JP5532646B2 - Fixing device and image forming apparatus - Google Patents

Fixing device and image forming apparatus Download PDF

Info

Publication number
JP5532646B2
JP5532646B2 JP2009077557A JP2009077557A JP5532646B2 JP 5532646 B2 JP5532646 B2 JP 5532646B2 JP 2009077557 A JP2009077557 A JP 2009077557A JP 2009077557 A JP2009077557 A JP 2009077557A JP 5532646 B2 JP5532646 B2 JP 5532646B2
Authority
JP
Japan
Prior art keywords
temperature
fixing
magnetic
region
fixing belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009077557A
Other languages
Japanese (ja)
Other versions
JP2010230932A (en
Inventor
基文 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2009077557A priority Critical patent/JP5532646B2/en
Publication of JP2010230932A publication Critical patent/JP2010230932A/en
Application granted granted Critical
Publication of JP5532646B2 publication Critical patent/JP5532646B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)

Description

本発明は、定着装置、および画像形成装置に関する。   The present invention relates to a fixing device and an image forming apparatus.

電子写真方式を用いた複写機、プリンタ等の画像形成装置に搭載する定着装置として、電磁誘導加熱方式を用いたものが知られている。
例えば特許文献1には、磁束発生手段としての電磁誘導コイルが磁性金属製の芯金シリンダからなる定着ロールの内部に配置され、電磁誘導コイルにて生成した誘導磁界により定着ロールに渦電流を誘起させて、定着ロールを直接的に加熱する誘導加熱方式の定着装置が記載されている。
As a fixing device mounted on an image forming apparatus such as a copying machine or a printer using an electrophotographic system, an apparatus using an electromagnetic induction heating system is known.
For example, in Patent Document 1, an electromagnetic induction coil as a magnetic flux generating means is arranged inside a fixing roll made of a core metal cylinder made of magnetic metal, and an eddy current is induced in the fixing roll by an induced magnetic field generated by the electromagnetic induction coil. An induction heating type fixing device that directly heats the fixing roll is described.

特開2003−186322号公報JP 2003-186322 A

ここで一般に、例えば電磁誘導方式で加熱される定着部材を熱容量の小さいベルト部材で構成することにより、定着部材を定着可能温度まで上昇させる時間(ウォームアップタイム)が短縮される。ところが、例えば小サイズの用紙を連続して通紙した場合等に、熱消費の少ない非通紙領域が過剰に昇温して、定着部材に損傷が生じる場合があった。
本発明は、誘導加熱方式の定着装置における非通紙領域での過剰な昇温を抑制することを目的とする。
Here, in general, for example, the fixing member heated by an electromagnetic induction method is formed of a belt member having a small heat capacity, so that the time required to raise the fixing member to a fixable temperature (warm-up time) is shortened. However, for example, when a small-size sheet is continuously passed, the non-sheet passing area with low heat consumption may be excessively heated to damage the fixing member.
An object of the present invention is to suppress an excessive temperature rise in a non-sheet passing region in an induction heating type fixing device.

請求項1に記載の発明は、導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、前記定着部材を挟んで前記磁界生成部材と対向して配置され、磁気特性が温度に応じて強磁性と常磁性との間で遷移する遷移領域を有し、当該磁界生成部材で生成された交流磁界の磁路を形成する磁路形成部材とを備え、前記磁路形成部材は、使用される記録材の中の最小幅の記録材が通過する領域に配置された第1構成部分と、使用される記録材の中の最小幅の記録材が通過する領域以外の領域に配置された第2構成部分とを含み、前記第1構成部分および前記第2構成部分の前記遷移領域は、それぞれ、透磁率が減少を開始する透磁率変化開始温度までの温度範囲にて温度と比透磁率との対応関係を規定する第1の関数と当該透磁率変化開始温度を超えた温度範囲にて温度と比透磁率との対応関係を規定する第2の関数との交点となる開始温度と、当該第2の関数における比透磁率が1となる終了温度との間の領域で規定され、前記第1構成部分は、前記第2構成部分と比較して、前記遷移領域の前記開始温度および前記終了温度が高く構成され、且つ、当該第1構成部分における当該遷移領域の当該終了温度が、前記定着部材の耐熱温度よりも高く構成され、前記第2構成部分における前記遷移領域の前記終了温度が前記定着部材の耐熱温度よりも低く構成されたことを特徴とする定着装置である。 According to the first aspect of the present invention, there is provided a fixing member that has a conductive layer, the toner is fixed to the recording material by electromagnetically heating the conductive layer, and an alternating magnetic field that intersects the conductive layer of the fixing member. A magnetic field generating member to be generated; and a magnetic field generating member disposed opposite to the magnetic field generating member with the fixing member interposed therebetween, wherein the magnetic property transitions between ferromagnetism and paramagnetism depending on temperature. A magnetic path forming member that forms a magnetic path of an alternating magnetic field generated by the generating member, and the magnetic path forming member is disposed in a region through which a recording material having a minimum width among recording materials to be used passes. A first component and a second component disposed in a region other than a region through which a recording material having a minimum width in the recording material to be used passes, the first component and the second component Each of the transition regions has a permeability change at which the permeability begins to decrease. The first function that defines the correspondence between temperature and relative permeability in the temperature range up to the start temperature and the correspondence between temperature and relative permeability in the temperature range that exceeds the permeability change start temperature Defined in a region between a starting temperature that is an intersection with the second function and an ending temperature at which the relative permeability in the second function is 1, and the first component is the second component In comparison, the start temperature and the end temperature of the transition region are configured to be high , and the end temperature of the transition region in the first component is configured to be higher than the heat-resistant temperature of the fixing member, In the fixing device, the end temperature of the transition region in the second component is configured to be lower than a heat resistant temperature of the fixing member .

請求項2に記載の発明は、前記第1の関数および前記第2の関数は、一次関数であることを特徴とする請求項1記載の定着装置である。
請求項3に記載の発明は、前記磁路形成部材は、前記第1構成部分の前記遷移領域の前記開始温度が前記定着部材の耐熱温度よりも低く構成されたことを特徴とする請求項1記載の定着装置である。
請求項4に記載の発明は、前記定着部材の温度を検知する温度検知部材をさらに備え、前記温度検知部材は、使用される前記記録材の中の最小幅の当該記録材が通過する領域に配置されたことを特徴とする請求項1記載の定着装置である。
請求項5に記載の発明は、前記磁路形成部材の前記第1構成部分および前記第2構成部分には、それぞれ、前記定着部材の幅方向に対して交差する角度方向に向けて形成された複数の切欠き部が形成されていることを特徴とする請求項1記載の定着装置である。
According to a second aspect of the present invention, in the fixing device according to the first aspect, the first function and the second function are linear functions.
The invention according to claim 3 is characterized in that the magnetic path forming member is configured such that the start temperature of the transition region of the first component is lower than the heat resistant temperature of the fixing member. The fixing device described.
The invention according to claim 4 further includes a temperature detection member for detecting the temperature of the fixing member, and the temperature detection member is provided in a region through which the recording material having the minimum width in the recording material to be used passes. The fixing device according to claim 1, wherein the fixing device is arranged.
According to a fifth aspect of the present invention, each of the first component portion and the second component portion of the magnetic path forming member is formed in an angular direction intersecting with the width direction of the fixing member. The fixing device according to claim 1, wherein a plurality of notches are formed.

請求項6に記載の発明は、トナー像を形成するトナー像形成手段と、前記トナー像形成手段によって形成された前記トナー像を記録材上に転写する転写手段と、前記記録材上に転写された前記トナー像を当該記録材に定着する定着手段とを有し、前記定着手段は、導電層を有し、当該導電層が電磁誘導加熱されることで前記記録材にトナーを定着する定着部材と、前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、前記定着部材を挟んで前記磁界生成部材と対向して配置され、磁気特性が温度に応じて強磁性と常磁性との間で遷移する遷移領域を有し、当該磁界生成部材で生成された交流磁界の磁路を形成する磁路形成部材とを備え、前記磁路形成部材は、使用される記録材の中の最小幅の記録材が通過する領域に配置された第1構成部分と、使用される記録材の中の最小幅の記録材が通過する領域以外の領域に配置された第2構成部分とを含み、前記第1構成部分および前記第2構成部分の前記遷移領域は、それぞれ、透磁率が減少を開始する透磁率変化開始温度までの温度範囲にて温度と比透磁率との対応関係を規定する第1の関数と当該透磁率変化開始温度を超えた温度範囲にて温度と比透磁率との対応関係を規定する第2の関数との交点となる開始温度と、当該第2の関数における比透磁率が1となる終了温度との間の領域で規定され、前記第1構成部分は、前記第2構成部分と比較して、前記遷移領域の前記開始温度および前記終了温度が高く構成され、且つ、当該第1構成部分における当該遷移領域の当該終了温度が、前記定着部材の耐熱温度よりも高く構成され、前記第2構成部分における前記遷移領域の前記終了温度が前記定着部材の耐熱温度よりも低く構成されたことを特徴とする画像形成装置である。 According to a sixth aspect of the present invention, there is provided a toner image forming unit that forms a toner image, a transfer unit that transfers the toner image formed by the toner image forming unit onto a recording material, and a toner image that is transferred onto the recording material. A fixing member for fixing the toner image to the recording material, the fixing unit having a conductive layer, and fixing the toner to the recording material by electromagnetically heating the conductive layer. A magnetic field generating member that generates an alternating magnetic field that intersects the conductive layer of the fixing member, and a magnetic field generating member that is opposed to the magnetic field generating member with the fixing member interposed therebetween. And a magnetic path forming member that forms a magnetic path of an alternating magnetic field generated by the magnetic field generating member, and the magnetic path forming member is formed of a recording material to be used. In the area through which the smallest width recording material passes. The first component and the second component disposed in a region other than the region through which the recording material having the smallest width among the recording materials to be used passes, the first component and the second component Each of the transition regions of the portion includes a first function defining a correspondence relationship between the temperature and the relative permeability in a temperature range up to a permeability change start temperature at which the permeability starts to decrease, and the permeability change start temperature. Between the start temperature that is the intersection of the second function that defines the correspondence between the temperature and the relative permeability in a temperature range that exceeds the value, and the end temperature at which the relative permeability in the second function is 1 The first component portion is configured such that the start temperature and the end temperature of the transition region are higher than the second component portion, and the transition region in the first component portion is Is the heat resistance temperature of the fixing member. Remote higher configured, an image forming apparatus, wherein the finish temperature of the transition region in the second component is configured lower than the heat resistant temperature of the fixing member.

請求項7に記載の発明は、前記第1の関数および前記第2の関数は、一次関数であることを特徴とする請求項6記載の画像形成装置である。
請求項8に記載の発明は、前記定着手段の前記磁路形成部材は、前記第1構成部分の前記遷移領域の前記開始温度が前記定着部材の耐熱温度よりも低く構成されたことを特徴とする請求項6記載の画像形成装置である。
According to a seventh aspect of the present invention, in the image forming apparatus according to the sixth aspect, the first function and the second function are linear functions.
The invention according to claim 8 is characterized in that the magnetic path forming member of the fixing unit is configured such that the start temperature of the transition region of the first component is lower than a heat resistant temperature of the fixing member. The image forming apparatus according to claim 6 .

請求項1の発明によれば、本発明を採用しない場合に比べ、誘導加熱方式の定着装置における非通紙領域での過剰な昇温を抑制することができる。
請求項2の発明によれば、本発明を採用しない場合に比べ、簡易な方法で、定着部材に設定する定着設定温度を定めることができる。
請求項3の発明によれば、本発明を採用しない場合に比べ、通紙領域において定着部材に損傷が生じさせない温度範囲内で、定着性能を向上させることができる。
請求項4の発明によれば、通紙領域における定着部材の温度に応じて温度調整を行うことができ、本発明を採用しない場合に比べ、通紙領域の温度をより精度良く定着設定温度に設定することができる。
請求項5の発明によれば、本発明を採用しない場合に比べ、磁路形成部材の過剰な昇温を抑制することが可能になる。
According to the first aspect of the present invention, it is possible to suppress an excessive temperature rise in the non-sheet-passing region in the induction heating type fixing device as compared with the case where the present invention is not adopted.
According to the second aspect of the present invention, it is possible to determine the fixing set temperature set for the fixing member by a simple method as compared with the case where the present invention is not adopted.
According to the invention of claim 3, as compared with the case where the present invention is not adopted, the fixing performance can be improved within a temperature range in which the fixing member is not damaged in the sheet passing region.
According to the fourth aspect of the present invention, the temperature can be adjusted according to the temperature of the fixing member in the paper passing area, and the temperature of the paper passing area can be more accurately set to the fixing set temperature than when the present invention is not adopted. Can be set.
According to the fifth aspect of the present invention, it is possible to suppress an excessive temperature rise of the magnetic path forming member as compared with the case where the present invention is not adopted.

請求項6の発明によれば、本発明を採用しない場合に比べ、画像形成装置に搭載した誘導加熱方式の定着装置における非通紙領域での過剰な昇温を抑制することができる。
請求項7の発明によれば、本発明を採用しない場合に比べ、簡易な方法で、定着部材に設定する定着設定温度を定めることができる。
請求項8の発明によれば、本発明を採用しない場合に比べ、通紙領域において定着部材に損傷が生じさせない温度範囲内で、定着性能を向上させることができる。
According to the sixth aspect of the present invention, it is possible to suppress an excessive temperature rise in the non-sheet passing region in the induction heating type fixing device mounted on the image forming apparatus, as compared with the case where the present invention is not adopted.
According to the seventh aspect of the present invention, it is possible to determine the fixing set temperature set for the fixing member by a simple method as compared with the case where the present invention is not adopted.
According to the eighth aspect of the present invention, it is possible to improve the fixing performance within a temperature range in which the fixing member is not damaged in the sheet passing region, as compared with the case where the present invention is not adopted.

本実施の形態の定着装置が適用される画像形成装置の構成例を示した図である。1 is a diagram illustrating a configuration example of an image forming apparatus to which a fixing device according to an exemplary embodiment is applied. 本実施の形態の定着ユニットの構成を示す正面図である。FIG. 2 is a front view illustrating a configuration of a fixing unit of the present embodiment. 図2における定着ユニットのX−X断面図である。FIG. 3 is a cross-sectional view taken along line XX of the fixing unit in FIG. 2. 定着ベルトの断面層構成図である。FIG. 3 is a cross-sectional layer configuration diagram of a fixing belt. (a)がエンドキャップ部材の側面図であり、(b)がZ方向から見たエンドキャップ部材の平面図である。(a) is a side view of an end cap member, (b) is a top view of the end cap member seen from the Z direction. IHヒータの構成を説明する断面図である。It is sectional drawing explaining the structure of an IH heater. 定着ベルトの温度が透磁率変化開始温度以下の温度範囲にある場合の磁力線の状態を説明する図である。It is a figure explaining the state of a line of magnetic force in case the temperature of a fixing belt exists in the temperature range below the magnetic permeability change start temperature. 小サイズ紙を連続して通紙した際の定着ベルトの幅方向の温度分布の概略を示した図である。FIG. 6 is a diagram illustrating an outline of a temperature distribution in a width direction of a fixing belt when small-size paper is continuously passed. 非通紙領域での定着ベルトの温度が透磁率変化開始温度を超えた温度範囲にある場合の磁力線の状態を説明する図である。FIG. 6 is a diagram for explaining a state of magnetic lines of force when the temperature of the fixing belt in a non-sheet passing region is in a temperature range exceeding the permeability change start temperature. 感温磁性部材に形成されるスリットを示した図である。It is the figure which showed the slit formed in a temperature sensitive magnetic member. 感温磁性部材の長手方向の構成を説明する斜視図である。It is a perspective view explaining the structure of the longitudinal direction of a temperature-sensitive magnetic member. 小サイズ紙通紙領域に配置された感温磁性部材の比透磁率に関する温度特性の一例を示した図である。It is the figure which showed an example of the temperature characteristic regarding the relative magnetic permeability of the temperature-sensitive magnetic member arrange | positioned at a small size paper passage area | region. 非通紙領域に配置された感温磁性部材の比透磁率に関する温度特性の一例を示した図である。It is the figure which showed an example of the temperature characteristic regarding the relative magnetic permeability of the temperature-sensitive magnetic member arrange | positioned in the non-paper passing area | region.

以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
<画像形成装置の説明>
図1は本実施の形態の定着装置が適用される画像形成装置の構成例を示した図である。図1に示す画像形成装置1は、所謂タンデム型のカラープリンタであり、画像データに基づき画像形成を行う画像形成部10、画像形成装置1全体の動作を制御する制御部31を備えている。さらには、例えばパーソナルコンピュータ(PC)3や画像読取装置(スキャナ)4等との通信を行って画像データを受信する通信部32、通信部32にて受信された画像データに対し予め定めた画像処理を施す画像処理部33を備えている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
<Description of Image Forming Apparatus>
FIG. 1 is a diagram illustrating a configuration example of an image forming apparatus to which the fixing device of the present embodiment is applied. An image forming apparatus 1 shown in FIG. 1 is a so-called tandem color printer, and includes an image forming unit 10 that forms an image based on image data and a control unit 31 that controls the operation of the entire image forming apparatus 1. Further, for example, a communication unit 32 that receives image data by communicating with a personal computer (PC) 3 or an image reading device (scanner) 4, and a predetermined image for the image data received by the communication unit 32. An image processing unit 33 that performs processing is provided.

画像形成部10は、一定の間隔を置いて並列的に配置されるトナー像形成手段の一例である4つの画像形成ユニット11Y,11M,11C,11K(「画像形成ユニット11」とも総称する)を備えている。各画像形成ユニット11は、静電潜像を形成してトナー像を保持する像保持体の一例としての感光体ドラム12、感光体ドラム12の表面を予め定めた電位で一様に帯電する帯電器13、帯電器13によって帯電された感光体ドラム12を各色画像データに基づき露光するLED(Light Emitting Diode)プリントヘッド14、感光体ドラム12上に形成された静電潜像を現像する現像器15、転写後の感光体ドラム12表面を清掃するドラムクリーナ16を備えている。
画像形成ユニット11各々は、現像器15に収納されるトナーを除いて略同様に構成され、それぞれがイエロー(Y)、マゼンタ(M)、シアン(C)、黒(K)のトナー像を形成する。
The image forming unit 10 includes four image forming units 11Y, 11M, 11C, and 11K (also collectively referred to as “image forming unit 11”), which are examples of toner image forming units arranged in parallel at a predetermined interval. I have. Each image forming unit 11 forms an electrostatic latent image and a photosensitive drum 12 as an example of an image holding body that holds a toner image, and charging that uniformly charges the surface of the photosensitive drum 12 with a predetermined potential. 13, an LED (Light Emitting Diode) print head 14 that exposes the photosensitive drum 12 charged by the charger 13 based on each color image data, and a developer that develops an electrostatic latent image formed on the photosensitive drum 12. 15. A drum cleaner 16 for cleaning the surface of the photosensitive drum 12 after transfer is provided.
Each of the image forming units 11 is configured in substantially the same manner except for the toner stored in the developing device 15, and each forms a toner image of yellow (Y), magenta (M), cyan (C), and black (K). To do.

