JP5765135B2 - Fixing apparatus and image forming apparatus - Google Patents

Fixing apparatus and image forming apparatus Download PDF

Info

Publication number
JP5765135B2
JP5765135B2 JP2011179879A JP2011179879A JP5765135B2 JP 5765135 B2 JP5765135 B2 JP 5765135B2 JP 2011179879 A JP2011179879 A JP 2011179879A JP 2011179879 A JP2011179879 A JP 2011179879A JP 5765135 B2 JP5765135 B2 JP 5765135B2
Authority
JP
Japan
Prior art keywords
magnetic
fixing
temperature
fixing belt
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011179879A
Other languages
Japanese (ja)
Other versions
JP2013041223A (en
Inventor
伊藤 和善
和善 伊藤
剛 春原
剛 春原
清 岩井
清 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2011179879A priority Critical patent/JP5765135B2/en
Publication of JP2013041223A publication Critical patent/JP2013041223A/en
Application granted granted Critical
Publication of JP5765135B2 publication Critical patent/JP5765135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • General Induction Heating (AREA)

Description

本発明は、定着装置および画像形成装置に関する。   The present invention relates to a fixing device and an image forming apparatus.

電子写真方式を用いた複写機、プリンタ等の画像形成装置に搭載する定着装置として、電磁誘導加熱方式を用いたものが知られている。
例えば、特許文献1には、フェライト等の高透磁率を有する材料で構成され、少なくとも一方向に配列された複数の芯材に励磁コイルを巻き付けて構成した磁場発生手段を、導電部材としてのエンドレス状フィルムの内部に、複数の芯材がエンドレス状フィルムの幅方向に並ぶように配置し、励磁コイルにて生成した誘導磁界によりエンドレス状フィルムに渦電流を発生させることで、エンドレス状フィルムを直接的に加熱する電磁誘導加熱方式の定着装置が記載されている。
As a fixing device mounted on an image forming apparatus such as a copying machine or a printer using an electrophotographic system, an apparatus using an electromagnetic induction heating system is known.
For example, Patent Document 1 discloses that a magnetic field generating unit configured by winding an excitation coil around a plurality of core members made of a material having high magnetic permeability such as ferrite and arranged in at least one direction is an endless as a conductive member. The endless film is placed directly in the endless film by arranging multiple cores in the width direction of the endless film and generating an eddy current in the endless film by the induced magnetic field generated by the exciting coil. An electromagnetic induction heating type fixing device is described which heats automatically.

特開平8−16005号公報JP-A-8-16005

本発明は、電磁誘導加熱方式の定着装置で用いられる定着部材における温度むらの発生を抑制することを目的とする。   An object of the present invention is to suppress the occurrence of temperature unevenness in a fixing member used in an electromagnetic induction heating type fixing device.

請求項1に記載の発明は、無端帯状の形状を備えるとともに導電層を有し、回転可能に設けられ、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、
前記定着部材と対向して設けられ、交流電流が供給されることで、当該定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、
前記磁界生成部材を介して前記定着部材に対向して設けられ、当該磁界生成部材にて生成された交流磁界の磁路を形成する複数の第1磁路形成部材と、
前記定着部材を介して前記磁界生成部材に対向して設けられ、複数の前記第1磁路形成部材とともに、当該磁界生成部材にて生成された交流磁界の磁路を形成する第2磁路形成部材とを備え、
複数の前記第1磁路形成部材は、それぞれが前記定着部材の回転方向に沿って延びるとともに、隣接する当該第1磁路形成部材との間に間隔を有するように、当該定着部材の回転方向と交差する当該定着部材の幅方向に並んで設けられ、
前記定着部材は、前記磁界生成部材を介して前記第1磁路形成部材と対向する部位を通過する第1領域と、当該第1領域と隣接して設けられ、当該磁界生成部材を介して当該第1磁路形成部材と対向しない部位を通過する第2領域とを有し、
前記第2磁路形成部材は、前記定着部材の前記第1領域と対向する第1部位と、当該定着部材の前記第2領域と対向し、当該第1部位よりも熱容量が低い第2部位とを有することを特徴とする定着装置である。
The invention according to claim 1 has an endless belt-like shape and a conductive layer, is provided rotatably, and the conductive layer is heated by electromagnetic induction to fix the toner on the recording material;
A magnetic field generating member that is provided facing the fixing member and generates an alternating magnetic field that intersects the conductive layer of the fixing member by being supplied with an alternating current;
A plurality of first magnetic path forming members provided opposite to the fixing member via the magnetic field generating member and forming a magnetic path of an alternating magnetic field generated by the magnetic field generating member;
A second magnetic path formed so as to face the magnetic field generating member via the fixing member and forms a magnetic path of an alternating magnetic field generated by the magnetic field generating member together with the plurality of first magnetic path forming members. With members,
The plurality of first magnetic path forming members extend in the rotation direction of the fixing member, and each of the first magnetic path forming members has a rotation direction of the fixing member so as to have an interval between the adjacent first magnetic path forming members. Arranged side by side in the width direction of the fixing member intersecting with
The fixing member is provided adjacent to the first region passing through a portion facing the first magnetic path forming member through the magnetic field generating member, and the first member through the magnetic field generating member. A second region that passes through a portion that does not face the first magnetic path forming member,
The second magnetic path forming member includes a first portion facing the first region of the fixing member, and a second portion facing the second region of the fixing member and having a heat capacity lower than that of the first portion. The fixing device is characterized by comprising:

請求項2に記載の発明は、前記第2磁路形成部材は、前記第1部位における体積が、前記第2部位における体積よりも大きいことを特徴とする請求項1記載の定着装置である。
請求項3に記載の発明は、前記第2磁路形成部材は、前記第1部位における前記定着部材の回転方向に沿った長さが、前記第2部位における当該定着部材の回転方向に沿った長さよりも長いことを特徴とする請求項1または2記載の定着装置である。
請求項4に記載の発明は、前記第2磁路形成部材は、外周面が前記定着部材の内周面に接触して配置され、磁気特性が温度に応じて強磁性と常磁性との間で変化し、磁気特性が強磁性の場合に、前記磁界生成部材にて生成された交流磁界の磁路を形成し、磁気特性が常磁性の場合に、当該磁界生成部材にて生成された交流磁界を透過させる感温磁性部材と、外周面が当該感温磁性部材の内周面に接触して配置され、当該感温磁性部材の磁気特性が常磁性の場合に、当該感温磁性部材を透過した交流磁界を誘導する誘導部材とを備え、
前記感温磁性部材および前記誘導部材は、前記第2部位に、前記定着部材の回転方向に沿った切欠きを有することを特徴とする請求項1または2記載の定着装置である。
請求項5に記載の発明は、前記第2磁路形成部材は、前記第1部位における厚さが、前記第2部位における厚さよりも厚いことを特徴とする請求項1または2記載の定着装置である。
請求項6に記載の発明は、前記第2磁路形成部材は、外周面が前記定着部材の内周面に接触して配置され、磁気特性が温度に応じて強磁性と常磁性との間で変化し、磁気特性が強磁性の場合に、前記磁界生成部材にて生成された交流磁界の磁路を形成し、磁気特性が常磁性の場合に、当該磁界生成部材にて生成された交流磁界を透過させる感温磁性部材と、外周面が当該感温磁性部材の内周面に接触して配置され、当該感温磁性部材の磁気特性が常磁性の場合に、当該感温磁性部材を透過した交流磁界を誘導する誘導部材とを備え、
前記誘導部材は、前記第1部位において、前記感温磁性部材の内周面と接する面とは反対側に、前記第2部位よりも突出する凸部を有することを特徴とする請求項1または2記載の定着装置である。
The invention according to claim 2 is the fixing device according to claim 1, wherein the second magnetic path forming member has a volume at the first portion larger than a volume at the second portion.
According to a third aspect of the present invention, in the second magnetic path forming member, the length along the rotation direction of the fixing member at the first portion is along the rotation direction of the fixing member at the second portion. The fixing device according to claim 1, wherein the fixing device is longer than the length.
According to a fourth aspect of the present invention, the second magnetic path forming member is disposed such that an outer peripheral surface thereof is in contact with an inner peripheral surface of the fixing member, and the magnetic property is between ferromagnetism and paramagnetism depending on temperature. When the magnetic characteristic is ferromagnetic, the magnetic field of the alternating magnetic field generated by the magnetic field generating member is formed, and when the magnetic characteristic is paramagnetic, the alternating current generated by the magnetic field generating member is formed. When the temperature-sensitive magnetic member that transmits a magnetic field and the outer peripheral surface are arranged in contact with the inner peripheral surface of the temperature-sensitive magnetic member and the magnetic property of the temperature-sensitive magnetic member is paramagnetic, the temperature-sensitive magnetic member is An induction member for inducing a transmitted alternating magnetic field,
3. The fixing device according to claim 1, wherein the temperature-sensitive magnetic member and the guide member have a notch along the rotation direction of the fixing member in the second portion. 4.
According to a fifth aspect of the present invention, in the fixing device according to the first or second aspect, the second magnetic path forming member has a thickness at the first portion larger than a thickness at the second portion. It is.
According to a sixth aspect of the present invention, the second magnetic path forming member is disposed such that an outer peripheral surface thereof is in contact with an inner peripheral surface of the fixing member, and the magnetic property is between ferromagnetism and paramagnetism depending on temperature. When the magnetic characteristic is ferromagnetic, the magnetic field of the alternating magnetic field generated by the magnetic field generating member is formed, and when the magnetic characteristic is paramagnetic, the alternating current generated by the magnetic field generating member is formed. When the temperature-sensitive magnetic member that transmits a magnetic field and the outer peripheral surface are arranged in contact with the inner peripheral surface of the temperature-sensitive magnetic member and the magnetic property of the temperature-sensitive magnetic member is paramagnetic, the temperature-sensitive magnetic member is An induction member for inducing a transmitted alternating magnetic field,
The said induction | guidance | derivation member has a convex part which protrudes rather than the said 2nd site | part on the opposite side to the surface which contact | connects the inner peripheral surface of the said temperature-sensitive magnetic member in the said 1st site | part. 2. The fixing device according to 2.

請求項7に記載の発明は、トナー像を形成するトナー像形成手段と、
前記トナー像形成手段によって形成された前記トナー像を記録材上に転写する転写手段と、
前記記録材上に転写された前記トナー像を当該記録材に定着する定着手段とを有し、
前記定着手段は、
無端帯状の形状を備えるとともに導電層を有し、回転可能に設けられ、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、
前記定着部材と対向して設けられ、交流電流が供給されることで、当該定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、
前記磁界生成部材を介して前記定着部材に対向して設けられ、当該磁界生成部材にて生成された交流磁界の磁路を形成する複数の第1磁路形成部材と、
前記定着部材を介して前記磁界生成部材に対向して設けられ、複数の前記第1磁路形成部材とともに、当該磁界生成部材にて生成された交流磁界の磁路を形成する第2磁路形成部材とを備え、
複数の前記第1磁路形成部材は、それぞれが前記定着部材の回転方向に沿って延びるとともに、隣接する当該第1磁路形成部材との間に間隔を有するように当該定着部材の回転方向と交差する当該定着部材の幅方向に並んで設けられ、
前記定着部材は、前記磁界生成部材を介して前記第1磁路形成部材と対向する部位を通過する第1領域と、当該第1領域と隣接して設けられ、当該磁界生成部材を介して当該第1磁路形成部材と対向しない部位を通過する第2領域とを有し、
前記第2磁路形成部材は、前記定着部材の前記第1領域と対向する第1部位と、当該定着部材の前記第2領域と対向し、当該第1部位よりも熱容量が低い第2部位とを有することを特徴とする画像形成装置である。
The invention according to claim 7 is a toner image forming means for forming a toner image;
Transfer means for transferring the toner image formed by the toner image forming means onto a recording material;
Fixing means for fixing the toner image transferred onto the recording material to the recording material;
The fixing means is
A fixing member having an endless belt-like shape, having a conductive layer, rotatably provided, and fixing the toner on the recording material by electromagnetically heating the conductive layer;
A magnetic field generating member that is provided facing the fixing member and generates an alternating magnetic field that intersects the conductive layer of the fixing member by being supplied with an alternating current;
A plurality of first magnetic path forming members provided opposite to the fixing member via the magnetic field generating member and forming a magnetic path of an alternating magnetic field generated by the magnetic field generating member;
A second magnetic path formed so as to face the magnetic field generating member via the fixing member and forms a magnetic path of an alternating magnetic field generated by the magnetic field generating member together with the plurality of first magnetic path forming members. With members,
Each of the plurality of first magnetic path forming members extends along the rotation direction of the fixing member, and has a rotation direction of the fixing member so as to have an interval between the adjacent first magnetic path forming members. Provided side by side in the width direction of the fixing members that intersect,
The fixing member is provided adjacent to the first region passing through a portion facing the first magnetic path forming member through the magnetic field generating member, and the first member through the magnetic field generating member. A second region that passes through a portion that does not face the first magnetic path forming member,
The second magnetic path forming member includes a first portion facing the first region of the fixing member, and a second portion facing the second region of the fixing member and having a heat capacity lower than that of the first portion. An image forming apparatus comprising:

請求項8に記載の発明は、前記第2磁路形成部材は、前記第1部位における体積が、前記第2部位における体積よりも大きいことを特徴とする請求項7記載の画像形成装置である。
請求項9に記載の発明は、前記第2磁路形成部材は、前記第1部位における前記定着部材の回転方向に沿った長さが、前記第2部位における当該定着部材の回転方向に沿った長さよりも長いことを特徴とする請求項7または8記載の画像形成装置である。
請求項10に記載の発明は、前記第2磁路形成部材は、前記第1部位における厚さが、前記第2部位における厚さよりも厚いことを特徴とする請求項7または8記載の画像形成装置である。
The invention according to claim 8 is the image forming apparatus according to claim 7, wherein the second magnetic path forming member has a volume in the first part larger than a volume in the second part. .
According to a ninth aspect of the present invention, in the second magnetic path forming member, a length along the rotation direction of the fixing member at the first portion is along the rotation direction of the fixing member at the second portion. 9. The image forming apparatus according to claim 7, wherein the image forming apparatus is longer than the length.
According to a tenth aspect of the present invention, in the second magnetic path forming member, the thickness at the first portion is thicker than the thickness at the second portion. Device.

請求項1の発明によれば、本構成を有さない場合と比較して、定着部材における温度むらの発生を抑制することができる。
請求項2の発明によれば、本構成を有さない場合と比較して、より簡易な構成で、第2磁路形成部材における第1部位の熱容量を第2部位の熱容量よりも大きくすることができる。
請求項3の発明によれば、本構成を有さない場合と比較して、第2磁路形成部材における熱容量の分布を、より簡易な構成で実現することができる。
請求項4の発明によれば、本構成を有さない場合と比較して、定着部材における過剰な温度上昇を抑制することができる。
請求項5の発明によれば、本構成を有さない場合と比較して、第2磁路形成部材における熱容量の分布を、より簡易な構成で実現することができる。
請求項6の発明によれば、本構成を有さない場合と比較して、定着部材における過剰な温度上昇を抑制することができる。
According to the first aspect of the present invention, it is possible to suppress the occurrence of temperature unevenness in the fixing member as compared with the case where this configuration is not provided.
According to the second aspect of the present invention, the heat capacity of the first part of the second magnetic path forming member is made larger than the heat capacity of the second part with a simpler structure as compared with the case without this structure. Can do.
According to the third aspect of the present invention, the heat capacity distribution in the second magnetic path forming member can be realized with a simpler configuration as compared with the case without this configuration.
According to the fourth aspect of the present invention, it is possible to suppress an excessive temperature rise in the fixing member as compared with the case where this configuration is not provided.
According to the fifth aspect of the present invention, the heat capacity distribution in the second magnetic path forming member can be realized with a simpler configuration as compared with the case where this configuration is not provided.
According to the sixth aspect of the present invention, it is possible to suppress an excessive temperature rise in the fixing member as compared with the case where this configuration is not provided.

請求項7の発明によれば、本構成を有さない場合と比較して、定着部材における温度むらの発生を抑制することができる。
請求項8の発明によれば、本構成を有さない場合と比較して、より簡易な構成で、第2磁路形成部材における第1部位の熱容量を第2部位の熱容量よりも大きくすることができる。
請求項9の発明によれば、本構成を有さない場合と比較して、第2磁路形成部材における熱容量の分布を、より簡易な構成で実現することができる。
請求項10の発明によれば、本構成を有さない場合と比較して、第2磁路形成部材における熱容量の分布を、より簡易な構成で実現することができる。
According to the seventh aspect of the present invention, it is possible to suppress the occurrence of temperature unevenness in the fixing member as compared with the case where this configuration is not provided.
According to the eighth aspect of the present invention, the heat capacity of the first part of the second magnetic path forming member is made larger than the heat capacity of the second part with a simpler structure as compared with the case without this structure. Can do.
According to the ninth aspect of the present invention, the heat capacity distribution in the second magnetic path forming member can be realized with a simpler configuration than in the case where the present configuration is not provided.
According to the tenth aspect of the present invention, the heat capacity distribution in the second magnetic path forming member can be realized with a simpler configuration than in the case where the present configuration is not provided.

本実施の形態の定着装置が適用される画像形成装置の構成例を示した図である。1 is a diagram illustrating a configuration example of an image forming apparatus to which a fixing device according to an exemplary embodiment is applied. 本実施の形態の定着ユニットの構成を示す正面図である。FIG. 2 is a front view illustrating a configuration of a fixing unit of the present embodiment. 図2における定着ユニットのIII−III断面図である。FIG. 3 is a sectional view of the fixing unit in FIG. 2 taken along the line III-III. 定着ベルトの層構成を説明する図である。FIG. 3 is a diagram illustrating a layer configuration of a fixing belt. (a)がエンドキャップ部材の側面図であり、(b)がVB方向から見たエンドキャップ部材の平面図である。(A) is a side view of an end cap member, (b) is a top view of the end cap member seen from the VB direction. 本実施の形態のIHヒータの構成を説明する断面図である。It is sectional drawing explaining the structure of the IH heater of this Embodiment. 本実施の形態におけるIHヒータ、定着ベルト、感温磁性部材および誘導部材の積層構造を説明する図である。It is a figure explaining the laminated structure of the IH heater in this Embodiment, a fixing belt, a temperature-sensitive magnetic member, and an induction member. 本実施の形態のIHヒータにおける磁心、感温磁性部材および誘導部材の関係を説明する図である。It is a figure explaining the relationship between the magnetic core, temperature-sensitive magnetic member, and induction | guidance | derivation member in the IH heater of this Embodiment. 定着ベルトの温度が透磁率変化開始温度以下の温度範囲にある場合の磁力線の状態を説明する図である。It is a figure explaining the state of a line of magnetic force in case the temperature of a fixing belt exists in the temperature range below the magnetic permeability change start temperature. 本実施の形態におけるIHヒータ、定着ベルト、感温磁性部材および誘導部材の積層構造を説明する斜視図である。It is a perspective view explaining the laminated structure of an IH heater, a fixing belt, a temperature-sensitive magnetic member, and an induction member in the present embodiment. 本実施の形態におけるIHヒータ、定着ベルト、感温磁性部材および誘導部材の積層構造を説明する断面図である。It is sectional drawing explaining the laminated structure of the IH heater in this Embodiment, a fixing belt, a temperature-sensitive magnetic member, and an induction member.

