に関しては、後段でさらに詳述する。
As a material used for the temperature-sensitive magnetic member 64, a binary magnetic shunt steel such as an Fe—Ni alloy (permalloy) whose permeability change start temperature is set in a range of 140 (fixing set temperature) to 240 ° C., for example. And ternary shunt steels such as Fe—Ni—Cr alloy are used. For example, in the Fe-Ni binary magnetic shunt steel, the permeability change start temperature can be set around 225 ° C. by setting it to about Fe 64% and Ni 36% (atomic ratio). Such metal alloys such as permalloy and magnetic shunt steel are suitable for the temperature-sensitive magnetic member 64 because they are excellent in moldability and workability, have high thermal conductivity, and are inexpensive. As other materials, a metal alloy made of Fe, Ni, Si, B, Nb, Cu, Zr, Co, Cr, V, Mn, Mo or the like is used.
Further, the temperature-sensitive magnetic member 64 is formed with a thickness smaller than the skin depth δ (see the above formula (1)) with respect to the AC magnetic field (lines of magnetic force) generated by the IH heater 80. Specifically, for example, when an Fe—Ni alloy is used, the thickness is set to about 50 to 300 μm. The configuration and function of the temperature-sensitive magnetic member 64 will be described in further detail later.

<ホルダの説明>
押圧パッド63を支持するホルダ65は、押圧パッド63が加圧ロール62からの押圧力を受けた状態での撓み量が一定量以下となるように、剛性の高い材料で構成される。それにより、ニップ部Nにおける長手方向の圧力(ニップ圧N)の均一性を維持している。さらに、本実施の形態の定着ユニット60では、電磁誘導を用いて定着ベルト61を加熱する構成を採用していることから、ホルダ65は、誘導磁界に影響を与えないか、または与え難い材料であり、かつ、誘導磁界から影響を受けないか、または受け難い材料で構成される。例えば、ガラス混入PPS(ポリフェニレンサルファイド)等の耐熱性樹脂や、例えばAl,Cu,Ag等の常磁性金属材料等が用いられる。
<Description of holder>
The holder 65 that supports the pressing pad 63 is made of a material having high rigidity so that the amount of bending in a state where the pressing pad 63 receives the pressing force from the pressing roll 62 becomes a certain amount or less. Thereby, the uniformity of the pressure in the longitudinal direction (nip pressure N) at the nip portion N is maintained. Furthermore, since the fixing unit 60 according to the present embodiment employs a configuration in which the fixing belt 61 is heated using electromagnetic induction, the holder 65 is made of a material that does not affect or hardly gives influence to the induced magnetic field. It is made of a material that is not affected or hardly affected by the induced magnetic field. For example, a heat-resistant resin such as glass mixed PPS (polyphenylene sulfide) or a paramagnetic metal material such as Al, Cu, or Ag is used.

<誘導部材の説明>
誘導部材66は、感温磁性部材64の内周面に倣った円弧形状で形成され、感温磁性部材64の内周面とは予め定めた間隙(例えば、1.0〜5.0mm)を有する非接触に配置される。また、誘導部材66は、例えばAg,Cu,Alといった固有抵抗値が比較的小さい非磁性金属で構成される。そして、感温磁性部材64が透磁率変化開始温度以上の温度に上昇した際に、IHヒータ80により生成された交流磁界(磁力線)を誘導して、定着ベルト61の導電発熱層612よりも渦電流Iが発生し易い状態を形成する。それにより、誘導部材66の厚さは、渦電流Iが流れ易いように、表皮深さδ(上記(1)式参照)よりも充分に厚い予め定めた厚さ(例えば、1.0mm)で形成される。
<Description of induction member>
The induction member 66 is formed in an arc shape that follows the inner peripheral surface of the temperature-sensitive magnetic member 64, and has a predetermined gap (for example, 1.0 to 5.0 mm) from the inner peripheral surface of the temperature-sensitive magnetic member 64. Having a non-contact arrangement. The induction member 66 is made of a nonmagnetic metal having a relatively small specific resistance value, such as Ag, Cu, or Al. Then, when the temperature-sensitive magnetic member 64 rises to a temperature equal to or higher than the permeability change start temperature, an alternating magnetic field (line of magnetic force) generated by the IH heater 80 is induced, and the vortex is more vortexed than the conductive heating layer 612 of the fixing belt 61. A state in which the current I is easily generated is formed. Thereby, the thickness of the induction member 66 is a predetermined thickness (for example, 1.0 mm) sufficiently thicker than the skin depth δ (see the above formula (1)) so that the eddy current I can easily flow. It is formed.

<定着ベルトの駆動機構の説明>
次に、定着ベルト61の駆動機構について説明する。
正面図である図2に示したように、ホルダ65(図3参照)の軸方向両端部には、定着ベルト61の両端部の断面形状を円形に維持しながら定着ベルト61を周方向に回転駆動するエンドキャップ部材67が固定されている。そして、定着ベルト61は、両端部からエンドキャップ部材67を介した回転駆動力を直接的に受けて、例えば140mm/sのプロセススピードで図3の矢印C方向に回転移動する。
ここで図5は、(a)がエンドキャップ部材67の側面図であり、(b)がZ方向から見たエンドキャップ部材67の平面図である。図5に示したように、エンドキャップ部材67は、定着ベルト61の両端部内側に嵌合される固定部67a、固定部67aより外径が大きく形成され、定着ベルト61に装着された際に定着ベルト61よりも半径方向に張り出すように形成されたフランジ部67d、回転駆動力が伝達されるギヤ部67b、ホルダ65の両端部に形成された支持部65aと結合部材167を介して回転自在に結合されたベアリング軸受部67cを備える。そして、上記図2に示したように、ホルダ65の両端部の支持部65aが定着ユニット60の筐体69の両端部に固定されることで、エンドキャップ部材67は、支持部65aに結合されたベアリング軸受部67cを介して回転自在に支持される。
エンドキャップ部材67を構成する材質としては、機械的強度や耐熱性の高い所謂エンジニアリングプラスチックスが用いられる。例えば、フェノール樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、PEEK樹脂、PES樹脂、PPS樹脂、LCP樹脂等が適する。
<Description of Fixing Belt Drive Mechanism>
Next, a driving mechanism for the fixing belt 61 will be described.
As shown in FIG. 2 which is a front view, the fixing belt 61 is rotated in the circumferential direction while maintaining the cross-sectional shape of both ends of the fixing belt 61 in a circular shape at both axial ends of the holder 65 (see FIG. 3). An end cap member 67 to be driven is fixed. The fixing belt 61 directly receives the rotational driving force from both ends via the end cap member 67, and rotates and moves in the direction of arrow C in FIG. 3 at a process speed of 140 mm / s, for example.
5A is a side view of the end cap member 67, and FIG. 5B is a plan view of the end cap member 67 viewed from the Z direction. As shown in FIG. 5, the end cap member 67 is formed with a fixing portion 67 a fitted inside the both ends of the fixing belt 61 and has an outer diameter larger than that of the fixing portion 67 a, and when the end cap member 67 is attached to the fixing belt 61. Rotating through a flange portion 67d formed so as to project radially from the fixing belt 61, a gear portion 67b to which rotational driving force is transmitted, a support portion 65a formed at both ends of the holder 65, and a coupling member 167. A bearing bearing portion 67c that is freely coupled is provided. Then, as shown in FIG. 2, the support portions 65a at both ends of the holder 65 are fixed to both ends of the casing 69 of the fixing unit 60, whereby the end cap member 67 is coupled to the support portion 65a. It is rotatably supported via the bearing bearing portion 67c.
As a material constituting the end cap member 67, so-called engineering plastics having high mechanical strength and heat resistance are used. For example, phenol resin, polyimide resin, polyamide resin, polyamideimide resin, PEEK resin, PES resin, PPS resin, LCP resin and the like are suitable.

そして、図2に示すように、定着ユニット60では、駆動モータ90からの回転駆動力が伝達ギヤ91,92を介してシャフト93に伝達され、シャフト93に結合された伝達ギヤ94,95から両エンドキャップ部材67のギヤ部67b(図5参照)に伝達される。それによって、エンドキャップ部材67から定着ベルト61に回転駆動力が伝わり、エンドキャップ部材67と定着ベルト61とが一体となって回転駆動される。
このように、定着ベルト61が定着ベルト61の両端部から駆動力を直接受けて回転するので、定着ベルト61は安定して回転する。
As shown in FIG. 2, in the fixing unit 60, the rotational driving force from the drive motor 90 is transmitted to the shaft 93 via the transmission gears 91 and 92, and both are transmitted from the transmission gears 94 and 95 coupled to the shaft 93. It is transmitted to the gear portion 67b (see FIG. 5) of the end cap member 67. As a result, a rotational driving force is transmitted from the end cap member 67 to the fixing belt 61, and the end cap member 67 and the fixing belt 61 are integrally rotated.
Thus, the fixing belt 61 rotates by receiving the driving force directly from both ends of the fixing belt 61, so that the fixing belt 61 rotates stably.

ここで、定着ベルト61が両端部のエンドキャップ部材67から駆動力を直接受けて回転する場合には、一般に、0.1〜0.5N・m程度のトルクが作用する。ところが、本実施の形態の定着ベルト61では、基材層611を機械的強度の高い例えば非磁性ステンレススチール等で構成している。そのため、定着ベルト61全体に0.1〜0.5N・m程度のねじりトルクが作用した場合でも、定着ベルト61には座屈等が生じ難い。
また、エンドキャップ部材67のフランジ部67dにより定着ベルト61の片寄りを抑えているが、その際の定着ベルト61には、一般に、端部(フランジ部67d)側から軸方向に向けて1〜5N程度の圧縮力が働く。しかし、定着ベルト61がこのような圧縮力を受けた場合においても、定着ベルト61の基材層611が非磁性ステンレススチール等で構成されていることから、座屈等の発生が抑制される。
上記のように、本実施の形態の定着ベルト61においては、定着ベルト61の両端部から駆動力を直接受けて回転するので、安定した回転が行われる。また、その際に、定着ベルト61の基材層611を機械的強度の高い例えば非磁性ステンレススチール等で構成することで、ねじりトルクや圧縮力に対して座屈等が発生し難い構成を実現している。さらには、基材層611および導電発熱層612を薄層に形成して、定着ベルト61全体としての柔軟性・フレキシブル性を確保しているので、ニップ部Nに倣った変形と形状復元とが行われる。
Here, when the fixing belt 61 rotates by receiving a driving force directly from the end cap members 67 at both ends, a torque of about 0.1 to 0.5 N · m is generally applied. However, in the fixing belt 61 of the present embodiment, the base material layer 611 is made of, for example, nonmagnetic stainless steel having high mechanical strength. For this reason, even when a torsional torque of about 0.1 to 0.5 N · m acts on the entire fixing belt 61, buckling or the like hardly occurs in the fixing belt 61.
Further, the flange portion 67d of the end cap member 67 suppresses the deviation of the fixing belt 61. In general, the fixing belt 61 at that time is generally 1 to 5 in the axial direction from the end portion (flange portion 67d) side. A compressive force of about 5N works. However, even when the fixing belt 61 receives such a compressive force, since the base material layer 611 of the fixing belt 61 is made of nonmagnetic stainless steel or the like, occurrence of buckling or the like is suppressed.
As described above, the fixing belt 61 according to the present embodiment rotates by receiving a driving force directly from both end portions of the fixing belt 61, and thus stable rotation is performed. At that time, the base material layer 611 of the fixing belt 61 is made of, for example, non-magnetic stainless steel having high mechanical strength, thereby realizing a structure in which buckling or the like hardly occurs against torsion torque or compression force. is doing. Furthermore, since the base material layer 611 and the conductive heat generating layer 612 are formed as thin layers to ensure the flexibility and flexibility of the fixing belt 61 as a whole, deformation and shape restoration following the nip portion N are prevented. Done.