また、画像形成部10は、各画像形成ユニット11の感光体ドラム12にて形成された各色トナー像が多重転写される中間転写ベルト20、各画像形成ユニット11にて形成された各色トナー像を中間転写ベルト20に順次転写(一次転写)する一次転写ロール21を備えている。さらに、中間転写ベルト20上に重畳して転写された各色トナー像を記録材(記録紙)である用紙Pに一括転写(二次転写)する二次転写ロール22、二次転写された各色トナー像を用紙P上に定着させる定着手段(定着装置)の一例としての定着ユニット60を備えている。なお、本実施の形態の画像形成装置1では、中間転写ベルト20、一次転写ロール21、および二次転写ロール22により転写手段が構成される。   The image forming unit 10 also receives the intermediate transfer belt 20 onto which the color toner images formed on the photosensitive drums 12 of the image forming units 11 are transferred, and the color toner images formed on the image forming units 11. A primary transfer roll 21 that sequentially transfers (primary transfer) to the intermediate transfer belt 20 is provided. Further, a secondary transfer roll 22 that batch-transfers (secondary transfer) each color toner image transferred and superimposed on the intermediate transfer belt 20 onto a sheet P that is a recording material (recording paper), and each color toner that is secondarily transferred. A fixing unit 60 is provided as an example of a fixing unit (fixing device) that fixes the image on the paper P. In the image forming apparatus 1 of the present embodiment, the intermediate transfer belt 20, the primary transfer roll 21, and the secondary transfer roll 22 constitute a transfer unit.

本実施の形態の画像形成装置1では、制御部31による動作制御の下で、次のようなプロセスによる画像形成処理が行われる。すなわち、PC3やスキャナ4からの画像データは通信部32にて受信され、画像処理部33により予め定めた画像処理が施された後、各色毎の画像データとなって各画像形成ユニット11に送られる。そして、例えば黒(K)色トナー像を形成する画像形成ユニット11Kでは、感光体ドラム12が矢印A方向に回転しながら帯電器13により予め定めた電位で一様に帯電され、画像処理部33から送信されたK色画像データに基づきLEDプリントヘッド14が感光体ドラム12を走査露光する。それにより、感光体ドラム12上にはK色画像に関する静電潜像が形成される。感光体ドラム12上に形成されたK色静電潜像は現像器15により現像され、感光体ドラム12上にK色トナー像が形成される。同様に、画像形成ユニット11Y,11M,11Cにおいても、それぞれイエロー(Y)、マゼンタ(M)、シアン(C)の各色トナー像が形成される。   In the image forming apparatus 1 of the present embodiment, under the operation control by the control unit 31, image forming processing is performed by the following process. That is, the image data from the PC 3 or the scanner 4 is received by the communication unit 32, subjected to predetermined image processing by the image processing unit 33, and then sent to each image forming unit 11 as image data for each color. It is done. For example, in the image forming unit 11K that forms a black (K) toner image, the photosensitive drum 12 is uniformly charged at a predetermined potential by the charger 13 while rotating in the arrow A direction, and the image processing unit 33 is charged. The LED print head 14 scans and exposes the photosensitive drum 12 based on the K-color image data transmitted from. As a result, an electrostatic latent image relating to the K color image is formed on the photosensitive drum 12. The K-color electrostatic latent image formed on the photosensitive drum 12 is developed by the developing unit 15, and a K-color toner image is formed on the photosensitive drum 12. Similarly, yellow (Y), magenta (M), and cyan (C) color toner images are formed in the image forming units 11Y, 11M, and 11C, respectively.

各画像形成ユニット11の感光体ドラム12に形成された各色トナー像は、一次転写ロール21により矢印B方向に移動する中間転写ベルト20上に順次静電転写(一次転写)され、各色トナーが重畳された重畳トナー像が形成される。中間転写ベルト20上の重畳トナー像は、中間転写ベルト20の移動に伴って二次転写ロール22が配置された領域(二次転写部T)に搬送される。重畳トナー像が二次転写部Tに搬送されると、そのタイミングに合わせて用紙保持部40から用紙Pが二次転写部Tに供給される。そして、重畳トナー像は、二次転写部Tにて二次転写ロール22が形成する転写電界により、搬送されてきた用紙P上に一括して静電転写(二次転写)される。   Each color toner image formed on the photosensitive drum 12 of each image forming unit 11 is sequentially electrostatically transferred (primary transfer) onto the intermediate transfer belt 20 that moves in the direction of arrow B by the primary transfer roll 21, and each color toner is superimposed. A superimposed toner image is formed. The superimposed toner image on the intermediate transfer belt 20 is conveyed to a region (secondary transfer portion T) where the secondary transfer roll 22 is disposed as the intermediate transfer belt 20 moves. When the superimposed toner image is conveyed to the secondary transfer unit T, the paper P is supplied from the paper holding unit 40 to the secondary transfer unit T in accordance with the timing. The superimposed toner image is collectively electrostatically transferred (secondary transfer) onto the conveyed paper P by the transfer electric field formed by the secondary transfer roll 22 in the secondary transfer portion T.

その後、重畳トナー像が静電転写された用紙Pは、定着ユニット60まで搬送される。定着ユニット60に搬送された用紙P上のトナー像は、定着ユニット60によって熱および圧力を受け、用紙P上に定着される。そして、定着画像が形成された用紙Pは、画像形成装置1の排出部に設けられた用紙積載部45に搬送される。
一方、一次転写後に感光体ドラム12に付着しているトナー(一次転写残トナー)、および二次転写後に中間転写ベルト20に付着しているトナー(二次転写残トナー)は、それぞれドラムクリーナ16、およびベルトクリーナ25によって除去される。
このようにして、画像形成装置1での画像形成処理がプリント枚数分のサイクルだけ繰り返し実行される。
Thereafter, the sheet P on which the superimposed toner image is electrostatically transferred is conveyed to the fixing unit 60. The toner image on the paper P conveyed to the fixing unit 60 receives heat and pressure by the fixing unit 60 and is fixed on the paper P. Then, the paper P on which the fixed image is formed is conveyed to a paper stacking unit 45 provided in the discharge unit of the image forming apparatus 1.
On the other hand, the toner (primary transfer residual toner) adhering to the photosensitive drum 12 after the primary transfer and the toner (secondary transfer residual toner) adhering to the intermediate transfer belt 20 after the secondary transfer are respectively drum cleaner 16. , And the belt cleaner 25.
In this way, the image forming process in the image forming apparatus 1 is repeatedly executed for the number of printed sheets.

<定着ユニットの構成の説明>
次に、本実施の形態の定着ユニット60について説明する。
図2および図3は本実施の形態の定着ユニット60の構成を示す図であり、図2は正面図、図3は図2におけるX−X断面図である。
まず、断面図である図3に示すように、定着ユニット60は、交流磁界を生成する磁界生成部材の一例としてのIH(Induction Heating)ヒータ80、IHヒータ80により電磁誘導加熱されてトナー像を定着する定着部材の一例としての定着ベルト61、定着ベルト61に対向するように配置された加圧ロール62、定着ベルト61を介して加圧ロール62から押圧される押圧パッド63を備えている。
さらに、定着ユニット60は、押圧パッド63等の構成部材を支持するホルダ65、IHヒータ80にて生成された交流磁界を誘導して磁路を形成する感温磁性部材64、感温磁性部材64を通過した磁力線を誘導する誘導部材66、定着ベルト61からの用紙Pの剥離を補助する剥離補助部材173を備えている。
<Description of fixing unit configuration>
Next, the fixing unit 60 of this embodiment will be described.
2 and 3 are views showing the configuration of the fixing unit 60 of the present embodiment, FIG. 2 is a front view, and FIG. 3 is a sectional view taken along line XX in FIG.
First, as shown in FIG. 3, which is a cross-sectional view, the fixing unit 60 is heated by electromagnetic induction by an IH (Induction Heating) heater 80 and an IH heater 80 as an example of a magnetic field generating member that generates an alternating magnetic field, thereby generating a toner image. A fixing belt 61 as an example of a fixing member to be fixed, a pressure roll 62 disposed so as to face the fixing belt 61, and a pressure pad 63 pressed from the pressure roll 62 via the fixing belt 61 are provided.
Further, the fixing unit 60 includes a holder 65 that supports constituent members such as the pressure pad 63, a temperature-sensitive magnetic member 64 that induces an alternating magnetic field generated by the IH heater 80 to form a magnetic path, and a temperature-sensitive magnetic member 64. A guide member 66 that guides the lines of magnetic force that have passed through the sheet and a peeling assisting member 173 that assists in peeling the paper P from the fixing belt 61 are provided.

<定着ベルトの説明>
定着ベルト61は、原形が円筒形状の無端のベルト部材で構成され、例えば原形(円筒形状)時の直径が30mm、幅方向長が370mmに形成されている。また、図4(定着ベルト61の断面層構成図)に示したように、定着ベルト61は、基材層611、基材層611の上に積層された導電発熱層612、トナー像の定着性を向上させる弾性層613、最上層に被覆された表面離型層614からなる多層構造のベルト部材である。
<Description of fixing belt>
The fixing belt 61 is formed of an endless belt member having an original cylindrical shape, and has a diameter of 30 mm and a length in the width direction of 370 mm in the original shape (cylindrical shape), for example. Further, as shown in FIG. 4 (cross-sectional layer configuration diagram of the fixing belt 61), the fixing belt 61 includes a base material layer 611, a conductive heat generating layer 612 laminated on the base material layer 611, and a toner image fixability. The belt member has a multilayer structure including an elastic layer 613 for improving the surface and a surface release layer 614 coated on the uppermost layer.

基材層611は、薄層の導電発熱層612を支持するとともに、定着ベルト61全体としての機械的強度を形成する耐熱性のシート状部材で構成される。また、基材層611は、IHヒータ80にて生成された交流磁界が感温磁性部材64まで作用するように、磁界を通過させる物性(比透磁率、固有抵抗)を持った材質、厚さで形成される。一方、基材層611自身は、磁界の作用により発熱しないか、または発熱し難く構成される。
具体的には、基材層611として、例えば、厚さ30〜200μm(好ましくは50〜150μm)の非磁性ステンレススチール等の非磁性金属や、厚さ60〜200μmの樹脂材料等が用いられる。
The base material layer 611 is composed of a heat-resistant sheet-like member that supports the thin conductive heat generating layer 612 and forms the mechanical strength of the fixing belt 61 as a whole. In addition, the base material layer 611 is made of a material having a physical property (relative magnetic permeability, specific resistance) that allows the magnetic field to pass therethrough so that the AC magnetic field generated by the IH heater 80 acts to the temperature-sensitive magnetic member 64, and the thickness. Formed with. On the other hand, the base material layer 611 itself is configured not to generate heat or hardly generate heat due to the action of a magnetic field.
Specifically, as the base material layer 611, for example, a nonmagnetic metal such as nonmagnetic stainless steel having a thickness of 30 to 200 μm (preferably 50 to 150 μm), a resin material having a thickness of 60 to 200 μm, or the like is used.

導電発熱層612は、導電層の一例であって、IHヒータ80にて生成される交流磁界によって電磁誘導加熱される電磁誘導発熱体層である。すなわち、導電発熱層612は、IHヒータ80からの交流磁界が厚さ方向に通過することにより、渦電流を発生させる層である。
通常、IHヒータ80に交流電流を供給する励磁回路88(後段の図6も参照)の電源として、安価に製造できる汎用電源が使用される。そのため、IHヒータ80により生成される交流磁界の周波数は、一般に、汎用電源による20k〜100kHzとなる。それにより、導電発熱層612は、周波数20k〜100kHzの交流磁界が侵入し通過するように構成される。
The conductive heating layer 612 is an example of a conductive layer, and is an electromagnetic induction heating element layer that is electromagnetically heated by an alternating magnetic field generated by the IH heater 80. That is, the conductive heat generating layer 612 is a layer that generates an eddy current when the AC magnetic field from the IH heater 80 passes in the thickness direction.
In general, a general-purpose power source that can be manufactured at low cost is used as a power source for an excitation circuit 88 (see also FIG. 6 below) that supplies an AC current to the IH heater 80. Therefore, the frequency of the alternating magnetic field generated by the IH heater 80 is generally 20 k to 100 kHz by a general-purpose power source. Thereby, the conductive heat generating layer 612 is configured such that an alternating magnetic field having a frequency of 20 k to 100 kHz enters and passes therethrough.

導電発熱層612に交流磁界が侵入できる領域は、交流磁界が1/eに減衰する領域である「表皮深さ(δ)」として規定され、次の(1)式から導かれる。(1)式において、fは交流磁界の周波数(例えば、20kHz)、ρは固有抵抗値(Ω・m)、μは比透磁率である。
そのため、導電発熱層612の厚さは、周波数20k〜100kHzの交流磁界が導電発熱層612を侵入し通過するように、(1)式で規定される導電発熱層612の表皮深さ(δ)よりも薄層に構成される。また、導電発熱層612を構成する材料として、例えば、Au,Ag,Al,Cu,Zn,Sn,Pb,Bi,Be,Sb等の金属や、これらの金属合金が用いられる。
The region where the alternating magnetic field can enter the conductive heat generating layer 612 is defined as “skin depth (δ)”, which is a region where the alternating magnetic field attenuates to 1 / e, and is derived from the following equation (1). (1) In the equation, f is the AC magnetic field frequency (e.g., 20 kHz), [rho is resistivity (Omega · m), the mu r is the relative permeability.
Therefore, the thickness of the conductive heat generating layer 612 is determined by the skin depth (δ) of the conductive heat generating layer 612 defined by the equation (1) such that an alternating magnetic field having a frequency of 20 k to 100 kHz penetrates and passes through the conductive heat generating layer 612. It is configured in a thinner layer. Further, as a material constituting the conductive heat generating layer 612, for example, a metal such as Au, Ag, Al, Cu, Zn, Sn, Pb, Bi, Be, Sb, or a metal alloy thereof is used.

Figure 0005532646
Figure 0005532646

具体的には、導電発熱層612として、厚さ2〜20μm、固有抵抗2.7×10−8Ω・m以下の例えばCu等の非磁性金属(比透磁率が概ね1)が用いられる。
また、定着ベルト61が定着設定温度まで加熱されるまでに要する時間(以下、「ウォームアップタイム」)を短縮する観点からも、導電発熱層612は、薄層に構成するのが好ましい。
Specifically, a nonmagnetic metal such as Cu having a thickness of 2 to 20 μm and a specific resistance of 2.7 × 10 −8 Ω · m or less (relative magnetic permeability is approximately 1) is used as the conductive heating layer 612.
Further, from the viewpoint of shortening the time required for the fixing belt 61 to be heated to the fixing set temperature (hereinafter referred to as “warm-up time”), the conductive heat generating layer 612 is preferably formed as a thin layer.

次に、弾性層613は、シリコーンゴム等の耐熱性の弾性体で構成される。定着対象となる用紙Pに保持されるトナー像は、粉体である各色トナーが積層して形成されている。そのため、ニップ部Nにおいてトナー像の全体に均一に熱を供給するには、用紙P上のトナー像の凹凸に倣って定着ベルト61表面が変形することが好ましい。そこで、弾性層613には、例えば厚みが100〜600μm、硬度が10°〜30°(JIS−A)のシリコーンゴムが好適である。
表面離型層614は、用紙P上に保持された未定着トナー像と直接接触するため、離型性の高い材質が使用される。例えば、PFA(テトラフルオロエチレンパーフルオロアルキルビニルエーテル重合体)、PTFE(ポリテトラフルオロエチレン)、シリコーン共重合体、またはこれらの複合層等が用いられる。表面離型層614の厚さとしては、薄すぎると、耐摩耗性の面で充分でなく、定着ベルト61の寿命を短くする。その一方で、厚すぎると、定着ベルト61の熱容量が大きくなりすぎ、ウォームアップタイムが長くなる。そこで、表面離型層614の厚さとして、耐摩耗性と熱容量とのバランスを考慮し、1〜50μmが好適である。
Next, the elastic layer 613 is composed of a heat-resistant elastic body such as silicone rubber. The toner image held on the sheet P to be fixed is formed by laminating each color toner as powder. Therefore, in order to supply heat uniformly to the entire toner image at the nip portion N, it is preferable that the surface of the fixing belt 61 is deformed following the unevenness of the toner image on the paper P. Therefore, for example, silicone rubber having a thickness of 100 to 600 μm and a hardness of 10 ° to 30 ° (JIS-A) is suitable for the elastic layer 613.
Since the surface release layer 614 is in direct contact with the unfixed toner image held on the paper P, a material having a high release property is used. For example, PFA (tetrafluoroethylene perfluoroalkyl vinyl ether polymer), PTFE (polytetrafluoroethylene), silicone copolymer, or a composite layer thereof is used. If the thickness of the surface release layer 614 is too thin, it is not sufficient in terms of wear resistance, and the life of the fixing belt 61 is shortened. On the other hand, if it is too thick, the heat capacity of the fixing belt 61 becomes too large and the warm-up time becomes long. Therefore, the thickness of the surface release layer 614 is preferably 1 to 50 μm in consideration of the balance between wear resistance and heat capacity.