以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
[実施の形態1]
<画像形成装置の説明>
図1は本実施の形態の定着装置が適用される画像形成装置の構成例を示した図である。図1に示す画像形成装置1は、所謂タンデム型のカラープリンタであり、画像データに基づき画像形成を行う画像形成部10、画像形成装置1全体の動作を制御する制御部31、画像形成装置1に対して供給される用紙Pを保持する用紙保持部40、画像が形成された用紙Pを積載する用紙積載部45を備えている。さらには、例えばパーソナルコンピュータ(PC)3や画像読取装置(スキャナ)4等との通信を行って画像データを受信する通信部32、通信部32にて受信された画像データに対し予め定めた画像処理を施す画像処理部33を備えている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
[Embodiment 1]
<Description of Image Forming Apparatus>
FIG. 1 is a diagram illustrating a configuration example of an image forming apparatus to which the fixing device of the present embodiment is applied. An image forming apparatus 1 illustrated in FIG. 1 is a so-called tandem color printer, and includes an image forming unit 10 that forms an image based on image data, a control unit 31 that controls the operation of the entire image forming apparatus 1, and the image forming apparatus 1. Are provided with a paper holding unit 40 for holding the paper P supplied thereto, and a paper stacking unit 45 for loading the paper P on which an image is formed. Further, for example, a communication unit 32 that receives image data by communicating with a personal computer (PC) 3 or an image reading device (scanner) 4, and a predetermined image for the image data received by the communication unit 32. An image processing unit 33 that performs processing is provided.

画像形成部10は、一定の間隔を置いて並列的に配置されるトナー像形成手段の一例である4つの画像形成ユニット11Y、11M、11C、11K(「画像形成ユニット11」とも総称する)を備えている。各画像形成ユニット11は、静電潜像を形成してトナー像を保持する感光体ドラム12、感光体ドラム12の表面を予め定めた電位で帯電する帯電器13、帯電器13によって帯電された感光体ドラム12を各色画像データに基づき露光するLED(Light Emitting Diode)プリントヘッド14、感光体ドラム12上に形成された静電潜像を現像する現像器15、転写後の感光体ドラム12表面を清掃するドラムクリーナ16を備えている。
画像形成ユニット11各々は、現像器15に収納されるトナーを除いて同様に構成され、それぞれがイエロー(Y)、マゼンタ(M)、シアン(C)、黒(K)のトナー像を形成する。
The image forming unit 10 includes four image forming units 11Y, 11M, 11C, and 11K (also collectively referred to as “image forming unit 11”), which are examples of toner image forming units that are arranged in parallel at regular intervals. I have. Each image forming unit 11 is charged by a photosensitive drum 12 that forms an electrostatic latent image and holds a toner image, a charger 13 that charges the surface of the photosensitive drum 12 at a predetermined potential, and a charger 13. An LED (Light Emitting Diode) print head 14 that exposes the photosensitive drum 12 based on each color image data, a developing device 15 that develops an electrostatic latent image formed on the photosensitive drum 12, and the surface of the photosensitive drum 12 after transfer A drum cleaner 16 is provided.
Each of the image forming units 11 is configured in the same manner except for the toner stored in the developing device 15, and each forms a toner image of yellow (Y), magenta (M), cyan (C), and black (K). .

また、画像形成部10は、各画像形成ユニット11の感光体ドラム12にて形成された各色トナー像が多重転写される中間転写ベルト20、各画像形成ユニット11にて形成された各色トナー像を中間転写ベルト20に順次転写(一次転写)する一次転写ロール21を備えている。さらに、中間転写ベルト20上に重畳して転写された各色トナー像を記録材(記録紙)である用紙Pに一括転写(二次転写)する二次転写ロール22、二次転写後の中間転写ベルト20表面を清掃するベルトクリーナ25、二次転写された各色トナー像を用紙P上に定着させる定着手段(定着装置)の一例としての定着ユニット60を備えている。なお、本実施の形態の画像形成装置1では、中間転写ベルト20、一次転写ロール21、および二次転写ロール22により転写手段が構成される。   The image forming unit 10 also receives the intermediate transfer belt 20 onto which the color toner images formed on the photosensitive drums 12 of the image forming units 11 are transferred, and the color toner images formed on the image forming units 11. A primary transfer roll 21 that sequentially transfers (primary transfer) to the intermediate transfer belt 20 is provided. Further, a secondary transfer roll 22 that batch-transfers (secondary transfer) each color toner image transferred onto the intermediate transfer belt 20 onto a sheet P that is a recording material (recording paper), and intermediate transfer after the secondary transfer. A belt cleaner 25 for cleaning the surface of the belt 20 and a fixing unit 60 as an example of fixing means (fixing device) for fixing each color toner image that has been secondarily transferred onto the paper P are provided. In the image forming apparatus 1 of the present embodiment, the intermediate transfer belt 20, the primary transfer roll 21, and the secondary transfer roll 22 constitute a transfer unit.

本実施の形態の画像形成装置1では、制御部31による動作制御の下で、次のようなプロセスによる画像形成処理が行われる。すなわち、PC3やスキャナ4からの画像データは通信部32にて受信され、画像処理部33により予め定めた画像処理が施された後、各色の画像データとなって各画像形成ユニット11に送られる。そして、例えば黒(K)色トナー像を形成する画像形成ユニット11Kでは、感光体ドラム12が矢印A方向に回転しながら帯電器13により予め定めた電位で帯電され、画像処理部33から送信された黒(K)色画像データに基づきLEDプリントヘッド14が感光体ドラム12を走査露光する。それにより、感光体ドラム12上には黒(K)色画像に関する静電潜像が形成される。感光体ドラム12上に形成された黒(K)色静電潜像は現像器15により現像され、感光体ドラム12上に黒(K)色トナー像が形成される。同様に、画像形成ユニット11Y、11M、11Cにおいても、それぞれイエロー(Y)、マゼンタ(M)、シアン(C)の各色トナー像が形成される。   In the image forming apparatus 1 of the present embodiment, under the operation control by the control unit 31, image forming processing is performed by the following process. That is, image data from the PC 3 or the scanner 4 is received by the communication unit 32, subjected to predetermined image processing by the image processing unit 33, and then sent to each image forming unit 11 as image data of each color. . For example, in the image forming unit 11K that forms a black (K) toner image, the photosensitive drum 12 is charged at a predetermined potential by the charger 13 while rotating in the direction of arrow A, and is transmitted from the image processing unit 33. The LED print head 14 scans and exposes the photosensitive drum 12 based on the black (K) color image data. As a result, an electrostatic latent image relating to a black (K) color image is formed on the photosensitive drum 12. The black (K) electrostatic latent image formed on the photosensitive drum 12 is developed by the developing device 15, and a black (K) toner image is formed on the photosensitive drum 12. Similarly, yellow (Y), magenta (M), and cyan (C) toner images are formed in the image forming units 11Y, 11M, and 11C, respectively.

各画像形成ユニット11の感光体ドラム12に形成された各色トナー像は、一次転写ロール21により矢印B方向に移動する中間転写ベルト20上に順次静電転写(一次転写)され、各色トナーが重畳された重畳トナー像が形成される。中間転写ベルト20上の重畳トナー像は、中間転写ベルト20の移動に伴って二次転写ロール22が配置された領域(二次転写部T)に搬送される。重畳トナー像が二次転写部Tに搬送されると、そのタイミングに合わせて用紙保持部40から用紙Pが二次転写部Tに供給される。そして、重畳トナー像は、二次転写部Tにて二次転写ロール22が形成する転写電界により、搬送されてきた用紙P上に一括して静電転写(二次転写)される。   Each color toner image formed on the photosensitive drum 12 of each image forming unit 11 is sequentially electrostatically transferred (primary transfer) onto the intermediate transfer belt 20 that moves in the direction of arrow B by the primary transfer roll 21, and each color toner is superimposed. A superimposed toner image is formed. The superimposed toner image on the intermediate transfer belt 20 is conveyed to a region (secondary transfer portion T) where the secondary transfer roll 22 is disposed as the intermediate transfer belt 20 moves. When the superimposed toner image is conveyed to the secondary transfer unit T, the paper P is supplied from the paper holding unit 40 to the secondary transfer unit T in accordance with the timing. The superimposed toner image is collectively electrostatically transferred (secondary transfer) onto the conveyed paper P by the transfer electric field formed by the secondary transfer roll 22 in the secondary transfer portion T.

その後、重畳トナー像が静電転写された用紙Pは、定着ユニット60まで搬送される。定着ユニット60に搬送された用紙P上のトナー像は、定着ユニット60によって熱および圧力を受け、用紙P上に定着される。そして、定着画像が形成された用紙Pは、画像形成装置1の排出部に設けられた用紙積載部45に搬送される。
一方、一次転写後に感光体ドラム12に付着しているトナー(一次転写残トナー)、および二次転写後に中間転写ベルト20に付着しているトナー(二次転写残トナー)は、それぞれドラムクリーナ16、およびベルトクリーナ25によって除去される。
このようにして、画像形成装置1での画像形成処理がプリント枚数分のサイクルだけ繰り返し実行される。
Thereafter, the sheet P on which the superimposed toner image is electrostatically transferred is conveyed to the fixing unit 60. The toner image on the paper P conveyed to the fixing unit 60 receives heat and pressure by the fixing unit 60 and is fixed on the paper P. Then, the paper P on which the fixed image is formed is conveyed to a paper stacking unit 45 provided in the discharge unit of the image forming apparatus 1.
On the other hand, the toner (primary transfer residual toner) adhering to the photosensitive drum 12 after the primary transfer and the toner (secondary transfer residual toner) adhering to the intermediate transfer belt 20 after the secondary transfer are respectively drum cleaner 16. , And the belt cleaner 25.
In this way, the image forming process in the image forming apparatus 1 is repeatedly executed for the number of printed sheets.

<定着ユニットの構成の説明>
次に、本実施の形態の定着ユニット60について説明する。
図2および図3は本実施の形態の定着ユニット60の構成を示す図であり、図2は正面図、図3は図2におけるIII−III断面図である。
まず、断面図である図3に示すように、定着ユニット60は、IH(Induction Heating)ヒータ80、IHヒータ80により電磁誘導加熱されてトナー像を定着する定着部材の一例としての定着ベルト61、定着ベルト61の外周側において、定着ベルト61に対向するように配置された加圧ロール62、定着ベルト61の内周側に設けられるとともに、定着ベルト61を介して加圧ロール62から押圧され、加圧ロール62との間にニップ部Nを形成する押圧パッド63を備えている。なお、本実施の形態においては、IHヒータ80は定着ベルト61の外周側に設けられている。
さらに、定着ユニット60は、定着ベルト61の内周側において定着ベルト61に接触して設けられ、IHヒータ80にて生成された交流磁界を誘導して磁路を形成する感温磁性部材64、定着ベルト61の内周側に設けられるとともに感温磁性部材64に接触して設けられ、感温磁性部材64を通過した磁力線を誘導する誘導部材66、定着ベルト61の内周側に設けられ、押圧パッド63、感温磁性部材64および誘導部材66を支持するホルダ65、定着ベルト61の外周側に設けられ、定着ベルト61からの用紙Pの剥離を補助する剥離補助部材173を備えている。なお、本実施の形態の定着ユニット60では、感温磁性部材64と誘導部材66とにより第2磁路形成部材が構成される。
<Description of fixing unit configuration>
Next, the fixing unit 60 of this embodiment will be described.
2 and 3 are views showing a configuration of the fixing unit 60 of the present embodiment, FIG. 2 is a front view, and FIG. 3 is a sectional view taken along line III-III in FIG.
First, as shown in FIG. 3 which is a cross-sectional view, a fixing unit 60 includes an IH (Induction Heating) heater 80, a fixing belt 61 as an example of a fixing member that is heated by electromagnetic induction by the IH heater 80 and fixes a toner image. On the outer peripheral side of the fixing belt 61, a pressure roll 62 disposed so as to face the fixing belt 61, provided on the inner peripheral side of the fixing belt 61, and pressed from the pressure roll 62 via the fixing belt 61, A pressure pad 63 that forms a nip portion N is provided between the pressure roll 62 and the pressure roll 62. In the present embodiment, the IH heater 80 is provided on the outer peripheral side of the fixing belt 61.
Furthermore, the fixing unit 60 is provided in contact with the fixing belt 61 on the inner peripheral side of the fixing belt 61, and a temperature-sensitive magnetic member 64 that induces an alternating magnetic field generated by the IH heater 80 to form a magnetic path. Provided on the inner peripheral side of the fixing belt 61 and provided in contact with the temperature-sensitive magnetic member 64, and provided on the inner peripheral side of the fixing belt 61, an induction member 66 that guides the magnetic field lines that have passed through the temperature-sensitive magnetic member 64, A pressing pad 63, a holder 65 that supports the temperature-sensitive magnetic member 64 and the guiding member 66, and a separation assisting member 173 that is provided on the outer peripheral side of the fixing belt 61 and assists the separation of the paper P from the fixing belt 61. In the fixing unit 60 of the present embodiment, the temperature-sensitive magnetic member 64 and the guide member 66 constitute a second magnetic path forming member.

<定着ベルトの説明>
図4は、定着ベルト61の層構成を説明する図である。定着ベルト61は、原形が円筒形状の無端のベルト部材で構成され、例えば原形(円筒形状)時の直径が30mm、幅方向長が370mmに形成されている。また、図4に示したように、定着ベルト61は、内周側から、基材層611、基材層611の上に積層された導電層の一例としての導電発熱層612、トナー像の定着性を向上させる弾性層613、最上層に被覆された表面離型層614が積層された多層構造のベルト部材である。したがって、本実施の形態においては、定着ベルト61の内周側において基材層611が感温磁性部材64と接触し、定着ベルト61の外周側において表面離型層614が加圧ロール62およびIHヒータ80に対向している。
<Description of fixing belt>
FIG. 4 is a diagram illustrating the layer configuration of the fixing belt 61. The fixing belt 61 is formed of an endless belt member having an original cylindrical shape, and has a diameter of 30 mm and a length in the width direction of 370 mm in the original shape (cylindrical shape), for example. As shown in FIG. 4, the fixing belt 61 includes a base material layer 611, a conductive heat generating layer 612 as an example of a conductive layer laminated on the base material layer 611, and a toner image fixing from the inner peripheral side. It is a belt member having a multilayer structure in which an elastic layer 613 for improving the property and a surface release layer 614 coated on the uppermost layer are laminated. Therefore, in the present embodiment, the base material layer 611 is in contact with the temperature-sensitive magnetic member 64 on the inner peripheral side of the fixing belt 61, and the surface release layer 614 is connected to the pressure roll 62 and the IH on the outer peripheral side of the fixing belt 61. Opposite the heater 80.

基材層611は、導電発熱層612を支持するとともに、定着ベルト61全体としての機械的強度を形成する耐熱性のシート状部材で構成される。また、基材層611は、IHヒータ80にて生成された交流磁界が感温磁性部材64まで作用するように、磁界を通過させる物性(比透磁率、固有抵抗)を持った材質、厚さで形成される。一方、基材層611自身は、磁界の作用により発熱しないか、または発熱し難く構成される。
具体的には、基材層611として、例えば、厚さ30〜200μm(好ましくは50〜150μm)の非磁性ステンレススチール等の非磁性金属や、厚さ60〜200μmの樹脂材料等が用いられる。
The base material layer 611 is composed of a heat-resistant sheet-like member that supports the conductive heat generating layer 612 and forms the mechanical strength of the entire fixing belt 61. In addition, the base material layer 611 is made of a material having a physical property (relative magnetic permeability, specific resistance) that allows the magnetic field to pass therethrough so that the AC magnetic field generated by the IH heater 80 acts to the temperature-sensitive magnetic member 64, and the thickness. Formed with. On the other hand, the base material layer 611 itself is configured not to generate heat or hardly generate heat due to the action of a magnetic field.
Specifically, as the base material layer 611, for example, a nonmagnetic metal such as nonmagnetic stainless steel having a thickness of 30 to 200 μm (preferably 50 to 150 μm), a resin material having a thickness of 60 to 200 μm, or the like is used.

導電発熱層612は、IHヒータ80にて生成される交流磁界によって電磁誘導加熱される電磁誘導発熱体層である。すなわち、導電発熱層612は、IHヒータ80からの交流磁界が厚さ方向に通過することにより、渦電流を発生させる層である。
通常、IHヒータ80に交流電流を供給する励磁回路88(後段の図6も参照)の電源として、安価に製造できる汎用電源が使用される。そのため、IHヒータ80により生成される交流磁界の周波数は、一般に、汎用電源による20kHz〜100kHzとなる。それにより、導電発熱層612は、周波数20kHz〜100kHzの交流磁界が侵入し通過するように構成される。
The conductive heating layer 612 is an electromagnetic induction heating element layer that is electromagnetically heated by an alternating magnetic field generated by the IH heater 80. That is, the conductive heat generating layer 612 is a layer that generates an eddy current when the AC magnetic field from the IH heater 80 passes in the thickness direction.
In general, a general-purpose power source that can be manufactured at low cost is used as a power source for an excitation circuit 88 (see also FIG. 6 below) that supplies an AC current to the IH heater 80. Therefore, the frequency of the alternating magnetic field generated by the IH heater 80 is generally 20 kHz to 100 kHz by a general-purpose power source. Thereby, the conductive heat generating layer 612 is configured such that an alternating magnetic field having a frequency of 20 kHz to 100 kHz enters and passes therethrough.

導電発熱層612に交流磁界が侵入できる領域は、交流磁界が1/eに減衰する領域である「表皮深さ(δ)」として規定され、次の(1)式から導かれる。(1)式において、fは交流磁界の周波数(例えば、20kHz)、ρは固有抵抗値(Ω・m)、μは比透磁率である。
そのため、導電発熱層612の厚さは、周波数20kHz〜100kHzの交流磁界が導電発熱層612に侵入し通過するように、(1)式で規定される導電発熱層612の表皮深さ(δ)よりも薄く構成される。また、導電発熱層612を構成する材料として、例えば、Au、Ag、Al、Cu、Zn、Sn、Pb、Bi、Be、Sb等の金属や、これらの金属合金が用いられる。
The region where the alternating magnetic field can enter the conductive heat generating layer 612 is defined as “skin depth (δ)”, which is a region where the alternating magnetic field attenuates to 1 / e, and is derived from the following equation (1). (1) In the equation, f is the AC magnetic field frequency (e.g., 20 kHz), [rho is resistivity (Omega · m), the mu r is the relative permeability.
Therefore, the thickness of the conductive heat generating layer 612 is determined by the skin depth (δ) of the conductive heat generating layer 612 defined by the equation (1) so that an AC magnetic field having a frequency of 20 kHz to 100 kHz penetrates and passes through the conductive heat generating layer 612. It is configured to be thinner. Further, as a material constituting the conductive heat generating layer 612, for example, metals such as Au, Ag, Al, Cu, Zn, Sn, Pb, Bi, Be, and Sb, and metal alloys thereof are used.

Figure 0005765135
Figure 0005765135

具体的には、導電発熱層612として、厚さ2〜20μm、固有抵抗値2.7×10−8Ω・m以下の例えばCu等の非磁性金属(比透磁率が概ね1)が用いられる。
また、定着ベルト61が定着設定温度まで加熱されるまでに要する時間(以下、「ウォームアップタイム」)を短縮する観点からも、導電発熱層612は、薄層に構成される。
Specifically, a nonmagnetic metal such as Cu having a thickness of 2 to 20 μm and a specific resistance value of 2.7 × 10 −8 Ω · m or less (relative permeability is approximately 1) is used as the conductive heat generating layer 612. .
Also, from the viewpoint of shortening the time required for the fixing belt 61 to be heated to the fixing set temperature (hereinafter referred to as “warm-up time”), the conductive heat generating layer 612 is configured as a thin layer.