図3に戻り、加圧ロール62は、定着ベルト61に対向するように配置され、定着ベルト61に従動して図3の矢印D方向に、例えば140mm/sのプロセススピードで回転する。そして、加圧ロール62と押圧パッド63とにより定着ベルト61を挟持した状態でニップ部Nを形成し、このニップ部Nに未定着トナー像を保持した用紙Pを通過させることで、熱および圧力を加えて未定着トナー像を用紙Pに定着する。
加圧ロール62は、例えば直径18mmの中実のアルミニウム製コア(円柱状芯金)621と、コア621の外周面に被覆された例えば厚さ5mmのシリコーンスポンジ等の耐熱性弾性体層622と、さらに例えば厚さ50μmのカーボン配合のPFA等の耐熱性樹脂被覆または耐熱性ゴム被覆による離型層623とが積層されて構成される。そして、押圧バネ68(図2参照)により例えば20kgfの荷重で定着ベルト61を介して押圧パッド63を押圧している。
Returning to FIG. 3, the pressure roll 62 is arranged so as to face the fixing belt 61, and rotates in the direction of arrow D in FIG. 3 at a process speed of 140 mm / s, for example, following the fixing belt 61. Then, a nip portion N is formed in a state where the fixing belt 61 is sandwiched between the pressure roll 62 and the pressing pad 63, and the sheet P holding the unfixed toner image is passed through the nip portion N, so that the heat and pressure To fix the unfixed toner image on the paper P.
The pressure roll 62 includes, for example, a solid aluminum core (cylindrical metal core) 621 having a diameter of 18 mm, and a heat-resistant elastic body layer 622 such as a silicone sponge having a thickness of 5 mm, which is coated on the outer peripheral surface of the core 621. Further, for example, a release layer 623 made of a heat-resistant resin coating such as PFA containing carbon having a thickness of 50 μm or a heat-resistant rubber coating is laminated. Then, the pressing pad 63 is pressed via the fixing belt 61 with a load of 20 kgf, for example, by a pressing spring 68 (see FIG. 2).

<IHヒータの説明>
続いて、定着ベルト61の導電発熱層612に交流磁界を作用させて電磁誘導加熱するIHヒータ80について説明する。
図6は、本実施の形態のIHヒータ80の構成を説明する断面図である。図6に示したように、IHヒータ80は、例えば耐熱性樹脂等の非磁性体から構成される支持体81、交流磁界を生成する励磁コイル82を備えている。また、励磁コイル82を支持体81上に固定する弾性体で構成された弾性支持部材83、励磁コイル82にて生成された交流磁界の磁路を形成する磁心84を備えている。さらには、磁界を遮蔽するシールド85、磁心84を支持体81側に加圧する加圧部材86、励磁コイル82に交流電流を供給する励磁回路88を備えている。
<Description of IH heater>
Next, the IH heater 80 that performs electromagnetic induction heating by applying an AC magnetic field to the conductive heat generating layer 612 of the fixing belt 61 will be described.
FIG. 6 is a cross-sectional view illustrating the configuration of the IH heater 80 of the present embodiment. As shown in FIG. 6, the IH heater 80 includes a support 81 made of a nonmagnetic material such as a heat resistant resin, and an exciting coil 82 that generates an alternating magnetic field. Further, an elastic support member 83 made of an elastic body that fixes the excitation coil 82 on the support 81 and a magnetic core 84 that forms a magnetic path of an alternating magnetic field generated by the excitation coil 82 are provided. Furthermore, a shield 85 that shields the magnetic field, a pressure member 86 that pressurizes the magnetic core 84 toward the support 81, and an excitation circuit 88 that supplies an alternating current to the excitation coil 82 are provided.

支持体81は、断面が定着ベルト61の表面形状に沿って湾曲した形状で形成され、励磁コイル82を支持する上部面(支持面)81aが定着ベルト61表面と予め定めた間隙(例えば、0.5〜2mm)を保つように形成されている。また、支持体81を構成する材質としては、例えば、耐熱ガラス、ポリカーボネート、ポリエーテルサルフォン、PPS(ポリフェニレンサルファイド)等の耐熱性樹脂、またはこれらにガラス繊維を混合した耐熱性樹脂等の耐熱性のある非磁性材料が用いられる。
励磁コイル82は、相互に絶縁された例えば直径0.17mmの銅線材を例えば90本束ねたリッツ線が長円形状や楕円形状、長方形状等の中空きの閉ループ状に巻かれて構成される。そして、励磁コイル82に励磁回路88から予め定めた周波数の交流電流が供給されることにより、励磁コイル82の周囲には、閉ループ状に巻かれたリッツ線を中心とする交流磁界が生成される。励磁回路88から励磁コイル82に供給される交流電流の周波数は、一般に、上記した汎用電源により生成される20k〜100kHzが用いられる。
The support 81 is formed in a shape whose cross section is curved along the surface shape of the fixing belt 61, and an upper surface (supporting surface) 81 a that supports the exciting coil 82 has a predetermined gap (for example, 0) from the surface of the fixing belt 61. 0.5 to 2 mm). Moreover, as a material which comprises the support body 81, heat resistance, such as heat resistant resins, such as heat resistant glass, a polycarbonate, polyether sulfone, PPS (polyphenylene sulfide), or the glass fiber mixed with these, for example. Some non-magnetic materials are used.
The exciting coil 82 is configured by winding, for example, 90 litz wires, which are bundled with, for example, 90 copper wires having a diameter of 0.17 mm and wound in a closed loop with a hollow shape such as an ellipse, an ellipse, or a rectangle. . Then, when an alternating current having a predetermined frequency is supplied to the exciting coil 82 from the exciting circuit 88, an alternating magnetic field centered around a litz wire wound in a closed loop is generated around the exciting coil 82. . Generally, the frequency of the alternating current supplied from the excitation circuit 88 to the excitation coil 82 is 20 k to 100 kHz generated by the general-purpose power source.

磁心84は、例えばソフトフェライト、フェライト樹脂、非晶質合金(アモルファス合金)、やパーマロイ、整磁鋼等の高透磁率の酸化物や合金材質で構成される強磁性体が用いられ、磁路形成手段として機能する。磁心84は、励磁コイル82にて生成された交流磁界による磁力線(磁束)を内部に誘導し、磁心84から定着ベルト61を横切って感温磁性部材64方向に向かい、感温磁性部材64の中を通過して磁心84に戻るといった磁力線の通路(磁路)を形成する。すなわち、励磁コイル82にて生成された交流磁界が磁心84の内部と感温磁性部材64の内部とを通過するように構成して、磁力線が定着ベルト61と励磁コイル82とを内部に包み込むような閉磁路を形成する。それにより、励磁コイル82にて生成された交流磁界の磁力線が定着ベルト61の磁心84と対向する領域に集中される。
ここで、磁心84は磁路形成による損失が小さい材料が望ましい。具体的には、磁心84は渦電流損を小さくする形態(スリット等による電流経路遮断や分断化、薄板束ね等)での使用が望ましく、ヒステリシス損の小さい材料で形成されることが望ましい。
また、定着ベルト61の回転方向に沿った磁心84の長さは、感温磁性部材64の定着ベルト61の回転方向に沿った長さよりも小さく構成される。それにより、磁力線のIHヒータ80周辺への漏洩が減り、力率が向上する。さらには、定着ユニットを構成する金属製部材への電磁誘導を抑え、定着ベルト61(導電発熱層612)での発熱効率を高める。
The magnetic core 84 is made of, for example, a ferromagnetic material made of an oxide or alloy material having a high magnetic permeability such as soft ferrite, ferrite resin, amorphous alloy (amorphous alloy), permalloy, and magnetic shunt steel. It functions as a forming means. The magnetic core 84 induces a magnetic force line (magnetic flux) generated by the alternating magnetic field generated by the exciting coil 82, and crosses the fixing belt 61 from the magnetic core 84 toward the temperature-sensitive magnetic member 64. A path of magnetic lines of force (magnetic path) is formed so as to pass through and return to the magnetic core 84. That is, the AC magnetic field generated by the excitation coil 82 is configured to pass through the inside of the magnetic core 84 and the inside of the temperature-sensitive magnetic member 64 so that the magnetic lines of force wrap the fixing belt 61 and the excitation coil 82 inside. A closed magnetic circuit is formed. As a result, the magnetic field lines of the alternating magnetic field generated by the exciting coil 82 are concentrated in a region facing the magnetic core 84 of the fixing belt 61.
Here, the magnetic core 84 is preferably made of a material having a small loss due to magnetic path formation. Specifically, the magnetic core 84 is desirably used in a form that reduces the eddy current loss (current path interruption or division by slits, thin plate bundling, etc.), and is preferably formed of a material having a small hysteresis loss.
Further, the length of the magnetic core 84 along the rotation direction of the fixing belt 61 is configured to be smaller than the length of the temperature-sensitive magnetic member 64 along the rotation direction of the fixing belt 61. Thereby, the leakage of magnetic lines of force to the periphery of the IH heater 80 is reduced, and the power factor is improved. Furthermore, electromagnetic induction to the metal member constituting the fixing unit is suppressed, and the heat generation efficiency in the fixing belt 61 (conductive heat generation layer 612) is increased.

<定着ベルトが発熱する状態の説明>
引き続いて、IHヒータ80により生成された交流磁界によって定着ベルト61が発熱する状態を説明する。
まず、上記したように、感温磁性部材64の透磁率変化開始温度は、各色トナー像を定着する定着設定温度以上であって定着ベルト61の耐熱温度以下となる温度範囲内(例えば、140〜240℃)に設定されている。そして、定着ベルト61の温度が透磁率変化開始温度以下の状態にある場合には、定着ベルト61に近接する感温磁性部材64の温度も定着ベルト61の温度に対応して、透磁率変化開始温度以下となる。そのため、感温磁性部材64は強磁性を呈するので、IHヒータ80により生成された交流磁界の磁力線Hは、定着ベルト61を透過した後、感温磁性部材64の内部を広がり方向に沿って通過する磁路を形成する。ここでの「広がり方向」とは、感温磁性部材64の厚さ方向と直交する方向を意味する。
<Description of the state in which the fixing belt generates heat>
Subsequently, a state in which the fixing belt 61 generates heat by the alternating magnetic field generated by the IH heater 80 will be described.
First, as described above, the permeability change start temperature of the temperature-sensitive magnetic member 64 is within a temperature range that is not less than the set fixing temperature for fixing each color toner image and not more than the heat resistance temperature of the fixing belt 61 (for example, 140 to 240 ° C.). When the temperature of the fixing belt 61 is equal to or lower than the magnetic permeability change start temperature, the temperature of the temperature-sensitive magnetic member 64 adjacent to the fixing belt 61 is also started corresponding to the temperature of the fixing belt 61. Below temperature. Therefore, since the temperature-sensitive magnetic member 64 exhibits ferromagnetism, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 pass through the fixing belt 61 and then pass through the inside of the temperature-sensitive magnetic member 64 along the spreading direction. To form a magnetic path. Here, the “spreading direction” means a direction orthogonal to the thickness direction of the temperature-sensitive magnetic member 64.

図7は、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合の磁力線(H)の状態を説明する図である。図7に示したように、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合には、IHヒータ80により生成された交流磁界の磁力線Hは、定着ベルト61を透過し、感温磁性部材64の内部を広がり方向(厚さ方向と直交する方向)に沿って通過する磁路を形成する。そのため、定着ベルト61の導電発熱層612を横切る領域での単位面積あたりの磁力線Hの数(磁束密度)は多くなる。   FIG. 7 is a diagram for explaining the state of the lines of magnetic force (H) when the temperature of the fixing belt 61 is in the temperature range equal to or lower than the permeability change start temperature. As shown in FIG. 7, when the temperature of the fixing belt 61 is in a temperature range equal to or lower than the permeability change start temperature, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 are transmitted through the fixing belt 61. A magnetic path passing through the inside of the temperature-sensitive magnetic member 64 along the spreading direction (direction orthogonal to the thickness direction) is formed. Therefore, the number of magnetic field lines H (magnetic flux density) per unit area in the region crossing the conductive heat generating layer 612 of the fixing belt 61 increases.

すなわち、IHヒータ80の磁心84から磁力線Hが放射されて定着ベルト61の導電発熱層612を横切る領域R1,R2を通過した後、磁力線Hは強磁性体である感温磁性部材64の内部に誘導される。そのため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hは感温磁性部材64の内部に進入するように集中し、領域R1,R2での磁束密度は高くなる。また、感温磁性部材64の内部を広がり方向に沿って通過した磁力線Hが再び磁心84に戻るに際しても、導電発熱層612を厚さ方向に横切る領域R3では、感温磁性部材64内の磁位の低い部分から集中して磁心84に向けて放射される。そのため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hは、感温磁性部材64から集中して磁心84に向かうこととなり、領域R3での磁束密度も高くなる。   That is, after the magnetic field lines H are radiated from the magnetic core 84 of the IH heater 80 and pass through the regions R1 and R2 across the conductive heat generating layer 612 of the fixing belt 61, the magnetic field lines H enter the inside of the temperature-sensitive magnetic member 64 which is a ferromagnetic material. Be guided. Therefore, the magnetic field lines H crossing the conductive heat generating layer 612 of the fixing belt 61 in the thickness direction are concentrated so as to enter the inside of the temperature-sensitive magnetic member 64, and the magnetic flux density in the regions R1 and R2 increases. Further, even when the magnetic field lines H that have passed through the inside of the temperature-sensitive magnetic member 64 along the spreading direction return to the magnetic core 84 again, in the region R3 that crosses the conductive heat generating layer 612 in the thickness direction, the magnetic field in the temperature-sensitive magnetic member 64 is increased. It is radiated toward the magnetic core 84 in a concentrated manner from the lower part. Therefore, the magnetic force lines H that cross the conductive heat generating layer 612 of the fixing belt 61 in the thickness direction are concentrated from the temperature-sensitive magnetic member 64 toward the magnetic core 84, and the magnetic flux density in the region R3 is also increased.