<押圧パッドの説明>
押圧パッド63は、シリコーンゴム等やフッ素ゴム等の弾性体で構成され、加圧ロール62と対向する位置にてホルダ65に支持される。そして、定着ベルト61を介して加圧ロール62から押圧される状態で配置され、加圧ロール62との間でニップ部Nを形成する。
また、押圧パッド63は、ニップ部Nの入口側(用紙Pの搬送方向上流側)のプレニップ領域63aと、ニップ部Nの出口側(用紙Pの搬送方向下流側)の剥離ニップ領域63bとで異なるニップ圧が設定されている。すなわち、プレニップ領域63aでは、加圧ロール62側の面がほぼ加圧ロール62の外周面に倣う円弧形状に形成され、均一で幅の広いニップ部Nを形成する。また、剥離ニップ領域63bでは、剥離ニップ領域63bを通過する定着ベルト61の曲率半径が小さくなるように、加圧ロール62表面から局所的に大きなニップ圧で押圧されるように形成される。それにより、剥離ニップ領域63bを通過する用紙Pに定着ベルト61表面から離れる方向のカール(ダウンカール)を形成して、用紙Pに対する定着ベルト61表面からの剥離を促進させている。
<Description of pressing pad>
The pressing pad 63 is made of an elastic body such as silicone rubber or fluorine rubber, and is supported by the holder 65 at a position facing the pressure roll 62. Then, it is arranged in a state of being pressed from the pressure roll 62 via the fixing belt 61, and a nip portion N is formed with the pressure roll 62.
The pressing pad 63 includes a pre-nip region 63a on the inlet side of the nip portion N (upstream side in the conveyance direction of the paper P) and a peeling nip region 63b on the outlet side of the nip portion N (downstream side in the conveyance direction of the paper P). Different nip pressures are set. That is, in the pre-nip region 63 a, the surface on the pressure roll 62 side is formed in an arc shape that substantially follows the outer peripheral surface of the pressure roll 62, thereby forming a uniform and wide nip portion N. Further, the peeling nip region 63b is formed so as to be locally pressed from the surface of the pressure roll 62 with a large nip pressure so that the radius of curvature of the fixing belt 61 passing through the peeling nip region 63b becomes small. As a result, a curl (down curl) in a direction away from the surface of the fixing belt 61 is formed on the paper P passing through the peeling nip region 63b to promote the peeling of the paper P from the surface of the fixing belt 61.

なお、本実施の形態では、押圧パッド63による剥離の補助手段として、ニップ部Nの下流側に、剥離補助部材173を配置している。剥離補助部材173は、剥離バッフル171が定着ベルト61の回転移動方向と対向する向き(所謂カウンタ方向)に定着ベルト61と近接する状態でホルダ172によって支持される。そして、押圧パッド63の出口にて用紙Pに形成されたカール部分を剥離バッフル171により支持することで、用紙Pが定着ベルト61方向に向かうことを抑制する。   In the present embodiment, a peeling assisting member 173 is arranged on the downstream side of the nip portion N as a peeling assisting means by the pressing pad 63. The peeling auxiliary member 173 is supported by the holder 172 in a state where the peeling baffle 171 is close to the fixing belt 61 in a direction opposite to the rotational movement direction of the fixing belt 61 (so-called counter direction). The curled portion formed on the paper P at the outlet of the pressing pad 63 is supported by the peeling baffle 171 to suppress the paper P from moving toward the fixing belt 61.

<感温磁性部材の説明>
次に、感温磁性部材64は、定着ベルト61の内周面に倣った円弧形状で形成され、定着ベルト61の内周面とは予め定めた間隙(例えば、0.5〜2.5mm)を有するように近接させるが、非接触で配置される。感温磁性部材64を定着ベルト61と近接させて配置するのは、感温磁性部材64の温度が定着ベルト61の温度に対応して変化する、すなわち、感温磁性部材64の温度が定着ベルト61の温度と略同じ温度となるように構成するためである。また、感温磁性部材64を定着ベルト61と非接触で配置するのは、画像形成装置1のメインスイッチがオンされ、定着ベルト61が定着設定温度まで加熱される際に、定着ベルト61の熱が感温磁性部材64に流入するのを抑制して、ウォームアップタイムの短縮を図るためである。
<Description of temperature-sensitive magnetic member>
Next, the temperature-sensitive magnetic member 64 is formed in an arc shape that follows the inner peripheral surface of the fixing belt 61, and a predetermined gap (for example, 0.5 to 2.5 mm) from the inner peripheral surface of the fixing belt 61. Are arranged close to each other but in a non-contact manner. The temperature-sensitive magnetic member 64 is disposed close to the fixing belt 61 because the temperature of the temperature-sensitive magnetic member 64 changes corresponding to the temperature of the fixing belt 61, that is, the temperature of the temperature-sensitive magnetic member 64 is changed. This is because the temperature is substantially the same as the temperature 61. Further, the temperature-sensitive magnetic member 64 is disposed in a non-contact manner with the fixing belt 61 because the heat of the fixing belt 61 is increased when the main switch of the image forming apparatus 1 is turned on and the fixing belt 61 is heated to the fixing set temperature. This is to prevent the temperature from flowing into the temperature-sensitive magnetic member 64 and shorten the warm-up time.

また、感温磁性部材64は、磁気特性が温度に応じて強磁性と非磁性(常磁性)との間で可逆的に遷移する遷移領域を有する所謂「感温磁性材料」で構成される。また、感温磁性部材64での磁気特性の遷移領域は、各色トナー像を定着する定着設定温度以上であって定着ベルト61の耐熱温度以下となる温度範囲内(例えば、140〜240℃)に設定される。そして、感温磁性部材64は、強磁性を呈する温度範囲において磁路形成部材として機能し、IHヒータ80にて生成され定着ベルト61を透過した磁力線を内部に誘導して、感温磁性部材64の内部を通過する磁路を形成する。それにより、感温磁性部材64は、定着ベルト61とIHヒータ80の励磁コイル82(後段の図6参照)とを内部に包み込むような閉磁路を形成する。一方、非磁性を呈する温度範囲においては、感温磁性部材64は、IHヒータ80にて生成され定着ベルト61を透過した磁力線を、感温磁性部材64の厚さ方向に横切るように透過させる。それにより、IHヒータ80にて生成され定着ベルト61を透過した磁力線は、感温磁性部材64を透過し、誘導部材66の内部を通過してIHヒータ80に戻る磁路を形成する。なお、感温磁性部材64の感温磁性については、後段において詳述する。   The temperature-sensitive magnetic member 64 is formed of a so-called “temperature-sensitive magnetic material” having a transition region in which the magnetic characteristics reversibly transition between ferromagnetic and non-magnetic (paramagnetic) depending on temperature. Further, the transition region of the magnetic characteristics in the temperature-sensitive magnetic member 64 is within a temperature range (for example, 140 to 240 ° C.) that is not less than the fixing set temperature for fixing each color toner image and not more than the heat resistance temperature of the fixing belt 61. Is set. The temperature-sensitive magnetic member 64 functions as a magnetic path forming member in a temperature range exhibiting ferromagnetism, and induces a magnetic force line generated by the IH heater 80 and transmitted through the fixing belt 61 to the inside, so that the temperature-sensitive magnetic member 64 A magnetic path passing through the inside of the is formed. As a result, the temperature-sensitive magnetic member 64 forms a closed magnetic path that encloses the fixing belt 61 and the exciting coil 82 of the IH heater 80 (see FIG. 6 at a later stage). On the other hand, in the temperature range exhibiting non-magnetism, the temperature-sensitive magnetic member 64 transmits the magnetic force lines generated by the IH heater 80 and transmitted through the fixing belt 61 so as to cross the thickness direction of the temperature-sensitive magnetic member 64. Thereby, the magnetic lines of force generated by the IH heater 80 and transmitted through the fixing belt 61 form a magnetic path that passes through the temperature-sensitive magnetic member 64, passes through the inside of the guide member 66, and returns to the IH heater 80. The temperature-sensitive magnetism of the temperature-sensitive magnetic member 64 will be described in detail later.

感温磁性材料は金属材料と酸化物材料とに大別されるが、酸化物材料(例えば、ソフトフェライトなど)は、薄厚化(300μm以下)することが困難であり、セラミックスであるため割れるので非常に扱いにくい。特に薄厚化すれば割れやすく、焼成物のため薄肉化すれば寸法精度が低下しやすく量産が困難である。薄肉にできなければ熱容量が大きくなる点や、セラミックスで熱伝導率が低いため、定着ベルト61の温度変化に感度よく追従せず、目標値での発熱制御が難しくなる点などの問題が起こる。この問題を解決するために、本実施の形態では安価で容易に薄肉化成型可能で良加工性、しなやかさを有し、かつ、熱伝導率が高い、Fe−Niの二元系感温磁性合金やFe−Ni−Crの三元系感温磁性合金を用いることが望ましい。感温磁性合金は、具体的には透磁率が変化を開始する温度(「透磁率変化開始温度」)が定着設定以上で耐熱温度以下に範囲として用いられる例えば140℃〜240℃の範囲内に設定されたFe−Ni合金(パーマロイ)等の二元系感温磁性合金やFe−Ni−Cr合金等の三元系の感温磁性合金等で、例えば、Fe−Niの二元系感温磁性合金においては約Fe64%、Ni36%(原子数比)とすることで225℃前後に透磁率変化開始温度を設定することができる。このようなパーマロイや感温磁性合金等の金属合金等は、成型性や加工性に優れ、伝熱性も高く安価である等の理由から、感温磁性部材64に適する。その他の材質としては、Fe,Ni,Si,B,Nb,Cu,Zr,Co,Cr,V,Mn,Mo等からなる金属合金が用いられる。
また、感温磁性部材64は、IHヒータ80により生成された交流磁界(磁力線)に対する表皮深さδ(上記(1)式参照)よりも厚い厚さで形成される。具体的には、例えばFe−Ni合金を用いた場合には50〜300μm程度に設定される。表皮深さδと同等以上の厚さにすれば主な磁束の磁路が形成できるので、感温磁性部材64が定着ベルト61昇温時の温度を感度よく検知(センシング)するためには熱容量の観点から薄い方が望ましい。
Temperature-sensitive magnetic materials are roughly classified into metal materials and oxide materials, but oxide materials (for example, soft ferrite) are difficult to be thinned (300 μm or less) and are cracked because they are ceramics. Very unwieldy. In particular, if it is thinned, it is easy to break, and if it is thinned because of a fired product, the dimensional accuracy is likely to be lowered and mass production is difficult. If the thickness cannot be reduced, the heat capacity becomes large, and the thermal conductivity of ceramics is low. Therefore, there are problems such as difficulty in following the temperature change of the fixing belt 61 and difficulty in controlling the heat generation at the target value. In order to solve this problem, in this embodiment, Fe-Ni binary thermosensitive magnetism that is inexpensive, can be easily thinned and molded, has good workability, flexibility, and high thermal conductivity. It is desirable to use an alloy or a Fe-Ni-Cr ternary thermosensitive magnetic alloy. Specifically, the temperature-sensitive magnetic alloy has a temperature at which the magnetic permeability starts to change (“permeability change start temperature”), which is used as a range from the fixing setting to the heat resistant temperature or less, for example, within a range of 140 ° C. to 240 ° C. Binary temperature-sensitive magnetic alloy such as Fe-Ni alloy (permalloy) or ternary temperature-sensitive magnetic alloy such as Fe-Ni-Cr alloy, etc. In a magnetic alloy, the magnetic permeability change start temperature can be set to around 225 ° C. by setting it to about Fe 64% and Ni 36% (atomic ratio). Such metal alloys such as permalloy and temperature-sensitive magnetic alloy are suitable for the temperature-sensitive magnetic member 64 because they are excellent in moldability and workability, have high heat conductivity, and are inexpensive. As other materials, a metal alloy made of Fe, Ni, Si, B, Nb, Cu, Zr, Co, Cr, V, Mn, Mo or the like is used.
Further, the temperature-sensitive magnetic member 64 is formed with a thickness greater than the skin depth δ (see the above formula (1)) with respect to the AC magnetic field (lines of magnetic force) generated by the IH heater 80. Specifically, for example, when an Fe—Ni alloy is used, the thickness is set to about 50 to 300 μm. If the thickness is equal to or greater than the skin depth δ, the magnetic path of the main magnetic flux can be formed. Therefore, in order for the temperature-sensitive magnetic member 64 to detect (sense) the temperature when the fixing belt 61 is heated with high sensitivity, the heat capacity From the viewpoint of, it is desirable that it is thinner.

<ホルダの説明>
押圧パッド63を支持するホルダ65は、押圧パッド63が加圧ロール62からの押圧力を受けた状態での撓み量が一定量以下となるように、剛性の高い材料で構成される。それにより、ニップ部Nにおける長手方向の圧力(ニップ圧N)の均一性を維持している。さらに、本実施の形態の定着ユニット60では、電磁誘導を用いて定着ベルト61を加熱する構成を採用していることから、ホルダ65は、誘導磁界に影響を与えないか、または与え難い材料であり、かつ、誘導磁界から影響を受けないか、または受け難い材料で構成される。例えば、ガラス混入PPS(ポリフェニレンサルファイド)等の耐熱性樹脂や、例えばAl,Cu,Ag等の非磁性金属材料等が用いられる。
<Description of holder>
The holder 65 that supports the pressing pad 63 is made of a material having high rigidity so that the amount of bending in a state where the pressing pad 63 receives the pressing force from the pressing roll 62 becomes a certain amount or less. Thereby, the uniformity of the pressure in the longitudinal direction (nip pressure N) at the nip portion N is maintained. Furthermore, since the fixing unit 60 according to the present embodiment employs a configuration in which the fixing belt 61 is heated using electromagnetic induction, the holder 65 is made of a material that does not affect or hardly gives influence to the induced magnetic field. It is made of a material that is not affected or hardly affected by the induced magnetic field. For example, a heat-resistant resin such as glass-mixed PPS (polyphenylene sulfide) or a nonmagnetic metal material such as Al, Cu, or Ag is used.

<誘導部材の説明>
誘導部材66は、感温磁性部材64の内周面に倣った円弧形状で形成され、感温磁性部材64の内周面とは予め定めた間隙(例えば、1.0〜5.0mm)を有する非接触に配置される。また、誘導部材66は、例えばAg,Cu,Alといった固有抵抗値が比較的小さい非磁性金属で構成される。そして、感温磁性部材64が透磁率変化開始温度以上の温度に上昇した際に、IHヒータ80により生成された交流磁界(磁力線)を誘導して、定着ベルト61の導電発熱層612よりも渦電流Iが発生し易い状態を形成する。それにより、誘導部材66の厚さは、渦電流Iが流れ易いように、表皮深さδ(上記(1)式参照)よりも充分に厚い厚さ(例えば、1.0mm)で形成される。
<Description of induction member>
The induction member 66 is formed in an arc shape that follows the inner peripheral surface of the temperature-sensitive magnetic member 64, and has a predetermined gap (for example, 1.0 to 5.0 mm) from the inner peripheral surface of the temperature-sensitive magnetic member 64. Having a non-contact arrangement. The induction member 66 is made of a nonmagnetic metal having a relatively small specific resistance value, such as Ag, Cu, or Al. Then, when the temperature-sensitive magnetic member 64 rises to a temperature equal to or higher than the permeability change start temperature, an alternating magnetic field (line of magnetic force) generated by the IH heater 80 is induced, and the vortex is more vortexed than the conductive heating layer 612 of the fixing belt 61. A state in which the current I is easily generated is formed. Thereby, the thickness of the induction member 66 is formed with a thickness (for example, 1.0 mm) sufficiently thicker than the skin depth δ (see the above formula (1)) so that the eddy current I flows easily. .

<定着ベルトの駆動機構の説明>
次に、定着ベルト61の駆動機構について説明する。
正面図である図2に示したように、ホルダ65(図3参照)の軸方向両端部には、定着ベルト61の両端部の断面形状を円形に維持しながら定着ベルト61を周方向に回転駆動するエンドキャップ部材67が固定されている。そして、定着ベルト61は、両端部からエンドキャップ部材67を介した回転駆動力を直接的に受けて、例えば140mm/sのプロセススピードで図3の矢印C方向に回転移動する。
ここで図5は、(a)がエンドキャップ部材67の側面図であり、(b)がZ方向から見たエンドキャップ部材67の平面図である。図5に示したように、エンドキャップ部材67は、定着ベルト61の両端部内側に嵌合される固定部67a、固定部67aより外径が大きく形成され、定着ベルト61に装着された際に定着ベルト61よりも半径方向に張り出すように形成されたフランジ部67d、回転駆動力が伝達されるギヤ部67b、ホルダ65の両端部に形成された支持部65aと結合部材166を介して回転自在に結合されたベアリング軸受部67cを備える。そして、上記図2に示したように、ホルダ65の両端部の支持部65aが定着ユニット60の筐体69の両端部に固定されることで、エンドキャップ部材67は、支持部65aに結合されたベアリング軸受部67cを介して回転自在に支持される。
エンドキャップ部材67を構成する材質としては、機械的強度や耐熱性の高い所謂エンジニアリングプラスチックスが用いられる。例えば、フェノール樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、PEEK樹脂、PES樹脂、PPS樹脂、LCP樹脂等が適する。
<Description of Fixing Belt Drive Mechanism>
Next, a driving mechanism for the fixing belt 61 will be described.
As shown in FIG. 2 which is a front view, the fixing belt 61 is rotated in the circumferential direction while maintaining the cross-sectional shape of both ends of the fixing belt 61 in a circular shape at both axial ends of the holder 65 (see FIG. 3). An end cap member 67 to be driven is fixed. The fixing belt 61 directly receives the rotational driving force from both ends via the end cap member 67, and rotates and moves in the direction of arrow C in FIG. 3 at a process speed of 140 mm / s, for example.
5A is a side view of the end cap member 67, and FIG. 5B is a plan view of the end cap member 67 viewed from the Z direction. As shown in FIG. 5, the end cap member 67 is formed with a fixing portion 67 a fitted inside the both ends of the fixing belt 61 and has an outer diameter larger than that of the fixing portion 67 a, and when the end cap member 67 is attached to the fixing belt 61. Rotating through a flange portion 67d formed so as to project radially from the fixing belt 61, a gear portion 67b to which rotational driving force is transmitted, a support portion 65a formed at both ends of the holder 65, and a coupling member 166. A bearing bearing portion 67c that is freely coupled is provided. Then, as shown in FIG. 2, the support portions 65a at both ends of the holder 65 are fixed to both ends of the casing 69 of the fixing unit 60, whereby the end cap member 67 is coupled to the support portion 65a. It is rotatably supported via the bearing bearing portion 67c.
As a material constituting the end cap member 67, so-called engineering plastics having high mechanical strength and heat resistance are used. For example, phenol resin, polyimide resin, polyamide resin, polyamideimide resin, PEEK resin, PES resin, PPS resin, LCP resin and the like are suitable.