次に、弾性層613は、シリコーンゴム等の耐熱性の弾性体で構成される。定着対象となる用紙Pに保持されるトナー像は、粉体である各色トナーが積層して形成されている。そのため、ニップ部Nにおいてトナー像の全体に均一に熱を供給するには、用紙P上のトナー像の凹凸に倣って定着ベルト61表面が変形することが好ましい。そこで、弾性層613には、例えば厚みが100〜600μm、硬度が10°〜30°(JIS−A)のシリコーンゴムが用いられる。
表面離型層614は、用紙P上に保持された未定着トナー像と直接接触するため、離型性の高い材質が使用される。例えば、PFA(テトラフルオロエチレンパーフルオロアルキルビニルエーテル重合体)、PTFE(ポリテトラフルオロエチレン)、シリコーン共重合体、またはこれらの複合層等が用いられる。表面離型層614の厚さとしては、薄すぎると、耐摩耗性の面で充分でなく、定着ベルト61の寿命を短くする。その一方で、厚すぎると、定着ベルト61の熱容量が大きくなりすぎ、ウォームアップタイムが長くなる。そこで、表面離型層614の厚さとして、耐摩耗性と熱容量とのバランスを考慮し、1〜50μmが用いられる。
Next, the elastic layer 613 is composed of a heat-resistant elastic body such as silicone rubber. The toner image held on the sheet P to be fixed is formed by laminating each color toner as powder. Therefore, in order to supply heat uniformly to the entire toner image at the nip portion N, it is preferable that the surface of the fixing belt 61 is deformed following the unevenness of the toner image on the paper P. Therefore, for example, a silicone rubber having a thickness of 100 to 600 μm and a hardness of 10 ° to 30 ° (JIS-A) is used for the elastic layer 613.
Since the surface release layer 614 is in direct contact with the unfixed toner image held on the paper P, a material having a high release property is used. For example, PFA (tetrafluoroethylene perfluoroalkyl vinyl ether polymer), PTFE (polytetrafluoroethylene), silicone copolymer, or a composite layer thereof is used. If the thickness of the surface release layer 614 is too thin, it is not sufficient in terms of wear resistance, and the life of the fixing belt 61 is shortened. On the other hand, if it is too thick, the heat capacity of the fixing belt 61 becomes too large and the warm-up time becomes long. Therefore, the thickness of the surface release layer 614 is 1 to 50 μm in consideration of the balance between wear resistance and heat capacity.

<押圧パッドの説明>
押圧パッド63は、シリコーンゴム等やフッ素ゴム等の弾性体やLCP、PPS(ポリフェニレンサルファイド)等の耐熱性樹脂で構成され、図3に示すように加圧ロール62と対向する位置にてホルダ65に支持される。そして、押圧パッド63は、定着ベルト61を介して加圧ロール62から押圧される状態で配置され、加圧ロール62との間でニップ部Nを形成する。
また、押圧パッド63は、ニップ部Nの入口側(用紙Pの搬送方向上流側)のプレニップ領域63aと、ニップ部Nの出口側(用紙Pの搬送方向下流側)の剥離ニップ領域63bとで異なるニップ圧が設定されている。すなわち、押圧パッド63は、プレニップ領域63aでは、加圧ロール62側の面がほぼ加圧ロール62の外周面に倣う円弧形状に形成され、均一で幅の広いニップ部Nを形成する。また、押圧パッド63は、剥離ニップ領域63bでは、剥離ニップ領域63bを通過する定着ベルト61の曲率半径が小さくなるように、加圧ロール62表面から局所的に大きなニップ圧で押圧されるように形成される。それにより、押圧パッド63は、剥離ニップ領域63bを通過する用紙Pに定着ベルト61表面から離れる方向のカール(ダウンカール)を形成して、用紙Pに対する定着ベルト61表面からの剥離を促進させている。
<Description of pressing pad>
The pressing pad 63 is made of an elastic body such as silicone rubber or fluorine rubber, or a heat resistant resin such as LCP or PPS (polyphenylene sulfide), and has a holder 65 at a position facing the pressure roll 62 as shown in FIG. Supported by The pressing pad 63 is disposed in a state of being pressed from the pressure roll 62 via the fixing belt 61, and forms a nip portion N with the pressure roll 62.
The pressing pad 63 includes a pre-nip region 63a on the inlet side of the nip portion N (upstream side in the conveyance direction of the paper P) and a peeling nip region 63b on the outlet side of the nip portion N (downstream side in the conveyance direction of the paper P). Different nip pressures are set. That is, the press pad 63 is formed in an arc shape in which the surface on the pressure roll 62 side substantially follows the outer peripheral surface of the pressure roll 62 in the pre-nip region 63a, and forms a uniform and wide nip portion N. In addition, the pressing pad 63 is locally pressed from the surface of the pressure roll 62 with a large nip pressure so that the radius of curvature of the fixing belt 61 passing through the peeling nip region 63b becomes small in the peeling nip region 63b. It is formed. Accordingly, the pressing pad 63 forms a curl (down curl) in a direction away from the surface of the fixing belt 61 on the paper P passing through the peeling nip region 63b, and promotes peeling from the surface of the fixing belt 61 with respect to the paper P. Yes.

なお、本実施の形態では、押圧パッド63による剥離の補助手段として、ニップ部Nの下流側に、剥離補助部材173を配置している。剥離補助部材173は、ニップ部Nよりも用紙搬送方向下流側において、定着ベルト61に向かって延びる剥離バッフル171と、剥離バッフル171を支持するホルダ172とから構成される。そして、ニップ部Nの出口にて押圧パッド63により用紙Pに形成されたカール部分を剥離バッフル171により支持することで、用紙Pが定着ベルト61方向に向かうことを抑制する。   In the present embodiment, a peeling assisting member 173 is arranged on the downstream side of the nip portion N as a peeling assisting means by the pressing pad 63. The peeling assisting member 173 includes a peeling baffle 171 that extends toward the fixing belt 61 and a holder 172 that supports the peeling baffle 171 on the downstream side of the nip portion N in the sheet conveyance direction. Then, the curled portion formed on the paper P by the pressing pad 63 at the exit of the nip portion N is supported by the peeling baffle 171, thereby suppressing the paper P from moving toward the fixing belt 61.

<感温磁性部材の説明>
次に、感温磁性部材64について説明する。図3に示すように、感温磁性部材64は、定着ベルト61の内周面に倣った円弧形状で形成され、外周面が定着ベルト61の内周面と接触するように配置される。それにより、感温磁性部材64の温度は定着ベルト61の温度に対応して変化し、感温磁性部材64は定着ベルト61の温度を検知する検知部として機能する。
そして、感温磁性部材64は、その磁気特性の透磁率が急変する温度である「透磁率変化開始温度」が、各色トナー像が溶融する定着設定温度以上であって、定着ベルト61の弾性層613や表面離型層614の耐熱温度よりも低い温度範囲内に設定された材質で構成される。すなわち、感温磁性部材64は、定着設定温度を含む温度領域において強磁性と非磁性(常磁性)との間を可逆的に変化する特性(「感温磁性」)を有する材質で構成される。それにより、感温磁性部材64は、強磁性を呈する透磁率変化開始温度以下の温度範囲において磁路形成部材として機能し、IHヒータ80にて生成され定着ベルト61を透過した磁力線を内部に誘導して、感温磁性部材64の内部を通過する磁路を形成する。そして、感温磁性部材64は、定着ベルト61とIHヒータ80の励磁コイル82(後段の図6参照)とを内部に包み込むような閉磁路を形成する。一方、透磁率変化開始温度を超える温度範囲においては、感温磁性部材64は、IHヒータ80にて生成され定着ベルト61を透過した磁力線を、感温磁性部材64の厚さ方向に横切るように透過させる。それにより、IHヒータ80にて生成され定着ベルト61を透過した磁力線は、感温磁性部材64を透過し、誘導部材66の内部を通過してIHヒータ80に戻る磁路を形成する。
<Description of temperature-sensitive magnetic member>
Next, the temperature-sensitive magnetic member 64 will be described. As shown in FIG. 3, the temperature-sensitive magnetic member 64 is formed in an arc shape that follows the inner peripheral surface of the fixing belt 61, and is arranged so that the outer peripheral surface is in contact with the inner peripheral surface of the fixing belt 61. Thereby, the temperature of the temperature-sensitive magnetic member 64 changes corresponding to the temperature of the fixing belt 61, and the temperature-sensitive magnetic member 64 functions as a detection unit that detects the temperature of the fixing belt 61.
The temperature-sensitive magnetic member 64 has a “permeability change start temperature”, which is a temperature at which the magnetic permeability of the magnetic characteristics changes suddenly, equal to or higher than a fixing set temperature at which each color toner image melts, and the elastic layer of the fixing belt 61. It is comprised with the material set in the temperature range lower than the heat-resistant temperature of 613 and the surface release layer 614. FIG. That is, the temperature-sensitive magnetic member 64 is made of a material having a characteristic (“temperature-sensitive magnetism”) that reversibly changes between ferromagnetic and non-magnetic (paramagnetic) in a temperature range including the fixing set temperature. . As a result, the temperature-sensitive magnetic member 64 functions as a magnetic path forming member in a temperature range that is equal to or lower than the permeability change start temperature exhibiting ferromagnetism, and induces the magnetic field lines generated by the IH heater 80 and transmitted through the fixing belt 61 to the inside. Thus, a magnetic path passing through the inside of the temperature-sensitive magnetic member 64 is formed. The temperature-sensitive magnetic member 64 forms a closed magnetic path that encloses the fixing belt 61 and the exciting coil 82 of the IH heater 80 (see FIG. 6 at a later stage). On the other hand, in the temperature range exceeding the permeability change start temperature, the temperature-sensitive magnetic member 64 crosses the magnetic field lines generated by the IH heater 80 and transmitted through the fixing belt 61 in the thickness direction of the temperature-sensitive magnetic member 64. Make it transparent. Thereby, the magnetic lines of force generated by the IH heater 80 and transmitted through the fixing belt 61 form a magnetic path that passes through the temperature-sensitive magnetic member 64, passes through the inside of the guide member 66, and returns to the IH heater 80.

感温磁性部材64に用いる材質としては、透磁率変化開始温度が定着設定温度として用いられる例えば140℃〜240℃の範囲内に設定された、例えばFe−Ni合金(パーマロイ)等の二元系感温磁性合金やFe−Ni−Cr合金等の三元系の感温磁性合金等が用いられる。例えば、Fe−Niの二元系感温磁性合金においては約Fe64%、Ni36%(原子数比)とすることで220℃〜225℃前後に透磁率変化開始温度を設定することができる。このようなパーマロイや感温磁性合金等の金属合金等は、成型性や加工性に優れ、伝熱性も高く安価である等の理由から、感温磁性部材64に適する。その他の材質としては、Fe、Ni、Si、B、Nb、Cu、Zr、Co、Cr、V、Mn、Mo等からなる金属合金が用いられる。
また、感温磁性部材64は、IHヒータ80により生成された交流磁界(磁力線)に対する表皮深さδ(上記(1)式参照)よりも厚い厚さで形成される。具体的には、例えばFe−Ni合金を用いた場合には50〜300μm程度に設定される。
As a material used for the temperature-sensitive magnetic member 64, a binary system such as an Fe—Ni alloy (permalloy), for example, in which a magnetic permeability change start temperature is set in a range of 140 ° C. to 240 ° C. used as a fixing set temperature, for example A ternary temperature-sensitive magnetic alloy such as a temperature-sensitive magnetic alloy or an Fe—Ni—Cr alloy is used. For example, in a Fe-Ni binary temperature-sensitive magnetic alloy, the permeability change start temperature can be set around 220 ° C. to 225 ° C. by using about 64% Fe and 36% Ni (atomic ratio). Such metal alloys such as permalloy and temperature-sensitive magnetic alloy are suitable for the temperature-sensitive magnetic member 64 because they are excellent in moldability and workability, have high heat conductivity, and are inexpensive. As other materials, a metal alloy made of Fe, Ni, Si, B, Nb, Cu, Zr, Co, Cr, V, Mn, Mo or the like is used.
Further, the temperature-sensitive magnetic member 64 is formed with a thickness greater than the skin depth δ (see the above formula (1)) with respect to the AC magnetic field (lines of magnetic force) generated by the IH heater 80. Specifically, for example, when an Fe—Ni alloy is used, the thickness is set to about 50 to 300 μm.

また、本実施の形態の感温磁性部材64は発熱体としても機能して、接触して配置される定着ベルト61に対して熱を供給する。それにより、感温磁性部材64は、トナー像を定着する定着部材として機能する定着ベルト61の発熱を補助して、画像形成時の定着ベルト61の温度を定着設定温度の範囲内に維持する。例えば、感温磁性部材64自らが発熱して定着ベルト61に対して熱を供給することで、定着動作の開始時に生じ易い定着ベルト61の温度の一時的な落ち込み(所謂「温度ドループ現象」)の発生等を抑制して、定着ベルト61の温度が定着設定温度の範囲内に安定的に維持されるように構成している。
なお、本実施の形態における感温磁性部材64の構造については、後段で詳細に説明する。
Further, the temperature-sensitive magnetic member 64 of the present embodiment also functions as a heating element, and supplies heat to the fixing belt 61 disposed in contact therewith. Accordingly, the temperature-sensitive magnetic member 64 assists heat generation of the fixing belt 61 that functions as a fixing member for fixing the toner image, and maintains the temperature of the fixing belt 61 during image formation within the range of the fixing set temperature. For example, the temperature-sensitive magnetic member 64 itself generates heat and supplies heat to the fixing belt 61, so that the temperature of the fixing belt 61 that is likely to occur at the start of the fixing operation temporarily drops (so-called “temperature droop phenomenon”). Is suppressed so that the temperature of the fixing belt 61 is stably maintained within the range of the fixing set temperature.
Note that the structure of the temperature-sensitive magnetic member 64 in the present embodiment will be described in detail later.

<ホルダの説明>
図3に示すように、ホルダ65は、定着ベルト61の内周側に設けられ、押圧パッド63、感温磁性部材64および誘導部材66を支持する。そして、ホルダ65は、押圧パッド63が加圧ロール62からの押圧力を受けた状態で、押圧パッド63の撓み量が一定量以下となるように、剛性の高い材料で構成される。それにより、ニップ部Nにおける定着ベルト61の幅方向の圧力(ニップ圧)の均一性を維持している。さらに、本実施の形態の定着ユニット60では、電磁誘導を用いて定着ベルト61を加熱する構成を採用していることから、ホルダ65は、誘導磁界に影響を与えないか、または与え難い材料であり、かつ、誘導磁界から影響を受けないか、または受け難い材料で構成される。例えば、ガラス混入PPS(ポリフェニレンサルファイド)等の耐熱性樹脂や、例えばAl、Cu、Ag等の非磁性金属材料等が用いられる。
<Description of holder>
As shown in FIG. 3, the holder 65 is provided on the inner peripheral side of the fixing belt 61 and supports the pressing pad 63, the temperature-sensitive magnetic member 64, and the guide member 66. The holder 65 is made of a material having high rigidity so that the bending amount of the pressing pad 63 becomes a certain amount or less in a state where the pressing pad 63 receives the pressing force from the pressing roll 62. Thereby, the uniformity of the pressure (nip pressure) in the width direction of the fixing belt 61 at the nip portion N is maintained. Furthermore, since the fixing unit 60 according to the present embodiment employs a configuration in which the fixing belt 61 is heated using electromagnetic induction, the holder 65 is made of a material that does not affect or hardly gives influence to the induced magnetic field. It is made of a material that is not affected or hardly affected by the induced magnetic field. For example, a heat-resistant resin such as glass-mixed PPS (polyphenylene sulfide) or a nonmagnetic metal material such as Al, Cu, or Ag is used.

<誘導部材の説明>
図3に示すように、誘導部材66は、感温磁性部材64の内周面に倣った円弧形状で形成され、感温磁性部材64の内周面と接触して配置される。また、誘導部材66は、例えばAg、Cu、Alといった固有抵抗値が比較的小さい非磁性金属で構成される。そして、感温磁性部材64が透磁率変化開始温度以上の温度に上昇した際に、IHヒータ80により生成された交流磁界(磁力線)を誘導して、定着ベルト61の導電発熱層612よりも渦電流Iが発生し易い状態を形成する。それにより、誘導部材66の厚さは、渦電流Iが流れ易いように、表皮深さδ(上記(1)式参照)よりも充分に厚い厚さ(例えば、1.0mm)で形成される。なお、本実施の形態では、誘導部材66は、定着ベルト61の幅方向全域に亘って、感温磁性部材64よりも厚く形成されている。
<Description of induction member>
As shown in FIG. 3, the guide member 66 is formed in an arc shape that follows the inner peripheral surface of the temperature-sensitive magnetic member 64, and is disposed in contact with the inner peripheral surface of the temperature-sensitive magnetic member 64. The induction member 66 is made of a nonmagnetic metal having a relatively small specific resistance value, such as Ag, Cu, or Al. Then, when the temperature-sensitive magnetic member 64 rises to a temperature equal to or higher than the permeability change start temperature, an alternating magnetic field (line of magnetic force) generated by the IH heater 80 is induced, and the vortex is more vortexed than the conductive heating layer 612 of the fixing belt 61. A state in which the current I is easily generated is formed. Thereby, the thickness of the induction member 66 is formed with a thickness (for example, 1.0 mm) sufficiently thicker than the skin depth δ (see the above formula (1)) so that the eddy current I flows easily. . In this embodiment, the guide member 66 is formed thicker than the temperature-sensitive magnetic member 64 over the entire width direction of the fixing belt 61.

さらに、誘導部材66は、感温磁性部材64と接触して配置されることにより、感温磁性部材64にて発生した熱を蓄える蓄熱体としても機能する。そして、誘導部材66は、蓄えた熱を感温磁性部材64を介して定着ベルト61に供給することで、画像形成時の定着ベルト61の温度を定着設定温度の範囲内に維持する。すなわち、本実施の形態の誘導部材66は、感温磁性部材64にて発熱した熱を貯蔵し、温度が落ち込んだ定着ベルト61に対し感温磁性部材64を介して熱を供給する。それにより、例えば定着動作の開始時に生じ易い定着ベルト61の温度の一時的な落ち込み(温度ドループ現象)等の発生の抑制を補助して、定着ベルト61の温度が定着設定温度の範囲内に安定的に維持されるように機能する。
なお、本実施の形態における誘導部材66の構造については、後段で詳細に説明する。
Furthermore, the induction member 66 functions as a heat storage body that stores heat generated in the temperature-sensitive magnetic member 64 by being disposed in contact with the temperature-sensitive magnetic member 64. The induction member 66 supplies the stored heat to the fixing belt 61 via the temperature-sensitive magnetic member 64, thereby maintaining the temperature of the fixing belt 61 during image formation within the range of the fixing set temperature. That is, the induction member 66 of the present embodiment stores the heat generated by the temperature-sensitive magnetic member 64 and supplies the heat to the fixing belt 61 whose temperature has dropped via the temperature-sensitive magnetic member 64. As a result, for example, the temperature of the fixing belt 61 is stabilized within the range of the fixing set temperature by assisting in suppressing the occurrence of a temporary drop (temperature droop phenomenon) of the fixing belt 61 that is likely to occur at the start of the fixing operation. Function to be maintained.
Note that the structure of the guide member 66 in the present embodiment will be described in detail later.