磁力線Hが厚さ方向に横切る定着ベルト61の導電発熱層612では、単位面積当たりの磁力線Hの数(磁束密度)の変化量に比例した渦電流Iが発生する。それにより、図7に示したように、磁束密度の変化量が大きい領域R1,R2および領域R3では、大きな渦電流Iが発生する。導電発熱層612に生じた渦電流Iは、導電発熱層612の固有抵抗値Rと渦電流Iの二乗の積であるジュール熱W(W=IR)を発生させる。それにより、大きな渦電流Iが発生した導電発熱層612では、大きなジュール熱Wが発生する。
このように、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合には、磁力線Hが導電発熱層612を横切る領域R1,R2や領域R3において大きな熱が発生する。それにより、定着ベルト61は加熱される。
In the conductive heating layer 612 of the fixing belt 61 where the magnetic lines H cross in the thickness direction, an eddy current I proportional to the amount of change in the number of magnetic lines H per unit area (magnetic flux density) is generated. Thereby, as shown in FIG. 7, a large eddy current I is generated in the regions R1, R2 and R3 where the amount of change in magnetic flux density is large. The eddy current I generated in the conductive heat generation layer 612 generates Joule heat W (W = I 2 R), which is the product of the specific resistance value R of the conductive heat generation layer 612 and the square of the eddy current I. Thereby, a large Joule heat W is generated in the conductive heat generating layer 612 where the large eddy current I is generated.
As described above, when the temperature of the fixing belt 61 is in the temperature range equal to or lower than the permeability change start temperature, large heat is generated in the regions R1 and R2 and the region R3 where the lines of magnetic force H cross the conductive heat generating layer 612. Thereby, the fixing belt 61 is heated.

ところで、本実施の形態の定着ユニット60では、定着ベルト61の内周面側において定着ベルト61に近接させて感温磁性部材64を配置している。それにより、励磁コイル82にて生成された磁力線Hを内部に誘導する磁心84と、定着ベルト61を厚さ方向に横切って透過した磁力線Hを内部に誘導する感温磁性部材64とが近接した構成を実現している。そのため、IHヒータ80(励磁コイル82)により生成された交流磁界は、磁路が短いループを形成するので、磁路内での磁束密度や磁気結合度は高まる。それにより、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合、定着ベルト61にはさらに効率的に熱が発生する。   By the way, in the fixing unit 60 of the present embodiment, the temperature-sensitive magnetic member 64 is disposed in the vicinity of the fixing belt 61 on the inner peripheral surface side of the fixing belt 61. As a result, the magnetic core 84 that guides the magnetic force lines H generated by the exciting coil 82 to the inside and the temperature-sensitive magnetic member 64 that guides the magnetic force lines H transmitted through the fixing belt 61 in the thickness direction are close to each other. The configuration is realized. For this reason, the AC magnetic field generated by the IH heater 80 (excitation coil 82) forms a loop with a short magnetic path, so that the magnetic flux density and the magnetic coupling degree in the magnetic path increase. Accordingly, when the temperature of the fixing belt 61 is in a temperature range equal to or lower than the magnetic permeability change start temperature, heat is more efficiently generated in the fixing belt 61.

<定着ベルトの非通紙部の昇温を抑制する機能の説明>
次に、定着ベルト61の非通紙部の昇温を抑制する機能について説明する。
ここでまず、定着ユニット60に小サイズの用紙P(小サイズ紙P1)を連続して通紙した場合について述べる。図8は、小サイズ紙P1を連続して通紙した際の定着ベルト61の幅方向の温度分布の概略を示した図である。図8においては、画像形成装置1にて使用される用紙Pの最大サイズ幅(例えば、A3横幅)である最大通紙領域をFf、最大サイズ用紙Pよりも横幅の小さな小サイズ紙P1(例えば、A4縦送り)が通過する領域(小サイズ紙通紙領域)をFs、小サイズ紙P1が通過しない非通紙領域をFbとする。なお、画像形成装置1では中央位置基準で通紙が行われるものとする。
<Description of function for suppressing temperature rise of non-sheet passing portion of fixing belt>
Next, the function of suppressing the temperature rise at the non-sheet passing portion of the fixing belt 61 will be described.
First, a case where small-size paper P (small-size paper P1) is continuously passed through the fixing unit 60 will be described. FIG. 8 is a diagram showing an outline of the temperature distribution in the width direction of the fixing belt 61 when the small size paper P1 is continuously fed. In FIG. 8, the maximum sheet passing area which is the maximum size width (for example, A3 width) of the sheet P used in the image forming apparatus 1 is Ff, and the small size sheet P1 (for example, smaller than the maximum size sheet P) (for example, , A4 (vertical feed) passes through the area (small size paper passing area) as Fs, and the non-sheet passing area through which the small size paper P1 does not pass is Fb. In the image forming apparatus 1, it is assumed that the sheet is passed based on the center position.

図8に示したように、小サイズ紙P1が連続して通紙された場合に、小サイズ紙P1が通過する小サイズ紙通紙領域Fsでは定着のための熱が消費される。そのため、制御部31(図1参照)による定着設定温度での温度調整制御が行われ、小サイズ紙通紙領域Fsでの定着ベルト61の温度は定着設定温度の近傍範囲内に維持される。その一方で、非通紙領域Fbにおいても、小サイズ紙通紙領域Fsと同様の温度調整制御が行われる。しかし、非通紙領域Fbでは定着のための熱が消費されない。そのために、非通紙領域Fbの温度は、定着設定温度よりも高い温度に上昇し易い。そして、その状態で小サイズ紙P1の連続通紙を続けると、非通紙領域Fbの温度が例えば定着ベルト61の弾性層613や表面離型層614の耐熱温度よりも上昇して、定着ベルト61を損傷させる場合がある。   As shown in FIG. 8, when the small size paper P1 is continuously passed, heat for fixing is consumed in the small size paper passing area Fs through which the small size paper P1 passes. Therefore, the temperature adjustment control at the fixing set temperature is performed by the control unit 31 (see FIG. 1), and the temperature of the fixing belt 61 in the small size paper passing area Fs is maintained within the range near the fixing set temperature. On the other hand, temperature adjustment control similar to that of the small-size paper passing area Fs is performed also in the non-paper passing area Fb. However, heat for fixing is not consumed in the non-sheet passing area Fb. For this reason, the temperature of the non-sheet passing area Fb is likely to rise to a temperature higher than the fixing set temperature. Then, when the continuous passage of the small size paper P1 is continued in this state, the temperature of the non-sheet passing region Fb rises, for example, higher than the heat resistance temperature of the elastic layer 613 and the surface release layer 614 of the fixing belt 61, 61 may be damaged.

そこで、上記したように、本実施の形態の定着ユニット60では、感温磁性部材64は、定着設定温度以上であって、例えば定着ベルト61の弾性層613や表面離型層614の耐熱温度以下の温度範囲内に透磁率変化開始温度が設定された例えばFe−Ni合金等で構成されている。すなわち、図8に示したように、感温磁性部材64の透磁率変化開始温度Tcuは、定着設定温度Tf以上であって、例えば弾性層613や表面離型層614の耐熱温度Tlim以下の温度領域に設定されている。   Therefore, as described above, in the fixing unit 60 of the present embodiment, the temperature-sensitive magnetic member 64 is equal to or higher than the preset fixing temperature and is, for example, equal to or lower than the heat resistance temperature of the elastic layer 613 and the surface release layer 614 of the fixing belt 61. For example, an Fe—Ni alloy or the like having a magnetic permeability change start temperature set within the temperature range is used. That is, as shown in FIG. 8, the magnetic permeability change start temperature Tcu of the temperature-sensitive magnetic member 64 is equal to or higher than the fixing set temperature Tf, for example, a temperature equal to or lower than the heat resistance temperature Tlim of the elastic layer 613 and the surface release layer 614. It is set in the area.

それにより、小サイズ紙P1が連続通紙されると、定着ベルト61の非通紙領域Fbでの温度は、感温磁性部材64の透磁率変化開始温度を超える。それによって、定着ベルト61に近接する感温磁性部材64の非通紙領域Fbでの温度も定着ベルト61の温度に対応して、定着ベルト61と同様に透磁率変化開始温度を超える。そのため、非通紙領域Fbでの感温磁性部材64は比透磁率が1に近づき、強磁性体としての性質が消失する。感温磁性部材64の比透磁率が低下して1に近づくことで、非通紙領域Fbでの磁力線Hは感温磁性部材64の内部に誘導されず、感温磁性部材64を透過するようになる。そのため、定着ベルト61の非通紙領域Fbでは、導電発熱層612を通過した後の磁力線Hは拡散し、導電発熱層612を横切る磁力線Hの磁束密度は低下する。それにより、導電発熱層612で発生する渦電流Iは減少して、定着ベルト61での発熱量(ジュール熱W)は低減される。その結果、非通紙領域Fbでの過剰な温度上昇は抑えられ、定着ベルト61の損傷が抑制される。
このように、感温磁性部材64は、定着ベルト61の温度を検知する検知部としての機能と、検知した定着ベルト61の温度に応じて定着ベルト61の過度の温度上昇を抑制する昇温抑制部としての機能とを併せ持っている。
Accordingly, when the small size paper P1 is continuously passed, the temperature in the non-sheet passing region Fb of the fixing belt 61 exceeds the magnetic permeability change start temperature of the temperature-sensitive magnetic member 64. Accordingly, the temperature in the non-sheet passing region Fb of the temperature-sensitive magnetic member 64 adjacent to the fixing belt 61 also exceeds the permeability change start temperature in the same manner as the fixing belt 61 corresponding to the temperature of the fixing belt 61. For this reason, the temperature-sensitive magnetic member 64 in the non-sheet-passing region Fb has a relative magnetic permeability close to 1, and the properties as a ferromagnetic material disappear. The relative magnetic permeability of the temperature-sensitive magnetic member 64 decreases and approaches 1 so that the magnetic field lines H in the non-sheet-passing region Fb are not guided into the temperature-sensitive magnetic member 64 but pass through the temperature-sensitive magnetic member 64. become. Therefore, in the non-sheet passing region Fb of the fixing belt 61, the magnetic field lines H after passing through the conductive heat generating layer 612 are diffused, and the magnetic flux density of the magnetic field lines H crossing the conductive heat generating layer 612 is reduced. Thereby, the eddy current I generated in the conductive heat generation layer 612 is reduced, and the heat generation amount (Joule heat W) in the fixing belt 61 is reduced. As a result, an excessive temperature rise in the non-sheet passing area Fb is suppressed, and damage to the fixing belt 61 is suppressed.
As described above, the temperature-sensitive magnetic member 64 functions as a detection unit that detects the temperature of the fixing belt 61 and suppresses an increase in temperature that suppresses an excessive temperature increase of the fixing belt 61 according to the detected temperature of the fixing belt 61. It also has a function as a department.

感温磁性部材64を通過した後の磁力線Hは、誘導部材66(図3参照)に到達してこの内部に誘導される。磁束が誘導部材66に到達してその内部に誘導されるようになると、導電発熱層612より渦電流Iの流れ易い誘導部材66の方に多くの渦電流Iが流れる。そのため、導電発熱層612で流れる渦電流量はさらに抑制され、非通紙領域Fbでの温度上昇は抑えられる。   The lines of magnetic force H after passing through the temperature-sensitive magnetic member 64 reach the guide member 66 (see FIG. 3) and are guided into this. When the magnetic flux reaches the induction member 66 and is induced therein, more eddy current I flows toward the induction member 66 where the eddy current I flows more easily than the conductive heat generation layer 612. Therefore, the amount of eddy current flowing in the conductive heat generating layer 612 is further suppressed, and the temperature rise in the non-sheet passing region Fb is suppressed.

その際に、誘導部材66が励磁コイル82からの磁力線Hの殆どを誘導して定着ユニット60からの磁力線Hの漏洩を抑えるように、誘導部材66の厚さ、材質、および形状が選定される。具体的には、誘導部材66を表皮深さδが充分に厚い材料で構成すればよい。それにより、誘導部材66に渦電流Iが流れても発熱量も極力小さくなる。本実施の形態では、誘導部材66を感温磁性部材64に沿う略円形形状の厚さ1mmのAl(アルミニウム)で構成し、感温磁性部材64とは非接触(平均的な距離を例えば4mm)に配置している。その他の材料としては、AgやCuが好適である。   At this time, the thickness, material, and shape of the guiding member 66 are selected so that the guiding member 66 guides most of the magnetic force lines H from the exciting coil 82 and suppresses leakage of the magnetic force lines H from the fixing unit 60. . Specifically, the guide member 66 may be made of a material having a sufficiently thick skin depth δ. Thereby, even if the eddy current I flows through the induction member 66, the amount of heat generation is also minimized. In the present embodiment, the guide member 66 is made of Al (aluminum) having a substantially circular shape with a thickness of 1 mm along the temperature-sensitive magnetic member 64, and is not in contact with the temperature-sensitive magnetic member 64 (an average distance of, for example, 4 mm). ). As other materials, Ag and Cu are suitable.