そして、図2に示すように、定着ユニット60では、駆動モータ90からの回転駆動力が伝達ギヤ91,92を介してシャフト93に伝達され、シャフト93に結合された伝達ギヤ94,95から両エンドキャップ部材67のギヤ部67b(図5参照)に伝達される。それによって、エンドキャップ部材67から定着ベルト61に回転駆動力が伝わり、エンドキャップ部材67と定着ベルト61とが一体となって回転駆動される。
このように、定着ベルト61が定着ベルト61の両端部から駆動力を直接受けて回転するので、定着ベルト61は安定して回転する。
As shown in FIG. 2, in the fixing unit 60, the rotational driving force from the drive motor 90 is transmitted to the shaft 93 via the transmission gears 91 and 92, and both are transmitted from the transmission gears 94 and 95 coupled to the shaft 93. It is transmitted to the gear portion 67b (see FIG. 5) of the end cap member 67. As a result, a rotational driving force is transmitted from the end cap member 67 to the fixing belt 61, and the end cap member 67 and the fixing belt 61 are integrally rotated.
Thus, the fixing belt 61 rotates by receiving the driving force directly from both ends of the fixing belt 61, so that the fixing belt 61 rotates stably.

ここで、定着ベルト61が両端部のエンドキャップ部材67から駆動力を直接受けて回転する場合には、一般に、0.1〜0.5N・m程度のトルクが作用する。ところが、本実施の形態の定着ベルト61では、基材層611を機械的強度の高い例えば非磁性ステンレススチール等で構成している。そのため、定着ベルト61全体に0.1〜0.5N・m程度のねじりトルクが作用した場合でも、定着ベルト61には座屈等が生じ難い。
また、エンドキャップ部材67のフランジ部67dにより定着ベルト61の片寄りを抑えているが、その際の定着ベルト61には、一般に、端部(フランジ部67d)側から軸方向に向けて1〜5N程度の圧縮力が働く。しかし、定着ベルト61がこのような圧縮力を受けた場合においても、定着ベルト61の基材層611が非磁性ステンレススチール等で構成されていることから、座屈等の発生が抑制される。
上記のように、本実施の形態の定着ベルト61においては、定着ベルト61の両端部から駆動力を直接受けて回転するので、安定した回転が行われる。また、その際に、定着ベルト61の基材層611を機械的強度の高い例えば非磁性ステンレススチール等で構成することで、ねじりトルクや圧縮力に対して座屈等が発生し難い構成を実現している。さらには、基材層611および導電発熱層612を薄層に形成して、定着ベルト61全体としての柔軟性・フレキシブル性を確保しているので、ニップ部Nに倣った変形と形状復元とが行われる。
Here, when the fixing belt 61 rotates by receiving a driving force directly from the end cap members 67 at both ends, a torque of about 0.1 to 0.5 N · m is generally applied. However, in the fixing belt 61 of the present embodiment, the base material layer 611 is made of, for example, nonmagnetic stainless steel having high mechanical strength. For this reason, even when a torsional torque of about 0.1 to 0.5 N · m acts on the entire fixing belt 61, buckling or the like hardly occurs in the fixing belt 61.
Further, the flange portion 67d of the end cap member 67 suppresses the deviation of the fixing belt 61. In general, the fixing belt 61 at that time is generally 1 to 5 in the axial direction from the end portion (flange portion 67d) side. A compressive force of about 5N works. However, even when the fixing belt 61 receives such a compressive force, since the base material layer 611 of the fixing belt 61 is made of nonmagnetic stainless steel or the like, occurrence of buckling or the like is suppressed.
As described above, the fixing belt 61 according to the present embodiment rotates by receiving the driving force directly from both ends of the fixing belt 61, so that stable rotation is performed. At that time, the base material layer 611 of the fixing belt 61 is made of, for example, non-magnetic stainless steel having high mechanical strength, thereby realizing a structure in which buckling or the like hardly occurs against torsion torque or compression force. doing. Furthermore, since the base material layer 611 and the conductive heat generating layer 612 are formed in a thin layer to ensure the flexibility and flexibility of the fixing belt 61 as a whole, deformation and shape restoration following the nip portion N are prevented. Done.

図3に戻り、加圧ロール62は、定着ベルト61に対向するように配置され、定着ベルト61に従動して図3の矢印D方向に、例えば140mm/sのプロセススピードで回転する。そして、加圧ロール62と押圧パッド63とにより定着ベルト61を挟持した状態でニップ部Nを形成し、このニップ部Nに未定着トナー像を保持した用紙Pを通過させることで、熱および圧力を加えて未定着トナー像を用紙Pに定着する。
加圧ロール62は、例えば直径18mmの中実のアルミニウム製コア(円柱状芯金)621と、コア621の外周面に被覆された例えば厚さ5mmのシリコーンスポンジ等の耐熱性弾性体層622と、さらに例えば厚さ50μmのカーボン配合のPFA等の耐熱性樹脂被覆または耐熱性ゴム被覆による離型層623とが積層されて構成される。そして、押圧バネ68(図2参照)により例えば25kgfの荷重で定着ベルト61を介して押圧パッド63を押圧している。
Returning to FIG. 3, the pressure roll 62 is arranged so as to face the fixing belt 61, and rotates in the direction of arrow D in FIG. 3 at a process speed of 140 mm / s, for example, following the fixing belt 61. Then, a nip portion N is formed in a state where the fixing belt 61 is sandwiched between the pressure roll 62 and the pressing pad 63, and the sheet P holding the unfixed toner image is passed through the nip portion N, so that the heat and pressure To fix the unfixed toner image on the paper P.
The pressure roll 62 includes, for example, a solid aluminum core (cylindrical metal core) 621 having a diameter of 18 mm, and a heat-resistant elastic body layer 622 such as a silicone sponge having a thickness of 5 mm, which is coated on the outer peripheral surface of the core 621. Further, for example, a release layer 623 made of a heat-resistant resin coating such as PFA containing carbon having a thickness of 50 μm or a heat-resistant rubber coating is laminated. Then, the pressing pad 63 is pressed through the fixing belt 61 with a load of 25 kgf, for example, by a pressing spring 68 (see FIG. 2).

<IHヒータの説明>
続いて、定着ベルト61の導電発熱層612に交流磁界を作用させて電磁誘導加熱するIHヒータ80について説明する。
図6は、本実施の形態のIHヒータ80の構成を説明する断面図である。図6に示したように、IHヒータ80は、例えば耐熱性樹脂等の非磁性体から構成される支持体81、交流磁界を生成する励磁コイル82を備えている。また、励磁コイル82を支持体81上に固定する弾性体で構成された弾性支持部材83、励磁コイル82にて生成された交流磁界の磁路を形成する磁心84を備えている。さらには、磁界を遮蔽するシールド85、磁心84を支持体81側に加圧する加圧部材86、励磁コイル82に交流電流を供給する励磁回路88を備えている。
<Description of IH heater>
Next, the IH heater 80 that performs electromagnetic induction heating by applying an AC magnetic field to the conductive heat generating layer 612 of the fixing belt 61 will be described.
FIG. 6 is a cross-sectional view illustrating the configuration of the IH heater 80 of the present embodiment. As shown in FIG. 6, the IH heater 80 includes a support 81 made of a nonmagnetic material such as a heat resistant resin, and an exciting coil 82 that generates an alternating magnetic field. Further, an elastic support member 83 made of an elastic body that fixes the excitation coil 82 on the support 81 and a magnetic core 84 that forms a magnetic path of an alternating magnetic field generated by the excitation coil 82 are provided. Furthermore, a shield 85 that shields the magnetic field, a pressure member 86 that pressurizes the magnetic core 84 toward the support 81, and an excitation circuit 88 that supplies an alternating current to the excitation coil 82 are provided.

支持体81は、断面が定着ベルト61の表面形状に沿って湾曲した形状で形成され、励磁コイル82を支持する上部面(支持面)81aが定着ベルト61表面と予め定めた間隙(例えば、0.5〜2mm)を保つように形成され設定されている。また、支持体81には、支持面81aの定着ベルト61移動方向中央部にて長手方向に平行に配置された一対の磁心支持部81bと、支持面81aの定着ベルト61移動方向両端部にて磁心84の配置位置を定着ベルト61移動方向に規制する磁心規制部81cとが配置されている。そして、一対の磁心支持部81bは、支持面81a両端部に設けられた磁心規制部81cの間で、磁心84を定着ベルト61移動方向の前後に移動自在に支持する。それにより、製造時の熱処理によって形状にばらつきが生じ易い磁心84と支持面81aとの間隙が、定着ベルト61移動方向中央部を中心として上流側領域と下流側領域とにおいて略対称となるように磁心84を支持する。
支持体81を構成する材質としては、例えば、耐熱ガラス、ポリカーボネート、ポリエーテルサルフォン、PPS(ポリフェニレンサルファイド)等の耐熱性樹脂、またはこれらにガラス繊維を混合した耐熱性樹脂等の耐熱性のある非磁性材料が用いられる。
The support 81 is formed in a shape whose cross section is curved along the surface shape of the fixing belt 61, and an upper surface (supporting surface) 81 a that supports the exciting coil 82 has a predetermined gap (for example, 0) from the surface of the fixing belt 61. 0.5 to 2 mm). Further, the support 81 has a pair of magnetic core support portions 81b disposed in parallel to the longitudinal direction at the center of the support surface 81a in the moving direction of the fixing belt 61, and both ends of the support surface 81a in the moving direction of the fixing belt 61. A magnetic core restricting portion 81 c that restricts the arrangement position of the magnetic core 84 in the moving direction of the fixing belt 61 is arranged. The pair of magnetic core support portions 81b support the magnetic core 84 so as to be movable forward and backward in the moving direction of the fixing belt 61 between the magnetic core restricting portions 81c provided at both ends of the support surface 81a. As a result, the gap between the magnetic core 84 and the support surface 81a, the shape of which is likely to vary in shape due to heat treatment during manufacturing, is substantially symmetric in the upstream region and the downstream region around the central portion in the moving direction of the fixing belt 61. The magnetic core 84 is supported.
Examples of the material constituting the support 81 include heat-resistant resins such as heat-resistant glass, polycarbonate, polyethersulfone, and PPS (polyphenylene sulfide), or heat-resistant resins obtained by mixing glass fibers with these materials. A non-magnetic material is used.

励磁コイル82は、相互に絶縁された例えば直径0.17mmの銅線材を例えば90本束ねたリッツ線が長円形状や楕円形状、長方形状等の中空きの閉ループ状に巻かれて構成される。そして、励磁コイル82に励磁回路88から予め定めた周波数の交流電流が供給されることにより、励磁コイル82の周囲には、閉ループ状に巻かれたリッツ線を中心とする交流磁界が生成される。励磁回路88から励磁コイル82に供給される交流電流の周波数は、一般に、上記した汎用電源により生成される20k〜100kHzが用いられる。
弾性支持部材83は、例えばシリコーンゴム等やフッ素ゴム等の弾性体で構成されたシート状部材である。弾性支持部材83は、励磁コイル82が支持体81の支持面81aに密着して固定されるように、励磁コイル82を支持体81に対して押圧するように設定されている。
The exciting coil 82 is configured by winding, for example, 90 litz wires, which are bundled with, for example, 90 copper wires having a diameter of 0.17 mm and wound in a closed loop with a hollow shape such as an ellipse, an ellipse, or a rectangle. . Then, when an alternating current having a predetermined frequency is supplied to the exciting coil 82 from the exciting circuit 88, an alternating magnetic field centered around a litz wire wound in a closed loop is generated around the exciting coil 82. . Generally, the frequency of the alternating current supplied from the excitation circuit 88 to the excitation coil 82 is 20 k to 100 kHz generated by the general-purpose power source.
The elastic support member 83 is a sheet-like member made of an elastic body such as silicone rubber or fluorine rubber. The elastic support member 83 is set to press the excitation coil 82 against the support 81 so that the excitation coil 82 is fixed in close contact with the support surface 81a of the support 81.

磁心84は、例えばソフトフェライト、フェライト樹脂、非晶質合金(アモルファス合金)、やパーマロイ、感温磁性合金等の高透磁率の酸化物や合金材質で構成される強磁性体が用いられ、磁路形成手段として機能する。磁心84は、励磁コイル82にて生成された交流磁界による磁力線(磁束)を内部に誘導し、磁心84から定着ベルト61を横切って感温磁性部材64方向に向かい、感温磁性部材64の中を通過して磁心84に戻るといった磁力線の通路(磁路)を形成する。すなわち、励磁コイル82にて生成された交流磁界が磁心84の内部と感温磁性部材64の内部とを通過するように構成して、磁力線が定着ベルト61と励磁コイル82とを内部に包み込むような閉磁路を形成する。それにより、励磁コイル82にて生成された交流磁界の磁力線が定着ベルト61の磁心84と対向する領域に集中される。
ここで、磁心84は磁路形成による損失が小さい材料が望ましい。具体的には、磁心84は渦電流損を小さくする形態(スリット等による電流経路遮断や分断化、薄板束ね等)での使用が望ましく、ヒステリシス損の小さい材料で形成されることが望ましい。
また、定着ベルト61の回転方向に沿った磁心84の長さは、感温磁性部材64の定着ベルト61の回転方向に沿った長さよりも小さく構成される。それにより、磁力線のIHヒータ80周辺への漏洩が減り、力率が向上する。さらには、定着ユニット60を構成する金属製部材への電磁誘導を抑え、定着ベルト61(導電発熱層612)での発熱効率を高める。
The magnetic core 84 is made of, for example, a ferromagnetic material made of an oxide or alloy material having a high magnetic permeability such as soft ferrite, ferrite resin, amorphous alloy (amorphous alloy), permalloy, or temperature-sensitive magnetic alloy. It functions as a path forming means. The magnetic core 84 induces a magnetic force line (magnetic flux) generated by the alternating magnetic field generated by the exciting coil 82, and crosses the fixing belt 61 from the magnetic core 84 toward the temperature-sensitive magnetic member 64. A path of magnetic lines of force (magnetic path) is formed so as to pass through and return to the magnetic core 84. That is, the AC magnetic field generated by the excitation coil 82 is configured to pass through the inside of the magnetic core 84 and the inside of the temperature-sensitive magnetic member 64 so that the magnetic lines of force wrap the fixing belt 61 and the excitation coil 82 inside. A closed magnetic circuit is formed. As a result, the magnetic field lines of the alternating magnetic field generated by the exciting coil 82 are concentrated in a region facing the magnetic core 84 of the fixing belt 61.
Here, the magnetic core 84 is preferably made of a material having a small loss due to magnetic path formation. Specifically, the magnetic core 84 is desirably used in a form that reduces the eddy current loss (current path interruption or division by slits, thin plate bundling, etc.), and is preferably formed of a material having a small hysteresis loss.
Further, the length of the magnetic core 84 along the rotation direction of the fixing belt 61 is configured to be smaller than the length of the temperature-sensitive magnetic member 64 along the rotation direction of the fixing belt 61. Thereby, the leakage of magnetic lines of force to the periphery of the IH heater 80 is reduced, and the power factor is improved. Furthermore, electromagnetic induction to the metal member constituting the fixing unit 60 is suppressed, and the heat generation efficiency of the fixing belt 61 (conductive heat generation layer 612) is increased.

<定着ベルトが発熱する状態の説明>
引き続いて、IHヒータ80により生成された交流磁界によって定着ベルト61が発熱する状態を説明する。
まず、上記したように、感温磁性部材64の磁気特性が強磁性と非磁性(常磁性)との間で遷移する遷移領域は、各色トナー像を定着する定着設定温度以上であって定着ベルト61の耐熱温度以下となる温度範囲内(例えば、140〜240℃)に設定されている。そして、定着ベルト61の温度が遷移領域以下の温度状態にある場合には、定着ベルト61に近接する感温磁性部材64の温度も定着ベルト61の温度に対応して、遷移領域以下の温度となる。そのため、感温磁性部材64は強磁性を呈するので、IHヒータ80により生成された交流磁界の磁力線Hは、定着ベルト61を透過した後、感温磁性部材64の内部を広がり方向に沿って通過する磁路を形成する。ここでの「広がり方向」とは、感温磁性部材64の厚さ方向と直交する方向を意味する。
<Description of the state in which the fixing belt generates heat>
Subsequently, a state in which the fixing belt 61 generates heat by the alternating magnetic field generated by the IH heater 80 will be described.
First, as described above, the transition region where the magnetic characteristic of the temperature-sensitive magnetic member 64 transitions between ferromagnetic and non-magnetic (paramagnetic) is equal to or higher than the fixing set temperature for fixing each color toner image, and the fixing belt. It is set within a temperature range (for example, 140 to 240 ° C.) that is equal to or lower than the heat resistant temperature of 61. When the temperature of the fixing belt 61 is below the transition region, the temperature of the temperature-sensitive magnetic member 64 adjacent to the fixing belt 61 also corresponds to the temperature below the transition region corresponding to the temperature of the fixing belt 61. Become. Therefore, since the temperature-sensitive magnetic member 64 exhibits ferromagnetism, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 pass through the fixing belt 61 and then pass through the inside of the temperature-sensitive magnetic member 64 along the spreading direction. To form a magnetic path. Here, the “spreading direction” means a direction orthogonal to the thickness direction of the temperature-sensitive magnetic member 64.

図7は、定着ベルト61の温度が遷移領域以下の温度範囲にある場合の磁力線(H)の状態を説明する図である。図7に示したように、定着ベルト61の温度が遷移領域以下の温度範囲にある場合には、IHヒータ80により生成された交流磁界の磁力線Hは、定着ベルト61を透過し、感温磁性部材64の内部を広がり方向(厚さ方向と直交する方向)に沿って通過する磁路を形成する。そのため、定着ベルト61の導電発熱層612を横切る領域での単位面積あたりの磁力線Hの数(磁束密度)は多くなる。   FIG. 7 is a diagram for explaining the state of the lines of magnetic force (H) when the temperature of the fixing belt 61 is in the temperature range below the transition region. As shown in FIG. 7, when the temperature of the fixing belt 61 is in the temperature range equal to or lower than the transition region, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 pass through the fixing belt 61 and are temperature-sensitive magnetism. A magnetic path that passes through the inside of the member 64 along the spreading direction (direction orthogonal to the thickness direction) is formed. Therefore, the number of magnetic field lines H (magnetic flux density) per unit area in the region crossing the conductive heat generating layer 612 of the fixing belt 61 increases.