<定着ベルトの駆動機構の説明>
次に、定着ベルト61の駆動機構について説明する。
正面図である図2に示したように、ホルダ65(図3参照)の軸方向両端部には、定着ベルト61の両端部の断面形状を円形に維持しながら定着ベルト61を周方向に回転駆動するエンドキャップ部材67が固定されている。そして、定着ベルト61は、両端部からエンドキャップ部材67を介した回転駆動力を直接的に受けて、例えば140mm/sのプロセススピードで図3の矢印C方向に回転移動する。
ここで図5は、(a)がエンドキャップ部材67の側面図であり、(b)がVB方向から見たエンドキャップ部材67の平面図である。図5に示したように、エンドキャップ部材67は、定着ベルト61の両端部内側に嵌め合わされる固定部67a、固定部67aより外径が大きく形成され、定着ベルト61に装着された際に定着ベルト61よりも半径方向外側に張り出すように形成されたフランジ部67d、回転駆動力が伝達されるギヤ部67b、ホルダ65の両端部に形成された支持部65aと結合部材166を介して回転自在に結合されたベアリング軸受部67cを備える。すなわち、エンドキャップ部材67は、定着ベルト61の軸方向中央から外側に向かって、固定部67a、フランジ部67dおよびギヤ部67bが順に配置された構造を有する。そして、上記図2に示したように、ホルダ65(図3参照)の両端部の支持部65aが定着ユニット60の筐体70の両端部に固定されることで、エンドキャップ部材67は、支持部65aに結合されたベアリング軸受部67cを介して回転自在に支持される。
エンドキャップ部材67を構成する材質としては、機械的強度や耐熱性の高い所謂エンジニアリングプラスチックスが用いられる。例えば、エンドキャップ部材67を構成する材質としては、フェノール樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、PEEK樹脂、PES樹脂、PPS樹脂、LCP樹脂等が用いられる。
<Description of Fixing Belt Drive Mechanism>
Next, a driving mechanism for the fixing belt 61 will be described.
As shown in FIG. 2 which is a front view, the fixing belt 61 is rotated in the circumferential direction while maintaining the cross-sectional shape of both ends of the fixing belt 61 in a circular shape at both axial ends of the holder 65 (see FIG. 3). An end cap member 67 to be driven is fixed. The fixing belt 61 directly receives the rotational driving force from both ends via the end cap member 67, and rotates and moves in the direction of arrow C in FIG. 3 at a process speed of 140 mm / s, for example.
5A is a side view of the end cap member 67, and FIG. 5B is a plan view of the end cap member 67 viewed from the VB direction. As shown in FIG. 5, the end cap member 67 has a fixing portion 67 a that is fitted inside the both ends of the fixing belt 61 and has an outer diameter larger than that of the fixing portion 67 a, and is fixed when attached to the fixing belt 61. Rotates through a flange portion 67d formed so as to project radially outward from the belt 61, a gear portion 67b to which rotational driving force is transmitted, a support portion 65a formed at both ends of the holder 65, and a coupling member 166. A bearing bearing portion 67c that is freely coupled is provided. That is, the end cap member 67 has a structure in which the fixing portion 67a, the flange portion 67d, and the gear portion 67b are sequentially arranged from the axial center of the fixing belt 61 to the outside. As shown in FIG. 2, the end cap member 67 is supported by fixing the support portions 65a at both ends of the holder 65 (see FIG. 3) to both ends of the casing 70 of the fixing unit 60. It is rotatably supported via a bearing bearing portion 67c coupled to the portion 65a.
As a material constituting the end cap member 67, so-called engineering plastics having high mechanical strength and heat resistance are used. For example, as a material constituting the end cap member 67, phenol resin, polyimide resin, polyamide resin, polyamideimide resin, PEEK resin, PES resin, PPS resin, LCP resin, or the like is used.

そして、図2に示すように、定着ユニット60では、駆動モータ90からの回転駆動力が伝達ギヤ91、92を介してシャフト93に伝達され、シャフト93に結合された伝達ギヤ94、95から両エンドキャップ部材67のギヤ部67b(図5参照)に伝達される。それによって、エンドキャップ部材67から定着ベルト61に回転駆動力が伝わり、エンドキャップ部材67と定着ベルト61とが一体となって回転駆動される。
このように、定着ベルト61が定着ベルト61の両端部から駆動力を直接受けて回転するので、定着ベルト61は安定して回転する。
As shown in FIG. 2, in the fixing unit 60, the rotational driving force from the drive motor 90 is transmitted to the shaft 93 via the transmission gears 91 and 92, and both are transmitted from the transmission gears 94 and 95 coupled to the shaft 93. It is transmitted to the gear portion 67b (see FIG. 5) of the end cap member 67. As a result, a rotational driving force is transmitted from the end cap member 67 to the fixing belt 61, and the end cap member 67 and the fixing belt 61 are integrally rotated.
Thus, the fixing belt 61 rotates by receiving the driving force directly from both ends of the fixing belt 61, so that the fixing belt 61 rotates stably.

ここで、定着ベルト61が両端部のエンドキャップ部材67から駆動力を直接受けて回転する場合には、一般に、0.1〜0.5N・m程度のトルクが作用する。ところが、本実施の形態の定着ベルト61では、基材層611を機械的強度の高い例えば非磁性ステンレススチール等で構成している。そのため、定着ベルト61全体に0.1〜0.5N・m程度のねじりトルクが作用した場合でも、定着ベルト61には座屈等が生じ難い。
また、エンドキャップ部材67のフランジ部67dにより定着ベルト61の片寄りを抑えているが、その際の定着ベルト61には、一般に、端部(フランジ部67d)側から軸方向に向けて1〜5N程度の圧縮力が働く。しかし、定着ベルト61がこのような圧縮力を受けた場合においても、定着ベルト61の基材層611が非磁性ステンレススチール等で構成されていることから、座屈等の発生が抑制される。
上記のように、本実施の形態の定着ベルト61においては、定着ベルト61の両端部から駆動力を直接受けて回転するので、安定した回転が行われる。また、その際に、定着ベルト61の基材層611を機械的強度の高い例えば非磁性ステンレススチール等で構成することで、ねじりトルクや圧縮力に対して座屈等が発生し難い構成を実現している。さらには、基材層611および導電発熱層612を薄層に形成して、定着ベルト61全体としての柔軟性/フレキシブル性を確保しているので、ニップ部Nに倣った変形と形状復元とが行われる。
Here, when the fixing belt 61 rotates by receiving a driving force directly from the end cap members 67 at both ends, a torque of about 0.1 to 0.5 N · m is generally applied. However, in the fixing belt 61 of the present embodiment, the base material layer 611 is made of, for example, nonmagnetic stainless steel having high mechanical strength. For this reason, even when a torsional torque of about 0.1 to 0.5 N · m acts on the entire fixing belt 61, buckling or the like hardly occurs in the fixing belt 61.
Further, the flange portion 67d of the end cap member 67 suppresses the deviation of the fixing belt 61. In general, the fixing belt 61 at that time is generally 1 to 5 in the axial direction from the end portion (flange portion 67d) side. A compressive force of about 5N works. However, even when the fixing belt 61 receives such a compressive force, since the base material layer 611 of the fixing belt 61 is made of nonmagnetic stainless steel or the like, occurrence of buckling or the like is suppressed.
As described above, the fixing belt 61 according to the present embodiment rotates by receiving the driving force directly from both ends of the fixing belt 61, so that stable rotation is performed. At that time, the base material layer 611 of the fixing belt 61 is made of, for example, non-magnetic stainless steel having high mechanical strength, thereby realizing a structure in which buckling or the like hardly occurs against torsion torque or compression force. doing. Furthermore, since the base material layer 611 and the conductive heat generating layer 612 are formed as thin layers to ensure the flexibility / flexibility of the fixing belt 61 as a whole, deformation and shape restoration following the nip portion N are prevented. Done.

<加圧ロールの説明>
図3に戻り、加圧ロール62は、定着ベルト61に対向するように配置され、定着ベルト61に従動して図3の矢印D方向に、例えば140mm/sのプロセススピードで回転する。そして、加圧ロール62と押圧パッド63とにより定着ベルト61を挟持した状態でニップ部Nを形成し、このニップ部Nに未定着トナー像を保持した用紙Pを通過させることで、熱および圧力を加えて未定着トナー像を用紙Pに定着する。
加圧ロール62は、例えば直径18mmの中実のアルミニウム製コア(円柱状芯金)621と、コア621の外周面に被覆された例えば厚さ5mmのシリコーンスポンジ等の耐熱性弾性体層622と、さらに例えば厚さ50μmのカーボン配合のPFA等の耐熱性樹脂被覆または耐熱性ゴム被覆による離型層623とが積層されて構成される。そして、加圧ロール62は、押圧バネ68(図2参照)により例えば25kgfの荷重で定着ベルト61を介して押圧パッド63を押圧している。
<Description of pressure roll>
Returning to FIG. 3, the pressure roll 62 is arranged so as to face the fixing belt 61, and rotates in the direction of arrow D in FIG. 3 at a process speed of 140 mm / s, for example, following the fixing belt 61. Then, a nip portion N is formed in a state where the fixing belt 61 is sandwiched between the pressure roll 62 and the pressing pad 63, and the sheet P holding the unfixed toner image is passed through the nip portion N, so that the heat and pressure To fix the unfixed toner image on the paper P.
The pressure roll 62 includes, for example, a solid aluminum core (cylindrical metal core) 621 having a diameter of 18 mm, and a heat-resistant elastic body layer 622 such as a silicone sponge having a thickness of 5 mm, which is coated on the outer peripheral surface of the core 621. Further, for example, a release layer 623 made of a heat-resistant resin coating such as PFA containing carbon having a thickness of 50 μm or a heat-resistant rubber coating is laminated. The pressure roll 62 presses the pressing pad 63 via the fixing belt 61 with a load of 25 kgf, for example, by a pressing spring 68 (see FIG. 2).

<IHヒータの説明>
続いて、定着ベルト61の導電発熱層612に交流磁界を作用させて電磁誘導加熱するIHヒータ80について説明する。
図6は、本実施の形態のIHヒータ80の構成を説明する断面図であり、図7は、本実施の形態におけるIHヒータ80、定着ベルト61、感温磁性部材64および誘導部材66の積層構造を説明する図である。なお、図7においては、シールド85(図6参照)の記載を省略している。また、図8は、IHヒータ80における磁心84(図6参照)と感温磁性部材64および誘導部材66との関係を説明する図である。なお、図8は、定着ベルト61の外周形状に沿って湾曲した形状の磁心84、感温磁性部材64および誘導部材66の積層構造を平坦とみなして、シールド85側から見たものに対応する。
<Description of IH heater>
Next, the IH heater 80 that performs electromagnetic induction heating by applying an AC magnetic field to the conductive heat generating layer 612 of the fixing belt 61 will be described.
FIG. 6 is a cross-sectional view illustrating the configuration of the IH heater 80 of the present embodiment, and FIG. 7 is a stack of the IH heater 80, the fixing belt 61, the temperature-sensitive magnetic member 64, and the induction member 66 in the present embodiment. It is a figure explaining a structure. In FIG. 7, the description of the shield 85 (see FIG. 6) is omitted. FIG. 8 is a diagram for explaining the relationship between the magnetic core 84 (see FIG. 6), the temperature-sensitive magnetic member 64, and the induction member 66 in the IH heater 80. 8 corresponds to the view from the shield 85 side, assuming that the laminated structure of the magnetic core 84, the temperature-sensitive magnetic member 64, and the guide member 66 curved along the outer peripheral shape of the fixing belt 61 is flat. .

図6に示したように、本実施の形態のIHヒータ80は、定着ベルト61の外周面に沿って設けられる支持体81、支持体81に支持されるとともに支持体81を介して定着ベルト61に対向して設けられ、交流磁界を生成する磁界生成部材の一例としての励磁コイル82、支持体81に支持されるとともに励磁コイル82に対向して設けられ、励磁コイル82にて生成された交流磁界の磁路を形成する磁心84を備えている。また、本実施の形態のIHヒータ80は、励磁コイル82上に設けられ、励磁コイル82を支持体81上に固定する弾性支持部材83、支持体81に取り付けられるとともに、励磁コイル82、弾性支持部材83および磁心84を囲んで設けられ、磁界を遮蔽するシールド85、磁心84とシールド85との間に設けられ、磁心84を支持体81側に加圧する加圧部材86、励磁コイル82に交流電流を供給する励磁回路88を備えている。
さらに、本実施の形態のIHヒータ80は、定着ベルト61を介して、定着ベルト61の内周側に設けられる感温磁性部材64および誘導部材66と対向している(図3参照)。
As shown in FIG. 6, the IH heater 80 according to the present embodiment is supported by the support 81 provided along the outer peripheral surface of the fixing belt 61, the support 81, and the fixing belt 61 via the support 81. The excitation coil 82 is an example of a magnetic field generating member that generates an alternating magnetic field and is supported by the support 81 and is opposed to the excitation coil 82, and is generated by the excitation coil 82. The magnetic core 84 which forms the magnetic path of a magnetic field is provided. In addition, the IH heater 80 of the present embodiment is provided on the excitation coil 82 and is attached to the elastic support member 83 and the support body 81 for fixing the excitation coil 82 on the support body 81. A shield 85 provided to surround the member 83 and the magnetic core 84, shields the magnetic field, is provided between the magnetic core 84 and the shield 85, pressurizes the magnetic core 84 toward the support 81, and an alternating current to the excitation coil 82 An excitation circuit 88 for supplying current is provided.
Further, the IH heater 80 of the present embodiment is opposed to the temperature-sensitive magnetic member 64 and the guide member 66 provided on the inner peripheral side of the fixing belt 61 via the fixing belt 61 (see FIG. 3).

図7に示したように、本実施の形態におけるIHヒータ80の支持体81は、定着ベルト61の移動方向に直交する方向(以下では、定着ベルト61の幅方向という)を長手方向とし、定着ベルト61の全幅に亘って定着ベルト61と対向して設けられる。
さらに、支持体81は、断面が定着ベルト61の表面形状に沿って湾曲した形状で形成され、励磁コイル82を支持する上部面(支持面)81a(図6参照)が定着ベルト61表面と予め定めた間隙(例えば、0.5〜2mm)を保つように設定されている。
また、図6に示したように、支持体81には、支持面81aにおける定着ベルト61の移動方向中央部にて、定着ベルト61の幅方向に沿って平行に配置された一対の磁心支持部81bと、支持面81aにおける定着ベルト61の移動方向両端部に配置され、磁心84に接触することで、磁心84の定着ベルト61の移動方向に対する配置位置を規制する磁心規制部81cとが設けられている。そして、一対の磁心支持部81bは、支持面81aにおける定着ベルト61の移動方向両端部に設けられた2つの磁心規制部81cの間で、磁心84を定着ベルト61の移動方向前後に移動自在に支持する。それにより、支持体81は、製造時の熱処理によって形状にばらつきが生じ易い磁心84と支持面81aとの間隙が、定着ベルト61の移動方向中央部を中心として上流側領域と下流側領域とにおいて略対称となるように磁心84を支持する。
支持体81を構成する材質としては、例えば、耐熱ガラス、ポリカーボネート、ポリエーテルサルフォン、PPS(ポリフェニレンサルファイド)等の耐熱性樹脂、またはこれらにガラス繊維を混合した耐熱性樹脂等の耐熱性のある非磁性材料が用いられる。
As shown in FIG. 7, the support 81 of the IH heater 80 in this embodiment has a longitudinal direction in the direction perpendicular to the moving direction of the fixing belt 61 (hereinafter referred to as the width direction of the fixing belt 61). The belt 61 is provided to face the fixing belt 61 over the entire width of the belt 61.
Further, the support 81 is formed in a shape whose cross section is curved along the surface shape of the fixing belt 61, and an upper surface (support surface) 81 a (see FIG. 6) for supporting the exciting coil 82 is in advance with the surface of the fixing belt 61. It is set so as to maintain a predetermined gap (for example, 0.5 to 2 mm).
Further, as shown in FIG. 6, the support 81 has a pair of magnetic core support portions arranged in parallel along the width direction of the fixing belt 61 at the center portion in the moving direction of the fixing belt 61 on the support surface 81a. 81b and a magnetic core restricting portion 81c that is disposed at both ends of the support surface 81a in the moving direction of the fixing belt 61 and contacts the magnetic core 84 to restrict the position of the magnetic core 84 in the moving direction of the fixing belt 61. ing. The pair of magnetic core support portions 81b can move the magnetic core 84 forward and backward in the moving direction of the fixing belt 61 between the two magnetic core regulating portions 81c provided at both ends of the supporting surface 81a in the moving direction of the fixing belt 61. To support. As a result, the support 81 has a gap between the magnetic core 84 and the support surface 81a, the shape of which tends to vary due to heat treatment during manufacturing, in the upstream region and the downstream region centering on the central portion in the moving direction of the fixing belt 61. The magnetic core 84 is supported so as to be substantially symmetric.
Examples of the material constituting the support 81 include heat-resistant resins such as heat-resistant glass, polycarbonate, polyethersulfone, and PPS (polyphenylene sulfide), or heat-resistant resins obtained by mixing glass fibers with these materials. A non-magnetic material is used.

励磁コイル82は、相互に絶縁された例えば直径0.17mmの銅線材を例えば90本束ねたリッツ線が、定着ベルト61の幅方向が長手方向となるような長円形状や楕円形状、長方形状等の中空きの閉ループ状に巻かれて構成される。励磁コイル82は、励磁コイル82の中空き部から支持体81の磁心支持部81bが突出するように、支持体81の支持面81a上に配置される。そして、励磁コイル82に励磁回路88から予め定めた周波数の交流電流が供給されることにより、励磁コイル82の周囲には、閉ループ状に巻かれたリッツ線を中心とする交流磁界が生成される。励磁回路88から励磁コイル82に供給される交流電流の周波数は、一般に、上記した汎用電源により生成される20〜100kHzが用いられる。
弾性支持部材83は、例えばシリコーンゴム等やフッ素ゴム等の弾性体で構成されたシート状部材である。弾性支持部材83は、励磁コイル82が支持体81の支持面81aに密着して固定されるように、励磁コイル82を支持体81に対して押圧するように設定されている。
The exciting coil 82 is composed of, for example, 90 litz wires that are bundled with, for example, 90 copper wires having a diameter of 0.17 mm and are formed in an oval shape, an elliptical shape, or a rectangular shape in which the width direction of the fixing belt 61 is the longitudinal direction. It is configured to be wound in a closed loop with a hollow space. The excitation coil 82 is disposed on the support surface 81a of the support 81 so that the magnetic core support portion 81b of the support 81 protrudes from the empty portion of the excitation coil 82. Then, when an alternating current having a predetermined frequency is supplied to the exciting coil 82 from the exciting circuit 88, an alternating magnetic field centered around a litz wire wound in a closed loop is generated around the exciting coil 82. . Generally, the frequency of the alternating current supplied from the excitation circuit 88 to the excitation coil 82 is 20 to 100 kHz generated by the general-purpose power source.
The elastic support member 83 is a sheet-like member made of an elastic body such as silicone rubber or fluorine rubber. The elastic support member 83 is set to press the excitation coil 82 against the support 81 so that the excitation coil 82 is fixed in close contact with the support surface 81a of the support 81.