ところで、その後、定着ベルト61の非通紙領域Fbでの温度が感温磁性部材64の透磁率変化開始温度よりも低くなると、感温磁性部材64の非通紙領域Fbでの温度も透磁率変化開始温度よりも低くなる。それにより、感温磁性部材64は再び強磁性に変化して磁力線Hが感温磁性部材64の内部に誘導されるので、導電発熱層612に渦電流Iが多く流れるようになる。そのため、定着ベルト61が再び加熱されるようになる。   By the way, when the temperature in the non-sheet-passing region Fb of the fixing belt 61 becomes lower than the magnetic permeability change start temperature of the temperature-sensitive magnetic member 64, the temperature in the non-sheet-passing region Fb of the temperature-sensitive magnetic member 64 is also permeable. It becomes lower than the change start temperature. As a result, the temperature-sensitive magnetic member 64 changes to ferromagnetic again, and the magnetic field lines H are induced inside the temperature-sensitive magnetic member 64, so that a large amount of eddy current I flows through the conductive heating layer 612. Therefore, the fixing belt 61 is heated again.

図9は、非通紙領域Fbでの定着ベルト61の温度が透磁率変化開始温度を超えた温度範囲にある場合の磁力線Hの状態を説明する図である。図9に示したように、定着ベルト61の温度が非通紙領域Fbにて透磁率変化開始温度を超えた温度範囲にある場合には、非通紙領域Fbの感温磁性部材64は比透磁率が低下する。そのため、IHヒータ80により生成された交流磁界の磁力線Hは感温磁性部材64を容易に透過するように変化する。それにより、IHヒータ80(励磁コイル82)により生成された交流磁界の磁力線Hは、磁心84から定着ベルト61側に向けて拡散するように放射され、誘導部材66に到達するようになる。   FIG. 9 is a diagram illustrating the state of the lines of magnetic force H when the temperature of the fixing belt 61 in the non-sheet passing region Fb is in the temperature range exceeding the permeability change start temperature. As shown in FIG. 9, when the temperature of the fixing belt 61 is in the temperature range exceeding the permeability change start temperature in the non-sheet passing area Fb, the temperature-sensitive magnetic member 64 in the non-sheet passing area Fb has a ratio. Magnetic permeability decreases. Therefore, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 change so as to easily pass through the temperature-sensitive magnetic member 64. Accordingly, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 (excitation coil 82) are radiated so as to diffuse from the magnetic core 84 toward the fixing belt 61 and reach the induction member 66.

すなわち、IHヒータ80の磁心84から磁力線Hが放射されて定着ベルト61の導電発熱層612を横切る領域R1,R2では、磁力線Hが感温磁性部材64に誘導され難いため、放射状に拡散する。それにより、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度(単位面積当たりの磁力線Hの数)が減少する。また、磁力線Hが再び磁心84に戻る際に導電発熱層612を厚さ方向に横切る領域R3でも、拡散した広い領域から磁力線Hが磁心84に戻ることとなるため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度が減少する。
そのため、定着ベルト61の温度が透磁率変化開始温度を超える温度範囲にある場合には、領域R1,R2や領域R3において導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度が減少することとなる。それにより、磁力線Hが厚さ方向に横切る導電発熱層612に発生する渦電流Iは減り、定着ベルト61に発生するジュール熱Wは減少する。それにより、定着ベルト61の温度は低下する。
That is, in the regions R1 and R2 where the magnetic force lines H are radiated from the magnetic core 84 of the IH heater 80 and cross the conductive heat generating layer 612 of the fixing belt 61, the magnetic force lines H are difficult to be guided to the temperature-sensitive magnetic member 64 and thus diffuse radially. As a result, the magnetic flux density (number of magnetic force lines H per unit area) of the magnetic field lines H crossing the conductive heat generating layer 612 of the fixing belt 61 in the thickness direction decreases. Further, even in the region R3 that crosses the conductive heat generating layer 612 in the thickness direction when the magnetic force line H returns to the magnetic core 84 again, the magnetic force line H returns to the magnetic core 84 from the diffused wide region. The magnetic flux density of the magnetic field lines H crossing 612 in the thickness direction decreases.
Therefore, when the temperature of the fixing belt 61 is in a temperature range exceeding the permeability change start temperature, the magnetic flux density of the magnetic field lines H that cross the conductive heating layer 612 in the thickness direction decreases in the regions R1, R2, and R3. It becomes. As a result, the eddy current I generated in the conductive heating layer 612 where the magnetic field lines H cross in the thickness direction is reduced, and the Joule heat W generated in the fixing belt 61 is reduced. As a result, the temperature of the fixing belt 61 decreases.

このように、非通紙領域Fbでの定着ベルト61の温度が透磁率変化開始温度以上の温度範囲にある場合において、非通紙領域Fbでの感温磁性部材64の内部に磁力線Hが誘導され難くなり、励磁コイル82により生成された交流磁界の磁力線Hは、定着ベルト61の導電発熱層612を厚さ方向を拡散しながら横切る。そのため、励磁コイル82により生成された交流磁界の磁路は長いループを形成することとなり、定着ベルト61の導電発熱層612を通過する磁路での磁束密度は減少する。
それにより、例えば小サイズ紙P1が連続通紙されて、温度が上昇した非通紙領域Fbでは、定着ベルト61の導電発熱層612に発生する渦電流Iが減って、定着ベルト61の非通紙領域Fbでの発熱量(ジュール熱W)は低減する。その結果、非通紙領域Fbでの過剰な温度上昇は抑えられる。
As described above, when the temperature of the fixing belt 61 in the non-sheet-passing area Fb is in the temperature range equal to or higher than the magnetic permeability change start temperature, the magnetic field lines H are induced inside the temperature-sensitive magnetic member 64 in the non-sheet-passing area Fb. The magnetic field lines H of the alternating magnetic field generated by the exciting coil 82 cross the conductive heat generating layer 612 of the fixing belt 61 while diffusing in the thickness direction. Therefore, the magnetic path of the alternating magnetic field generated by the exciting coil 82 forms a long loop, and the magnetic flux density in the magnetic path passing through the conductive heating layer 612 of the fixing belt 61 decreases.
Thereby, for example, in the non-sheet passing region Fb where the small size paper P1 is continuously passed and the temperature rises, the eddy current I generated in the conductive heat generating layer 612 of the fixing belt 61 is reduced and the fixing belt 61 is not passed. The amount of heat generation (joule heat W) in the paper region Fb is reduced. As a result, an excessive temperature rise in the non-sheet passing area Fb can be suppressed.

<感温磁性部材の昇温を抑制する構成の説明>
感温磁性部材64が上記した非通紙領域Fbでの過剰な温度上昇を抑える機能を果たすには、感温磁性部材64の長手方向の領域毎の温度がそれに対向する定着ベルト61の長手方向の領域毎の温度に対応して変化し、上記した定着ベルト61の温度を検知する検出部としての機能を果たす必要がある。
そのために、感温磁性部材64自身に関しては、磁力線Hによって誘導加熱され難い構成が採用される。すなわち、定着ベルト61の温度が透磁率変化開始温度以下であり、感温磁性部材64が強磁性を呈する状態であっても、IHヒータ80からの磁力線Hの中には、感温磁性部材64を厚さ方向に横切る磁力線Hは存在する。それにより、感温磁性部材64内部には弱い渦電流Iが発生しており、感温磁性部材64自身においても若干の発熱が生じる。そのため、例えば、大量の画像形成が連続して行われた場合等には、感温磁性部材64に熱が蓄積され、通紙領域(図8参照)でも感温磁性部材64の温度が上昇傾向を呈する。それにより、渦電流損やヒステリシス損が大きく磁力線Hの通過により発熱し易い感温磁性部材64を用いたとすると、状況によっては、定着ベルト61の温度が透磁率変化開始温度を超えていなくとも、感温磁性部材64が通紙領域における定着ベルト61の温度上昇を抑えるように機能してしまう場合がある。そこで、感温磁性部材64の温度と定着ベルト61の温度との対応関係が維持され、感温磁性部材64が定着ベルト61の温度を検知する検知部として精度良く機能するために、感温磁性部材64自身に発生するジュール熱Wを抑える必要がある。
<Description of the configuration for suppressing the temperature rise of the temperature-sensitive magnetic member>
In order for the temperature-sensitive magnetic member 64 to perform the function of suppressing the excessive temperature rise in the non-sheet passing region Fb described above, the temperature of each region in the longitudinal direction of the temperature-sensitive magnetic member 64 is the longitudinal direction of the fixing belt 61 facing it. It is necessary to fulfill a function as a detection unit that detects the temperature of the fixing belt 61 and changes according to the temperature of each region.
Therefore, regarding the temperature-sensitive magnetic member 64 itself, a configuration that is difficult to be induction-heated by the magnetic field lines H is adopted. That is, even if the temperature of the fixing belt 61 is equal to or lower than the permeability change start temperature and the temperature-sensitive magnetic member 64 exhibits ferromagnetism, the temperature-sensitive magnetic member 64 is included in the magnetic force lines H from the IH heater 80. There is a magnetic field line H that crosses in the thickness direction. As a result, a weak eddy current I is generated inside the temperature-sensitive magnetic member 64, and a slight amount of heat is generated in the temperature-sensitive magnetic member 64 itself. Therefore, for example, when a large amount of image formation is continuously performed, heat is accumulated in the temperature-sensitive magnetic member 64, and the temperature of the temperature-sensitive magnetic member 64 tends to increase even in the paper passing area (see FIG. 8). Presents. As a result, if the temperature-sensitive magnetic member 64 that has large eddy current loss and hysteresis loss and easily generates heat due to the passage of the magnetic field lines H is used, depending on the situation, even if the temperature of the fixing belt 61 does not exceed the magnetic permeability change start temperature, In some cases, the temperature-sensitive magnetic member 64 functions to suppress the temperature increase of the fixing belt 61 in the sheet passing region. Therefore, the correspondence between the temperature of the temperature-sensitive magnetic member 64 and the temperature of the fixing belt 61 is maintained, and the temperature-sensitive magnetic member 64 functions as a detection unit that detects the temperature of the fixing belt 61 with high accuracy. It is necessary to suppress the Joule heat W generated in the member 64 itself.

そこで、感温磁性部材64での渦電流損やヒステリシス損を小さくするために、まず第1として、感温磁性部材64は、磁力線Hによって誘導加熱され難い物性(固有抵抗値および透磁率)を持った材質が選定される。
また、第2として、感温磁性部材64の厚さは、少なくとも透磁率変化開始温度以下の温度範囲にて磁力線Hが感温磁性部材64の厚さ方向に横切り難いように、強磁性を呈する状態での表皮深さδよりも厚く形成される。
Therefore, in order to reduce the eddy current loss and hysteresis loss in the temperature-sensitive magnetic member 64, first, the temperature-sensitive magnetic member 64 has physical properties (specific resistance value and magnetic permeability) that are difficult to be induction-heated by the lines of magnetic force H. Selected material is selected.
Second, the thickness of the temperature-sensitive magnetic member 64 exhibits ferromagnetism so that the magnetic field lines H are difficult to cross in the thickness direction of the temperature-sensitive magnetic member 64 at least in the temperature range below the permeability change start temperature. It is formed thicker than the skin depth δ in the state.

さらに、第3として、感温磁性部材64には、磁力線Hによって発生する渦電流Iの流れを分断する複数のスリット64sが形成される(図10参照)。誘導加熱され難いように感温磁性部材64の材質や厚さを選定しても、感温磁性部材64内部に発生する渦電流Iを0とすることは困難である。そこで、感温磁性部材64に発生した渦電流Iの流れを複数のスリット64sにより分断することで、渦電流Iを減少させて、感温磁性部材64に発生するジュール熱Wを低く抑えている。   Third, the temperature-sensitive magnetic member 64 is formed with a plurality of slits 64s that divide the flow of the eddy current I generated by the lines of magnetic force H (see FIG. 10). Even if the material and thickness of the temperature-sensitive magnetic member 64 are selected so that induction heating is difficult, it is difficult to set the eddy current I generated in the temperature-sensitive magnetic member 64 to zero. Therefore, by dividing the flow of the eddy current I generated in the temperature-sensitive magnetic member 64 by the plurality of slits 64s, the eddy current I is reduced and the Joule heat W generated in the temperature-sensitive magnetic member 64 is kept low. .