すなわち、IHヒータ80の磁心84から磁力線Hが放射されて定着ベルト61の導電発熱層612を横切る領域R1,R2を通過した後、磁力線Hは強磁性体である感温磁性部材64の内部に誘導される。そのため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hは感温磁性部材64の内部に進入するように集中し、領域R1,R2での磁束密度は高くなる。また、感温磁性部材64の内部を広がり方向に沿って通過した磁力線Hが再び磁心84に戻るに際しても、導電発熱層612を厚さ方向に横切る領域R3では、感温磁性部材64内の磁位の低い部分から集中して磁心84に向けて発生する。そのため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hは、感温磁性部材64から集中して磁心84に向かうこととなり、領域R3での磁束密度も高くなる。   That is, after the magnetic field lines H are radiated from the magnetic core 84 of the IH heater 80 and pass through the regions R1 and R2 across the conductive heat generating layer 612 of the fixing belt 61, the magnetic field lines H enter the inside of the temperature-sensitive magnetic member 64 which is a ferromagnetic material. Be guided. Therefore, the magnetic field lines H crossing the conductive heat generating layer 612 of the fixing belt 61 in the thickness direction are concentrated so as to enter the inside of the temperature-sensitive magnetic member 64, and the magnetic flux density in the regions R1 and R2 increases. Further, even when the magnetic field lines H that have passed through the inside of the temperature-sensitive magnetic member 64 along the spreading direction return to the magnetic core 84 again, in the region R3 that crosses the conductive heating layer 612 in the thickness direction, the magnetic field in the temperature-sensitive magnetic member 64 is increased. It is concentrated toward the magnetic core 84 from the lower part. Therefore, the magnetic force lines H that cross the conductive heat generating layer 612 of the fixing belt 61 in the thickness direction are concentrated from the temperature-sensitive magnetic member 64 toward the magnetic core 84, and the magnetic flux density in the region R3 is also increased.

磁力線Hが厚さ方向に横切る定着ベルト61の導電発熱層612では、単位面積当たりの磁力線Hの数(磁束密度)の変化量に比例した渦電流Iが発生する。それにより、図7に示したように、磁束密度の変化量が大きい領域R1,R2および領域R3では、大きな渦電流Iが発生する。導電発熱層612に生じた渦電流Iは、導電発熱層612の固有抵抗値Rと渦電流Iの二乗の積であるジュール熱W(W=IR)を発生させる。それにより、大きな渦電流Iが発生した導電発熱層612では、大きなジュール熱Wが発生する。
このように、定着ベルト61の温度が遷移領域以下の温度範囲にある場合には、磁力線Hが導電発熱層612を横切る領域R1,R2や領域R3において大きな熱が発生する。それにより、定着ベルト61は加熱される。
In the conductive heating layer 612 of the fixing belt 61 where the magnetic lines H cross in the thickness direction, an eddy current I proportional to the amount of change in the number of magnetic lines H per unit area (magnetic flux density) is generated. Thereby, as shown in FIG. 7, a large eddy current I is generated in the regions R1, R2 and R3 where the amount of change in magnetic flux density is large. The eddy current I generated in the conductive heat generation layer 612 generates Joule heat W (W = I 2 R), which is the product of the specific resistance value R of the conductive heat generation layer 612 and the square of the eddy current I. Thereby, a large Joule heat W is generated in the conductive heat generating layer 612 where the large eddy current I is generated.
As described above, when the temperature of the fixing belt 61 is in the temperature range equal to or lower than the transition region, large heat is generated in the regions R1 and R2 and the region R3 where the lines of magnetic force H cross the conductive heat generating layer 612. Thereby, the fixing belt 61 is heated.

ところで、本実施の形態の定着ユニット60では、定着ベルト61の内周面側において定着ベルト61に近接させて感温磁性部材64を配置している。それにより、励磁コイル82にて生成された磁力線Hを内部に誘導する磁心84と、定着ベルト61を厚さ方向に横切って透過した磁力線Hを内部に誘導する感温磁性部材64とが近接した構成を実現している。そのため、IHヒータ80(励磁コイル82)により生成された交流磁界は、磁路が短いループを形成するので、磁路内での磁束密度や磁気結合度は高まる。それにより、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合、定着ベルト61にはさらに効率的に熱が発生する。   By the way, in the fixing unit 60 of the present embodiment, the temperature-sensitive magnetic member 64 is disposed in the vicinity of the fixing belt 61 on the inner peripheral surface side of the fixing belt 61. As a result, the magnetic core 84 that guides the magnetic force lines H generated by the exciting coil 82 to the inside and the temperature-sensitive magnetic member 64 that guides the magnetic force lines H transmitted through the fixing belt 61 in the thickness direction are close to each other. The configuration is realized. For this reason, the AC magnetic field generated by the IH heater 80 (excitation coil 82) forms a loop with a short magnetic path, so that the magnetic flux density and the magnetic coupling degree in the magnetic path increase. Accordingly, when the temperature of the fixing belt 61 is in a temperature range equal to or lower than the magnetic permeability change start temperature, heat is more efficiently generated in the fixing belt 61.

<定着ベルトの非通紙部の昇温を抑制する機能の説明>
次に、定着ベルト61の非通紙部の昇温を抑制する機能について説明する。
ここでまず、定着ユニット60に小サイズの用紙P(小サイズ紙P1)を連続して通紙した場合について述べる。図8は、小サイズ紙P1を連続して通紙した際の定着ベルト61の幅方向の温度分布の概略を示した図である。図8においては、画像形成装置1にて使用される用紙Pの最大サイズ幅(例えば、A3横幅)である最大通紙領域をFf、最大サイズ用紙Pよりも横幅の小さな小サイズ紙P1(例えば、A4縦送り)が通過する領域(小サイズ紙通紙領域)をFs、小サイズ紙P1が通過しない非通紙領域をFbとする。なお、画像形成装置1では中央位置基準で通紙が行われるものとする。
<Description of function for suppressing temperature rise of non-sheet passing portion of fixing belt>
Next, the function of suppressing the temperature rise at the non-sheet passing portion of the fixing belt 61 will be described.
First, a case where small-size paper P (small-size paper P1) is continuously passed through the fixing unit 60 will be described. FIG. 8 is a diagram showing an outline of the temperature distribution in the width direction of the fixing belt 61 when the small size paper P1 is continuously fed. In FIG. 8, the maximum sheet passing area which is the maximum size width (for example, A3 width) of the sheet P used in the image forming apparatus 1 is Ff, and the small size sheet P1 (for example, smaller than the maximum size sheet P) (for example, , A4 (vertical feed) passes through the area (small size paper passing area) as Fs, and the non-sheet passing area through which the small size paper P1 does not pass is Fb. In the image forming apparatus 1, it is assumed that the sheet is passed based on the center position.

図8に示したように、小サイズ紙P1が連続して通紙された場合に、小サイズ紙P1が通過する小サイズ紙通紙領域Fsでは定着のための熱が消費される。そのため、制御部31(図1参照)による定着設定温度での温度調整制御が行われ、小サイズ紙通紙領域Fsでの定着ベルト61の温度は定着設定温度の近傍範囲内に維持される。その一方で、非通紙領域Fbにおいても、小サイズ紙通紙領域Fsと同様の温度調整制御が行われる。しかし、非通紙領域Fbでは定着のための熱が消費されない。そのために、非通紙領域Fbの温度は、定着設定温度よりも高い温度に上昇し易い。そして、その状態で小サイズ紙P1の連続通紙を続けると、非通紙領域Fbの温度が例えば定着ベルト61の弾性層613や表面離型層614の耐熱温度よりも上昇して、定着ベルト61を損傷させる場合がある。   As shown in FIG. 8, when the small size paper P1 is continuously passed, heat for fixing is consumed in the small size paper passing area Fs through which the small size paper P1 passes. Therefore, the temperature adjustment control at the fixing set temperature is performed by the control unit 31 (see FIG. 1), and the temperature of the fixing belt 61 in the small size paper passing area Fs is maintained within the range near the fixing set temperature. On the other hand, temperature adjustment control similar to that of the small-size paper passing area Fs is performed also in the non-paper passing area Fb. However, heat for fixing is not consumed in the non-sheet passing area Fb. For this reason, the temperature of the non-sheet passing area Fb is likely to rise to a temperature higher than the fixing set temperature. Then, when the continuous passage of the small size paper P1 is continued in this state, the temperature of the non-sheet passing region Fb rises, for example, higher than the heat resistance temperature of the elastic layer 613 and the surface release layer 614 of the fixing belt 61, and the fixing belt. 61 may be damaged.

そこで、上記したように、本実施の形態の定着ユニット60では、感温磁性部材64は、磁気特性が強磁性と非磁性(常磁性)との間で遷移する遷移領域が定着設定温度以上であって、例えば定着ベルト61の弾性層613や表面離型層614の耐熱温度以下の温度範囲内に設定された例えばFe−Ni合金等で構成されている。すなわち、図8に示したように、感温磁性部材64の遷移領域Tcuは、定着設定温度Tf以上であって、例えば弾性層613や表面離型層614の耐熱温度Tlim以下の温度領域に設定されている。   Therefore, as described above, in the fixing unit 60 of the present embodiment, the temperature-sensitive magnetic member 64 has a transition region in which the magnetic characteristics change between ferromagnetic and nonmagnetic (paramagnetic) at or above the fixing set temperature. For example, it is made of, for example, an Fe—Ni alloy or the like set within a temperature range equal to or lower than the heat resistance temperature of the elastic layer 613 and the surface release layer 614 of the fixing belt 61. That is, as shown in FIG. 8, the transition region Tcu of the temperature-sensitive magnetic member 64 is set to a temperature region that is equal to or higher than the fixing set temperature Tf and is equal to or lower than the heat resistance temperature Tlim of the elastic layer 613 and the surface release layer 614, for example. Has been.

それにより、小サイズ紙P1が連続通紙されると、定着ベルト61の非通紙領域Fbでの温度は、感温磁性部材64での遷移領域を超える。それによって、定着ベルト61に近接する感温磁性部材64の非通紙領域Fbでの温度も定着ベルト61の温度に対応して、定着ベルト61と同様に遷移領域を超える。そのため、非通紙領域Fbでの感温磁性部材64は比透磁率が1に近づき、強磁性体としての性質が消失する。感温磁性部材64の比透磁率が低下して1に近づくことで、非通紙領域Fbでの磁力線Hは感温磁性部材64の内部に誘導されず、感温磁性部材64を透過するようになる。そのため、定着ベルト61の非通紙領域Fbでは、導電発熱層612を通過した後の磁力線Hは拡散し、導電発熱層612を横切る磁力線Hの磁束密度は低下する。それにより、導電発熱層612で発生する渦電流Iは減少して、定着ベルト61での発熱量(ジュール熱W)は低減される。その結果、非通紙領域Fbでの過剰な温度上昇は抑えられ、定着ベルト61の損傷が抑制される。
このように、感温磁性部材64は、定着ベルト61の温度を検知する検知部としての機能と、検知した定着ベルト61の温度に応じて定着ベルト61の過度の温度上昇を抑制する昇温抑制部としての機能とを併せ持っている。
Thereby, when the small size paper P1 is continuously passed, the temperature in the non-sheet passing area Fb of the fixing belt 61 exceeds the transition area in the temperature-sensitive magnetic member 64. Accordingly, the temperature in the non-sheet passing region Fb of the temperature-sensitive magnetic member 64 adjacent to the fixing belt 61 also exceeds the transition region in the same manner as the fixing belt 61 corresponding to the temperature of the fixing belt 61. For this reason, the temperature-sensitive magnetic member 64 in the non-sheet-passing region Fb has a relative magnetic permeability close to 1, and the properties as a ferromagnetic material disappear. The relative magnetic permeability of the temperature-sensitive magnetic member 64 decreases and approaches 1 so that the magnetic field lines H in the non-sheet-passing region Fb are not guided into the temperature-sensitive magnetic member 64 but pass through the temperature-sensitive magnetic member 64. become. Therefore, in the non-sheet passing region Fb of the fixing belt 61, the magnetic field lines H after passing through the conductive heat generating layer 612 are diffused, and the magnetic flux density of the magnetic field lines H crossing the conductive heat generating layer 612 is reduced. Thereby, the eddy current I generated in the conductive heat generation layer 612 is reduced, and the heat generation amount (Joule heat W) in the fixing belt 61 is reduced. As a result, an excessive temperature rise in the non-sheet passing area Fb is suppressed, and damage to the fixing belt 61 is suppressed.
As described above, the temperature-sensitive magnetic member 64 functions as a detection unit that detects the temperature of the fixing belt 61 and suppresses an increase in temperature that suppresses an excessive temperature increase of the fixing belt 61 according to the detected temperature of the fixing belt 61. It also has a function as a department.

感温磁性部材64を通過した後の磁力線Hは、誘導部材66(図3参照)に到達してこの内部に誘導される。磁束が誘導部材66に到達してその内部に誘導されるようになると、導電発熱層612より渦電流Iの流れ易い誘導部材66の方に多くの渦電流Iが流れる。そのため、導電発熱層612で流れる渦電流量はさらに抑制され、非通紙領域Fbでの温度上昇は抑えられる。   The lines of magnetic force H after passing through the temperature-sensitive magnetic member 64 reach the guide member 66 (see FIG. 3) and are guided into this. When the magnetic flux reaches the induction member 66 and is induced therein, more eddy current I flows toward the induction member 66 where the eddy current I flows more easily than the conductive heat generation layer 612. Therefore, the amount of eddy current flowing in the conductive heat generating layer 612 is further suppressed, and the temperature rise in the non-sheet passing region Fb is suppressed.

その際に、誘導部材66が励磁コイル82からの磁力線Hの殆どを誘導して定着ユニット60からの磁力線Hの漏洩を抑えるように、誘導部材66の厚さ、材質、および形状が選定される。具体的には、誘導部材66を表皮深さδが充分に厚い材料で構成すればよい。それにより、誘導部材66に渦電流Iが流れても発熱量も極力小さくなる。本実施の形態では、誘導部材66を感温磁性部材64に沿う略円形形状の厚さ1mmのAl(アルミニウム)で構成し、感温磁性部材64とは非接触(平均的な距離を例えば4mm)に配置している。その他の材料としては、AgやCuが好適である。   At this time, the thickness, material, and shape of the guiding member 66 are selected so that the guiding member 66 guides most of the magnetic force lines H from the exciting coil 82 and suppresses leakage of the magnetic force lines H from the fixing unit 60. . Specifically, the guide member 66 may be made of a material having a sufficiently thick skin depth δ. Thereby, even if the eddy current I flows through the induction member 66, the amount of heat generation is also minimized. In the present embodiment, the guide member 66 is made of Al (aluminum) having a substantially circular shape with a thickness of 1 mm along the temperature-sensitive magnetic member 64, and is not in contact with the temperature-sensitive magnetic member 64 (an average distance of, for example, 4 mm). ). As other materials, Ag and Cu are suitable.

ところで、その後、定着ベルト61の非通紙領域Fbでの温度が感温磁性部材64の遷移領域よりも低くなると、感温磁性部材64の非通紙領域Fbでの温度も遷移領域の温度よりも低くなる。それにより、感温磁性部材64は再び強磁性に変化して磁力線Hが感温磁性部材64の内部に誘導されるので、導電発熱層612に渦電流Iが多く流れるようになる。そのため、定着ベルト61が再び加熱されるようになる。   By the way, when the temperature in the non-sheet passing region Fb of the fixing belt 61 becomes lower than the transition region of the temperature-sensitive magnetic member 64 thereafter, the temperature in the non-sheet-passing region Fb of the temperature-sensitive magnetic member 64 is also higher than the temperature in the transition region. Also lower. As a result, the temperature-sensitive magnetic member 64 changes to ferromagnetic again, and the magnetic field lines H are induced inside the temperature-sensitive magnetic member 64, so that a large amount of eddy current I flows through the conductive heating layer 612. Therefore, the fixing belt 61 is heated again.

図9は、非通紙領域Fbでの定着ベルト61の温度が感温磁性部材64の遷移領域を超えた温度範囲にある場合の磁力線Hの状態を説明する図である。図9に示したように、定着ベルト61の温度が非通紙領域Fbにて感温磁性部材64の遷移領域を超えた温度範囲にある場合には、非通紙領域Fbの感温磁性部材64は比透磁率が低下する。そのため、IHヒータ80により生成された交流磁界の磁力線Hは感温磁性部材64を容易に透過するように変化する。それにより、IHヒータ80(励磁コイル82)により生成された交流磁界の磁力線Hは、磁心84から定着ベルト61側に向けて拡散するように放射され、誘導部材66に到達するようになる。   FIG. 9 is a diagram for explaining the state of the lines of magnetic force H when the temperature of the fixing belt 61 in the non-sheet-passing area Fb is in the temperature range exceeding the transition area of the temperature-sensitive magnetic member 64. As shown in FIG. 9, when the temperature of the fixing belt 61 is in the temperature range exceeding the transition region of the temperature-sensitive magnetic member 64 in the non-sheet-passing region Fb, the temperature-sensitive magnetic member in the non-sheet-passing region Fb. In 64, the relative permeability decreases. Therefore, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 change so as to easily pass through the temperature-sensitive magnetic member 64. Accordingly, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 (excitation coil 82) are radiated so as to diffuse from the magnetic core 84 toward the fixing belt 61 and reach the induction member 66.

すなわち、IHヒータ80の磁心84から磁力線Hが放射されて定着ベルト61の導電発熱層612を横切る領域R1,R2では、磁力線Hが感温磁性部材64に誘導され難いため、放射状に拡散する。それにより、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度(単位面積当たりの磁力線Hの数)が減少する。また、磁力線Hが再び磁心84に戻る際に導電発熱層612を厚さ方向に横切る領域R3でも、拡散した広い領域から磁力線Hが磁心84に戻ることとなるため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度が減少する。
そのため、定着ベルト61の温度が透磁率変化開始温度を超える温度範囲にある場合には、領域R1,R2や領域R3において導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度が減少することとなる。それにより、磁力線Hが厚さ方向に横切る導電発熱層612に発生する渦電流Iは減り、定着ベルト61に発生するジュール熱Wは減少する。それにより、定着ベルト61の温度は低下する。
That is, in the regions R1 and R2 where the magnetic force lines H are radiated from the magnetic core 84 of the IH heater 80 and cross the conductive heat generating layer 612 of the fixing belt 61, the magnetic force lines H are difficult to be guided to the temperature-sensitive magnetic member 64 and thus diffuse radially. As a result, the magnetic flux density (number of magnetic force lines H per unit area) of the magnetic field lines H crossing the conductive heat generating layer 612 of the fixing belt 61 in the thickness direction decreases. Further, even in the region R3 that crosses the conductive heat generating layer 612 in the thickness direction when the magnetic force line H returns to the magnetic core 84 again, the magnetic force line H returns to the magnetic core 84 from the diffused wide region. The magnetic flux density of the magnetic field lines H crossing 612 in the thickness direction decreases.
Therefore, when the temperature of the fixing belt 61 is in a temperature range exceeding the permeability change start temperature, the magnetic flux density of the magnetic field lines H that cross the conductive heating layer 612 in the thickness direction decreases in the regions R1, R2, and R3. It becomes. As a result, the eddy current I generated in the conductive heating layer 612 where the magnetic field lines H cross in the thickness direction is reduced, and the Joule heat W generated in the fixing belt 61 is reduced. As a result, the temperature of the fixing belt 61 decreases.