磁心84(図6参照)は、図7に示すように、複数の第1磁路形成部材の一例としての複数の磁心片84aが、隣接する磁心片84aとの間に間隔を有するように、定着ベルト61の幅方向に並んで配置されることで構成される。そして、磁心84を構成する複数の磁心片84aは、それぞれ、断面が定着ベルト61の断面形状に沿って湾曲するとともに、定着ベルト61の移動方向を長手方向とする弓状の形状を有している。そして、複数の磁心片84aは、それぞれ、支持体81に設けられた磁心支持部81bおよび磁心規制部81cにより、位置決めされている。
また、図8に示すように、定着ベルト61の移動方向に沿った磁心片84aの長さは、感温磁性部材64および誘導部材66の定着ベルト61の移動方向に沿った長さよりも小さく構成される。それにより、磁心84を構成する磁心片84aから放射される磁力線H(後述する図9参照)のIHヒータ80周辺への漏洩が減り、力率が向上する。さらには、定着ユニット60を構成する金属製部材への電磁誘導を抑え、定着ベルト61(導電発熱層612)での発熱効率を高める。
As shown in FIG. 7, the magnetic core 84 (see FIG. 6) has a plurality of magnetic core pieces 84 a as an example of a plurality of first magnetic path forming members such that there are spaces between adjacent magnetic core pieces 84 a. The fixing belt 61 is arranged side by side in the width direction. Each of the plurality of magnetic core pieces 84 a constituting the magnetic core 84 has a cross-sectional shape that is curved along the cross-sectional shape of the fixing belt 61 and an arcuate shape in which the moving direction of the fixing belt 61 is a longitudinal direction. Yes. The plurality of magnetic core pieces 84a are positioned by a magnetic core support portion 81b and a magnetic core restricting portion 81c provided on the support body 81, respectively.
8, the length of the magnetic core piece 84a along the moving direction of the fixing belt 61 is smaller than the length of the temperature-sensitive magnetic member 64 and the guiding member 66 along the moving direction of the fixing belt 61. Is done. As a result, leakage of magnetic lines of force H (see FIG. 9 described later) radiated from the magnetic core piece 84a constituting the magnetic core 84 to the periphery of the IH heater 80 is reduced, and the power factor is improved. Furthermore, electromagnetic induction to the metal member constituting the fixing unit 60 is suppressed, and the heat generation efficiency of the fixing belt 61 (conductive heat generation layer 612) is increased.

磁心84を構成する磁心片84aを形成する材料としては、例えばソフトフェライト、フェライト樹脂、非晶質合金(アモルファス合金)、やパーマロイ、感温磁性合金等の高透磁率の酸化物や合金材質で構成される強磁性体が用いられる。磁心片84aは、励磁コイル82にて生成された交流磁界による磁力線H(磁束)を内部に誘導し、磁心片84aから支持体81を介して定着ベルト61を横切って感温磁性部材64方向に向かい、感温磁性部材64の中を通過して支持体81を介して磁心片84aに戻るといった磁力線Hの通路(磁路)を形成する。すなわち、励磁コイル82にて生成された交流磁界が磁心片84aの内部と感温磁性部材64の内部とを通過するように構成して、磁力線Hが定着ベルト61と励磁コイル82とを内部に包み込むような閉磁路を形成する。それにより、励磁コイル82にて生成された交流磁界の磁力線Hは、定着ベルト61のうち磁心片84aと対向する領域に集中される。   Examples of the material for forming the magnetic core piece 84a constituting the magnetic core 84 include oxides or alloy materials having high magnetic permeability such as soft ferrite, ferrite resin, amorphous alloy (amorphous alloy), permalloy, and temperature-sensitive magnetic alloy. A composed ferromagnetic material is used. The magnetic core piece 84a induces a magnetic force line H (magnetic flux) due to the alternating magnetic field generated by the exciting coil 82, and crosses the fixing belt 61 from the magnetic core piece 84a via the support 81 in the direction of the temperature-sensitive magnetic member 64. A path (magnetic path) of lines of magnetic force H is formed so as to pass through the temperature-sensitive magnetic member 64 and return to the magnetic core piece 84a via the support 81. That is, the AC magnetic field generated by the exciting coil 82 is configured to pass through the inside of the magnetic core piece 84a and the inside of the temperature-sensitive magnetic member 64, and the magnetic field line H brings the fixing belt 61 and the exciting coil 82 into the inside. A closed magnetic circuit that wraps around is formed. As a result, the magnetic field lines H of the alternating magnetic field generated by the exciting coil 82 are concentrated on the region of the fixing belt 61 facing the magnetic core piece 84a.

<定着ベルトが発熱する状態の説明>
引き続いて、IHヒータ80により生成された交流磁界によって定着ベルト61が発熱する状態を説明する。
まず、上記したように、感温磁性部材64の透磁率変化開始温度は、各色トナー像を定着する定着設定温度以上であって定着ベルト61の耐熱温度以下となる温度範囲内(例えば、140〜240℃)に設定されている。そして、定着ベルト61の温度が透磁率変化開始温度以下の状態にある場合には、定着ベルト61に近接する感温磁性部材64の温度も定着ベルト61の温度に対応して、透磁率変化開始温度以下となる。そのため、感温磁性部材64は強磁性を呈するので、IHヒータ80により生成された交流磁界の磁力線Hは、定着ベルト61を透過した後、感温磁性部材64の内部を広がり方向に沿って通過する磁路を形成する。ここでの「広がり方向」とは、感温磁性部材64の厚さ方向と直交する方向を意味する。
<Description of the state in which the fixing belt generates heat>
Subsequently, a state in which the fixing belt 61 generates heat by the alternating magnetic field generated by the IH heater 80 will be described.
First, as described above, the permeability change start temperature of the temperature-sensitive magnetic member 64 is within a temperature range that is not less than the set fixing temperature for fixing each color toner image and not more than the heat resistance temperature of the fixing belt 61 (for example, 140 to 240 ° C.). When the temperature of the fixing belt 61 is equal to or lower than the magnetic permeability change start temperature, the temperature of the temperature-sensitive magnetic member 64 adjacent to the fixing belt 61 is also started corresponding to the temperature of the fixing belt 61. Below temperature. Therefore, since the temperature-sensitive magnetic member 64 exhibits ferromagnetism, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 pass through the fixing belt 61 and then pass through the inside of the temperature-sensitive magnetic member 64 along the spreading direction. To form a magnetic path. Here, the “spreading direction” means a direction orthogonal to the thickness direction of the temperature-sensitive magnetic member 64.

図9は、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合の磁力線Hの状態を説明する図である。図9に示したように、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合には、IHヒータ80により生成された交流磁界の磁力線Hは、定着ベルト61を透過し、感温磁性部材64の内部を広がり方向(厚さ方向と直交する方向)に沿って通過する磁路を形成する。そのため、定着ベルト61の温度が透磁率変化開始温度よりも高い温度範囲にある場合と比較して、定着ベルト61の導電発熱層612を横切る領域での単位面積あたりの磁力線Hの数(磁束密度)は多くなる。   FIG. 9 is a diagram for explaining the state of the lines of magnetic force H when the temperature of the fixing belt 61 is in the temperature range equal to or lower than the permeability change start temperature. As shown in FIG. 9, when the temperature of the fixing belt 61 is in a temperature range equal to or lower than the permeability change start temperature, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 pass through the fixing belt 61, A magnetic path passing through the inside of the temperature-sensitive magnetic member 64 along the spreading direction (direction orthogonal to the thickness direction) is formed. Therefore, as compared with the case where the temperature of the fixing belt 61 is in a temperature range higher than the permeability change start temperature, the number of magnetic field lines H per unit area (magnetic flux density) in the region crossing the conductive heating layer 612 of the fixing belt 61. ) Will increase.

すなわち、IHヒータ80における磁心84の磁心片84aから磁力線Hが放射されて定着ベルト61の導電発熱層612を横切る領域R1、R2を通過した後、磁力線Hは強磁性体である感温磁性部材64の内部に誘導される。そのため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hは感温磁性部材64の内部に進入するように集中し、領域R1、R2での磁束密度は他の領域の磁束密度と比較して高くなる。また、感温磁性部材64の内部を広がり方向に沿って通過した磁力線Hが再び磁心片84aに戻るに際しても、導電発熱層612を厚さ方向に横切る領域R3では、磁力線Hが感温磁性部材64内の磁位の低い部分から集中して磁心片84aに向けて発生する。そのため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hは、感温磁性部材64から集中して磁心片84aに向かうこととなり、領域R3での磁束密度も他の領域の磁束密度と比較して高くなる。   That is, after the magnetic force line H is radiated from the magnetic core piece 84a of the magnetic core 84 in the IH heater 80 and passes through the regions R1 and R2 crossing the conductive heating layer 612 of the fixing belt 61, the magnetic force line H is a ferromagnetic temperature sensitive magnetic member. 64 is guided inside. Therefore, the magnetic field lines H crossing the conductive heat generating layer 612 of the fixing belt 61 in the thickness direction are concentrated so as to enter the inside of the temperature-sensitive magnetic member 64, and the magnetic flux density in the regions R1 and R2 is the same as the magnetic flux density in other regions. It becomes high compared. Further, when the magnetic lines H that have passed through the inside of the temperature-sensitive magnetic member 64 along the spreading direction return to the magnetic core piece 84a again, the magnetic lines of force H are generated in the region R3 that crosses the conductive heating layer 612 in the thickness direction. The magnetic flux is generated from a portion having a low magnetic potential in 64 toward the magnetic core piece 84a. Therefore, the magnetic field lines H crossing the conductive heat generating layer 612 of the fixing belt 61 in the thickness direction are concentrated from the temperature-sensitive magnetic member 64 toward the magnetic core piece 84a, and the magnetic flux density in the region R3 is also the magnetic flux density of other regions. Higher than

磁力線Hが厚さ方向に横切る定着ベルト61の導電発熱層612では、単位面積当たりの磁力線Hの数(磁束密度)の変化量に比例した渦電流Iが発生する。それにより、図9に示したように、磁束密度の変化量が他の領域よりも大きい領域R1、R2および領域R3では、他の領域よりも大きな渦電流Iが発生する。導電発熱層612に生じた渦電流Iは、導電発熱層612の固有抵抗値Rと渦電流Iの二乗の積であるジュール熱W(W=IR)を発生させる。それにより、他の領域よりも大きな渦電流Iが発生した導電発熱層612の領域R1、R2およびR3では、他の領域よりも大きなジュール熱Wが発生する。
このように、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合には、磁力線Hが導電発熱層612を横切る領域R1、R2や領域R3において他の領域よりも大きな熱が発生する。それにより、定着ベルト61は加熱される。
In the conductive heating layer 612 of the fixing belt 61 where the magnetic lines H cross in the thickness direction, an eddy current I proportional to the amount of change in the number of magnetic lines H per unit area (magnetic flux density) is generated. As a result, as shown in FIG. 9, an eddy current I larger than the other regions is generated in the regions R1, R2 and R3 where the amount of change in the magnetic flux density is larger than the other regions. The eddy current I generated in the conductive heat generation layer 612 generates Joule heat W (W = I 2 R), which is the product of the specific resistance value R of the conductive heat generation layer 612 and the square of the eddy current I. As a result, in the regions R1, R2, and R3 of the conductive heating layer 612 where the eddy current I larger than that in the other region is generated, a Joule heat W that is larger than that in the other region is generated.
As described above, when the temperature of the fixing belt 61 is in the temperature range equal to or lower than the magnetic permeability change start temperature, the region R1, R2 and the region R3 where the magnetic lines of force H cross the conductive heat generating layer 612 have a larger heat than the other regions. Occur. Thereby, the fixing belt 61 is heated.

本実施の形態の定着ユニット60では、定着ベルト61の内周面に接触させて感温磁性部材64を配置している。それにより、励磁コイル82にて生成された磁力線Hを内部に誘導する磁心84(磁心片84a)と、定着ベルト61を厚さ方向に横切って透過した磁力線Hを内部に誘導する感温磁性部材64とが近接した構成を実現している。そのため、IHヒータ80(励磁コイル82)により生成された交流磁界は、磁路が短いループを形成するので、磁路内での磁束密度や磁気結合度は高まる。それにより、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合、定着ベルト61にはさらに効率的に熱が発生する。   In the fixing unit 60 of the present embodiment, the temperature-sensitive magnetic member 64 is disposed in contact with the inner peripheral surface of the fixing belt 61. Accordingly, a magnetic core 84 (magnetic core piece 84a) for guiding the magnetic force lines H generated by the exciting coil 82 to the inside, and a temperature-sensitive magnetic member for guiding the magnetic force lines H transmitted through the fixing belt 61 in the thickness direction to the inside. 64 realizes a configuration close to 64. For this reason, the AC magnetic field generated by the IH heater 80 (excitation coil 82) forms a loop with a short magnetic path, so that the magnetic flux density and the magnetic coupling degree in the magnetic path increase. Accordingly, when the temperature of the fixing belt 61 is in a temperature range equal to or lower than the magnetic permeability change start temperature, heat is more efficiently generated in the fixing belt 61.

また、定着ベルト61の温度が透磁率変化開始温度よりも高い温度範囲にある場合には、感温磁性部材64の温度も透磁率変化開始温度より高くなるため、感温磁性部材64の比透磁率が低下する。そのため、IHヒータ80の励磁コイル82により生成された交流磁界の磁力線Hは、感温磁性部材64を容易に透過するように変化する。それにより、励磁コイル82により生成された交流磁界の磁力線Hは、磁心84(磁心片84a)から定着ベルト61に向けて拡散するように放射され、感温磁性部材64を透過して誘導部材66に到達するようになる。   Further, when the temperature of the fixing belt 61 is in a temperature range higher than the magnetic permeability change start temperature, the temperature of the temperature-sensitive magnetic member 64 is also higher than the magnetic permeability change start temperature. Magnetic susceptibility decreases. Therefore, the magnetic field line H of the alternating magnetic field generated by the exciting coil 82 of the IH heater 80 changes so as to easily pass through the temperature-sensitive magnetic member 64. Thereby, the magnetic field lines H of the alternating magnetic field generated by the exciting coil 82 are radiated so as to diffuse toward the fixing belt 61 from the magnetic core 84 (magnetic core piece 84a), pass through the temperature-sensitive magnetic member 64, and pass through the induction member 66. To come to reach.

一方、感温磁性部材64を透過した磁力線Hが到達した誘導部材66では、磁力線Hを打ち消す方向の磁力線を生じさせる渦電流が発生する。そして、誘導部材66にて発生した渦電流により生じた磁力線と、感温磁性部材64を透過して誘導部材66に到達した磁力線Hとが打ち消し合うことになる。
そのため、定着ベルト61の温度が透磁率変化開始温度を超える温度範囲にある場合には、導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度が減少することとなる。それにより、磁力線Hが厚さ方向に横切る導電発熱層612に発生する渦電流Iは減り、定着ベルト61に発生するジュール熱Wは減少する。これにより、定着ベルト61の温度上昇が抑制される。
On the other hand, in the induction member 66 to which the magnetic force line H that has passed through the temperature-sensitive magnetic member 64 has reached, an eddy current that generates a magnetic force line in a direction that cancels the magnetic force line H is generated. Then, the magnetic lines of force generated by the eddy current generated in the induction member 66 and the magnetic lines of force H transmitted through the temperature-sensitive magnetic member 64 and reaching the induction member 66 cancel each other.
Therefore, when the temperature of the fixing belt 61 is in a temperature range exceeding the permeability change start temperature, the magnetic flux density of the magnetic field lines H crossing the conductive heat generating layer 612 in the thickness direction decreases. As a result, the eddy current I generated in the conductive heating layer 612 where the magnetic field lines H cross in the thickness direction is reduced, and the Joule heat W generated in the fixing belt 61 is reduced. Thereby, the temperature rise of the fixing belt 61 is suppressed.

また、感温磁性部材64を透過して誘導部材66に到達した磁力線Hの一部は、誘導部材66の内部に誘導される。磁力線Hが誘導部材66の内部に誘導されるようになると、定着ベルト61の導電発熱層612より渦電流Iの流れやすい誘導部材66のほうに多くの渦電流Iが流れる。そのため、導電発熱層612で流れる渦電流Iの量はさらに抑制され、定着ベルト61の温度上昇がさらに抑制されることになる。   Further, part of the magnetic force lines H that have passed through the temperature-sensitive magnetic member 64 and reached the guide member 66 are guided into the guide member 66. When the magnetic field lines H are induced inside the induction member 66, more eddy current I flows through the induction member 66 where the eddy current I flows more easily than the conductive heating layer 612 of the fixing belt 61. Therefore, the amount of eddy current I flowing in the conductive heat generating layer 612 is further suppressed, and the temperature rise of the fixing belt 61 is further suppressed.

その後、定着ベルト61の温度が透磁率変化開始温度よりも低くなると、感温磁性部材64の温度も透磁率変化開始温度よりも低くなるため、感温磁性部材64は再び強磁性に変化する。これにより、磁力線Hが再び感温磁性部材64の内部に誘導されるため、定着ベルト61の導電発熱層612に渦電流Iが多く流れるようになる。そのため、定着ベルト61が再び加熱されるようになる。   Thereafter, when the temperature of the fixing belt 61 becomes lower than the magnetic permeability change start temperature, the temperature of the temperature-sensitive magnetic member 64 also becomes lower than the magnetic permeability change start temperature, so that the temperature-sensitive magnetic member 64 changes to ferromagnetic again. As a result, the lines of magnetic force H are again induced inside the temperature-sensitive magnetic member 64, so that a large amount of eddy current I flows through the conductive heat generating layer 612 of the fixing belt 61. Therefore, the fixing belt 61 is heated again.

ここで、図7および図8に示すように、本実施の形態のIHヒータ80では、磁心84(図6参照)は、励磁コイル82の長手方向(定着ベルト61の幅方向)に亘って並んで形成される複数の磁心片84aから構成されている。
本実施の形態においては、回転する定着ベルト61のうち、励磁コイル82を介して磁心片84aと対向する部位を通過する領域を第1領域S1と呼び、回転する定着ベルト61のうち、第1領域S1と隣接して設けられ、励磁コイル82を介して磁心片84aと対向しない部位を通過する領域を第2領域S2と呼ぶ。したがって、図7に示すように、本実施の形態の定着ベルト61においては、定着ベルト61の幅方向に、第1領域S1と第2領域S2とが交互に並んで存在することとなる。なお、図8には、定着ベルト61に設定される第1領域S1と対応する領域および第2領域S2と対応する領域を示している。
Here, as shown in FIGS. 7 and 8, in the IH heater 80 of the present embodiment, the magnetic core 84 (see FIG. 6) is arranged along the longitudinal direction of the exciting coil 82 (width direction of the fixing belt 61). Is formed of a plurality of magnetic core pieces 84a.
In the present embodiment, a region of the rotating fixing belt 61 that passes through a portion facing the magnetic core piece 84a via the exciting coil 82 is referred to as a first region S1, and among the rotating fixing belt 61, A region that is provided adjacent to the region S1 and passes through a portion that does not face the magnetic core piece 84a via the exciting coil 82 is referred to as a second region S2. Therefore, as shown in FIG. 7, in the fixing belt 61 of the present embodiment, the first regions S1 and the second regions S2 are alternately arranged in the width direction of the fixing belt 61. FIG. 8 shows an area corresponding to the first area S <b> 1 and an area corresponding to the second area S <b> 2 set on the fixing belt 61.

上述したように、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合には、磁力線Hは、磁心84(磁心片84a)から放出され、定着ベルト61の導電発熱層612を横切り感温磁性部材64を通過した後、再び磁心84(磁心片84a)に向かうことになる。したがって、定着ベルト61のうち、励磁コイル82を介して磁心片84aと対向する部位を通過する第1領域S1の方が、励磁コイル82を介して磁心片84aと対向しない部位を通過する第2領域S2と比較して、導電発熱層612に磁力線Hが集中し、磁束密度が高くなりやすい。そして、定着ベルト61の導電発熱層612では、第2領域S2と比較して第1領域S1で渦電流Iが生じやすくなり、ジュール熱Wが発生しやすくなる。
これにより、定着ベルト61では、第2領域S2と比較して第1領域S1のほうが温度上昇しやすいため、定着ベルト61において、第1領域S1と第2領域S2との間で温度むらが生じやすくなる傾向がある。
As described above, when the temperature of the fixing belt 61 is in the temperature range equal to or lower than the permeability change start temperature, the magnetic lines of force H are emitted from the magnetic core 84 (magnetic core piece 84a), and the conductive heating layer 612 of the fixing belt 61 is passed through. After passing the crossing temperature-sensitive magnetic member 64, the magnetic head 84 (magnetic core piece 84a) is again directed. Therefore, in the fixing belt 61, the first region S1 that passes through the portion facing the magnetic core piece 84a via the exciting coil 82 is the second region that passes through the portion that does not face the magnetic piece 84a via the exciting coil 82. Compared with the region S2, the lines of magnetic force H concentrate on the conductive heat generating layer 612, and the magnetic flux density tends to be high. In the conductive heat generating layer 612 of the fixing belt 61, the eddy current I is more likely to occur in the first region S1 than the second region S2, and the Joule heat W is likely to occur.
As a result, in the fixing belt 61, the temperature in the first region S1 is more likely to rise than in the second region S2, and thus the temperature unevenness occurs between the first region S1 and the second region S2 in the fixing belt 61. It tends to be easier.