図10は、感温磁性部材64に形成されるスリットを示した図である。図10(a)は、感温磁性部材64がホルダ65に設置された状態の側面図であり、(b)は、(a)の上方(z方向)から見た平面図である。図10に示したように、感温磁性部材64では、磁力線Hによって発生する渦電流Iの流れる方向に直交して複数のスリット64sが形成される。そのため、スリット64sが無い場合には感温磁性部材64の長手方向の全体に亘って大きな渦となって流れる渦電流I(図10(b)破線)が、スリット64sにより分断される。それにより、スリット64sを形成した場合には、感温磁性部材64内を流れる渦電流I(図10(b)実線)は、スリット64sとスリット64sとの間の領域内での小さな渦となり、全体としての渦電流Iの電流量は低減される。その結果、感温磁性部材64での発熱量(ジュール熱W)は減少し、発熱し難い構成が実現する。したがって、複数のスリット64sは、渦電流Iを分断する渦電流分断部として機能する。   FIG. 10 is a view showing slits formed in the temperature-sensitive magnetic member 64. FIG. 10A is a side view showing a state in which the temperature-sensitive magnetic member 64 is installed on the holder 65, and FIG. 10B is a plan view seen from above (a direction). As shown in FIG. 10, in the temperature-sensitive magnetic member 64, a plurality of slits 64 s are formed orthogonal to the direction in which the eddy current I generated by the magnetic field lines H flows. Therefore, when there is no slit 64s, the eddy current I (broken line in FIG. 10B) that flows as a large eddy over the entire longitudinal direction of the temperature-sensitive magnetic member 64 is divided by the slit 64s. Thereby, when the slit 64s is formed, the eddy current I flowing through the temperature-sensitive magnetic member 64 (solid line in FIG. 10 (b)) becomes a small eddy in the region between the slit 64s and the slit 64s, The amount of eddy current I as a whole is reduced. As a result, the amount of heat generated by the temperature-sensitive magnetic member 64 (Joule heat W) is reduced, and a configuration that hardly generates heat is realized. Therefore, the plurality of slits 64 s function as an eddy current dividing unit that divides the eddy current I.

なお、図10に例示した感温磁性部材64では、スリット64sを渦電流Iの流れる方向に直交して形成したが、渦電流Iの流れを分断する構成であれば、例えば渦電流Iの流れる方向に対して傾斜したスリットを形成してもよい。また、図10に示したようなスリット64sを感温磁性部材64の幅方向の全域に亘って形成する構成の他に、感温磁性部材64の幅方向の一部に形成してもよい。また、感温磁性部材64に発生する熱量に応じて、スリットの数、位置、傾斜角等を設定してもよい。
また、スリットの傾斜角が最大となった状態として、感温磁性部材64がスリット部で小片に分割された状態となる小片分割群となってもよく、このような形態であっても本発明の効果は同様に得られる。
In the temperature-sensitive magnetic member 64 illustrated in FIG. 10, the slit 64s is formed perpendicular to the direction in which the eddy current I flows. However, if the flow of the eddy current I is divided, for example, the eddy current I flows. You may form the slit inclined with respect to the direction. In addition to the configuration in which the slits 64 s as shown in FIG. 10 are formed over the entire region in the width direction of the temperature-sensitive magnetic member 64, the slit 64 s may be formed in a part in the width direction of the temperature-sensitive magnetic member 64. Further, the number, position, inclination angle, and the like of the slits may be set according to the amount of heat generated in the temperature-sensitive magnetic member 64.
Moreover, as a state where the inclination angle of the slit is maximized, the temperature-sensitive magnetic member 64 may be a small piece divided group in which the temperature-sensitive magnetic member 64 is divided into small pieces at the slit portion. The effect of is obtained similarly.

<定着ベルトの温度制御の説明>
次に、定着ベルト61の温度制御について説明する。
図11は、IHヒータ80に供給する電力を制御する回路構成の一例を示すブロック図である。図11に示したように、励磁回路88への供給電力の制御は、制御部31(図1参照)内に設けられた電磁誘導加熱制御部100と、定着ユニット60のIHヒータ80に設けられた励磁回路88とで行われる。
制御部31内の電磁誘導加熱制御部100は、制御回路であるCPU160、定着ベルト61の温度変化を検知する過温検知回路162、論理素子であるオア回路164、165、およびアンド回路170を備えている。
また、IHヒータ80の励磁回路88は、制御回路であるCPU158、外部商用電源180からの電力を入力(接続)/遮断するためのリレー153、電磁誘導加熱制御部100との信号の送受信を行うフォトカプラ156を備えている。さらに、論理素子であるアンド回路154、高周波発生回路である高周波スイッチング回路152、励磁コイル82に電力を出力する出力ポート150、外部商用電源180からの電力を入力する入力ポート151を備えている。
<Description of fixing belt temperature control>
Next, temperature control of the fixing belt 61 will be described.
FIG. 11 is a block diagram illustrating an example of a circuit configuration for controlling the power supplied to the IH heater 80. As shown in FIG. 11, the power supplied to the excitation circuit 88 is controlled by the electromagnetic induction heating control unit 100 provided in the control unit 31 (see FIG. 1) and the IH heater 80 of the fixing unit 60. The excitation circuit 88.
The electromagnetic induction heating control unit 100 in the control unit 31 includes a CPU 160 that is a control circuit, an overheat detection circuit 162 that detects a temperature change of the fixing belt 61, OR circuits 164 and 165 that are logic elements, and an AND circuit 170. ing.
The excitation circuit 88 of the IH heater 80 transmits and receives signals to / from the control circuit CPU 158, the relay 153 for inputting (connecting) / cutting off power from the external commercial power supply 180, and the electromagnetic induction heating control unit 100. A photocoupler 156 is provided. Furthermore, an AND circuit 154 that is a logic element, a high-frequency switching circuit 152 that is a high-frequency generation circuit, an output port 150 that outputs power to the exciting coil 82, and an input port 151 that inputs power from the external commercial power supply 180 are provided.

まず、電磁誘導加熱制御部100のCPU160は、定着ベルト61の温度を制御する温度制御回路を備えている。すなわち、CPU160は、定着ベルト61の温度を検知する温度検知部材の一例であるサーミスタ71,72からの温度検知信号に基づき、定着ベルト61の温度を制御する各種制御信号を出力する。
具体的には、CPU160は、励磁回路88からのエラー信号の有無と定着ベルト61の表面温度等とに応じて、励磁回路88に設けられた高周波スイッチング回路152から励磁コイル82への高周波電流の供給を許可する許可信号をアンド回路170へ出力する。そして、アンド回路170は、過温検知回路162からの制御信号とCPU160からの許可信号とに基づいて、IHヒータ80のON/OFFを制御する信号(IH ON/OFF信号)を励磁回路88に出力する。
また、CPU160は、サーミスタ71,72(主としてサーミスタ71)からの温度検知信号に基づき電力設定信号を励磁回路88へ出力する。さらに、定着ユニット60の現在の動作状況に照らして定着ベルト61の表面温度が規定値を超えて上昇した場合には、異常であることを示す異常信号をオア回路164へ出力する。
さらに、CPU160は、励磁回路88に設けられたリレー153のON/OFFを制御する信号(リレーON/OFF信号)をオア回路165に出力する。
First, the CPU 160 of the electromagnetic induction heating control unit 100 includes a temperature control circuit that controls the temperature of the fixing belt 61. That is, the CPU 160 outputs various control signals for controlling the temperature of the fixing belt 61 based on the temperature detection signals from the thermistors 71 and 72 that are examples of the temperature detecting member that detects the temperature of the fixing belt 61.
Specifically, the CPU 160 generates a high-frequency current from the high-frequency switching circuit 152 provided in the excitation circuit 88 to the excitation coil 82 in accordance with the presence / absence of an error signal from the excitation circuit 88 and the surface temperature of the fixing belt 61. A permission signal for permitting supply is output to the AND circuit 170. Then, the AND circuit 170 sends a signal (IH ON / OFF signal) for controlling ON / OFF of the IH heater 80 to the excitation circuit 88 based on the control signal from the overheat detection circuit 162 and the permission signal from the CPU 160. Output.
In addition, the CPU 160 outputs a power setting signal to the excitation circuit 88 based on the temperature detection signal from the thermistors 71 and 72 (mainly thermistor 71). Further, when the surface temperature of the fixing belt 61 rises above a specified value in light of the current operation state of the fixing unit 60, an abnormality signal indicating abnormality is output to the OR circuit 164.
Further, the CPU 160 outputs a signal (relay ON / OFF signal) for controlling ON / OFF of the relay 153 provided in the excitation circuit 88 to the OR circuit 165.

電磁誘導加熱制御部100の過温検知回路162は、定着ベルト61の端部側に配置されたサーミスタ72によって検知された定着ベルト61の表面温度から、定着ベルト61の表面温度の変化を検出する。そして、過温検知回路162は、定着ベルト61の表面温度の変化量が予め定めた範囲内である場合に、定着ベルト61の表面温度が正常状態であることを示す正常信号を、CPU160、アンド回路170、およびオア回路164に出力する。一方、定着ベルト61の表面温度の変化量が予め定めた範囲を超えた場合に、定着ベルト61の表面温度が異常状態であることを示す異常信号を、CPU160、アンド回路170、およびオア回路164に出力する。   The overheat detection circuit 162 of the electromagnetic induction heating control unit 100 detects a change in the surface temperature of the fixing belt 61 from the surface temperature of the fixing belt 61 detected by the thermistor 72 arranged on the end side of the fixing belt 61. . The overheat detection circuit 162 outputs a normal signal indicating that the surface temperature of the fixing belt 61 is normal when the amount of change in the surface temperature of the fixing belt 61 is within a predetermined range. It outputs to the circuit 170 and the OR circuit 164. On the other hand, when the amount of change in the surface temperature of the fixing belt 61 exceeds a predetermined range, an abnormal signal indicating that the surface temperature of the fixing belt 61 is in an abnormal state is sent to the CPU 160, the AND circuit 170, and the OR circuit 164. Output to.

次に、アンド回路170は、CPU160からの許可信号と過温検知回路162からの正常信号が供給されている場合に、IH ON/OFF信号を励磁回路88へ出力するように設定されている。
また、オア回路164は、CPU160からの異常信号と過温検知回路162からの異常信号とに基づいて、励磁回路88のリレー153を駆動する駆動信号を生成する。そして、オア回路164は、DC電源ライン181(例えば、5V)とサーモスタットや温度ヒューズ等からなるサーモスイッチ70とが接続されたリレー153を、電磁誘導加熱制御部100に設けられた半導体スイッチ素子166を制御することで開閉させる。具体的には、オア回路164は、CPU160からの異常信号と過温検知回路162からの異常信号との少なくとも何れか一方を入力した場合には、オア回路165を介して半導体スイッチ素子166を遮断する信号を出力する。その場合には、DC電源ライン181からリレー153に配置された電磁コイル153aに流れる電流が遮断され、リレー153は遮断される。それにより、外部商用電源180から励磁回路88への電力供給は停止される。また、その際には同時に、電磁誘導加熱制御部100のCPU160は、励磁回路88に対してCPU158を介さずに高周波スイッチング回路152を制御して、直接、励磁コイル82への高周波電流の供給を停止させる。
また、定着ベルト61の温度が異常に上昇して遮断部材の一例であるサーモスイッチ70が切断した場合にも、DC電源ライン181からリレー153に配置された電磁コイル153aに流れる電流が遮断され、リレー153は遮断される。
Next, the AND circuit 170 is set to output an IH ON / OFF signal to the excitation circuit 88 when the permission signal from the CPU 160 and the normal signal from the overheat detection circuit 162 are supplied.
In addition, the OR circuit 164 generates a drive signal for driving the relay 153 of the excitation circuit 88 based on the abnormal signal from the CPU 160 and the abnormal signal from the overheat detection circuit 162. The OR circuit 164 includes a semiconductor switch element 166 provided in the electromagnetic induction heating control unit 100 with a relay 153 connected to a DC power line 181 (for example, 5 V) and a thermo switch 70 including a thermostat, a thermal fuse, or the like. It is opened and closed by controlling. Specifically, the OR circuit 164 shuts off the semiconductor switch element 166 via the OR circuit 165 when an abnormal signal from the CPU 160 and / or an abnormal signal from the overheat detection circuit 162 are input. Output a signal. In that case, the current flowing from the DC power line 181 to the electromagnetic coil 153a arranged in the relay 153 is cut off, and the relay 153 is cut off. Thereby, the power supply from the external commercial power supply 180 to the excitation circuit 88 is stopped. At the same time, the CPU 160 of the electromagnetic induction heating control unit 100 controls the high frequency switching circuit 152 for the excitation circuit 88 without using the CPU 158 to directly supply the high frequency current to the excitation coil 82. Stop.
Further, even when the temperature of the fixing belt 61 rises abnormally and the thermo switch 70 which is an example of a blocking member is cut off, the current flowing from the DC power line 181 to the electromagnetic coil 153a arranged in the relay 153 is cut off, Relay 153 is cut off.