このように、非通紙領域Fbでの定着ベルト61の温度が感温磁性部材64の遷移領域以上の温度範囲にある場合において、非通紙領域Fbでの感温磁性部材64の内部に磁力線Hが誘導され難くなり、励磁コイル82により生成された交流磁界の磁力線Hは、定着ベルト61の導電発熱層612を厚さ方向を拡散しながら横切る。そのため、励磁コイル82により生成された交流磁界の磁路は長いループを形成することとなり、定着ベルト61の導電発熱層612を通過する磁路での磁束密度は減少する。
それにより、例えば小サイズ紙P1が連続通紙されて、温度が上昇した非通紙領域Fbでは、定着ベルト61の導電発熱層612に発生する渦電流Iが減って、定着ベルト61の非通紙領域Fbでの発熱量(ジュール熱W)は低減する。その結果、非通紙領域Fbでの過剰な温度上昇は抑えられる。
As described above, when the temperature of the fixing belt 61 in the non-sheet-passing area Fb is in a temperature range equal to or higher than the transition area of the temperature-sensitive magnetic member 64, the lines of magnetic force are generated inside the temperature-sensitive magnetic member 64 in the non-sheet-passing area Fb. The magnetic field lines H of the alternating magnetic field generated by the exciting coil 82 cross the conductive heat generating layer 612 of the fixing belt 61 while diffusing in the thickness direction. Therefore, the magnetic path of the alternating magnetic field generated by the exciting coil 82 forms a long loop, and the magnetic flux density in the magnetic path passing through the conductive heating layer 612 of the fixing belt 61 decreases.
Thereby, for example, in the non-sheet passing region Fb where the small size paper P1 is continuously passed and the temperature rises, the eddy current I generated in the conductive heat generating layer 612 of the fixing belt 61 is reduced and the fixing belt 61 is not passed. The amount of heat generation (joule heat W) in the paper region Fb is reduced. As a result, an excessive temperature rise in the non-sheet passing area Fb can be suppressed.

<感温磁性部材の昇温を抑制する構成の説明>
感温磁性部材64が上記した非通紙領域Fbでの過剰な温度上昇を抑える機能を果たすには、感温磁性部材64の長手方向の領域毎の温度がそれに対向する定着ベルト61の長手方向の領域毎の温度に対応して変化し、上記した定着ベルト61の温度を検知する検出部としての機能を果たす必要がある。
そのために、感温磁性部材64自身に関しては、磁力線Hによって誘導加熱され難い構成が採用される。すなわち、定着ベルト61の温度が感温磁性部材64の遷移領域以下であり、感温磁性部材64が強磁性を呈する状態であっても、IHヒータ80からの磁力線Hの中には、感温磁性部材64を厚さ方向に横切る磁力線Hは存在する。それにより、感温磁性部材64内部には弱い渦電流Iが発生しており、感温磁性部材64自身においても若干の発熱が生じる。そのため、例えば、大量の画像形成が連続して行われた場合等には、感温磁性部材64に自己発熱した熱が蓄積され、通紙領域(図8参照)でも感温磁性部材64の温度が上昇傾向を呈する。このように渦電流損による自己発熱が大きいと感温磁性部材64の温度が上昇して、意図せず遷移領域まで到達してしまい、通紙領域と非通紙領域の磁気特性に差が殆どなくなって昇温抑制効果が充分得られないことがある。そこで、感温磁性部材64の温度と定着ベルト61の温度との対応関係が維持され、感温磁性部材64が定着ベルト61の温度を検知する検知部として精度良く機能するために、感温磁性部材64自身に発生するジュール熱Wを抑える必要がある。
<Description of the configuration for suppressing the temperature rise of the temperature-sensitive magnetic member>
In order for the temperature-sensitive magnetic member 64 to perform the function of suppressing the excessive temperature rise in the non-sheet passing region Fb described above, the temperature of each region in the longitudinal direction of the temperature-sensitive magnetic member 64 is the longitudinal direction of the fixing belt 61 facing it. It is necessary to fulfill a function as a detection unit that detects the temperature of the fixing belt 61 and changes according to the temperature of each region.
Therefore, regarding the temperature-sensitive magnetic member 64 itself, a configuration that is difficult to be induction-heated by the magnetic field lines H is adopted. In other words, even if the temperature of the fixing belt 61 is equal to or lower than the transition region of the temperature-sensitive magnetic member 64 and the temperature-sensitive magnetic member 64 exhibits ferromagnetism, the line of magnetic force H from the IH heater 80 includes Magnetic field lines H that cross the magnetic member 64 in the thickness direction exist. As a result, a weak eddy current I is generated inside the temperature-sensitive magnetic member 64, and a slight amount of heat is generated in the temperature-sensitive magnetic member 64 itself. For this reason, for example, when a large amount of image formation is continuously performed, the self-heat generated heat is accumulated in the temperature-sensitive magnetic member 64, and the temperature of the temperature-sensitive magnetic member 64 is also in the paper passing area (see FIG. 8). Shows an upward trend. Thus, when the self-heating due to eddy current loss is large, the temperature of the temperature-sensitive magnetic member 64 rises and unintentionally reaches the transition region, and there is almost no difference in the magnetic characteristics between the sheet passing region and the non-sheet passing region. The temperature rise suppression effect may not be sufficiently obtained. Therefore, the correspondence between the temperature of the temperature-sensitive magnetic member 64 and the temperature of the fixing belt 61 is maintained, and the temperature-sensitive magnetic member 64 functions as a detection unit that detects the temperature of the fixing belt 61 with high accuracy. It is necessary to suppress the Joule heat W generated in the member 64 itself.

そこで、感温磁性部材64での渦電流損やヒステリシス損を小さくするために、まず第1として、感温磁性部材64は、磁力線Hによって誘導加熱され難い物性(固有抵抗値および透磁率)を持った材質が選定される。
また、第2として、感温磁性部材64の厚さは、少なくとも遷移領域以下の温度範囲にて磁力線Hが感温磁性部材64の厚さ方向に横切り難いように、強磁性を呈する状態での表皮深さδよりも厚く形成される。
Therefore, in order to reduce the eddy current loss and hysteresis loss in the temperature-sensitive magnetic member 64, first, the temperature-sensitive magnetic member 64 has physical properties (specific resistance value and magnetic permeability) that are difficult to be induction-heated by the lines of magnetic force H. Selected material is selected.
Second, the thickness of the temperature-sensitive magnetic member 64 is in a state of exhibiting ferromagnetism so that the magnetic field lines H are difficult to cross in the thickness direction of the temperature-sensitive magnetic member 64 at least in the temperature range below the transition region. It is formed thicker than the skin depth δ.

さらに、第3として、感温磁性部材64には、磁力線Hによって発生する渦電流Iの流れを分断する複数のスリット64s(後段図10参照)が形成される。誘導加熱され難いように感温磁性部材64の材質や厚さを選定しても、感温磁性部材64内部に発生する渦電流Iを0とすることは困難である。そこで、感温磁性部材64に発生した渦電流Iの流れを複数のスリット64sにより分断することで、渦電流Iを減少させて、感温磁性部材64に発生するもジュール熱Wを低く抑えている。   Third, the temperature-sensitive magnetic member 64 is formed with a plurality of slits 64s (see FIG. 10 in the subsequent stage) that divide the flow of the eddy current I generated by the lines of magnetic force H. Even if the material and thickness of the temperature-sensitive magnetic member 64 are selected so that induction heating is difficult, it is difficult to set the eddy current I generated in the temperature-sensitive magnetic member 64 to zero. Therefore, by dividing the flow of the eddy current I generated in the temperature-sensitive magnetic member 64 by the plurality of slits 64s, the eddy current I is reduced and the Joule heat W generated in the temperature-sensitive magnetic member 64 is kept low. Yes.

図10は、感温磁性部材64に形成されるスリット64sを示した図である。図10(a)は、感温磁性部材64がホルダ65に設置された状態の側面図であり、(b)は、(a)の上方(z方向)から見た平面図である。図10に示したように、本実施に形態の感温磁性部材64は、後段で詳細に説明するが、長手方向に沿って複数(例えば3つ)の感温磁性部材64A,64B,64Cに分割されて構成されており、それぞれの感温磁性部材64A,64B,64Cには、磁力線Hによって発生する渦電流Iの流れる方向に直交して複数のスリット64sが形成されている。そのため、スリット64sが無い場合には感温磁性部材64A,64B,64C各々の長手方向の全体に亘って大きな渦となって流れる渦電流I(図10(b)破線)が、スリット64sにより分断される。それにより、スリット64sを形成した場合には、感温磁性部材64A,64B,64C各々を流れる渦電流I(図10(b)実線)は、スリット64sとスリット64sとの間の領域内での小さな渦となり、全体としての渦電流Iの電流量は低減される。その結果、感温磁性部材64(64A,64B,64C)での発熱量(ジュール熱W)は減少し、発熱し難い構成が実現する。したがって、複数のスリット64sは、渦電流Iを分断する渦電流分断部として機能する。   FIG. 10 is a view showing slits 64 s formed in the temperature-sensitive magnetic member 64. FIG. 10A is a side view showing a state in which the temperature-sensitive magnetic member 64 is installed on the holder 65, and FIG. 10B is a plan view seen from above (a direction). As shown in FIG. 10, the temperature-sensitive magnetic member 64 of the present embodiment will be described in detail later, but a plurality of (for example, three) temperature-sensitive magnetic members 64A, 64B, and 64C are arranged along the longitudinal direction. Each of the temperature-sensitive magnetic members 64A, 64B, and 64C is formed with a plurality of slits 64s orthogonal to the direction in which the eddy current I generated by the lines of magnetic force H flows. Therefore, when there is no slit 64s, the eddy current I (dashed line in FIG. 10B) that flows as a large vortex over the entire longitudinal direction of each of the temperature-sensitive magnetic members 64A, 64B, 64C is divided by the slit 64s. Is done. Accordingly, when the slit 64s is formed, the eddy current I (solid line in FIG. 10B) flowing through each of the temperature-sensitive magnetic members 64A, 64B, and 64C is in the region between the slit 64s and the slit 64s. A small eddy is formed, and the amount of eddy current I as a whole is reduced. As a result, the heat generation amount (Joule heat W) in the temperature-sensitive magnetic member 64 (64A, 64B, 64C) is reduced, and a configuration in which heat generation is difficult is realized. Therefore, the plurality of slits 64 s function as an eddy current dividing unit that divides the eddy current I.

なお、図10に例示した感温磁性部材64(64A,64B,64C)では、スリット64sを渦電流Iの流れる方向に直交して形成したが、渦電流Iの流れを分断する構成であれば、例えば渦電流Iの流れる方向に対して傾斜したスリットを形成してもよい。また、図10に示したようなスリット64sを感温磁性部材64の幅方向の全域に亘って形成する構成の他に、感温磁性部材64の幅方向の一部に形成してもよい。また、感温磁性部材64に発生する熱量に応じて、スリットの数、位置、傾斜角等を設定してもよい。
また、スリットの傾斜角が最大となった状態として、感温磁性部材64がスリット部で小片に分割された状態となる小片分割群となってもよく、このような形態であっても本発明の効果は同様に得られる。
In the temperature-sensitive magnetic member 64 (64A, 64B, 64C) illustrated in FIG. 10, the slit 64s is formed perpendicular to the direction in which the eddy current I flows. However, as long as the flow of the eddy current I is divided. For example, a slit inclined with respect to the direction in which the eddy current I flows may be formed. In addition to the configuration in which the slits 64 s as shown in FIG. 10 are formed over the entire region in the width direction of the temperature-sensitive magnetic member 64, the slit 64 s may be formed in a part in the width direction of the temperature-sensitive magnetic member 64. Further, the number, position, inclination angle, and the like of the slits may be set according to the amount of heat generated in the temperature-sensitive magnetic member 64.
Moreover, as a state where the inclination angle of the slit is maximized, the temperature-sensitive magnetic member 64 may be a small piece divided group in which the temperature-sensitive magnetic member 64 is divided into small pieces at the slit portion. The effect of is obtained similarly.

<感温磁性部材の長手方向の構成に関する説明>
次に、感温磁性部材64の長手方向の構成について説明する。
図11は、感温磁性部材64の長手方向の構成を説明する斜視図である。図11に示したように、感温磁性部材64は、長手方向に沿って複数(例えば3つ)の構成部分、すなわち感温磁性部材64A,64B,64Cに分割されて構成されている。中央部に配置された構成部分の一例としての感温磁性部材64Aは、長手方向の配置領域が、画像形成装置1にて使用される最大サイズ用紙Pよりも横幅の小さな小サイズ紙P1(例えば、画像形成装置1にて使用される最小幅用紙としてのA4縦送り)が通過する小サイズ紙通紙領域Fs(上記図8参照)に対応して形成されている。また、感温磁性部材64Aの両端部に配置された構成部分の一例としての感温磁性部材64B,64Cは、長手方向の配置領域が、小サイズ紙P1が通過しない非通紙領域Fb(上記図8参照)に対応して形成されている。
<Explanation regarding the configuration in the longitudinal direction of the temperature-sensitive magnetic member>
Next, the longitudinal configuration of the temperature-sensitive magnetic member 64 will be described.
FIG. 11 is a perspective view illustrating the configuration of the temperature-sensitive magnetic member 64 in the longitudinal direction. As shown in FIG. 11, the temperature-sensitive magnetic member 64 is divided into a plurality of (for example, three) components, that is, temperature-sensitive magnetic members 64A, 64B, and 64C along the longitudinal direction. A temperature-sensitive magnetic member 64A as an example of a component portion disposed in the center portion has a small-size paper P1 (for example, a width-wise arrangement region smaller than the maximum size paper P used in the image forming apparatus 1). The sheet is formed in correspondence with a small-size paper passing area Fs (see FIG. 8) through which A4 vertical feed (minimum width paper used in the image forming apparatus 1) passes. Further, the temperature-sensitive magnetic members 64B and 64C as an example of the components disposed at both ends of the temperature-sensitive magnetic member 64A have a non-sheet-passing region Fb in which the small-size paper P1 does not pass through the longitudinally arranged region. (See FIG. 8).

そして、小サイズ紙通紙領域Fsに配置された感温磁性部材64Aは、磁気特性が強磁性と非磁性(常磁性)との間で遷移する温度領域(遷移領域)が非通紙領域Fbに配置された感温磁性部材64B,64Cの遷移領域よりも高い温度領域に設定された構成を有する。
また、このような感温磁性部材64A,64B,64C各々の磁気特性に対応させて、定着ベルト61の温度を検知する温度検知部材の一例であるサーミスタ71およびサーミスタ72の双方は、定着ベルト61の長手方向に関して感温磁性部材64Aの配置領域に配置される(図11参照)。さらには、定着ベルト61の温度が異常に上昇した場合に定着ユニット60への電力の供給を遮断する遮断部材の一例であるサーモスイッチ70も、同様に、定着ベルト61の長手方向に関して感温磁性部材64Aの配置領域に配置される(図11参照)。それにより、定着ベルト61の温度制御は、小サイズ紙通紙領域Fsにて検知される温度に基づいて定着設定温度での温度調整制御が行われる。
The temperature-sensitive magnetic member 64A disposed in the small-size paper passing area Fs has a temperature area (transition area) in which the magnetic characteristics change between ferromagnetic and nonmagnetic (paramagnetic) in the non-paper passing area Fb. The temperature sensitive magnetic members 64B and 64C arranged in the temperature region are set in a temperature region higher than the transition region.
Further, both the thermistor 71 and the thermistor 72, which are examples of temperature detecting members that detect the temperature of the fixing belt 61 in correspondence with the magnetic characteristics of each of the temperature-sensitive magnetic members 64 </ b> A, 64 </ b> B, and 64 </ b> C, Is disposed in the region where the temperature-sensitive magnetic member 64A is disposed (see FIG. 11). Furthermore, the thermoswitch 70, which is an example of a blocking member that cuts off the supply of power to the fixing unit 60 when the temperature of the fixing belt 61 abnormally rises, similarly applies temperature-sensitive magnetism in the longitudinal direction of the fixing belt 61. It arrange | positions in the arrangement | positioning area | region of the member 64A (refer FIG. 11). Thereby, the temperature control of the fixing belt 61 is temperature adjustment control at the fixing set temperature based on the temperature detected in the small size paper passing area Fs.

<各感温磁性部材の感温磁性に関する説明>
ここで、感温磁性部材64(64A,64B,64C)が有する感温磁性について説明しておく。
本実施の形態の感温磁性部材64は、その磁気特性の透磁率(例えば、JIS C2531で測定される透磁率)が急変する温度である「透磁率変化開始温度」から減少への変化を開始し、物質が磁性を消失する温度であるキュリー点(「CP:Curie Point」)に到達するまで減少を続ける磁気特性を有する。このような特定の温度領域において強磁性と非磁性(常磁性)との間で可逆的に変化する感温磁性部材64の磁気特性を「感温磁性」と称している。
<Explanation about temperature-sensitive magnetism of each temperature-sensitive magnetic member>
Here, the temperature-sensitive magnetism of the temperature-sensitive magnetic member 64 (64A, 64B, 64C) will be described.
The temperature-sensitive magnetic member 64 of the present embodiment starts a change from “magnetic permeability change start temperature”, which is a temperature at which the magnetic permeability of the magnetic properties (for example, the magnetic permeability measured by JIS C2531) suddenly changes, to a decrease. However, it has a magnetic property that continues to decrease until it reaches a Curie Point (“CP”), which is the temperature at which the material loses magnetism. The magnetic characteristic of the temperature-sensitive magnetic member 64 that reversibly changes between ferromagnetism and non-magnetism (paramagnetism) in a specific temperature range is referred to as “temperature-sensitive magnetism”.