<定着ベルトにおける温度むらの発生を抑制する構成の説明>
この場合に定着ベルト61において温度むらの発生を抑制するためには、隣接する磁心片84a同士の間隔を狭くして励磁コイル82の長手方向に亘って磁心片84aを敷き詰めるように配置することで、磁心84を形成する構成や、磁心84を励磁コイル82の長手方向に亘って一体的に形成する構成等を採用することが挙げられる。しかし、このような構成では、IHヒータ80全体の重量が大きくなり、また製造コストも高価なものとなる。また、磁心84をフェライトで形成する場合には、成形後の熱処理によって磁心84の形状にばらつきが生じ易く、磁心84の寸法精度を高めることが困難である。そのため、磁心片84aを励磁コイル82の長手方向に亘って敷き詰めることで磁心84を形成したり、磁心84を励磁コイル82の長手方向に亘って一体構成としたりする場合には、励磁コイル82の長手方向に亘って、磁心84と励磁コイル82との間隔のばらつきが大きくなりやすい。その結果、定着ベルト61に供給する磁力線が不均一となって、定着ベルト61の発熱量においても、定着ベルト61の幅方向においてばらつきが生じ、定着ベルト61に温度むらが生じる懸念がある。
<Description of Configuration for Preventing Temperature Unevenness in Fixing Belt>
In this case, in order to suppress the occurrence of temperature unevenness in the fixing belt 61, the interval between the adjacent magnetic core pieces 84a is made narrow so that the magnetic core pieces 84a are spread over the longitudinal direction of the exciting coil 82. For example, a configuration in which the magnetic core 84 is formed or a configuration in which the magnetic core 84 is integrally formed over the longitudinal direction of the exciting coil 82 may be employed. However, with such a configuration, the weight of the entire IH heater 80 is increased, and the manufacturing cost is also expensive. Further, when the magnetic core 84 is formed of ferrite, the shape of the magnetic core 84 is likely to vary due to the heat treatment after molding, and it is difficult to increase the dimensional accuracy of the magnetic core 84. Therefore, when the magnetic core 84 is formed by spreading the magnetic core pieces 84 a over the longitudinal direction of the excitation coil 82, or when the magnetic core 84 is integrated with the longitudinal direction of the excitation coil 82, Variation in the distance between the magnetic core 84 and the exciting coil 82 tends to increase along the longitudinal direction. As a result, the lines of magnetic force supplied to the fixing belt 61 become non-uniform, and the amount of heat generated by the fixing belt 61 also varies in the width direction of the fixing belt 61, which may cause uneven temperature in the fixing belt 61.

そこで、本実施の形態の定着ユニット60では、定着ベルト61の内周側に設けられる誘導部材66において、定着ベルト61における第1領域S1が通過する部位の熱容量を、定着ベルト61における第2領域S2が通過する部位の熱容量よりも大きくすることで、定着ベルト61における温度むらの発生を抑制している。   Therefore, in the fixing unit 60 of the present embodiment, in the guide member 66 provided on the inner peripheral side of the fixing belt 61, the heat capacity of the portion through which the first region S1 of the fixing belt 61 passes is determined as the second region of the fixing belt 61. By making it larger than the heat capacity of the portion through which S2 passes, the occurrence of temperature unevenness in the fixing belt 61 is suppressed.

上述したように、感温磁性部材64は発熱体としても機能し、接触して配置される定着ベルト61に対して熱を供給して、定着ベルト61での発熱量を補助する。
すなわち、定着ベルト61の温度が透磁率変化開始温度以下であり、感温磁性部材64が強磁性を呈する状態であっても、IHヒータ80からの磁力線Hの中には、感温磁性部材64を厚さ方向に横切る磁力線Hが存在する。それにより、感温磁性部材64の内部には弱い渦電流Iが発生し、感温磁性部材64自身も発熱する。その場合に、本実施の形態の感温磁性部材64では、スリット等の渦電流Iを抑制する機構を設けず、積極的に感温磁性部材64が発熱するように構成している。そして、円弧形状の感温磁性部材64が同様に円弧形状の内周面をもった定着ベルト61と大きな面積領域において接触するように配置して、感温磁性部材64にて発生した熱が定着ベルト61に伝熱するように構成している。それにより、感温磁性部材64は、定着ベルト61に対して熱を供給する。
またその際に、感温磁性部材64と接触して配置される誘導部材66には、感温磁性部材64にて発生した熱が伝導され、誘導部材66は、その熱を蓄える蓄熱材としての機能を有する。さらに、誘導部材66は、感温磁性部材64から蓄えた熱を、感温磁性部材64を介して定着ベルト61に供給する。
As described above, the temperature-sensitive magnetic member 64 also functions as a heating element, and supplies heat to the fixing belt 61 arranged in contact with it to assist the amount of heat generated by the fixing belt 61.
That is, even if the temperature of the fixing belt 61 is equal to or lower than the permeability change start temperature and the temperature-sensitive magnetic member 64 exhibits ferromagnetism, the temperature-sensitive magnetic member 64 is included in the magnetic force lines H from the IH heater 80. There is a magnetic field line H crossing in the thickness direction. Thereby, a weak eddy current I is generated inside the temperature-sensitive magnetic member 64, and the temperature-sensitive magnetic member 64 itself also generates heat. In that case, the temperature-sensitive magnetic member 64 of the present embodiment is configured such that the temperature-sensitive magnetic member 64 actively generates heat without providing a mechanism for suppressing the eddy current I such as a slit. Then, the arc-shaped temperature-sensitive magnetic member 64 is arranged so as to be in contact with the fixing belt 61 having an arc-shaped inner peripheral surface in a large area region, and the heat generated in the temperature-sensitive magnetic member 64 is fixed. The belt 61 is configured to transfer heat. Thereby, the temperature-sensitive magnetic member 64 supplies heat to the fixing belt 61.
At that time, the heat generated in the temperature-sensitive magnetic member 64 is conducted to the induction member 66 arranged in contact with the temperature-sensitive magnetic member 64, and the induction member 66 serves as a heat storage material for storing the heat. It has a function. Further, the induction member 66 supplies the heat stored from the temperature-sensitive magnetic member 64 to the fixing belt 61 via the temperature-sensitive magnetic member 64.

誘導部材66から感温磁性部材64を介して定着ベルト61に供給される熱量は、感温磁性部材64に接して設けられる誘導部材66の熱容量に依存する。すなわち、誘導部材66の熱容量が大きいほど、感温磁性部材64にて発生した熱のうち誘導部材66にて蓄えられる熱量が多くなるため、それに伴って感温磁性部材64にて発生した熱のうち定着ベルト61に供給される熱量が少なくなる。逆に、誘導部材66の熱容量が小さいほど、感温磁性部材64にて発生した熱のうち誘導部材66にて蓄えられる熱量が少なくなるため、感温磁性部材64にて発生した熱のうち定着ベルト61に供給される熱量が多くなる。
したがって、本実施の形態の定着ユニット60では、定着ベルト61の内周側に設けられる誘導部材66において、定着ベルト61の第2領域S2と比較して、導電発熱層612でジュール熱Wが発生しやすく温度上昇しやすい定着ベルト61の第1領域S1が通過する部位の熱容量を、定着ベルト61の第2領域S2が通過する部位の熱容量よりも大きくすることで、定着ベルト61における温度むらの発生を抑制している。
The amount of heat supplied from the induction member 66 to the fixing belt 61 via the temperature-sensitive magnetic member 64 depends on the heat capacity of the induction member 66 provided in contact with the temperature-sensitive magnetic member 64. That is, as the heat capacity of the induction member 66 increases, the amount of heat stored in the induction member 66 out of the heat generated in the temperature-sensitive magnetic member 64 increases, and accordingly, the heat generated in the temperature-sensitive magnetic member 64 increases. Of this, the amount of heat supplied to the fixing belt 61 is reduced. Conversely, the smaller the heat capacity of the induction member 66, the smaller the amount of heat stored in the induction member 66 out of the heat generated in the temperature-sensitive magnetic member 64. The amount of heat supplied to the belt 61 increases.
Therefore, in the fixing unit 60 of the present embodiment, Joule heat W is generated in the conductive heat generation layer 612 in the guide member 66 provided on the inner peripheral side of the fixing belt 61 as compared with the second region S2 of the fixing belt 61. By making the heat capacity of the portion of the fixing belt 61 through which the first region S1 of the fixing belt 61 easily passes the temperature larger than the portion of the fixing belt 61 through which the second region S2 of the fixing belt 61 passes, Occurrence is suppressed.

ここで、本実施の形態の誘導部材66は、定着ベルト61の幅方向に亘って一体的に構成されるとともに、定着ベルト61の幅方向に亘って同一の非磁性金属材料にて形成されている。したがって、定着ベルト61の第1領域S1が通過する部位の誘導部材66の体積を、定着ベルト61の第2領域S2が通過する部位の誘導部材66の体積よりも大きくすることで、定着ベルト61の第1領域S1が通過する部位の熱容量を、定着ベルト61の第2領域S2が通過する部位の熱容量よりも大きくすることが可能になる。
なお、本実施の形態の説明において、「体積」とは、誘導部材66における、定着ベルト61の幅方向に沿った単位長さ当たりの体積をいうものとする。同様に、「熱容量」とは、誘導部材66における、定着ベルト61の幅方向に沿った単位長さ当たりの熱容量をいうものとする。
Here, the guide member 66 of the present embodiment is integrally formed over the width direction of the fixing belt 61 and is formed of the same nonmagnetic metal material over the width direction of the fixing belt 61. Yes. Therefore, by fixing the volume of the guide member 66 in the portion through which the first region S1 of the fixing belt 61 passes is larger than the volume of the guide member 66 in the portion of the fixing belt 61 through which the second region S2 passes. The heat capacity of the part through which the first region S1 passes can be made larger than the heat capacity of the part through which the second region S2 of the fixing belt 61 passes.
In the description of the present embodiment, “volume” refers to the volume per unit length of the guide member 66 along the width direction of the fixing belt 61. Similarly, “heat capacity” refers to the heat capacity per unit length of the guide member 66 along the width direction of the fixing belt 61.

続いて、本実施の形態において、定着ベルト61の第1領域S1が通過する部位の熱容量を、誘導部材66のうち定着ベルト61の第2領域S2が通過する部位の熱容量よりも大きくするための構成について説明する。
本実施の形態の誘導部材66は、図7に示すように、感温磁性部材64の内周面に倣った形状で形成されている。そして、誘導部材66の外周面は、感温磁性部材64の内周面に接触して配置される。また、本実施の形態においては、誘導部材66は、定着ベルト61の幅方向に亘って一体的に構成されている。
さらに、本実施の形態の誘導部材66は、定着ベルト61の第1領域S1が通過する部位と第2領域S2が通過する部位とで、厚さが等しくなるように構成される。
さらにまた、図7および図8に示すように、本実施の形態の誘導部材66は、定着ベルト61の第2領域S2が通過する部位において、定着ベルト61の移動方向上流側に切欠きが形成されている。これにより、本実施の形態の誘導部材66は、定着ベルト61の第1領域S1が通過する部位に、定着ベルト61の移動方向に沿った長さが第1の長さとなる長径部66aを有し、定着ベルト61の第2領域S2が通過する部位に、定着ベルト61の移動方向に沿った長さが第1の長さよりも短い第2の長さとなる短径部66bを有している。
Subsequently, in the present embodiment, the heat capacity of the portion through which the first region S1 of the fixing belt 61 passes is made larger than the heat capacity of the portion of the guide member 66 through which the second region S2 of the fixing belt 61 passes. The configuration will be described.
As shown in FIG. 7, the guide member 66 of the present embodiment is formed in a shape that follows the inner peripheral surface of the temperature-sensitive magnetic member 64. The outer peripheral surface of the guide member 66 is disposed in contact with the inner peripheral surface of the temperature-sensitive magnetic member 64. In the present embodiment, the guide member 66 is integrally formed across the width direction of the fixing belt 61.
Furthermore, the guide member 66 of the present embodiment is configured such that the thickness of the portion through which the first region S1 of the fixing belt 61 passes and the portion through which the second region S2 pass are equal.
Furthermore, as shown in FIGS. 7 and 8, the guide member 66 of the present embodiment has a notch formed upstream in the movement direction of the fixing belt 61 at a portion through which the second region S <b> 2 of the fixing belt 61 passes. Has been. As a result, the guide member 66 of the present embodiment has a long diameter portion 66a whose length along the moving direction of the fixing belt 61 is the first length at a portion through which the first region S1 of the fixing belt 61 passes. In addition, a portion of the fixing belt 61 through which the second region S2 passes has a short diameter portion 66b having a second length shorter than the first length along the moving direction of the fixing belt 61. .

本実施の形態の誘導部材66は、上記構成を有することで定着ベルト61の第1領域S1が通過する長径部66aの方が、定着ベルト61の第2領域S2が通過する短径部66bよりも体積が大きくなる。
これにより、本実施の形態では、誘導部材66において定着ベルト61の第1領域S1が通過する長径部66aの方が、定着ベルト61の第2領域S2が通過する短径部66bよりも熱容量が大きくなる。したがって、本構成を有さない場合と比較して、誘導部材66の長径部66aから定着ベルト61の第1領域S1に供給される熱量の方が、誘導部材66の短径部66bから定着ベルト61の第2領域S2に供給される熱量よりも小さくなる。
以上より、本実施の形態では、本構成を有さない場合と比較して、定着ベルト61の第1領域S1と第2領域S2とにおいて温度むらが発生するのを抑制することが可能になる。
Since the guide member 66 of the present embodiment has the above-described configuration, the long diameter portion 66a through which the first region S1 of the fixing belt 61 passes is more than the short diameter portion 66b through which the second region S2 of the fixing belt 61 passes. Also increases in volume.
As a result, in the present embodiment, in the guide member 66, the long diameter portion 66a through which the first region S1 of the fixing belt 61 passes has a heat capacity greater than the short diameter portion 66b through which the second region S2 of the fixing belt 61 passes. growing. Therefore, as compared with the case where this configuration is not provided, the amount of heat supplied from the long diameter portion 66a of the guide member 66 to the first region S1 of the fixing belt 61 is greater than the short diameter portion 66b of the guide member 66. The amount of heat supplied to the second region S2 of 61 becomes smaller.
As described above, in the present embodiment, it is possible to suppress the occurrence of temperature unevenness in the first region S1 and the second region S2 of the fixing belt 61 as compared with the case where this configuration is not provided. .

また、図7および図8に示すように、本実施の形態の感温磁性部材64は、定着ベルト61の第2領域S2が通過する部位において、定着ベルト61の移動方向上流側に切欠きが形成されている。これにより、本実施の形態の感温磁性部材64は、定着ベルト61の第1領域S1が通過する部位に、定着ベルト61の移動方向に沿った長さが第3の長さとなる長径部64aを有し、定着ベルト61の第2領域S2が通過する部位に、定着ベルト61の移動方向に沿った長さが第3の長さよりも短い第4の長さとなる短径部64bを有している。   Further, as shown in FIGS. 7 and 8, the temperature-sensitive magnetic member 64 of the present embodiment has a notch on the upstream side in the moving direction of the fixing belt 61 at a portion where the second region S2 of the fixing belt 61 passes. Is formed. As a result, the temperature-sensitive magnetic member 64 of the present embodiment has a long-diameter portion 64a in which the length along the moving direction of the fixing belt 61 is the third length at the portion through which the first region S1 of the fixing belt 61 passes. And a short diameter portion 64b having a length along the moving direction of the fixing belt 61 that is a fourth length shorter than the third length at a portion through which the second region S2 of the fixing belt 61 passes. ing.

そして、本実施の形態では、感温磁性部材64の内周側に誘導部材66の外周が接触して配置されるとともに、感温磁性部材64の短径部64bと誘導部材66の短径部66bとが重なり、感温磁性部材64の長径部64aと誘導部材66の長径部66aとが重なって配置される。これにより、定着ベルト61の第2領域S2が通過する部位には、感温磁性部材64および誘導部材66の双方が切欠かれた切欠き部69が形成されている。
なお、本実施の形態の定着ユニット60においては、誘導部材66の長径部66aと感温磁性部材64の長径部64aとにより、第2磁路形成部材の第1部位が構成され、誘導部材66の短径部66bと感温磁性部材64の短径部64bとにより、第2磁路形成部材の第2部位が構成されている。
In the present embodiment, the outer periphery of the induction member 66 is disposed in contact with the inner peripheral side of the temperature-sensitive magnetic member 64, and the short-diameter portion 64 b of the temperature-sensitive magnetic member 64 and the short-diameter portion of the induction member 66 are arranged. 66b overlap, and the long diameter portion 64a of the temperature-sensitive magnetic member 64 and the long diameter portion 66a of the guide member 66 overlap each other. As a result, a notched portion 69 in which both the temperature-sensitive magnetic member 64 and the guiding member 66 are notched is formed at a portion through which the second region S2 of the fixing belt 61 passes.
In the fixing unit 60 of the present embodiment, the long diameter portion 66a of the guide member 66 and the long diameter portion 64a of the temperature-sensitive magnetic member 64 constitute a first portion of the second magnetic path forming member. The short diameter portion 66b and the short diameter portion 64b of the temperature-sensitive magnetic member 64 constitute a second part of the second magnetic path forming member.

本実施の形態では、定着ベルト61の第2領域S2が通過する部位において、感温磁性部材64と誘導部材66との双方を切欠いて形成される切欠き部69を有することで、この切欠き部69に、定着ベルト61の温度を検知するサーミスタ(図示せず)や、定着ベルト61の温度が異常に上昇した場合に定着ユニット60への電力の供給を遮断するサーモスイッチ(図示せず)を設けることができる。これにより、切欠き部69以外にサーミスタやサーモスイッチを設置した場合と比較して、定着ユニット60の省スペース化を図ることが可能になる。また、本実施の形態では、サーミスタやサーモスイッチを設置するために、切欠き部69以外に感温磁性部材64および誘導部材66をさらに切欠く必要がなく、サーミスタやサーモスイッチを設置するために感温磁性部材64および誘導部材66を切欠いたことによる、定着ベルト61における温度むらの発生を抑制することが可能になる。   In the present embodiment, the notch 69 is formed by notching both the temperature-sensitive magnetic member 64 and the guide member 66 at the portion through which the second region S2 of the fixing belt 61 passes. The unit 69 includes a thermistor (not shown) that detects the temperature of the fixing belt 61 and a thermoswitch (not shown) that cuts off the supply of power to the fixing unit 60 when the temperature of the fixing belt 61 rises abnormally. Can be provided. Accordingly, it is possible to save the space of the fixing unit 60 as compared with the case where a thermistor or a thermo switch is installed in addition to the notch portion 69. Further, in this embodiment, in order to install the thermistor and the thermo switch, it is not necessary to further cut out the temperature-sensitive magnetic member 64 and the induction member 66 in addition to the notch portion 69, and in order to install the thermistor and the thermo switch. It is possible to suppress the occurrence of temperature unevenness in the fixing belt 61 due to the cutout of the temperature-sensitive magnetic member 64 and the guide member 66.