励磁回路88に設けられたフォトカプラ156は、電磁誘導加熱制御部100との信号の送受信を行う。すなわち、フォトカプラ156には、電磁誘導加熱制御部100のCPU160からの電力設定信号が信号線を介して供給される。また、CPU160に接続されたアンド回路170から、IH ON/OFF信号が供給される。一方、フォトカプラ156は、励磁回路88のCPU158からのエラー信号を、信号線を介して電磁誘導加熱制御部100のCPU160へ出力する。
そして、フォトカプラ156は、供給された電力設定信号を励磁回路88のCPU158に出力する。また、供給されたIH ON/OFF信号をCPU158とアンド回路154とに出力する。
A photocoupler 156 provided in the excitation circuit 88 transmits and receives signals to and from the electromagnetic induction heating control unit 100. That is, the power setting signal from the CPU 160 of the electromagnetic induction heating control unit 100 is supplied to the photocoupler 156 via the signal line. Further, an IH ON / OFF signal is supplied from an AND circuit 170 connected to the CPU 160. On the other hand, the photocoupler 156 outputs an error signal from the CPU 158 of the excitation circuit 88 to the CPU 160 of the electromagnetic induction heating control unit 100 via a signal line.
Then, the photocoupler 156 outputs the supplied power setting signal to the CPU 158 of the excitation circuit 88. The supplied IH ON / OFF signal is output to the CPU 158 and the AND circuit 154.

励磁回路88に設けられたCPU158は、高周波スイッチング回路152の駆動を制御する。すなわち、電磁誘導加熱制御部100のCPU160から供給される電力設定信号に基づいて高周波スイッチング回路152を駆動制御する。さらにCPU158は、IHヒータ80内の種々のエラーを判断してエラー信号を生成し、電磁誘導加熱制御部100のCPU160に対してエラー信号を出力する。
また、CPU158は、IHヒータ80内にエラー等が発生していない場合に、フォトカプラ156から供給されるIH ON/OFF信号に基づいて、アンド回路154にIH ON/OFF信号を出力する。そして、アンド回路154は、励磁回路88のCPU158からのIH ON/OFF信号と、フォトカプラ156からのIH ON/OFF信号とが同時に供給されている場合に、IH ON/OFF信号を高周波スイッチング回路152に出力する。
A CPU 158 provided in the excitation circuit 88 controls driving of the high-frequency switching circuit 152. That is, the high frequency switching circuit 152 is driven and controlled based on the power setting signal supplied from the CPU 160 of the electromagnetic induction heating control unit 100. Further, the CPU 158 determines various errors in the IH heater 80, generates an error signal, and outputs an error signal to the CPU 160 of the electromagnetic induction heating control unit 100.
In addition, the CPU 158 outputs an IH ON / OFF signal to the AND circuit 154 based on the IH ON / OFF signal supplied from the photocoupler 156 when no error or the like has occurred in the IH heater 80. The AND circuit 154 sends the IH ON / OFF signal to the high frequency switching circuit when the IH ON / OFF signal from the CPU 158 of the excitation circuit 88 and the IH ON / OFF signal from the photocoupler 156 are supplied simultaneously. It outputs to 152.

励磁回路88に設けられた高周波スイッチング回路152は、アンド回路154からのIH ON/OFF信号が供給されている場合に、CPU158により設定される電力を出力ポート150を介して励磁コイル82に印加する。
一方、外部商用電源180から電力が入力される入力ポート151には、交流電圧がリレー153およびノイズフィルタ(不図示)を介して供給されている。そして、この入力ポート151を介して供給される交流電圧は、励磁回路88の各部に供給される。
なお、入力ポート151の何れか一方にはヒューズ(不図示)が設けられ、異常時には電力の供給を遮断する。また、励磁回路88には、図示しないが外部商用電源180の電圧を整流する整流回路、この整流回路の出力電圧をCPU158の動作に適した一定レベルに調整して出力する定電圧回路部等も配置されている。
The high frequency switching circuit 152 provided in the excitation circuit 88 applies power set by the CPU 158 to the excitation coil 82 via the output port 150 when the IH ON / OFF signal from the AND circuit 154 is supplied. .
On the other hand, an AC voltage is supplied to the input port 151 to which power is input from the external commercial power supply 180 via a relay 153 and a noise filter (not shown). The AC voltage supplied via the input port 151 is supplied to each part of the excitation circuit 88.
Note that any one of the input ports 151 is provided with a fuse (not shown), and the power supply is cut off when an abnormality occurs. In addition, the excitation circuit 88 includes a rectifier circuit that rectifies the voltage of the external commercial power supply 180, a constant voltage circuit unit that adjusts the output voltage of the rectifier circuit to a certain level suitable for the operation of the CPU 158, and the like. Has been placed.

<サーミスタの配置構成の説明>
次に、定着ベルト61の温度制御に用いるサーミスタ71,72の配置構成について説明する。
図12は、定着ベルト61の内側の構成を示す斜視図である。図12に示したように、サーミスタ71およびサーミスタ72の双方は、定着ベルト61の長手方向に関して、定着ベルト61の中央(center)よりも一方の端部側に向かう領域(M1)に配置される。また、サーモスイッチ70は、定着ベルト61の長手方向に関して、定着ベルト61の中央よりもサーミスタ71,72の配置領域とは反対側の領域(M2)に配置される。
<Description of thermistor arrangement>
Next, the arrangement configuration of the thermistors 71 and 72 used for temperature control of the fixing belt 61 will be described.
FIG. 12 is a perspective view showing an inner configuration of the fixing belt 61. As shown in FIG. 12, both the thermistor 71 and the thermistor 72 are arranged in a region (M 1) from the center of the fixing belt 61 toward one end side with respect to the longitudinal direction of the fixing belt 61. . The thermo switch 70 is disposed in a region (M2) opposite to the region where the thermistors 71 and 72 are disposed from the center of the fixing belt 61 with respect to the longitudinal direction of the fixing belt 61.

上記したように、定着ベルト61は、両端部に設けられたエンドキャップ部材67(図5参照)により両端部の断面形状を円形に維持しながら周方向に回転移動する。一方、定着ベルト61の両端部以外の領域では、エンドキャップ部材67により設定された円形状の断面形状を定着ベルト61自身の剛性により維持している。ところが、定着ベルト61は、局所的に大きなニップ圧を形成する剥離ニップ領域63bを通過する。剥離ニップ領域63bでは、局所的に大きなニップ圧を形成するため、定着ベルト61の両端部以外の領域においては、定着ベルト61表面の曲率半径が小さくなるような変形を生じさせる。そのために、剥離ニップ領域63bを通過した後の下流側において、定着ベルト61は剥離ニップ領域63b側に向かう引っ張り力を受け、定着ベルト61には感温磁性部材64側に向かう張力が作用する。   As described above, the fixing belt 61 rotates and moves in the circumferential direction while maintaining the cross-sectional shape of both ends circular by the end cap members 67 (see FIG. 5) provided at both ends. On the other hand, in a region other than both ends of the fixing belt 61, the circular cross-sectional shape set by the end cap member 67 is maintained by the rigidity of the fixing belt 61 itself. However, the fixing belt 61 passes through a peeling nip region 63b that locally forms a large nip pressure. Since a large nip pressure is locally formed in the peeling nip region 63 b, deformation is generated in a region other than both ends of the fixing belt 61 so that the radius of curvature of the surface of the fixing belt 61 becomes small. Therefore, on the downstream side after passing through the peeling nip region 63b, the fixing belt 61 receives a pulling force toward the peeling nip region 63b, and a tension toward the temperature-sensitive magnetic member 64 acts on the fixing belt 61.

そのため、本実施の形態では、定着ベルト61の温度を検知するサーミスタ71,72は、定着ベルト61の周方向に関して、定着ベルト61に感温磁性部材64側に向かう張力が作用する領域である、定着ベルト61が剥離ニップ領域63bを通過した後の下流側であって定着ベルト61が再び加熱される領域の上流側に配置される。そして、サーミスタ71,72は、定着ベルト61の内周面側から定着ベルト61を外側(感温磁性部材64とは反対側)に押圧するように配置される。それにより、定着ベルト61に作用する感温磁性部材64側に向かう張力と、サーミスタ71,72に作用する定着ベルト61を感温磁性部材64側から押圧する押圧力とにより、定着ベルト61とサーミスタ71,72との密着性を高めるように設定している。定着ベルト61とサーミスタ71,72との密着性が高まることにより、サーミスタ71,72にて検知される定着ベルト61の温度の精度が向上する。
具体的には、サーミスタ71,72は、それぞれが支持部材71b,72bによりホルダ65に固定され、付勢部材71a,72aにより定着ベルト61の内周面側に押圧される。
For this reason, in the present embodiment, the thermistors 71 and 72 that detect the temperature of the fixing belt 61 are regions in which the tension toward the temperature-sensitive magnetic member 64 acts on the fixing belt 61 in the circumferential direction of the fixing belt 61. The fixing belt 61 is disposed downstream of the separation nip region 63b and upstream of the region where the fixing belt 61 is heated again. The thermistors 71 and 72 are arranged so as to press the fixing belt 61 outward (on the side opposite to the temperature-sensitive magnetic member 64) from the inner peripheral surface side of the fixing belt 61. Accordingly, the fixing belt 61 and the thermistor are caused by the tension toward the temperature-sensitive magnetic member 64 acting on the fixing belt 61 and the pressing force pressing the fixing belt 61 acting on the thermistors 71 and 72 from the temperature-sensitive magnetic member 64 side. 71 and 72 are set so as to enhance adhesion. By increasing the adhesion between the fixing belt 61 and the thermistors 71 and 72, the temperature accuracy of the fixing belt 61 detected by the thermistors 71 and 72 is improved.
Specifically, the thermistors 71 and 72 are fixed to the holder 65 by support members 71b and 72b, respectively, and are pressed to the inner peripheral surface side of the fixing belt 61 by the urging members 71a and 72a.

図13は、サーミスタ71が配置された位置における定着ベルト61の内側の断面構成図(図12の平面D1)である。図13に示したように、剥離ニップ領域63bでは局所的に大きなニップ圧Npが設定される。そのため、定着ベルト61が剥離ニップ領域63bを通過した後の下流側であって定着ベルト61が再び加熱される領域の上流側となる領域Rにおいて、定着ベルト61は、感温磁性部材64側に向かう張力Ftが作用する。一方、サーミスタ71は、付勢部材71aにより定着ベルト61の内周面側に向かう押圧力Fqを付与されながら、支持部材71bによりホルダ65に固定されている。それにより、定着ベルト61とサーミスタ71との密着性が高まり、サーミスタ71にて検知される定着ベルト61の温度の精度が向上する。もう一方のサーミスタ72についても同様である。   FIG. 13 is a cross-sectional configuration diagram (plane D1 in FIG. 12) inside the fixing belt 61 at the position where the thermistor 71 is disposed. As shown in FIG. 13, a large nip pressure Np is locally set in the peeling nip region 63b. Therefore, in the region R that is downstream after the fixing belt 61 passes through the peeling nip region 63b and upstream of the region in which the fixing belt 61 is heated again, the fixing belt 61 faces the temperature-sensitive magnetic member 64 side. The heading tension Ft acts. On the other hand, the thermistor 71 is fixed to the holder 65 by the support member 71b while being given a pressing force Fq toward the inner peripheral surface of the fixing belt 61 by the urging member 71a. Thereby, the adhesion between the fixing belt 61 and the thermistor 71 is enhanced, and the accuracy of the temperature of the fixing belt 61 detected by the thermistor 71 is improved. The same applies to the other thermistor 72.

<サーモスイッチの配置構成の説明>
次に、サーモスイッチ70の配置構成について説明する。
図14は、サーモスイッチ70が配置された位置での定着ベルト61の内側の断面構成図(図12の平面D2)である。上記図12に示したように、サーモスイッチ70は、定着ベルト61の長手方向に関して、定着ベルト61の中央よりもサーミスタ71,72の配置領域(図12の領域M1)とは反対側の領域(図12の領域M2)に配置される。そして、図14に示したように、定着ベルト61の周方向に関して、サーミスタ71,72と同様に、定着ベルト61が剥離ニップ領域63bを通過した後の下流側であって定着ベルト61が再び加熱される領域の上流側の領域Rに配置される。また、サーモスイッチ70は、サーモスイッチ70の表面の全部または一部が感温磁性部材64の表面位置64aよりも定着ベルト61側に位置するように設定される。
<Explanation of thermo switch layout>
Next, the arrangement configuration of the thermo switch 70 will be described.
FIG. 14 is a cross-sectional configuration diagram (plane D2 in FIG. 12) inside the fixing belt 61 at the position where the thermo switch 70 is disposed. As shown in FIG. 12, the thermo switch 70 is located in the region (the region M1 in FIG. 12) on the opposite side of the center of the fixing belt 61 with respect to the longitudinal direction of the fixing belt 61. Arranged in the region M2) of FIG. Then, as shown in FIG. 14, in the circumferential direction of the fixing belt 61, as with the thermistors 71 and 72, the fixing belt 61 is heated again on the downstream side after the fixing belt 61 has passed through the peeling nip region 63 b. It is arranged in the region R upstream of the region to be processed. Further, the thermo switch 70 is set so that all or a part of the surface of the thermo switch 70 is located closer to the fixing belt 61 than the surface position 64 a of the temperature-sensitive magnetic member 64.