ここで、図12は、小サイズ紙通紙領域Fsに配置された感温磁性部材64Aの比透磁率μに関する温度特性の一例を示した図である。図12に示したように、小サイズ紙通紙領域Fsに配置された感温磁性部材64Aの比透磁率μは、透磁率変化開始温度TP1までの温度領域においては、温度Tの上昇に伴って一次関数F(T)に従って漸増する傾向を示す。ところが、感温磁性部材64の温度Tが透磁率変化開始温度TP1を超えると比透磁率μは減少を開始し、その後は、温度Tの上昇に伴って一次関数F(T)に従って急峻に減少する。そして、感温磁性部材64の温度Tがキュリー点CP(TP4)に到達することで、感温磁性部材64の比透磁率μは1(感温磁性部材64の透磁率μ=μ:μ=真空の透磁率)となる。
なお、非通紙領域Fbに配置された感温磁性部材64B,64Cも、比透磁率μに関する温度特性は感温磁性部材64Aと同様の傾向を示す。
Here, FIG. 12 is a diagram showing an example of the temperature characteristic related to the relative magnetic permeability μ r of the temperature-sensitive magnetic member 64A arranged in the small size paper passing area Fs. As shown in FIG. 12, the relative magnetic permeability μ r of the temperature-sensitive magnetic member 64A arranged in the small-size paper passing area Fs increases in the temperature T in the temperature area up to the magnetic permeability change starting temperature TP1. Along with this, a tendency of increasing gradually according to the linear function F 1 (T) is shown. However, the relative magnetic permeability mu r starts decreasing when the temperature T of the temperature-sensitive magnetic member 64 is greater than the permeability change start temperature TP1, then steeply according to the primary function F 2 with increasing temperature T (T) To decrease. Then, when the temperature T of the temperature-sensitive magnetic member 64 reaches the Curie point CP (TP4), the relative permeability mu r of the temperature-sensitive magnetic member 64 1 (magnetic permeability of the temperature-sensitive magnetic member 64 mu = mu 0: μ 0 = vacuum permeability).
Incidentally, the non-paper passing area Fb to arranged the temperature-sensitive magnetic member 64B, 64C also, the temperature characteristics related to the relative permeability mu r denotes the same tendency as the temperature-sensitive magnetic member 64A.

本実施の形態では、このような感温磁性部材64(64A,64B,64C)の比透磁率μの温度特性における強磁性と非磁性との間の遷移領域を定量的に評価する指標として、指標温度TP2と指標温度TP3とを定義することとする。例えば図12に示したように、指標温度TP2は、遷移領域の開始温度の一例であって、透磁率変化開始温度TP1までの温度範囲における温度Tと比透磁率μとの関係を表す第1の関数の一例である一次関数F(T)と、透磁率変化開始温度TP1を超えた温度範囲における温度Tと比透磁率μとの関係を表す第2の関数の一例である一次関数F(T)との交点の温度である。
また、指標温度TP3は、遷移領域の終了温度の一例であって、一次関数F(T)と比透磁率μ=1との交点の温度である。
なお、図12に示したように、透磁率変化開始温度TP1を超えた温度範囲においては、比透磁率μが多次関数で減少する領域が存在するが、第2の関数の一例である一次関数F(T)は、透磁率変化開始温度TP1を超えた温度範囲において一次関数で減少する領域での温度Tと比透磁率μとの関係を表すものである。
In this embodiment, such a temperature-sensitive magnetic member 64 (64A, 64B, 64C) as quantitatively evaluating index transition region between the ferromagnetic and nonmagnetic in the temperature characteristic of the relative permeability mu r of The index temperature TP2 and the index temperature TP3 are defined. For example, as shown in FIG. 12, the index temperature TP2 is an example of a starting temperature of the transition region, the representative of the relationship between the temperature T and relative permeability mu r in a temperature range up to the permeability change start temperature TP1 A linear function F 1 (T) that is an example of the function 1 and a linear function that is an example of a second function that represents the relationship between the temperature T and the relative permeability μ r in the temperature range exceeding the permeability change start temperature TP1. It is the temperature of the intersection with the function F 2 (T).
The index temperature TP3 is an example of the end temperature of the transition region, and is the temperature at the intersection of the linear function F 2 (T) and the relative permeability μ r = 1.
Incidentally, as shown in FIG. 12, in a temperature range exceeding the permeability change start temperature TP1, although area relative permeability mu r decreases with multidimensional function is present, which is an example of a second function The linear function F 2 (T) represents the relationship between the temperature T and the relative permeability μ r in the region where the linear function decreases in the temperature range exceeding the permeability change start temperature TP1.

指標温度TP2は、感温磁性部材64の磁気特性が強磁性から非磁性(常磁性)への変化を開始する指標となる温度であって、感温磁性部材64が実質的に定着ベルト61の非通紙部の昇温を抑制するという機能を発現し始める温度(機能発現温度)として捉えることができる。すなわち、感温磁性部材64の温度が透磁率変化開始温度TP1を超えても、一次関数F(T)で減少する温度領域までは、比透磁率μの減少量は大きくはない。そのため、この透磁率変化開始温度TP1以上であって一次関数F(T)で減少する温度領域以下の温度領域では、感温磁性部材64は強磁性として未だ強く機能している。そのため、指標温度TP2は、感温磁性部材64の機能が実質的に発現し始める機能発現温度として捉えることができる。
一方、温度Tと比透磁率μとが一次関数F(T)で減少する温度領域の最も高温の領域部分では感温磁性部材64の比透磁率μは殆ど1となる。そのため、指標温度TP3は、実質的なキュリー点CPとして捉えることができる。
そのため、指標温度TP3と指標温度TP2との間の温度領域は、感温磁性部材64の磁気特性が強磁性と非磁性(常磁性)との間で遷移する遷移領域として定義付けることができる。
The index temperature TP2 is a temperature at which the magnetic characteristic of the temperature-sensitive magnetic member 64 starts to change from ferromagnetic to non-magnetic (paramagnetic), and the temperature-sensitive magnetic member 64 is substantially equal to that of the fixing belt 61. It can be understood as a temperature at which the function of suppressing the temperature rise in the non-sheet passing portion starts to appear (function expression temperature). That is, the temperature of the temperature-sensitive magnetic member 64 be greater than the permeability change start temperature TP1, to a temperature region decreases as a linear function F 2 (T), the decrease in the relative permeability mu r is not large. Therefore, the temperature-sensitive magnetic member 64 still functions strongly as a ferromagnetism in a temperature range that is equal to or higher than the permeability change start temperature TP1 and equal to or lower than the temperature range that decreases with the linear function F 2 (T). Therefore, the index temperature TP2 can be regarded as a function expression temperature at which the function of the temperature-sensitive magnetic member 64 starts to be substantially realized.
On the other hand, the relative permeability mu r of temperature T and relative permeability mu r and is a linear function F 2 the temperature-sensitive magnetic member 64 in the hottest region part of the temperature range to be reduced by (T) is almost 1. Therefore, the index temperature TP3 can be regarded as a substantial Curie point CP.
Therefore, the temperature region between the index temperature TP3 and the index temperature TP2 can be defined as a transition region in which the magnetic characteristics of the temperature-sensitive magnetic member 64 transition between ferromagnetic and nonmagnetic (paramagnetic).

そして、本実施の形態の感温磁性部材64では、小サイズ紙通紙領域Fsに配置された構成部分である感温磁性部材64Aでの磁気特性の遷移領域(指標温度TP3と指標温度TP2との間の温度領域)が、非通紙領域Fbに配置された構成部分である感温磁性部材64B,64Cでの磁気特性の遷移領域よりも高い温度領域に設定されている。   In the temperature-sensitive magnetic member 64 of the present embodiment, the transition region (index temperature TP3 and index temperature TP2) of the magnetic characteristics in the temperature-sensitive magnetic member 64A, which is a component disposed in the small-size paper passing area Fs. Is set to a temperature region that is higher than the transition region of the magnetic characteristics of the temperature-sensitive magnetic members 64B and 64C, which are components disposed in the non-sheet passing region Fb.

小サイズ紙通紙領域Fsに配置された感温磁性部材64Aでは、サーミスタ71および/またはサーミスタ72にて検知された定着ベルト61の温度に基づいて、制御部31(図1参照)による定着設定温度での温度調整制御が行われる。そのため、小サイズ紙通紙領域Fsでの定着ベルト61の温度は定着設定温度の近傍範囲内に維持され、定着ベルト61における耐熱温度(弾性層613や表面離型層614の耐熱温度)を超える温度上昇は制限される。このように、温度調整制御により小サイズ紙通紙領域Fsにおける定着ベルト61での耐熱温度を超える温度上昇が制限されることから、定着ベルト61の定着設定温度を耐熱温度以下の温度範囲内において可能な限り定着ベルト61の耐熱温度に近づけて設定することができる。定着設定温度をこのように設定することによって、定着性能が高められ、例えば厚紙等の用紙に対してもより安定した定着が行われる。
その場合には、感温磁性部材64では、定着ベルト61の定着設定温度に対応させて、感温磁性部材64の機能が実質的に発現し始める指標温度TP2を定着ベルト61の耐熱温度に近づけて設定する。それにより、定着ベルト61の定着設定温度において感温磁性部材64は強磁性を呈する。そして、上記図7に示したように、IHヒータ80により生成された交流磁界の磁力線Hは、定着ベルト61を透過した後、感温磁性部材64の内部を広がり方向(厚さ方向と直交する方向)に沿って通過する磁路を形成する。その結果、定着ベルト61を横切る磁力線Hの磁束密度は高くなり(図7の領域R1,R2,R3)、定着ベルト61に大きな熱が発生する。
In the temperature-sensitive magnetic member 64A arranged in the small-size paper passing area Fs, the fixing setting by the control unit 31 (see FIG. 1) is performed based on the temperature of the fixing belt 61 detected by the thermistor 71 and / or the thermistor 72. Temperature adjustment control with temperature is performed. Therefore, the temperature of the fixing belt 61 in the small-size paper passing area Fs is maintained in the vicinity of the fixing set temperature, and exceeds the heat resistance temperature of the fixing belt 61 (heat resistance temperature of the elastic layer 613 and the surface release layer 614). Temperature rise is limited. As described above, the temperature adjustment control restricts the temperature rise exceeding the heat resistance temperature of the fixing belt 61 in the small-size paper passing area Fs. Therefore, the fixing setting temperature of the fixing belt 61 is set within the temperature range of the heat resistance temperature or less. The temperature can be set as close to the heat resistance temperature of the fixing belt 61 as possible. By setting the fixing set temperature in this way, the fixing performance is improved, and for example, more stable fixing is performed even on paper such as thick paper.
In that case, in the temperature-sensitive magnetic member 64, the index temperature TP <b> 2 at which the function of the temperature-sensitive magnetic member 64 starts to substantially appear is brought close to the heat-resistant temperature of the fixing belt 61 in accordance with the fixing set temperature of the fixing belt 61. To set. Thereby, the temperature-sensitive magnetic member 64 exhibits ferromagnetism at the fixing set temperature of the fixing belt 61. Then, as shown in FIG. 7, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 pass through the fixing belt 61 and then spread in the temperature-sensitive magnetic member 64 (perpendicular to the thickness direction). A magnetic path that passes along (direction). As a result, the magnetic flux density of the magnetic field lines H crossing the fixing belt 61 becomes high (regions R1, R2, and R3 in FIG. 7), and large heat is generated in the fixing belt 61.

その一方で、非通紙領域Fbにおいては定着のための熱が消費されないことから、非通紙領域Fbの温度は、定着設定温度よりも高い温度に上昇し易い。そのため、非通紙領域Fbに配置された感温磁性部材64B,64Cでの指標温度TP2を、小サイズ紙通紙領域Fsに配置された感温磁性部材64Aと同様に定着ベルト61の耐熱温度に近づけて設定したとすると、小サイズ紙P1が連続通紙された場合等に、非通紙領域Fbの温度が直ちに定着ベルト61の耐熱温度よりも上昇して、定着ベルト61を損傷させる可能性が高くなる。
そこで、非通紙領域Fbに配置された感温磁性部材64B,64Cにおいては、実質的なキュリー点CPとして捉えることができる指標温度TP3を定着ベルト61の耐熱温度以下となるように設定する。すなわち、感温磁性部材64B,64Cでの磁気特性の遷移領域の終了温度が定着ベルト61の耐熱温度以下となるように設定する。
On the other hand, since heat for fixing is not consumed in the non-sheet passing area Fb, the temperature of the non-sheet passing area Fb is likely to rise to a temperature higher than the fixing set temperature. Therefore, the index temperature TP2 at the temperature-sensitive magnetic members 64B and 64C arranged in the non-sheet passing area Fb is set to the heat resistant temperature of the fixing belt 61 in the same manner as the temperature-sensitive magnetic member 64A arranged in the small-size sheet passing area Fs. If the small size paper P1 is continuously passed, the temperature of the non-paper passing area Fb immediately rises above the heat resistance temperature of the fixing belt 61, and the fixing belt 61 can be damaged. Increases nature.
Therefore, in the temperature-sensitive magnetic members 64B and 64C arranged in the non-sheet passing region Fb, the index temperature TP3 that can be regarded as a substantial Curie point CP is set to be equal to or lower than the heat resistance temperature of the fixing belt 61. That is, the end temperature of the transition region of the magnetic characteristics in the temperature sensitive magnetic members 64B and 64C is set to be equal to or lower than the heat resistance temperature of the fixing belt 61.

それにより、小サイズ紙P1が連続通紙され、小サイズ紙通紙領域Fsでの定着ベルト61の温度が定着ベルト61の耐熱温度に近づけて設定された定着設定温度の近傍範囲内において温度調整制御が行われても、感温磁性部材64B,64Cの比透磁率μは、定着ベルト61の耐熱温度以下に設定された指標温度TP3に到達した時点でほぼ1となる。それにより、定着ベルト61の非通紙領域Fbの温度が定着ベルト61の耐熱温度に到達するまでに非磁性(常磁性)に変化し、定着ベルト61を横切る磁力線Hの磁束密度は温度変化に応じて小さくなり(図9の領域R1,R2,R3)、発熱量が減少する。それにより、定着ベルト61の非通紙領域Fbの昇温が抑制される。 As a result, the small-size paper P1 is continuously passed, and the temperature adjustment is performed within a range in the vicinity of the set fixing temperature in which the temperature of the fixing belt 61 in the small-size paper passing area Fs is set close to the heat resistance temperature of the fixing belt 61. Even if the control is performed, the relative magnetic permeability μ r of the temperature-sensitive magnetic members 64B and 64C becomes approximately 1 when the temperature reaches the index temperature TP3 set to be equal to or lower than the heat resistance temperature of the fixing belt 61. As a result, the temperature of the non-sheet passing region Fb of the fixing belt 61 changes to nonmagnetic (paramagnetic) before reaching the heat resistance temperature of the fixing belt 61, and the magnetic flux density of the magnetic field lines H crossing the fixing belt 61 changes with temperature. Accordingly, it becomes smaller (regions R1, R2, and R3 in FIG. 9), and the amount of heat generation decreases. Thereby, the temperature rise in the non-sheet passing region Fb of the fixing belt 61 is suppressed.

ここで、図13は、非通紙領域Fbに配置された感温磁性部材64B,64Cの比透磁率μに関する温度特性の一例を示した図である。図13に例示した非通紙領域Fbに配置された感温磁性部材64B,64Cにおいては、磁気特性の遷移領域が指標温度TP2を231℃、指標温度TP3を240℃とする温度領域に設定されている。
一方、上記の図12に例示した小サイズ紙通紙領域Fsに配置された感温磁性部材64Aでは、磁気特性の遷移領域が指標温度TP2を240℃、指標温度TP3を249℃とする温度領域に設定されている。
この場合に、定着ベルト61の耐熱温度が245℃程度であると想定する。そうすると、定着ベルト61が耐熱温度に近い例えば235℃に設定された定着設定温度にて温度調整制御されたとしても、温度調整制御はサーミスタ71および/またはサーミスタ72にて検知された定着ベルト61の温度に基づき行われるため、小サイズ紙通紙領域Fsでの定着ベルト61の温度は耐熱温度を超えない範囲に制限される。
それに対し、定着ベルト61が耐熱温度に近い定着設定温度にて温度調整制御されたとしても、非通紙領域Fbでは、定着ベルト61の耐熱温度(245℃)以下の指標温度TP3(240℃)で感温磁性部材64B,64Cの比透磁率μが1となり、発熱量が低下する。そのため、定着ベルト61の非通紙領域Fbが耐熱温度に到達することが抑制される。
Here, FIG. 13 is a diagram showing an example of temperature characteristics related to the relative magnetic permeability μ r of the temperature-sensitive magnetic members 64B and 64C arranged in the non-sheet passing region Fb. In the temperature-sensitive magnetic members 64B and 64C arranged in the non-sheet passing region Fb illustrated in FIG. 13, the transition region of the magnetic characteristics is set to a temperature region where the index temperature TP2 is 231 ° C. and the index temperature TP3 is 240 ° C. ing.
On the other hand, in the temperature-sensitive magnetic member 64A arranged in the small-size paper passing area Fs illustrated in FIG. 12 above, the transition area of the magnetic characteristics is a temperature area where the index temperature TP2 is 240 ° C. and the index temperature TP3 is 249 ° C. Is set to
In this case, it is assumed that the heat resistance temperature of the fixing belt 61 is about 245 ° C. As a result, even if the fixing belt 61 is temperature-adjusted and controlled at a fixing temperature set at, for example, 235 ° C., which is close to the heat-resistant temperature, the temperature adjustment control is performed on the fixing belt 61 detected by the thermistor 71 and / or the thermistor 72. Since the process is performed based on the temperature, the temperature of the fixing belt 61 in the small-size paper passing area Fs is limited to a range that does not exceed the heat resistance temperature.
On the other hand, even if the fixing belt 61 is temperature adjusted and controlled at a fixing set temperature close to the heat resistance temperature, the index temperature TP3 (240 ° C.) below the heat resistance temperature (245 ° C.) of the fixing belt 61 in the non-sheet passing area Fb. in the temperature-sensitive magnetic member 64B, the relative magnetic permeability mu r becomes 1 of 64C, the calorific value is lowered. Therefore, the non-sheet passing area Fb of the fixing belt 61 is suppressed from reaching the heat resistant temperature.

このように、小サイズ紙通紙領域Fsに配置された感温磁性部材64Aでの磁気特性の遷移領域が、非通紙領域Fbに配置された感温磁性部材64B,64Cでの磁気特性の遷移領域よりも高い温度領域に設定されることにより、定着ベルト61による定着性能が高められる。それとともに、定着ベルト61の非通紙領域Fbの昇温が抑制される。   As described above, the transition region of the magnetic characteristics in the temperature-sensitive magnetic member 64A arranged in the small-size paper passing area Fs is the magnetic characteristic transition in the temperature-sensitive magnetic members 64B and 64C arranged in the non-paper passing area Fb. By setting the temperature region higher than the transition region, the fixing performance of the fixing belt 61 is enhanced. At the same time, the temperature rise in the non-sheet passing area Fb of the fixing belt 61 is suppressed.

なお、感温磁性部材64A,64B,64Cの磁気特性の遷移領域である指標温度TP3と指標温度TP2との間の温度幅(指標温度TP3と指標温度TP2との差分温度)を20°以内となるように構成することで、遷移領域において透磁率(比透磁率μ)が急峻に減少する磁性特性が実現される。例えば、図12および図13に例示した感温磁性部材64A,64B,64Cでは、指標温度TP3と指標温度TP2との温度幅を20°以内である9°に設定している。このように、指標温度TP3と指標温度TP2との温度幅を20°以内に構成することにより、特に非通紙領域Fbでの感温磁性部材64の磁気特性は20°という狭い温度幅で強磁性から非磁性(常磁性)に遷移する。それにより、より一層、定着ベルト61による定着性能が高められるとともに、定着ベルト61の非通紙領域Fbの昇温が抑制される。 The temperature range between the index temperature TP3 and the index temperature TP2 (the difference temperature between the index temperature TP3 and the index temperature TP2), which is a transition region of the magnetic characteristics of the temperature-sensitive magnetic members 64A, 64B, and 64C, is within 20 °. With this configuration, a magnetic characteristic in which the permeability (relative permeability μ r ) sharply decreases in the transition region is realized. For example, in the temperature-sensitive magnetic members 64A, 64B, and 64C illustrated in FIGS. 12 and 13, the temperature width between the index temperature TP3 and the index temperature TP2 is set to 9 ° that is within 20 °. Thus, by configuring the temperature range between the index temperature TP3 and the index temperature TP2 to be within 20 °, the magnetic characteristics of the temperature-sensitive magnetic member 64 particularly in the non-sheet passing region Fb are strong with a narrow temperature range of 20 °. Transition from magnetic to non-magnetic (paramagnetic). As a result, the fixing performance of the fixing belt 61 is further improved, and the temperature rise in the non-sheet passing region Fb of the fixing belt 61 is suppressed.

ところで、本実施の形態では、感温磁性部材64を定着ベルト61とは非接触で配置し、感温磁性部材64自体は発熱し難い構成とした定着ユニット60について説明したが、本実施の形態の感温磁性部材64は、定着ベルト61と接触させて配置し、感温磁性部材64自体も発熱する構成の定着ユニット60においても適用される。
また、本実施の形態では、小サイズ紙通紙領域Fsと非通紙領域Fbとにおいて、磁気特性の遷移領域が異なる2種類の構成部分からなる感温磁性部材64を用いる構成について説明した。しかし、このような構成の他に、例えば小サイズ紙通紙領域Fsや非通紙領域Fbをそれぞれ長手方向に沿って複数(例えば2つ)の構成部分に分割し、複数の小サイズ紙通紙領域Fsや非通紙領域Fbそれぞれに磁気特性の遷移領域の異なる構成部分からなる感温磁性部材64を用いる構成を採用してもよい。すなわち、磁気特性の遷移領域の異なる3種類以上の構成部分からなる感温磁性部材64を用いてもよい。
また、本実施の形態の感温磁性部材64は、磁気特性の遷移領域が異なる複数の構成部分を一体的に構成してもよいし、それぞれを別体で構成してもよい。
In the present embodiment, the fixing unit 60 is described in which the temperature-sensitive magnetic member 64 is arranged in a non-contact manner with the fixing belt 61 and the temperature-sensitive magnetic member 64 itself does not easily generate heat. The temperature-sensitive magnetic member 64 is disposed in contact with the fixing belt 61, and the temperature-sensitive magnetic member 64 itself is also applied to the fixing unit 60 configured to generate heat.
In the present embodiment, the configuration using the temperature-sensitive magnetic member 64 composed of two types of components having different magnetic property transition regions in the small-size paper passing region Fs and the non-paper passing region Fb has been described. However, in addition to such a configuration, for example, the small-size paper passing area Fs and the non-paper passing area Fb are each divided into a plurality of (for example, two) constituent parts along the longitudinal direction, so You may employ | adopt the structure which uses the temperature-sensitive magnetic member 64 which consists of a structure part from which the transition area | region of a magnetic characteristic differs in each of the paper area | region Fs and the non-paper passing area | region Fb. That is, you may use the temperature sensitive magnetic member 64 which consists of a 3 or more types of structural part from which the transition area | region of a magnetic characteristic differs.
Further, the temperature-sensitive magnetic member 64 of the present embodiment may be configured integrally with a plurality of components having different magnetic property transition regions, or may be configured separately.

さらに、定着ユニット60の高速化のために感温磁性部材64自体を接触させて発熱体としても機能させる場合において、分割して充分な発熱エネルギーを定着ベルト61側へ供給できないときには、感温磁性部材64の定着ベルト61との接触面の反対側にヒーター等の加熱源を別途配置してもよい。この場合、発熱体として定着時に定着ベルト61の設定温度より5℃〜25℃程度高い状態で維持できると定着ベルト61への熱供給が充分となり、定着ベルト61の通紙領域における定着ベルト61の連続定着時などでの温度低下を抑制し、定着ユニット60の高速化に有利となる。   Further, in the case where the temperature-sensitive magnetic member 64 itself is brought into contact to function as a heating element in order to increase the speed of the fixing unit 60, if sufficient heat generation energy cannot be divided and supplied to the fixing belt 61 side, the temperature-sensitive magnetic member 64 is used. A heating source such as a heater may be separately disposed on the opposite side of the contact surface of the member 64 with the fixing belt 61. In this case, if the heat generating member can be maintained at a temperature about 5 ° C. to 25 ° C. higher than the set temperature of the fixing belt 61 at the time of fixing, the heat supply to the fixing belt 61 is sufficient, and the fixing belt 61 in the sheet passing region of the fixing belt 61 becomes sufficient. It is advantageous for speeding up the fixing unit 60 by suppressing a temperature drop during continuous fixing.

以上説明したように、本実施の形態の画像形成装置1に備えられる定着ユニット60では、小サイズ紙通紙領域Fsに配置された感温磁性部材64Aでの磁気特性の遷移領域が、非通紙領域Fbに配置された感温磁性部材64B,64Cでの磁気特性の遷移領域よりも高い温度領域に設定される。それにより、定着ベルト61による定着性能が高められる。それとともに、定着ベルト61の非通紙領域Fbの昇温が抑制される。   As described above, in the fixing unit 60 provided in the image forming apparatus 1 of the present embodiment, the transition region of the magnetic characteristics in the temperature-sensitive magnetic member 64A arranged in the small-size paper passing region Fs is not passed. The temperature range is set higher than the transition region of the magnetic characteristics of the temperature-sensitive magnetic members 64B and 64C arranged in the paper region Fb. Thereby, the fixing performance by the fixing belt 61 is enhanced. At the same time, the temperature rise in the non-sheet passing area Fb of the fixing belt 61 is suppressed.

1…画像形成装置、60…定着ユニット、61…定着ベルト、62…加圧ロール、64(64A,64B,64C)…感温磁性部材、66…誘導部材、80…IHヒータ、82…励磁コイル、84…磁心、611…基材層、612…導電発熱層 DESCRIPTION OF SYMBOLS 1 ... Image forming apparatus, 60 ... Fixing unit, 61 ... Fixing belt, 62 ... Pressure roll, 64 (64A, 64B, 64C) ... Temperature-sensitive magnetic member, 66 ... Induction member, 80 ... IH heater, 82 ... Excitation coil , 84 ... Magnetic core, 611 ... Base material layer, 612 ... Conductive heating layer

Claims (8)

導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、
前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、
前記定着部材を挟んで前記磁界生成部材と対向して配置され、磁気特性が温度に応じて強磁性と常磁性との間で遷移する遷移領域を有し、当該磁界生成部材で生成された交流磁界の磁路を形成する磁路形成部材とを備え、
前記磁路形成部材は、使用される記録材の中の最小幅の記録材が通過する領域に配置された第1構成部分と、使用される記録材の中の最小幅の記録材が通過する領域以外の領域に配置された第2構成部分とを含み、
前記第1構成部分および前記第2構成部分の前記遷移領域は、それぞれ、透磁率が減少を開始する透磁率変化開始温度までの温度範囲にて温度と比透磁率との対応関係を規定する第1の関数と当該透磁率変化開始温度を超えた温度範囲にて温度と比透磁率との対応関係を規定する第2の関数との交点となる開始温度と、当該第2の関数における比透磁率が1となる終了温度との間の領域で規定され、
前記第1構成部分は、前記第2構成部分と比較して、前記遷移領域の前記開始温度および前記終了温度が高く構成され、且つ、当該第1構成部分における当該遷移領域の当該終了温度が、前記定着部材の耐熱温度よりも高く構成され、
前記第2構成部分における前記遷移領域の前記終了温度が前記定着部材の耐熱温度よりも低く構成されたことを特徴とする定着装置。
A fixing member having a conductive layer and fixing the toner to the recording material by electromagnetic induction heating of the conductive layer;
A magnetic field generating member that generates an alternating magnetic field that intersects the conductive layer of the fixing member;
An alternating current generated by the magnetic field generation member that is disposed opposite to the magnetic field generation member with the fixing member interposed therebetween and has a transition region in which the magnetic characteristics transition between ferromagnetism and paramagnetism according to temperature. A magnetic path forming member that forms a magnetic path of the magnetic field,
The magnetic path forming member has a first component portion disposed in a region through which a recording material having a minimum width in a recording material to be used passes and a recording material having a minimum width in the recording material to be used. A second component arranged in a region other than the region,
The transition regions of the first component and the second component each define a correspondence relationship between temperature and relative permeability in a temperature range up to a permeability change start temperature at which the permeability starts to decrease. A starting temperature that is the intersection of the function of 1 and the second function that defines the correspondence between the temperature and the relative permeability in a temperature range that exceeds the permeability change starting temperature, and the relative permeability of the second function Defined in the region between the end temperature where the magnetic susceptibility is 1,
The first component is configured such that the start temperature and the end temperature of the transition region are higher than the second component , and the end temperature of the transition region in the first component is It is configured to be higher than the heat resistance temperature of the fixing member,
The fixing device , wherein the end temperature of the transition region in the second component is configured to be lower than a heat resistant temperature of the fixing member .
前記第1の関数および前記第2の関数は、一次関数であることを特徴とする請求項1記載の定着装置。   The fixing device according to claim 1, wherein the first function and the second function are linear functions. 前記磁路形成部材は、前記第1構成部分の前記遷移領域の前記開始温度が前記定着部材の耐熱温度よりも低く構成されたことを特徴とする請求項1記載の定着装置。   The fixing device according to claim 1, wherein the magnetic path forming member is configured such that the start temperature of the transition region of the first component is lower than a heat resistant temperature of the fixing member. 前記定着部材の温度を検知する温度検知部材をさらに備え、
前記温度検知部材は、使用される前記記録材の中の最小幅の当該記録材が通過する領域に配置されたことを特徴とする請求項1記載の定着装置。
A temperature detection member for detecting the temperature of the fixing member;
The fixing device according to claim 1, wherein the temperature detection member is disposed in a region through which the recording material having the minimum width among the recording materials to be used passes.
前記磁路形成部材の前記第1構成部分および前記第2構成部分には、それぞれ、前記定着部材の幅方向に対して交差する角度方向に向けて形成された複数の切欠き部が形成されていることを特徴とする請求項1記載の定着装置。   Each of the first component and the second component of the magnetic path forming member has a plurality of notches formed in an angular direction intersecting the width direction of the fixing member. The fixing device according to claim 1, wherein: トナー像を形成するトナー像形成手段と、
前記トナー像形成手段によって形成された前記トナー像を記録材上に転写する転写手段と、
前記記録材上に転写された前記トナー像を当該記録材に定着する定着手段とを有し、
前記定着手段は、
導電層を有し、当該導電層が電磁誘導加熱されることで前記記録材にトナーを定着する定着部材と、
前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、
前記定着部材を挟んで前記磁界生成部材と対向して配置され、磁気特性が温度に応じて強磁性と常磁性との間で遷移する遷移領域を有し、当該磁界生成部材で生成された交流磁界の磁路を形成する磁路形成部材とを備え、
前記磁路形成部材は、使用される記録材の中の最小幅の記録材が通過する領域に配置された第1構成部分と、使用される記録材の中の最小幅の記録材が通過する領域以外の領域に配置された第2構成部分とを含み、
前記第1構成部分および前記第2構成部分の前記遷移領域は、それぞれ、透磁率が減少を開始する透磁率変化開始温度までの温度範囲にて温度と比透磁率との対応関係を規定する第1の関数と当該透磁率変化開始温度を超えた温度範囲にて温度と比透磁率との対応関係を規定する第2の関数との交点となる開始温度と、当該第2の関数における比透磁率が1となる終了温度との間の領域で規定され、
前記第1構成部分は、前記第2構成部分と比較して、前記遷移領域の前記開始温度および前記終了温度が高く構成され、且つ、当該第1構成部分における当該遷移領域の当該終了温度が、前記定着部材の耐熱温度よりも高く構成され、
前記第2構成部分における前記遷移領域の前記終了温度が前記定着部材の耐熱温度よりも低く構成されたことを特徴とする画像形成装置。
Toner image forming means for forming a toner image;
Transfer means for transferring the toner image formed by the toner image forming means onto a recording material;
Fixing means for fixing the toner image transferred onto the recording material to the recording material;
The fixing means is
A fixing member having a conductive layer and fixing the toner to the recording material by electromagnetic induction heating of the conductive layer;
A magnetic field generating member that generates an alternating magnetic field that intersects the conductive layer of the fixing member;
An alternating current generated by the magnetic field generation member that is disposed opposite to the magnetic field generation member with the fixing member interposed therebetween and has a transition region in which the magnetic characteristics transition between ferromagnetism and paramagnetism according to temperature. A magnetic path forming member that forms a magnetic path of the magnetic field,
The magnetic path forming member has a first component portion disposed in a region through which a recording material having a minimum width in a recording material to be used passes and a recording material having a minimum width in the recording material to be used. A second component arranged in a region other than the region,
The transition regions of the first component and the second component each define a correspondence relationship between temperature and relative permeability in a temperature range up to a permeability change start temperature at which the permeability starts to decrease. A starting temperature that is the intersection of the function of 1 and the second function that defines the correspondence between the temperature and the relative permeability in a temperature range that exceeds the permeability change starting temperature, and the relative permeability of the second function Defined in the region between the end temperature where the magnetic susceptibility is 1,
The first component is configured such that the start temperature and the end temperature of the transition region are higher than the second component , and the end temperature of the transition region in the first component is It is configured to be higher than the heat resistance temperature of the fixing member,
The image forming apparatus , wherein the end temperature of the transition region in the second component is configured to be lower than a heat resistant temperature of the fixing member .
前記第1の関数および前記第2の関数は、一次関数であることを特徴とする請求項6記載の画像形成装置。 The image forming apparatus according to claim 6, wherein the first function and the second function are linear functions. 前記定着手段の前記磁路形成部材は、前記第1構成部分の前記遷移領域の前記開始温度が前記定着部材の耐熱温度よりも低く構成されたことを特徴とする請求項6記載の画像形成装置。 The image forming apparatus according to claim 6 , wherein the magnetic path forming member of the fixing unit is configured such that the start temperature of the transition region of the first component is lower than a heat resistant temperature of the fixing member. .
JP2009077557A 2009-03-26 2009-03-26 Fixing device and image forming apparatus Expired - Fee Related JP5532646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009077557A JP5532646B2 (en) 2009-03-26 2009-03-26 Fixing device and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009077557A JP5532646B2 (en) 2009-03-26 2009-03-26 Fixing device and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2010230932A JP2010230932A (en) 2010-10-14
JP5532646B2 true JP5532646B2 (en) 2014-06-25

Family

ID=43046816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009077557A Expired - Fee Related JP5532646B2 (en) 2009-03-26 2009-03-26 Fixing device and image forming apparatus

Country Status (1)

Country Link
JP (1) JP5532646B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699676B2 (en) * 2011-02-23 2015-04-15 株式会社リコー Fixing apparatus and image forming apparatus
US9434263B2 (en) 2012-09-05 2016-09-06 Lear Corporation Multi-mode battery charger
JP6230401B2 (en) * 2013-12-13 2017-11-15 株式会社東芝 Fixing apparatus and image forming apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162912A (en) * 1998-11-24 2000-06-16 Canon Inc Image heating device and image forming device
JP4422860B2 (en) * 2000-05-08 2010-02-24 キヤノン株式会社 Heating apparatus and image forming apparatus
JP2004288437A (en) * 2003-03-20 2004-10-14 Fuji Xerox Co Ltd Exciting coil, core, and image forming apparatus
JP2004325678A (en) * 2003-04-23 2004-11-18 Konica Minolta Business Technologies Inc Image forming apparatus
JP5141204B2 (en) * 2006-11-24 2013-02-13 富士ゼロックス株式会社 Fixing apparatus and image forming apparatus
JP5050545B2 (en) * 2007-02-01 2012-10-17 富士ゼロックス株式会社 Fixing apparatus and image forming apparatus
JP5061672B2 (en) * 2007-03-16 2012-10-31 富士ゼロックス株式会社 Fixing apparatus and image forming apparatus
JP4962201B2 (en) * 2007-08-08 2012-06-27 パナソニック株式会社 Fixing device, heat generating roller, and image forming apparatus using the same

Also Published As

Publication number Publication date
JP2010230932A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5691370B2 (en) Fixing apparatus and image forming apparatus
JP2010231094A (en) Fixing device and image forming apparatus
JP4821873B2 (en) Fixing device and image forming apparatus
JP2009258453A (en) Fixing device and image forming apparatus
JP5359362B2 (en) Fixing device and image forming apparatus
JP5369958B2 (en) Fixing apparatus and image forming apparatus
JP4888509B2 (en) Image forming apparatus, fixing apparatus, and program
JP4711003B2 (en) Fixing device and image forming apparatus
JP5532646B2 (en) Fixing device and image forming apparatus
JP4807427B2 (en) Fixing apparatus and image forming apparatus
JP4788789B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP5765135B2 (en) Fixing apparatus and image forming apparatus
JP2010224342A (en) Fixing device and image forming apparatus
JP2010224370A (en) Fixing device and image forming apparatus
JP4893763B2 (en) Fixing device and image forming apparatus
JP4715942B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP5375393B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP2011022446A (en) Fixing device, image forming apparatus, and magnetic field generating device
JP2010231106A (en) Fixing device and image forming apparatus
JP2012194429A (en) Fixing device, image formation apparatus, and program
JP2010224032A (en) Fixing unit and image forming apparatus
JP4873035B2 (en) Fixing apparatus and image forming apparatus
JP5644054B2 (en) Fixing device and image forming apparatus
JP4947222B2 (en) Fixing device and image forming apparatus
JP4858561B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5532646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

LAPS Cancellation because of no payment of annual fees