さらに、本実施の形態では、磁心片84aにおける定着ベルト61の移動方向に沿った長さが、感温磁性部材64の長径部64aおよび誘導部材66の長径部66aにおける定着ベルト61の移動方向に沿った長さよりも短い。そして、磁心片84aにおける定着ベルト61の移動方向に沿った両端部は、ともに、感温磁性部材64の長径部64aおよび誘導部材66の長径部66aにおける定着ベルト61の移動方向に沿った両端部よりも内側に設けられる。
これにより、磁心片84aから放射される磁力線H(図9参照)がIHヒータ80周辺へ漏洩するのを抑制でき、力率が向上する。さらには、定着ユニット60を構成する金属製部材への電磁誘導を抑え、定着ベルト61(導電発熱層612)での発熱効率を高めることが可能になる。
Further, in the present embodiment, the length along the moving direction of the fixing belt 61 in the magnetic core piece 84a is the moving direction of the fixing belt 61 in the long diameter portion 64a of the temperature-sensitive magnetic member 64 and the long diameter portion 66a of the guide member 66. Shorter than the length along. Both end portions of the magnetic core piece 84a along the moving direction of the fixing belt 61 are both end portions of the long diameter portion 64a of the temperature-sensitive magnetic member 64 and the long diameter portion 66a of the guiding member 66 along the moving direction of the fixing belt 61. It is provided inside.
Thereby, it can suppress that the magnetic force line H (refer FIG. 9) radiated | emitted from the magnetic core piece 84a leaks around IH heater 80, and a power factor improves. Furthermore, electromagnetic induction to the metal member constituting the fixing unit 60 can be suppressed, and the heat generation efficiency of the fixing belt 61 (conductive heat generation layer 612) can be increased.

なお、本実施の形態では、感温磁性部材64において長径部64aおよび短径部64bを形成するとともに、誘導部材66において長径部66aおよび短径部66bを形成した。しかし、例えば、感温磁性部材64において、長径部64aおよび短径部64bを形成せずに、誘導部材66のみに長径部66aおよび短径部66bを形成してもよい。
また、本実施の形態では、誘導部材66における定着ベルト61の第2領域S2が通過する部位において、定着ベルト61の移動方向上流側を切欠くことで、誘導部材66に長径部66aおよび短径部66bを形成した。しかし誘導部材66を切欠く場所はこれに限られず、誘導部材66における定着ベルト61の第2領域S2が通過する部位において、定着ベルト61の移動方向下流側を切欠いても良いし、定着ベルト61の移動方向上流側および下流側の双方を切欠くことで、長径部66aおよび短径部66bを形成しても良い。
In the present embodiment, the long diameter portion 64 a and the short diameter portion 64 b are formed in the temperature-sensitive magnetic member 64, and the long diameter portion 66 a and the short diameter portion 66 b are formed in the guide member 66. However, for example, in the temperature-sensitive magnetic member 64, the long diameter portion 66a and the short diameter portion 66b may be formed only in the guide member 66 without forming the long diameter portion 64a and the short diameter portion 64b.
In the present embodiment, the guide member 66 has a long diameter portion 66a and a short diameter at the portion of the guide member 66 through which the second region S2 of the fixing belt 61 passes by notching the upstream side in the moving direction of the fixing belt 61. Part 66b was formed. However, the location where the guide member 66 is not cut is not limited to this, and the downstream side in the moving direction of the fixing belt 61 may be cut out at a portion of the guide member 66 where the second region S2 of the fixing belt 61 passes. The long diameter portion 66a and the short diameter portion 66b may be formed by cutting out both the upstream side and the downstream side in the moving direction.

さらに、本実施の形態では、定着ベルト61の第2領域S2が通過する部位において誘導部材66を矩形状に切欠くことで、誘導部材66において矩形状の長径部66aおよび矩形状の短径部66bを形成した。しかし、誘導部材66の長径部66aの形状および短径部66bの形状は矩形に限られず、三角形状や半円形状等、あらゆる形状を採用することができる。
また、本実施の形態では、誘導部材66の長径部66aにおける、定着ベルト61の幅方向に沿った幅と、定着ベルト61の第1領域S1における、定着ベルト61の幅方向に沿った幅とを等しくし、誘導部材66の短径部66bにおける、定着ベルト61の幅方向に沿った幅と、定着ベルト61の第2領域S2における、定着ベルト61の幅方向に沿った幅とを等しくした。しかし、誘導部材66における長径部66aおよび短径部66bの幅はこれに限られない。例えば、誘導部材66において、定着ベルト61の第2領域S2が通過する部位のうち、少なくとも一部の部位に短径部66bが形成されていれば足りる。
Further, in the present embodiment, the guide member 66 is cut into a rectangular shape at a portion through which the second region S2 of the fixing belt 61 passes, so that the guide member 66 has a rectangular long diameter portion 66a and a rectangular short diameter portion. 66b was formed. However, the shape of the long diameter portion 66a and the shape of the short diameter portion 66b of the guide member 66 are not limited to a rectangle, and any shape such as a triangular shape or a semicircular shape can be adopted.
Further, in the present embodiment, the width along the width direction of the fixing belt 61 in the long diameter portion 66a of the guide member 66, and the width along the width direction of the fixing belt 61 in the first region S1 of the fixing belt 61 And the width along the width direction of the fixing belt 61 in the short diameter portion 66b of the guide member 66 is made equal to the width along the width direction of the fixing belt 61 in the second region S2 of the fixing belt 61. . However, the width of the long diameter portion 66a and the short diameter portion 66b in the guide member 66 is not limited to this. For example, in the guide member 66, it is sufficient if the short diameter portion 66b is formed at least at a part of the part through which the second region S2 of the fixing belt 61 passes.

また、本実施の形態においては、定着ベルト61の第2領域S2が通過する部位において誘導部材66を切欠くことで、誘導部材66に長径部66aと短径部66bとを形成した。しかし、誘導部材66に長径部66aおよび短径部66bを形成する方法はこれに限られない。例えば、誘導部材66において、定着ベルト61の第1領域S1が通過する部位の材料を引き伸ばす等の方法で、誘導部材66に長径部66aと短径部66bとを形成してもよい。   In the present embodiment, the guide member 66 is notched at the portion through which the second region S2 of the fixing belt 61 passes, so that the guide member 66 has the long diameter portion 66a and the short diameter portion 66b. However, the method of forming the long diameter portion 66a and the short diameter portion 66b in the guide member 66 is not limited to this. For example, in the guide member 66, the long diameter portion 66a and the short diameter portion 66b may be formed in the guide member 66 by a method such as stretching the material of the portion through which the first region S1 of the fixing belt 61 passes.

さらに、本実施の形態では、誘導部材66において、定着ベルト61の第1領域S1と対向する部位よりも第2領域S2と対向する部位の熱容量を小さくするために、定着ベルト61の第1領域S1と対向する部位に長径部66aを形成し、定着ベルト61の第2領域S2と対向する部位に短径部66bを形成した。しかし、例えば、誘導部材66において、定着ベルト61の第2領域S2と対向する部位に孔を設けることで、定着ベルト61の第1領域S1と対向する部位よりも第2領域S2と対向する部位の体積を小さくし、定着ベルト61の第1領域S1と対向する部位よりも第2領域S2と対向する部位の熱容量を小さくしても良い。   Furthermore, in the present embodiment, the first region of the fixing belt 61 has a lower capacity in the portion of the guide member 66 that faces the second region S2 than the portion of the fixing belt 61 that faces the first region S1. A long diameter portion 66a is formed at a portion facing S1, and a short diameter portion 66b is formed at a portion facing the second region S2 of the fixing belt 61. However, for example, in the guide member 66, by providing a hole in a portion facing the second region S2 of the fixing belt 61, a portion facing the second region S2 rather than a portion facing the first region S1 of the fixing belt 61. And the heat capacity of the portion facing the second region S2 may be made smaller than the portion facing the first region S1 of the fixing belt 61.

[実施の形態2]
続いて、本発明の実施の形態2について説明する。
実施の形態1では、誘導部材66において、定着ベルト61の第1領域S1と対向する部位に長径部66aを形成し、定着ベルト61の第2領域S2と対向する部位に短径部66bを形成し、定着ベルト61の第1領域S1が通過する部位の体積を第2領域S2が通過する部位の体積よりも大きくすることで、定着ベルト61の第1領域S1が通過する部位の熱容量を、定着ベルト61の第2領域S2が通過する部位の熱容量よりも大きくし、定着ベルト61における温度むらの発生を抑制する構成について説明した。
本実施の形態では、定着ベルト61の第1領域S1が通過する部位と第2領域S2が通過する部位とで、誘導部材66の定着ベルト61の移動方向に沿った長さが等しくなるように構成するとともに、定着ベルト61の第1領域S1が通過する部位と第2領域S2が通過する部位とで、誘導部材66の厚さを異ならせることで、定着ベルト61における温度むらの発生を抑制する構成について説明する。
なお、実施の形態1と同様な構成については同様の符号を用い、ここではその詳細な説明を省略する。
[Embodiment 2]
Next, a second embodiment of the present invention will be described.
In the first embodiment, in the guide member 66, the long diameter portion 66a is formed at a portion facing the first region S1 of the fixing belt 61, and the short diameter portion 66b is formed at a portion facing the second region S2 of the fixing belt 61. Then, by making the volume of the portion through which the first region S1 of the fixing belt 61 passes is larger than the volume of the portion through which the second region S2 passes, the heat capacity of the portion through which the first region S1 of the fixing belt 61 passes is obtained. The configuration has been described in which the heat capacity of the portion where the second region S2 of the fixing belt 61 passes is made larger and the occurrence of temperature unevenness in the fixing belt 61 is suppressed.
In the present embodiment, the length of the guide member 66 along the moving direction of the fixing belt 61 is equal between the portion through which the first region S1 passes and the portion through which the second region S2 passes. In addition, the unevenness of temperature in the fixing belt 61 is suppressed by making the thickness of the guide member 66 different between the portion through which the first region S1 of the fixing belt 61 passes and the portion through which the second region S2 passes. The structure to perform is demonstrated.
In addition, the same code | symbol is used about the structure similar to Embodiment 1, and the detailed description is abbreviate | omitted here.

図10は、本実施の形態におけるIHヒータ80(図7参照)、定着ベルト61、感温磁性部材64および誘導部材66の積層構造を説明する斜視図であり、図11は、本実施の形態におけるIHヒータ80(図7参照)、定着ベルト61、感温磁性部材64および誘導部材66の積層構造を説明する断面図である。図11は、図3のXI−XI断面に相当する。なお、図10においては、シールド85の記載を省略し、図11においては、支持体81、弾性支持部材83およびシールド85の記載を省略している。   FIG. 10 is a perspective view for explaining a laminated structure of the IH heater 80 (see FIG. 7), the fixing belt 61, the temperature-sensitive magnetic member 64, and the induction member 66 in the present embodiment, and FIG. 11 shows the present embodiment. 8 is a cross-sectional view illustrating a laminated structure of an IH heater 80 (see FIG. 7), a fixing belt 61, a temperature-sensitive magnetic member 64, and an induction member 66 in FIG. 11 corresponds to the XI-XI cross section of FIG. In FIG. 10, the description of the shield 85 is omitted, and in FIG. 11, the description of the support 81, the elastic support member 83, and the shield 85 is omitted.

図10に示すように、本実施の形態の感温磁性部材64は、定着ベルト61の内周面に倣った円弧形状で形成され、感温磁性部材64の外周面は、定着ベルト61の内周面に接触して設けられる。
また、本実施の形態の誘導部材66は、図10に示すように、感温磁性部材64の内周面に倣った形状で形成されている。そして、誘導部材66の外周面は、感温磁性部材64の内周面に接触して設けられる。さらに、本実施の形態の誘導部材66は、定着ベルト61の幅方向に亘って一体的に構成されるとともに、定着ベルト61の幅方向に亘って同一の非磁性金属にて形成されている。
As shown in FIG. 10, the temperature-sensitive magnetic member 64 of the present embodiment is formed in an arc shape that follows the inner peripheral surface of the fixing belt 61, and the outer peripheral surface of the temperature-sensitive magnetic member 64 is the inner surface of the fixing belt 61. It is provided in contact with the peripheral surface.
Further, as shown in FIG. 10, the guide member 66 of the present embodiment is formed in a shape that follows the inner peripheral surface of the temperature-sensitive magnetic member 64. The outer peripheral surface of the guide member 66 is provided in contact with the inner peripheral surface of the temperature-sensitive magnetic member 64. Further, the guide member 66 of the present embodiment is integrally configured across the width direction of the fixing belt 61 and is formed of the same nonmagnetic metal across the width direction of the fixing belt 61.

本実施の形態の誘導部材66は、定着ベルト61の第1領域S1が通過する部位と第2領域S2が通過する部位とで、定着ベルト61の移動方向に沿った長さが等しくなるように構成される。
さらに、図11に示すように、本実施の形態の誘導部材66は、定着ベルト61の第1領域S1が通過する部位に、定着ベルト61の移動方向に沿って感温磁性部材64と接触する側とは反対側に突出することで、厚さが第1の厚さとなる肉厚部66cを有し、定着ベルト61の第2領域S2が通過する部位に、定着ベルト61の移動方向に沿って延びるとともに、厚さが第1の厚さよりも薄い第2の厚さとなる肉薄部66dを有している。
本実施の形態の定着ユニット60では、誘導部材66における肉厚部66cと感温磁性部材64のうち誘導部材66の肉厚部66cに接する部位とにより第1部位が構成され、誘導部材66における肉薄部66dと感温磁性部材64のうち誘導部材66の肉薄部66dに接する部位とにより第2部位が構成されている。
In the guide member 66 of the present embodiment, the length along the moving direction of the fixing belt 61 is equal between the portion through which the first region S1 of the fixing belt 61 passes and the portion through which the second region S2 passes. Composed.
Further, as shown in FIG. 11, the guide member 66 of the present embodiment is in contact with the temperature-sensitive magnetic member 64 along the moving direction of the fixing belt 61 at a portion through which the first region S1 of the fixing belt 61 passes. By projecting to the opposite side to the side, a thick portion 66c having a thickness of the first thickness is provided, and along the moving direction of the fixing belt 61 at a portion through which the second region S2 of the fixing belt 61 passes. And a thin portion 66d having a second thickness that is smaller than the first thickness.
In the fixing unit 60 of the present embodiment, the first portion is configured by the thick portion 66 c of the guide member 66 and the portion of the temperature-sensitive magnetic member 64 that contacts the thick portion 66 c of the guide member 66. The second portion is configured by the thin portion 66d and the portion of the temperature-sensitive magnetic member 64 that contacts the thin portion 66d of the guide member 66.

本実施の形態の誘導部材66では、肉厚部66cと肉薄部66dとで、定着ベルト61の移動方向に沿った長さが等しくなるように形成されるため、本実施の形態の誘導部材66は、上記構成を有することで、肉厚部66cの方が肉薄部66dよりも体積が大きくなる。
これにより、本実施の形態では、誘導部材66において肉厚部66cの方が肉薄部66dよりも熱容量が大きくなるため、本構成を有さない場合と比較して、誘導部材66の肉厚部66cから定着ベルト61の第1領域S1に供給される熱量の方が、誘導部材66の肉薄部66dから定着ベルト61の第2領域S2に供給される熱量よりも小さくなる。
したがって、定着ベルト61の第1領域S1と第2領域S2とにおいて温度むらが発生するのを抑制することが可能になる。
In the guide member 66 of the present embodiment, the thick portion 66c and the thin portion 66d are formed so that the lengths along the moving direction of the fixing belt 61 are equal, and therefore the guide member 66 of the present embodiment. With the above configuration, the thick portion 66c has a larger volume than the thin portion 66d.
Thereby, in this Embodiment, since the heat capacity of the thick part 66c becomes larger than the thin part 66d in the guide member 66, compared with the case where this structure is not provided, the thick part of the guide member 66 The amount of heat supplied from 66c to the first region S1 of the fixing belt 61 is smaller than the amount of heat supplied from the thin portion 66d of the guide member 66 to the second region S2 of the fixing belt 61.
Accordingly, it is possible to suppress the occurrence of temperature unevenness in the first region S1 and the second region S2 of the fixing belt 61.

なお、本実施の形態の誘導部材66において、肉厚部66cの厚さは、例えば0.8〜1.2mmであり、肉薄部66dの厚さは、例えば0.4〜0.6mmである。また、本実施の形態の誘導部材66は、定着ベルト61の幅方向の全域に亘って、感温磁性部材64よりも厚く形成されている。   In the guide member 66 of the present embodiment, the thickness of the thick portion 66c is, for example, 0.8 to 1.2 mm, and the thickness of the thin portion 66d is, for example, 0.4 to 0.6 mm. . Further, the guide member 66 of the present embodiment is formed thicker than the temperature-sensitive magnetic member 64 over the entire width direction of the fixing belt 61.

ここで、誘導部材66において肉厚部66cおよび肉薄部66dを形成する方法としては、例えば、絞りプレス加工による方法や、厚さが定着ベルト61の幅方向に亘って第1の厚さになるように形成された基部に対して、定着ベルト61の第2領域S2が通過する部位を削ることで、肉厚部66cと肉薄部66dとを形成する方法等が挙げられる。
また、厚さが定着ベルト61の幅方向に亘って第2の厚さに形成された基部に対して、定着ベルト61の第1領域S1が通過する部位に、他の部材を接着することで肉厚部66cと肉薄部66dとを形成してもよい。この場合、密着性等の観点から、誘導部材66の基部と、基部に接着する他の部材とは同一の材料から構成されることが好ましい。
Here, as a method of forming the thick portion 66 c and the thin portion 66 d in the guide member 66, for example, a drawing press method, or the thickness becomes the first thickness in the width direction of the fixing belt 61. For example, a method of forming the thick portion 66c and the thin portion 66d by cutting a portion through which the second region S2 of the fixing belt 61 passes is formed with respect to the base portion formed as described above.
In addition, another member is bonded to a portion where the first region S1 of the fixing belt 61 passes through a base portion having a thickness of the second thickness over the width direction of the fixing belt 61. The thick part 66c and the thin part 66d may be formed. In this case, from the viewpoint of adhesion and the like, it is preferable that the base portion of the guide member 66 and the other members bonded to the base portion are made of the same material.

また、本実施の形態では、誘導部材66の肉厚部66cにおける、定着ベルト61の幅方向に沿った幅と、定着ベルト61の第1領域S1における、定着ベルト61の幅方向に沿った幅とを等しくし、誘導部材66の肉薄部66dにおける、定着ベルト61の幅方向に沿った幅と、定着ベルト61の第2領域S2における、定着ベルト61の幅方向に沿った幅とを等しくした。しかし、誘導部材66における肉厚部66cおよび肉薄部66dの幅はこれに限られない。例えば、誘導部材66において、定着ベルト61の第1領域S1が通過する部位のうち、少なくとも一部の部位に肉厚部66cが形成されていれば足りる。   Further, in the present embodiment, the width along the width direction of the fixing belt 61 in the thick portion 66c of the guide member 66 and the width along the width direction of the fixing belt 61 in the first region S1 of the fixing belt 61. And the width along the width direction of the fixing belt 61 in the thin portion 66d of the guide member 66 and the width along the width direction of the fixing belt 61 in the second region S2 of the fixing belt 61 are equalized. . However, the width of the thick portion 66c and the thin portion 66d in the guide member 66 is not limited to this. For example, in the guiding member 66, it is sufficient if the thick portion 66c is formed in at least a portion of the portion through which the first region S1 of the fixing belt 61 passes.