上記したように、定着ベルト61が剥離ニップ領域63bを通過した後の下流側であって定着ベルト61が再び加熱される領域の上流側となる領域Rでは、定着ベルト61に感温磁性部材64側に向かう張力Ftが作用している。そのため、ニップ部N以外において、定着ベルト61が定着ベルト61の内側に配置された部材の中で最も近接した位置を通過するのは、領域Rに位置する感温磁性部材64となる。そのために、定着ベルト61にサーモスイッチ70が切断するような異常昇温が生じ、定着ベルト61が収縮する場合には、定着ベルト61は領域Rに位置する感温磁性部材64と早い段階で接触する。特に、感温磁性部材64が配置される領域は、定着ベルト61が加熱される領域でもあるので、他の領域に比べて大きな昇温が生じる。それにより、定着ベルト61が収縮する際には、領域Rに位置する感温磁性部材64と最初に接触する可能性が高い。
そこで、本実施の形態では、定着ベルト61の温度が異常に上昇した場合に切断されるサーモスイッチ70は、定着ベルト61の周方向に関して、定着ベルト61が剥離ニップ領域63bを通過した後の下流側であって定着ベルト61が再び加熱される領域の上流側に配置される。また、その際に、収縮する定着ベルト61と確実に接触するように、サーモスイッチ70の表面は感温磁性部材64の表面位置64aよりも定着ベルト61側に突き出るように設定される。
As described above, in the region R downstream of the fixing belt 61 after passing through the peeling nip region 63b and upstream of the region where the fixing belt 61 is heated again, the temperature-sensitive magnetic member 64 is provided on the fixing belt 61. The tension Ft toward the side is acting. Therefore, except for the nip portion N, the fixing belt 61 passes through the closest position among the members arranged inside the fixing belt 61 is the temperature-sensitive magnetic member 64 positioned in the region R. Therefore, when an abnormal temperature rise occurs in the fixing belt 61 such that the thermoswitch 70 is disconnected and the fixing belt 61 contracts, the fixing belt 61 contacts the temperature-sensitive magnetic member 64 located in the region R at an early stage. To do. In particular, since the region where the temperature-sensitive magnetic member 64 is disposed is also a region where the fixing belt 61 is heated, a large temperature rise occurs compared to other regions. As a result, when the fixing belt 61 contracts, there is a high possibility that the temperature-sensitive magnetic member 64 located in the region R will first contact.
Therefore, in the present embodiment, the thermo switch 70 that is cut when the temperature of the fixing belt 61 rises abnormally is downstream of the fixing belt 61 after passing the peeling nip region 63b in the circumferential direction of the fixing belt 61. And the upstream side of the region where the fixing belt 61 is heated again. At this time, the surface of the thermo switch 70 is set so as to protrude from the surface position 64 a of the temperature-sensitive magnetic member 64 toward the fixing belt 61 so as to surely come into contact with the contracting fixing belt 61.

<長手方向の配置位置に関するサーミスタとサーモスイッチとの関係の説明>
上記図12を用いて示したように、サーモスイッチ70は、定着ベルト61の長手方向に関して、定着ベルト61の中央よりもサーミスタ71,72の配置領域(領域M1)とは反対側の領域(領域M2)に配置される。
上記したように、定着ベルト61にサーモスイッチ70が切断するような異常昇温が生じ、定着ベルト61が収縮する場合には、定着ベルト61の周方向に関して、定着ベルト61は領域Rに位置する感温磁性部材64と早い段階で接触する。その場合に、サーミスタ71,72が配置された領域M1では、サーミスタ71,72は、定着ベルト61の内周面側から定着ベルト61を外側(感温磁性部材64とは反対側)に押圧するように配置されている。そのため、定着ベルト61の長手方向に関してサーミスタ71,72の配置領域M1と同じ側の領域にサーモスイッチ70が配置された場合には、周方向の領域Rにおいて、収縮した定着ベルト61と感温磁性部材64との間にサーミスタ71,72が介在することとなる。そのため、サーモスイッチ70の表面を感温磁性部材64の表面位置64aよりも定着ベルト61側に突き出るように設定したとしても、サーミスタ71,72の介在により定着ベルト61がサーモスイッチ70の表面と接触しない可能性がある。特に、定着ベルト61の表面温度を主に検知するサーミスタ71と、定着ベルト61の表面温度の異常状態を主に検知するサーミスタ72といった2個のサーミスタを配置する構成では、収縮した定着ベルト61と感温磁性部材64との間の間隙は、サーミスタ71,72が配置された位置を含む長手方向の広い領域に亘って形成され易い。そのため、定着ベルト61の中央よりもサーミスタ71,72が配置された領域M1では、収縮した定着ベルト61とサーモスイッチ70とが接触せず、サーモスイッチ70の応答性が低下する可能性がある。
<Explanation of relationship between thermistor and thermo switch for longitudinal position>
As shown in FIG. 12, the thermo switch 70 has a region (region) opposite to the region (region M <b> 1) where the thermistors 71 and 72 are disposed from the center of the fixing belt 61 in the longitudinal direction of the fixing belt 61. M2).
As described above, when the fixing belt 61 is abnormally heated so that the thermoswitch 70 is disconnected and the fixing belt 61 contracts, the fixing belt 61 is positioned in the region R with respect to the circumferential direction of the fixing belt 61. It contacts the temperature-sensitive magnetic member 64 at an early stage. In this case, in the region M1 where the thermistors 71 and 72 are disposed, the thermistors 71 and 72 press the fixing belt 61 outward (on the opposite side to the temperature-sensitive magnetic member 64) from the inner peripheral surface side of the fixing belt 61. Are arranged as follows. Therefore, when the thermo switch 70 is arranged in the same region as the arrangement region M1 of the thermistors 71 and 72 with respect to the longitudinal direction of the fixing belt 61, the shrinking fixing belt 61 and the thermosensitive magnetism in the region R in the circumferential direction. Thermistors 71 and 72 are interposed between the member 64 and the member 64. Therefore, even if the surface of the thermo switch 70 is set so as to protrude from the surface position 64 a of the temperature-sensitive magnetic member 64 toward the fixing belt 61, the fixing belt 61 comes into contact with the surface of the thermo switch 70 through the thermistors 71 and 72. There is a possibility not to. In particular, in a configuration in which two thermistors such as a thermistor 71 that mainly detects the surface temperature of the fixing belt 61 and a thermistor 72 that mainly detects an abnormal state of the surface temperature of the fixing belt 61 are disposed, the contracted fixing belt 61 and The gap between the temperature-sensitive magnetic member 64 is easily formed over a wide region in the longitudinal direction including the position where the thermistors 71 and 72 are disposed. Therefore, in the region M1 where the thermistors 71 and 72 are arranged from the center of the fixing belt 61, the contracted fixing belt 61 and the thermo switch 70 are not in contact with each other, and the responsiveness of the thermo switch 70 may be lowered.

そこで、本実施の形態では、サーモスイッチ70は、定着ベルト61の長手方向に関して、定着ベルト61の中央よりもサーミスタ71,72の配置領域M1とは反対側の領域M2に配置している。それにより、定着ベルト61にサーモスイッチ70が切断するような異常昇温が生じ、定着ベルト61が収縮した場合にも、サーミスタ71,72が介在することにより生じる収縮した定着ベルト61と感温磁性部材64との間の間隙は、サーモスイッチ70が配置された位置まで及びにくい。また、サーミスタ71,72の介在による定着ベルト61と感温磁性部材64との間に生じる間隙の影響が例えサーモスイッチ70が配置された位置まで及んだとしても、間隙量は軽微なものとなる。そのため、サーモスイッチ70を領域M2に配置することにより、定着ベルト61が収縮した場合には、収縮した定着ベルト61とサーモスイッチ70とが接触する確実性・即時性が高くなり、サーモスイッチ70の応答性は向上する。それにより、定着ベルト61の温度が異常に上昇した場合には、サーモスイッチ70は直ちに切断され、図11に示したDC電源ライン181からリレー153に配置された電磁コイル153aに流れる電流が停止されて、リレー153は応答性よく遮断される。   Therefore, in the present embodiment, the thermo switch 70 is disposed in a region M2 on the opposite side of the center region of the fixing belt 61 from the region M1 of the thermistors 71 and 72 with respect to the longitudinal direction of the fixing belt 61. As a result, an abnormal temperature rise such that the thermo switch 70 is disconnected occurs in the fixing belt 61, and even when the fixing belt 61 contracts, the contracted fixing belt 61 and the thermosensitive magnetism generated by the thermistors 71 and 72 being interposed. The gap between the member 64 is difficult to reach the position where the thermo switch 70 is disposed. Even if the influence of the gap generated between the fixing belt 61 and the temperature-sensitive magnetic member 64 due to the thermistors 71 and 72 is extended to the position where the thermo switch 70 is disposed, the gap amount is small. Become. Therefore, by disposing the thermo switch 70 in the region M2, when the fixing belt 61 contracts, the reliability / immediateness of contact between the contracted fixing belt 61 and the thermo switch 70 increases, and the thermo switch 70 Responsiveness is improved. As a result, when the temperature of the fixing belt 61 rises abnormally, the thermo switch 70 is immediately cut off, and the current flowing from the DC power supply line 181 shown in FIG. 11 to the electromagnetic coil 153a arranged in the relay 153 is stopped. Thus, the relay 153 is cut off with good responsiveness.

このように、サーモスイッチ70を領域M2に配置することにより、定着ベルト61が収縮した場合には、収縮した定着ベルト61とサーモスイッチ70とが接触する確実性・即時性が高くなる。そのため、サーモスイッチ70の応答性が向上し、定着ベルト61の温度が異常に上昇した場合には、サーモスイッチ70は直ちに切断される。それにより、定着ベルト61の異常昇温に対応させた安全機構が作動する確実性がより向上する。   As described above, by arranging the thermo switch 70 in the region M2, when the fixing belt 61 contracts, the certainty and immediacy of contact between the contracting fixing belt 61 and the thermo switch 70 is increased. Therefore, when the response of the thermo switch 70 is improved and the temperature of the fixing belt 61 rises abnormally, the thermo switch 70 is immediately disconnected. Thereby, the certainty that the safety mechanism corresponding to the abnormal temperature rise of the fixing belt 61 operates is further improved.

以上説明したように、本実施の形態の画像形成装置1に備えられる定着ユニット60では、定着ベルト61の内周面に近接させて感温磁性部材64を配置している。それにより、非通紙領域が過剰に昇温するのを抑制する。
さらには、定着ベルト61の長手方向に関して、定着ベルト61の中央よりも一方の端部側に向かう領域M1にサーミスタ71,72の双方を配置し、定着ベルト61の中央に関してサーミスタ71,72の配置領域M1とは反対側の領域M2にサーモスイッチ70を配置する。それにより、定着ベルト61での異常な温度上昇が迅速に検知される。
As described above, in the fixing unit 60 provided in the image forming apparatus 1 of the present embodiment, the temperature-sensitive magnetic member 64 is disposed in the vicinity of the inner peripheral surface of the fixing belt 61. As a result, the temperature rise of the non-sheet passing region is suppressed excessively.
Furthermore, with respect to the longitudinal direction of the fixing belt 61, both the thermistors 71 and 72 are arranged in a region M 1 that is closer to one end side than the center of the fixing belt 61, and the thermistors 71 and 72 are arranged with respect to the center of the fixing belt 61. The thermo switch 70 is arranged in a region M2 opposite to the region M1. Thereby, an abnormal temperature rise in the fixing belt 61 is quickly detected.