実施の形態1では、誘導部材66において、定着ベルト61の第2領域S2が通過する部位よりも、定着ベルト61の第1領域S1が通過する部位における、定着ベルト61の進行方向に沿った長さを長くすることで、定着ベルト61の第1領域S1と第2領域S2とにおける温度むらの発生を抑制する構成について説明した。また、実施の形態2では、誘導部材66において、定着ベルト61の第2領域S2が通過する部位よりも、定着ベルト61の第1領域S1が通過する部位における厚さを厚くすることで、定着ベルト61の第1領域S1と第2領域S2とにおける温度むらの発生を抑制する構成について説明した。
しかし、誘導部材66において定着ベルト61の第1領域S1が通過する部位を、定着ベルト61の第2領域S2が通過する部位の熱容量よりも大きくする方法はこれらの形態に限られない。例えば、実施の形態1の構成と実施の形態2の構成とを併用してもよい。具体的には、誘導部材66において、定着ベルト61の第2領域S2が通過する部位を切欠くとともに、定着ベルト61の第1領域S1が通過する部位の厚みを定着ベルト61の第2領域S2が通過する部位よりも厚く形成することで、定着ベルト61における温度むらの発生を抑制することも可能である。
In the first embodiment, in the guide member 66, the length along the traveling direction of the fixing belt 61 in the portion through which the first region S1 of the fixing belt 61 passes is larger than the portion through which the second region S2 of the fixing belt 61 passes. The configuration that suppresses the occurrence of temperature unevenness in the first region S1 and the second region S2 of the fixing belt 61 by increasing the length has been described. Further, in the second embodiment, the guide member 66 is fixed by increasing the thickness of the portion of the fixing belt 61 through which the first region S1 passes rather than the portion of the fixing belt 61 through which the second region S2 passes. The configuration for suppressing the occurrence of temperature unevenness in the first region S1 and the second region S2 of the belt 61 has been described.
However, the method of making the portion of the guide member 66 through which the first region S1 of the fixing belt 61 passes larger than the heat capacity of the portion of the fixing belt 61 through which the second region S2 passes is not limited to these forms. For example, the configuration of the first embodiment and the configuration of the second embodiment may be used in combination. Specifically, in the guide member 66, a portion through which the second region S <b> 2 of the fixing belt 61 passes is cut out, and the thickness of the portion through which the first region S <b> 1 of the fixing belt 61 passes is set to the second region S <b> 2 of the fixing belt 61. It is also possible to suppress the occurrence of uneven temperature in the fixing belt 61 by forming it thicker than the portion through which the toner passes.

また、実施の形態1および実施の形態2では、誘導部材66において、定着ベルト61の第1領域S1が通過する部位における体積を、第2領域S2が通過する部位における体積よりも大きくすることで、定着ベルト61の第1領域S1と第2領域S2とにおける温度むらの発生を抑制する構成について説明した。しかし、例えば、誘導部材66において、定着ベルト61の第1領域S1が通過する部位を第1の材料で形成し、第2領域S2が通過する部位を第1の材料よりも単位体積当たりの熱容量が小さい第2の材料で形成することで、定着ベルト61の第1領域S1が通過する部位の熱容量を第2領域S2が通過する部位の熱容量よりも大きくし、定着ベルト61の第1領域S1と第2領域S2とにおける温度むらの発生を抑制することも可能である。このような構成を採用する場合、誘導部材66において、定着ベルト61の第1領域S1が通過する部位の体積と第2領域S2が通過する部位の体積とを等しくしても良いし、第1領域S1が通過する部位の体積を第2領域S2が通過する部位の体積よりも小さくしても良い。   In the first embodiment and the second embodiment, in the guide member 66, the volume of the part of the fixing belt 61 through which the first region S1 passes is made larger than the volume of the part of the guide belt 66 through which the second region S2 passes. The configuration for suppressing the occurrence of temperature unevenness in the first region S1 and the second region S2 of the fixing belt 61 has been described. However, for example, in the guide member 66, the part through which the first region S1 of the fixing belt 61 passes is formed of the first material, and the part through which the second region S2 passes is more heat capacity per unit volume than the first material. By using the second material having a small size, the heat capacity of the portion through which the first region S1 of the fixing belt 61 passes is made larger than the heat capacity of the portion through which the second region S2 passes, and the first region S1 of the fixing belt 61 is obtained. It is also possible to suppress the occurrence of temperature unevenness in the second region S2. When such a configuration is employed, the volume of the portion of the guide member 66 through which the first region S1 of the fixing belt 61 passes may be equal to the volume of the portion of the guide belt 66 through which the second region S2 passes. The volume of the part through which the region S1 passes may be smaller than the volume of the part through which the second region S2 passes.

1…画像形成装置、60…定着ユニット、61…定着ベルト、62…加圧ロール、64…感温磁性部材、66…誘導部材、69…切欠き部、80…IHヒータ、82…励磁コイル、84…磁心 DESCRIPTION OF SYMBOLS 1 ... Image forming apparatus, 60 ... Fixing unit, 61 ... Fixing belt, 62 ... Pressure roll, 64 ... Temperature-sensitive magnetic member, 66 ... Induction member, 69 ... Notch part, 80 ... IH heater, 82 ... Excitation coil, 84 ... Magnetic core

Claims (10)

無端帯状の形状を備えるとともに導電層を有し、回転可能に設けられ、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、
前記定着部材と対向して設けられ、交流電流が供給されることで、当該定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、
前記磁界生成部材を介して前記定着部材に対向して設けられ、当該磁界生成部材にて生成された交流磁界の磁路を形成する複数の第1磁路形成部材と、
前記定着部材を介して前記磁界生成部材に対向して設けられ、複数の前記第1磁路形成部材とともに、当該磁界生成部材にて生成された交流磁界の磁路を形成する第2磁路形成部材とを備え、
複数の前記第1磁路形成部材は、それぞれが前記定着部材の回転方向に沿って延びるとともに、隣接する当該第1磁路形成部材との間に間隔を有するように、当該定着部材の回転方向と交差する当該定着部材の幅方向に並んで設けられ、
前記定着部材は、前記磁界生成部材を介して前記第1磁路形成部材と対向する部位を通過する第1領域と、当該第1領域と隣接して設けられ、当該磁界生成部材を介して当該第1磁路形成部材と対向しない部位を通過する第2領域とを有し、
前記第2磁路形成部材は、前記定着部材の前記第1領域と対向する第1部位と、当該定着部材の前記第2領域と対向し、当該第1部位よりも熱容量が低い第2部位とを有することを特徴とする定着装置。
A fixing member having an endless belt-like shape, having a conductive layer, rotatably provided, and fixing the toner on the recording material by electromagnetically heating the conductive layer;
A magnetic field generating member that is provided facing the fixing member and generates an alternating magnetic field that intersects the conductive layer of the fixing member by being supplied with an alternating current;
A plurality of first magnetic path forming members provided opposite to the fixing member via the magnetic field generating member and forming a magnetic path of an alternating magnetic field generated by the magnetic field generating member;
A second magnetic path formed so as to face the magnetic field generating member via the fixing member and forms a magnetic path of an alternating magnetic field generated by the magnetic field generating member together with the plurality of first magnetic path forming members. With members,
The plurality of first magnetic path forming members extend in the rotation direction of the fixing member, and each of the first magnetic path forming members has a rotation direction of the fixing member so as to have an interval between the adjacent first magnetic path forming members. Arranged side by side in the width direction of the fixing member intersecting with
The fixing member is provided adjacent to the first region passing through a portion facing the first magnetic path forming member through the magnetic field generating member, and the first member through the magnetic field generating member. A second region that passes through a portion that does not face the first magnetic path forming member,
The second magnetic path forming member includes a first portion facing the first region of the fixing member, and a second portion facing the second region of the fixing member and having a heat capacity lower than that of the first portion. A fixing device.
前記第2磁路形成部材は、前記第1部位における体積が、前記第2部位における体積よりも大きいことを特徴とする請求項1記載の定着装置。   The fixing device according to claim 1, wherein the second magnetic path forming member has a volume at the first portion larger than a volume at the second portion. 前記第2磁路形成部材は、前記第1部位における前記定着部材の回転方向に沿った長さが、前記第2部位における当該定着部材の回転方向に沿った長さよりも長いことを特徴とする請求項1または2記載の定着装置。   The length of the second magnetic path forming member along the rotation direction of the fixing member at the first portion is longer than the length along the rotation direction of the fixing member at the second portion. The fixing device according to claim 1. 前記第2磁路形成部材は、外周面が前記定着部材の内周面に接触して配置され、磁気特性が温度に応じて強磁性と常磁性との間で変化し、磁気特性が強磁性の場合に、前記磁界生成部材にて生成された交流磁界の磁路を形成し、磁気特性が常磁性の場合に、当該磁界生成部材にて生成された交流磁界を透過させる感温磁性部材と、外周面が当該感温磁性部材の内周面に接触して配置され、当該感温磁性部材の磁気特性が常磁性の場合に、当該感温磁性部材を透過した交流磁界を誘導する誘導部材とを備え、
前記感温磁性部材および前記誘導部材は、前記第2部位に、前記定着部材の回転方向に沿った切欠きを有することを特徴とする請求項1または2記載の定着装置。
The second magnetic path forming member is disposed so that an outer peripheral surface thereof is in contact with an inner peripheral surface of the fixing member, and the magnetic characteristics change between ferromagnetism and paramagnetism according to temperature, and the magnetic characteristics are ferromagnetic. A temperature-sensitive magnetic member that forms a magnetic path of the alternating magnetic field generated by the magnetic field generating member and transmits the alternating magnetic field generated by the magnetic field generating member when the magnetic characteristic is paramagnetic; An induction member that induces an alternating magnetic field that is transmitted through the temperature-sensitive magnetic member when the outer circumferential surface is disposed in contact with the inner surface of the temperature-sensitive magnetic member and the magnetic property of the temperature-sensitive magnetic member is paramagnetic. And
3. The fixing device according to claim 1, wherein the temperature-sensitive magnetic member and the guide member have a notch along the rotation direction of the fixing member at the second portion.
前記第2磁路形成部材は、前記第1部位における厚さが、前記第2部位における厚さよりも厚いことを特徴とする請求項1または2記載の定着装置。   3. The fixing device according to claim 1, wherein the second magnetic path forming member has a thickness at the first portion larger than a thickness at the second portion. 前記第2磁路形成部材は、外周面が前記定着部材の内周面に接触して配置され、磁気特性が温度に応じて強磁性と常磁性との間で変化し、磁気特性が強磁性の場合に、前記磁界生成部材にて生成された交流磁界の磁路を形成し、磁気特性が常磁性の場合に、当該磁界生成部材にて生成された交流磁界を透過させる感温磁性部材と、外周面が当該感温磁性部材の内周面に接触して配置され、当該感温磁性部材の磁気特性が常磁性の場合に、当該感温磁性部材を透過した交流磁界を誘導する誘導部材とを備え、
前記誘導部材は、前記第1部位において、前記感温磁性部材の内周面と接する面とは反対側に、前記第2部位よりも突出する凸部を有することを特徴とする請求項1または2記載の定着装置。
The second magnetic path forming member is disposed so that an outer peripheral surface thereof is in contact with an inner peripheral surface of the fixing member, and the magnetic characteristics change between ferromagnetism and paramagnetism according to temperature, and the magnetic characteristics are ferromagnetic. A temperature-sensitive magnetic member that forms a magnetic path of the alternating magnetic field generated by the magnetic field generating member and transmits the alternating magnetic field generated by the magnetic field generating member when the magnetic characteristic is paramagnetic; An induction member that induces an alternating magnetic field that is transmitted through the temperature-sensitive magnetic member when the outer circumferential surface is disposed in contact with the inner surface of the temperature-sensitive magnetic member and the magnetic property of the temperature-sensitive magnetic member is paramagnetic. And
The said induction | guidance | derivation member has a convex part which protrudes rather than the said 2nd site | part on the opposite side to the surface which contact | connects the inner peripheral surface of the said temperature-sensitive magnetic member in the said 1st site | part. 3. The fixing device according to 2.
トナー像を形成するトナー像形成手段と、
前記トナー像形成手段によって形成された前記トナー像を記録材上に転写する転写手段と、
前記記録材上に転写された前記トナー像を当該記録材に定着する定着手段とを有し、
前記定着手段は、
無端帯状の形状を備えるとともに導電層を有し、回転可能に設けられ、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、
前記定着部材と対向して設けられ、交流電流が供給されることで、当該定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、
前記磁界生成部材を介して前記定着部材に対向して設けられ、当該磁界生成部材にて生成された交流磁界の磁路を形成する複数の第1磁路形成部材と、
前記定着部材を介して前記磁界生成部材に対向して設けられ、複数の前記第1磁路形成部材とともに、当該磁界生成部材にて生成された交流磁界の磁路を形成する第2磁路形成部材とを備え、
複数の前記第1磁路形成部材は、それぞれが前記定着部材の回転方向に沿って延びるとともに、隣接する当該第1磁路形成部材との間に間隔を有するように当該定着部材の回転方向と交差する当該定着部材の幅方向に並んで設けられ、
前記定着部材は、前記磁界生成部材を介して前記第1磁路形成部材と対向する部位を通過する第1領域と、当該第1領域と隣接して設けられ、当該磁界生成部材を介して当該第1磁路形成部材と対向しない部位を通過する第2領域とを有し、
前記第2磁路形成部材は、前記定着部材の前記第1領域と対向する第1部位と、当該定着部材の前記第2領域と対向し、当該第1部位よりも熱容量が低い第2部位とを有することを特徴とする画像形成装置。
Toner image forming means for forming a toner image;
Transfer means for transferring the toner image formed by the toner image forming means onto a recording material;
Fixing means for fixing the toner image transferred onto the recording material to the recording material;
The fixing means is
A fixing member having an endless belt-like shape, having a conductive layer, rotatably provided, and fixing the toner on the recording material by electromagnetically heating the conductive layer;
A magnetic field generating member that is provided facing the fixing member and generates an alternating magnetic field that intersects the conductive layer of the fixing member by being supplied with an alternating current;
A plurality of first magnetic path forming members provided opposite to the fixing member via the magnetic field generating member and forming a magnetic path of an alternating magnetic field generated by the magnetic field generating member;
A second magnetic path formed so as to face the magnetic field generating member via the fixing member and forms a magnetic path of an alternating magnetic field generated by the magnetic field generating member together with the plurality of first magnetic path forming members. With members,
Each of the plurality of first magnetic path forming members extends along the rotation direction of the fixing member, and has a rotation direction of the fixing member so as to have an interval between the adjacent first magnetic path forming members. Provided side by side in the width direction of the fixing members that intersect,
The fixing member is provided adjacent to the first region passing through a portion facing the first magnetic path forming member through the magnetic field generating member, and the first member through the magnetic field generating member. A second region that passes through a portion that does not face the first magnetic path forming member,
The second magnetic path forming member includes a first portion facing the first region of the fixing member, and a second portion facing the second region of the fixing member and having a heat capacity lower than that of the first portion. An image forming apparatus comprising:
前記第2磁路形成部材は、前記第1部位における体積が、前記第2部位における体積よりも大きいことを特徴とする請求項7記載の画像形成装置。   The image forming apparatus according to claim 7, wherein the second magnetic path forming member has a volume at the first portion larger than a volume at the second portion. 前記第2磁路形成部材は、前記第1部位における前記定着部材の回転方向に沿った長さが、前記第2部位における当該定着部材の回転方向に沿った長さよりも長いことを特徴とする請求項7または8記載の画像形成装置。   The length of the second magnetic path forming member along the rotation direction of the fixing member at the first portion is longer than the length along the rotation direction of the fixing member at the second portion. The image forming apparatus according to claim 7 or 8. 前記第2磁路形成部材は、前記第1部位における厚さが、前記第2部位における厚さよりも厚いことを特徴とする請求項7または8記載の画像形成装置。   The image forming apparatus according to claim 7, wherein the second magnetic path forming member has a thickness at the first portion larger than a thickness at the second portion.
JP2011179879A 2011-08-19 2011-08-19 Fixing apparatus and image forming apparatus Active JP5765135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011179879A JP5765135B2 (en) 2011-08-19 2011-08-19 Fixing apparatus and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179879A JP5765135B2 (en) 2011-08-19 2011-08-19 Fixing apparatus and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2013041223A JP2013041223A (en) 2013-02-28
JP5765135B2 true JP5765135B2 (en) 2015-08-19

Family

ID=47889644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179879A Active JP5765135B2 (en) 2011-08-19 2011-08-19 Fixing apparatus and image forming apparatus

Country Status (1)

Country Link
JP (1) JP5765135B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6468794B2 (en) * 2013-12-03 2019-02-13 エイチピー プリンティング コリア カンパニー リミテッド Fixing apparatus and image forming apparatus
JP6304113B2 (en) 2015-04-20 2018-04-04 京セラドキュメントソリューションズ株式会社 Fixing apparatus and image forming apparatus
JP6245212B2 (en) 2015-04-20 2017-12-13 京セラドキュメントソリューションズ株式会社 Fixing apparatus and image forming apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313160A (en) * 2000-04-28 2001-11-09 Canon Inc Heating member and heater
JP4277694B2 (en) * 2004-01-16 2009-06-10 富士ゼロックス株式会社 Fixing device and image forming apparatus using the same
JP2007264421A (en) * 2006-03-29 2007-10-11 Ricoh Co Ltd Fixing member, fixing device, and image forming apparatus
JP4655099B2 (en) * 2008-03-17 2011-03-23 富士ゼロックス株式会社 Fixing apparatus and image forming apparatus
JP5029656B2 (en) * 2009-06-22 2012-09-19 富士ゼロックス株式会社 Electromagnetic induction heating device, fixing device using the same, and image forming apparatus
JP2011022446A (en) * 2009-07-17 2011-02-03 Fuji Xerox Co Ltd Fixing device, image forming apparatus, and magnetic field generating device

Also Published As

Publication number Publication date
JP2013041223A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
JP4793467B2 (en) Fixing apparatus and image forming apparatus
JP5691370B2 (en) Fixing apparatus and image forming apparatus
JP2009258453A (en) Fixing device and image forming apparatus
JP4821873B2 (en) Fixing device and image forming apparatus
JP5359362B2 (en) Fixing device and image forming apparatus
JP2012203185A (en) Fixing device and image forming apparatus
JP5369958B2 (en) Fixing apparatus and image forming apparatus
JP4888509B2 (en) Image forming apparatus, fixing apparatus, and program
JP5765135B2 (en) Fixing apparatus and image forming apparatus
JP4711003B2 (en) Fixing device and image forming apparatus
JP2012203346A (en) Fixing device, image forming apparatus and fixing endless belt
JP5845651B2 (en) Fixing apparatus and image forming apparatus
JP5532646B2 (en) Fixing device and image forming apparatus
JP2010224370A (en) Fixing device and image forming apparatus
JP2010224342A (en) Fixing device and image forming apparatus
JP2010231106A (en) Fixing device and image forming apparatus
JP4715942B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP2011022446A (en) Fixing device, image forming apparatus, and magnetic field generating device
JP5439897B2 (en) Image forming apparatus, fixing apparatus, and program
JP2016212214A (en) Fixing device and image forming apparatus
JP2010224032A (en) Fixing unit and image forming apparatus
JP5929017B2 (en) Fixing apparatus and image forming apparatus
JP5083263B2 (en) Fixing apparatus and image forming apparatus
JP4873035B2 (en) Fixing apparatus and image forming apparatus
JP2011022356A (en) Fixing device, image forming apparatus, and magnetic field generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150601

R150 Certificate of patent or registration of utility model

Ref document number: 5765135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350