1…画像形成装置、60…定着ユニット、61…定着ベルト、62…加圧ロール、64…感温磁性部材、70…サーモスイッチ、71,72…サーミスタ、80…IHヒータ、82…励磁コイル、84…磁心、611…基材層、612…導電発熱層 DESCRIPTION OF SYMBOLS 1 ... Image forming apparatus, 60 ... Fixing unit, 61 ... Fixing belt, 62 ... Pressure roll, 64 ... Temperature-sensitive magnetic member, 70 ... Thermo switch, 71, 72 ... Thermistor, 80 ... IH heater, 82 ... Excitation coil, 84 ... Magnetic core, 611 ... Base material layer, 612 ... Conductive heating layer

Claims (10)

導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、
前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、
前記定着部材を挟んで前記磁界生成部材と対向して配置され、透磁率が減少を開始する透磁率変化開始温度以下の温度範囲にて当該磁界生成部材で生成された交流磁界の磁路を形成し、当該透磁率変化開始温度を超える温度範囲にて当該磁界生成部材で生成された交流磁界を透過させる磁路形成部材と、
前記磁路形成部材の長手方向中央位置よりも一方の端部側に向かう領域に配置され、前記定着部材の内側から当該定着部材の温度を検知する温度検知部材と、
前記磁路形成部材の長手方向中央位置に対して前記温度検知部材が配置された領域とは反対側の領域に配置され、前記定着部材の内側から当該定着部材の温度が予め定めた温度を超えたことを検知して前記磁界生成部材に供給される電力を遮断する遮断部材と
を備えたことを特徴とする定着装置。
A fixing member having a conductive layer and fixing the toner to the recording material by electromagnetic induction heating of the conductive layer;
A magnetic field generating member that generates an alternating magnetic field that intersects the conductive layer of the fixing member;
A magnetic path of an alternating magnetic field generated by the magnetic field generation member is formed in a temperature range below the magnetic permeability change starting temperature at which the magnetic permeability starts to decrease and is disposed opposite to the magnetic field generation member with the fixing member interposed therebetween. And a magnetic path forming member that transmits an alternating magnetic field generated by the magnetic field generating member in a temperature range that exceeds the permeability change start temperature,
A temperature detection member that is disposed in a region toward one end side from the longitudinal center position of the magnetic path forming member, and detects the temperature of the fixing member from the inside of the fixing member;
It is disposed in a region opposite to the region where the temperature detection member is disposed with respect to the longitudinal center position of the magnetic path forming member, and the temperature of the fixing member exceeds a predetermined temperature from the inside of the fixing member. And a blocking member for blocking the power supplied to the magnetic field generating member upon detecting the above.
前記定着部材の内側に配置され、当該定着部材を当該定着部材に接触して配置されるロール部材に押圧させて当該定着部材と当該ロール部材との間に記録材が通過するニップ部を形成する押圧部材をさらに備え、
前記温度検知部材と前記遮断部材とは、前記押圧部材の配置位置よりも前記定着部材の移動方向下流側であって前記磁路形成部材の配置位置よりも上流側の領域、または当該磁路形成部材が配置された領域に配置されたことを特徴とする請求項1記載の定着装置。
A nip portion that is disposed inside the fixing member and presses the fixing member in contact with the fixing member to form a nip portion through which the recording material passes is formed between the fixing member and the roll member. A pressing member,
The temperature detection member and the blocking member are a region on the downstream side in the movement direction of the fixing member with respect to the arrangement position of the pressing member and on the upstream side of the arrangement position of the magnetic path forming member, or the magnetic path formation. The fixing device according to claim 1, wherein the fixing device is disposed in a region where the member is disposed.
前記温度検知部材は、前記定着部材の内周面に向けて押圧するように配置されたことを特徴とする請求項1記載の定着装置。   The fixing device according to claim 1, wherein the temperature detection member is disposed so as to be pressed toward an inner peripheral surface of the fixing member. 前記遮断部材は、前記定着部材の内周面と対向する部分の全部または一部が前記磁路形成部材の当該定着部材の内周面と対向する面よりも当該定着部材側に位置するように配置されたことを特徴とする請求項1記載の定着装置。   The blocking member is positioned such that all or part of the portion facing the inner peripheral surface of the fixing member is located closer to the fixing member than the surface of the magnetic path forming member facing the inner peripheral surface of the fixing member. The fixing device according to claim 1, wherein the fixing device is arranged. 前記磁路形成部材は、前記定着部材と非接触に配置されたことを特徴とする請求項1記載の定着装置。   The fixing device according to claim 1, wherein the magnetic path forming member is disposed in non-contact with the fixing member. トナー像を形成するトナー像形成手段と、
前記トナー像形成手段によって形成された前記トナー像を記録材上に転写する転写手段と、
前記記録材上に転写された前記トナー像を当該記録材に定着する定着手段とを有し、
前記定着手段は、
導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、
前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、
前記定着部材を挟んで前記磁界生成部材と対向して配置され、透磁率が減少を開始する透磁率変化開始温度以下の温度範囲にて当該磁界生成部材で生成された交流磁界の磁路を形成し、当該透磁率変化開始温度を超える温度範囲にて当該磁界生成部材で生成された交流磁界を透過させる磁路形成部材と、
前記磁路形成部材の長手方向中央よりも一方の端部側に向かう領域に配置され、前記定着部材の内側から当該定着部材の温度を検知する温度検知部材と、
前記磁路形成部材の長手方向中央位置に対して前記温度検知部材が配置された領域とは反対側の領域に配置され、前記定着部材の内側から当該定着部材の温度が予め定めた温度を超えたことを検知して前記磁界生成部材に供給される電力を遮断する遮断部材と
を備えたことを特徴とする画像形成装置。
Toner image forming means for forming a toner image;
Transfer means for transferring the toner image formed by the toner image forming means onto a recording material;
Fixing means for fixing the toner image transferred onto the recording material to the recording material;
The fixing means is
A fixing member having a conductive layer and fixing the toner to the recording material by electromagnetic induction heating of the conductive layer;
A magnetic field generating member that generates an alternating magnetic field that intersects the conductive layer of the fixing member;
A magnetic path of an alternating magnetic field generated by the magnetic field generation member is formed in a temperature range below the magnetic permeability change starting temperature at which the magnetic permeability starts to decrease and is disposed opposite to the magnetic field generation member with the fixing member interposed therebetween. And a magnetic path forming member that transmits an alternating magnetic field generated by the magnetic field generating member in a temperature range that exceeds the permeability change start temperature,
A temperature detection member that is disposed in a region toward one end side from the longitudinal center of the magnetic path forming member, and detects the temperature of the fixing member from the inside of the fixing member;
It is disposed in a region opposite to the region where the temperature detection member is disposed with respect to the longitudinal center position of the magnetic path forming member, and the temperature of the fixing member exceeds a predetermined temperature from the inside of the fixing member. An image forming apparatus comprising: a blocking member that detects that the power is supplied to the magnetic field generating member.
前記定着手段は、前記定着部材の内側に配置され、当該定着部材を当該定着部材に接触して配置されるロール部材に押圧させて当該定着部材と当該ロール部材との間に記録材が通過するニップ部を形成する押圧部材をさらに備え、
前記定着手段の前記温度検知部材と前記遮断部材とは、前記押圧部材の配置位置よりも前記定着部材の移動方向下流側であって前記磁路形成部材の配置位置よりも上流側の領域、または当該磁路形成部材が配置された領域に配置されたことを特徴とする請求項6記載の画像形成装置。
The fixing unit is disposed inside the fixing member, and presses the fixing member against a roll member disposed in contact with the fixing member so that the recording material passes between the fixing member and the roll member. A pressing member for forming a nip portion;
The temperature detecting member and the blocking member of the fixing unit are regions downstream of the pressing member in the moving direction of the fixing member and upstream of the magnetic path forming member, or The image forming apparatus according to claim 6, wherein the magnetic path forming member is disposed in a region where the magnetic path forming member is disposed.
前記定着手段の前記温度検知部材は、前記定着部材の内周面に向けて押圧するように配置されたことを特徴とする請求項6記載の画像形成装置。   The image forming apparatus according to claim 6, wherein the temperature detection member of the fixing unit is disposed so as to be pressed toward an inner peripheral surface of the fixing member. 前記定着手段の前記遮断部材は、前記定着部材の内周面と対向する部分の全部または一部が前記磁路形成部材の当該定着部材の内周面と対向する面よりも当該定着部材側に位置するように配置されたことを特徴とする請求項6記載の画像形成装置。   The blocking member of the fixing unit is such that all or part of the portion facing the inner peripheral surface of the fixing member is closer to the fixing member than the surface of the magnetic path forming member facing the inner peripheral surface of the fixing member. The image forming apparatus according to claim 6, wherein the image forming apparatus is disposed so as to be positioned. 前記定着手段の前記磁路形成部材は、前記定着部材と非接触に配置されたことを特徴とする請求項6記載の画像形成装置。   The image forming apparatus according to claim 6, wherein the magnetic path forming member of the fixing unit is disposed in non-contact with the fixing member.
JP2009042065A 2009-02-25 2009-02-25 Fixing device and image forming apparatus Expired - Fee Related JP4893763B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009042065A JP4893763B2 (en) 2009-02-25 2009-02-25 Fixing device and image forming apparatus
US12/561,819 US8295752B2 (en) 2009-02-25 2009-09-17 Fixing device and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009042065A JP4893763B2 (en) 2009-02-25 2009-02-25 Fixing device and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2010197676A true JP2010197676A (en) 2010-09-09
JP4893763B2 JP4893763B2 (en) 2012-03-07

Family

ID=42822460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009042065A Expired - Fee Related JP4893763B2 (en) 2009-02-25 2009-02-25 Fixing device and image forming apparatus

Country Status (1)

Country Link
JP (1) JP4893763B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002774A (en) * 2009-06-22 2011-01-06 Fuji Xerox Co Ltd Electromagnetic induction heating device, fixing device using the same, and image forming apparatus
US9323187B2 (en) * 2014-03-31 2016-04-26 Brother Kogyo Kabushiki Kaisha Fixing device and image forming apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208080A (en) * 1986-03-10 1987-09-12 Canon Inc Fixing device
JP2002221872A (en) * 2001-01-25 2002-08-09 Ricoh Co Ltd Fixing device and image forming device
JP2003091187A (en) * 2001-09-19 2003-03-28 Canon Inc Thermal fixing device
JP2006047769A (en) * 2004-08-05 2006-02-16 Fuji Xerox Co Ltd Fixing device
JP2006267742A (en) * 2005-03-24 2006-10-05 Fuji Xerox Co Ltd Fixing device
JP2008152247A (en) * 2006-11-24 2008-07-03 Fuji Xerox Co Ltd Fixing device and image forming device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208080A (en) * 1986-03-10 1987-09-12 Canon Inc Fixing device
JP2002221872A (en) * 2001-01-25 2002-08-09 Ricoh Co Ltd Fixing device and image forming device
JP2003091187A (en) * 2001-09-19 2003-03-28 Canon Inc Thermal fixing device
JP2006047769A (en) * 2004-08-05 2006-02-16 Fuji Xerox Co Ltd Fixing device
JP2006267742A (en) * 2005-03-24 2006-10-05 Fuji Xerox Co Ltd Fixing device
JP2008152247A (en) * 2006-11-24 2008-07-03 Fuji Xerox Co Ltd Fixing device and image forming device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002774A (en) * 2009-06-22 2011-01-06 Fuji Xerox Co Ltd Electromagnetic induction heating device, fixing device using the same, and image forming apparatus
US9084301B2 (en) 2009-06-22 2015-07-14 Fuji Xerox Co., Ltd. Electromagnetic induction heating device, fixing device and image forming apparatus using the same
US9323187B2 (en) * 2014-03-31 2016-04-26 Brother Kogyo Kabushiki Kaisha Fixing device and image forming apparatus

Also Published As

Publication number Publication date
JP4893763B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP5691370B2 (en) Fixing apparatus and image forming apparatus
JP2010231094A (en) Fixing device and image forming apparatus
JP2009258453A (en) Fixing device and image forming apparatus
JP4821873B2 (en) Fixing device and image forming apparatus
JP5359362B2 (en) Fixing device and image forming apparatus
JP5369958B2 (en) Fixing apparatus and image forming apparatus
JP4807427B2 (en) Fixing apparatus and image forming apparatus
JP4788789B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP4711003B2 (en) Fixing device and image forming apparatus
JP5532646B2 (en) Fixing device and image forming apparatus
JP4893763B2 (en) Fixing device and image forming apparatus
JP5765135B2 (en) Fixing apparatus and image forming apparatus
JP2010224342A (en) Fixing device and image forming apparatus
JP2010224370A (en) Fixing device and image forming apparatus
JP2011022446A (en) Fixing device, image forming apparatus, and magnetic field generating device
JP4715942B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP2016212214A (en) Fixing device and image forming apparatus
JP2010231106A (en) Fixing device and image forming apparatus
JP5375393B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP5493533B2 (en) Image forming apparatus, fixing apparatus, and program
JP5471109B2 (en) Image forming apparatus, fixing apparatus, and program
JP5644054B2 (en) Fixing device and image forming apparatus
JP2010224032A (en) Fixing unit and image forming apparatus
JP2010231102A (en) Image forming apparatus, fixing device, and program
JP4947222B2 (en) Fixing device and image forming apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees